1
|
Ricci AA, Evans C, Stull C, Peacock CA, French DN, Stout JR, Fukuda DH, La Bounty P, Kalman D, Galpin AJ, Tartar J, Johnson S, Kreider RB, Kerksick CM, Campbell BI, Jeffery A, Algieri C, Antonio J. International society of sports nutrition position stand: nutrition and weight cut strategies for mixed martial arts and other combat sports. J Int Soc Sports Nutr 2025; 22:2467909. [PMID: 40059405 PMCID: PMC11894756 DOI: 10.1080/15502783.2025.2467909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Following an extensive literature review, the International Society of Sports Nutrition (ISSN) has developed an official position on nutritional and weight cut strategies for combat sports. The type of combat sport, length of the fight camp, and time between weigh-in and competition are factors influencing nutritional and weight cut strategies. The following 16 points constitute the Position Statement of the Society; the Research Committee has approved them. 1. Combat sports have differing weight categories, official weigh-in times, and competition frequencies, influencing the nutritional and weight cut strategies for training and competition. 2. As the duration of a combat match increases, >4 min, contribution of the aerobic system can rise to >70%, yet anaerobic alactic pathways and anaerobic glycolytic pathways support high-output bursts. 3. During the off camp/general preparation phase, athletes should maintain a weight ranging 12% to 15% above the weight division requirement. 4. Supplements including creatine, beta-alanine, beta-hydroxy-beta-methylbutyrate, and caffeine have been shown to enhance performance and/or recovery during preparation phases, competition, and post-competition. 5. During fight camp, strategic decreases in calorie intake are necessary for an efficient longitudinal weight descent. Individual caloric needs can be determined using indirect calorimetry or validated equations such as Mifflin St. Jeor or Cunningham. 6. Protein should be prioritized during longitudinal weight descents to preserve lean body mass, and the timely delivery of carbohydrates supports training demands. Macronutrients should not drop below the following: carbohydrates 3.0-4.0 g/kg, protein 1.2-2.0 g/kg, and fat 0.5 to 1.0 g/kg/day. 7. Suitable losses in body mass range from 6.7% at 72 h, 5.7% at 48 h, and 4.4% at 24 h, prior to weigh-in. 8. Sodium restriction and water loading are effective for inducing polyuria and acute water loss. 9. During fight week, water-bound glycogen stores can be depleted through exercise and carbohydrate restriction, facilitating a 1% to 2% loss in body mass, with equivalent losses from a low-fiber intake of <10 g/day for 4 days. 10. During fight week, acute water loss strategies, including sauna, hot water immersion, and mummy wraps, can be used effectively with appropriate supervision (optimally ~2-4% of body mass within 24 h of weigh-in). 11. Post-weigh-in, rapid weight gain strategies are utilized to recover lost body fluid/mass before competition with the intent of gaining a competitive advantage. 12. Oral rehydration solutions (1 to 1.5 liters/h) combined with a sodium range of 50-90 mmol/dL should take precedence immediately post-weigh-in. 13. Fast-acting carbohydrates at a tolerable rate of ≤ 60 g/h should follow oral rehydration solutions. Post weigh-in intake of fiber should be limited to avoid gastrointestinal distress. 14. Post-weigh-in carbohydrate intake at 8-12 g/kg may be appropriate for combat athletes that undertook significant glycogen depletion strategies during fight week. About 4-7 g/kg may be suitable for modest carbohydrate restriction. 15. Post weigh-in, rehydration/refueling protocols should aim to regain ≥10% of body mass to mitigate declines in performance and the negative effects of rapid weight loss. 16. The long-term effects of frequent weight cuts on health and performance are unknown, necessitating further research.
Collapse
Affiliation(s)
- Anthony A. Ricci
- Nova Southeastern University, Department of Health and Human Performance, Fight Science Lab, Fort Lauderdale, FL, USA
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Fight Science Lab, Fort Lauderdale, FL, USA
| | | | - Corey A. Peacock
- Nova Southeastern University, Department of Health and Human Performance, Fight Science Lab, Fort Lauderdale, FL, USA
| | | | - Jeffery R. Stout
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - David H. Fukuda
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Paul La Bounty
- University of Mary Hardin Baylor, Mayborn College of Health Sciences, Belton, TX, USA
| | - Douglas Kalman
- Nova Southeastern University, Department of Nutrition, Fort Lauderdale, FL, USA
| | | | - Jaime Tartar
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Sarah Johnson
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Tampa, FL, USA
| | | | - Chris Algieri
- Nova Southeastern University, Department of Psychology and Neuroscience, Davie, FL USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Fight Science Lab, Fort Lauderdale, FL, USA
| |
Collapse
|
2
|
Siedzik K, Góral K, Rodziewicz-Flis E, Olek RA, Ziółkowski W. Impact of a Fish-Based Restrictive Ketogenic Diet on Body Composition and Strength Capacity: A Pre-Post Study. Nutrients 2025; 17:1297. [PMID: 40284162 PMCID: PMC12029725 DOI: 10.3390/nu17081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The ketogenic diet (KD) is becoming a popular nutritional model for athletes. One limitation of this diet is the use of animal-meat products, which may be unacceptable to some people. Moreover, the relationship between this diet's use, body composition, and strength capacity has not been thoroughly investigated. This study aimed to assess the effects of a two-week fish-based restrictive KD on body composition, strength capacity (isometric muscle strength), and somatic disorders in healthy adults. Methods: Participants were recruited through advertisements, posters displayed at the university, and information shared among colleagues. Ultimately, 14 individuals qualified for this study. For two weeks, they followed a designated ketogenic diet enriched with fish and omega-3 fatty acids, with a calorie reduction of -500 kcal/day. The study was designed and conducted as a single-group pre-post study. Before and after completing the diet, participants' body composition (body mass, body fat, fat-free mass, and visceral fat) and strength capacity (knee extensor peak torque [KEPT] and knee flexor peak torque [KFPT]) were measured. The survey also analyzed participants' somatic disorders such as nausea, vomiting, energy level, diarrhea, constipation, drowsiness, sleep problems, hunger, thirst, and bad breath. The average results of both trials obtained before and after the diet were compared using the paired Student's t-test or non-parametric test. The significance level was set at 0.05. Results: After two weeks of a fish-based restrictive KD, significant increases in ketone bodies were observed in both the blood (pre: 0.21 mmol/L ± 0.15 vs. post: 2.20 ± 1.19, p < 0.001) and urine (pre: 0.00 mmol/L ± 0.00 vs. post: 4.64 mmol/L ± 3.24, p < 0.001). Body composition changes included significant reductions in total body mass (pre: 76.66 kg ± 11.06 vs. post: 73.77 kg ± 10.76, p < 0.001), fat mass (pre: 21.34 kg ± 7.36 vs. post: 19.73 kg ± 7.20, p < 0.001), and visceral fat (pre: 708.50 g ± 627.67 vs. post: 603.21 g ± 567.82, p = 0.0012). Skeletal muscle mass decreased by 2% (pre: 27.75 kg ± 5.80 vs. post: 27.03 kg ± 5.47, p = 0.01), though no significant changes were seen in muscle strength when adjusting for body mass or skeletal muscle mass. No major adverse effects were noted in relation to somatic disorders, although some participants reported increased thirst and bad breath. Conclusions: After 14 days of a fish-based restrictive KD, a significant reduction in body mass and changes in body composition were observed, with no loss of muscle strength. This type of diet may serve as an effective method for rapid body mass reduction in sports with weight categories, while preserving muscle strength, which is crucial for athletes. It could also be an alternative means for individuals to eliminate animal meat from their diet.
Collapse
Affiliation(s)
- Katarzyna Siedzik
- Doctoral School, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Kamil Góral
- Doctoral School, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Ewa Rodziewicz-Flis
- Department of Physiotherapy, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Robert A. Olek
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Wiesław Ziółkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Gdansk, 80-219 Gdansk, Poland
| |
Collapse
|
3
|
Leaf A, Rothschild JA, Sharpe TM, Sims ST, Macias CJ, Futch GG, Roberts MD, Stout JR, Ormsbee MJ, Aragon AA, Campbell BI, Arent SM, D’Agostino DP, Barrack MT, Kerksick CM, Kreider RB, Kalman DS, Antonio J. International society of sports nutrition position stand: ketogenic diets. J Int Soc Sports Nutr 2024; 21:2368167. [PMID: 38934469 PMCID: PMC11212571 DOI: 10.1080/15502783.2024.2368167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
POSITION STATEMENT The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN. 1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day. 2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation. 3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min). 4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet. 5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators. 6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance. 7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.
Collapse
Affiliation(s)
- Alex Leaf
- Alex Leaf LLC, Scientific Affairs, Scottsdale, AZ, USA
| | - Jeffrey A. Rothschild
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- High Performance Sport New Zealand, Performance Nutrition, Auckland, New Zealand
| | - Tim M. Sharpe
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Stacy T. Sims
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
- Stanford University, Stanford Lifestyle Medicine, Palo Alto, CA, USA
| | - Chad J. Macias
- University of Western States, Human Nutrition and Functional Medicine, Portland, OR, USA
| | - Geoff G. Futch
- Springfield College, Department of Exercise Science and Athletic Training, Springfield, MA, USA
- FitPro Analytics, Scientific Affairs, Springfield, MA, USA
| | | | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Michael J. Ormsbee
- Florida State University, Institute of Sports Sciences & Medicine, Tallahassee, FL, USA
- University of KwaZulu Natal, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| | | | - Bill I. Campbell
- University of South Florida, Performance and Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Dominic P. D’Agostino
- Institute for Human and Machine Cognition, Human Healthspan, Resilience, and Performance, Pensacola, FL, USA
- University of South Florida, Department of Molecular Pharmacology and Physiology, Tampa, FL, USA
| | - Michelle T. Barrack
- California State University, Department of Family and Consumer Sciences, Long Beach, CA, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Douglas S. Kalman
- Nova Southeastern University, Department of Nutrition. Dr. Kiran C. Patel College of Osteopathic Medicine. Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
4
|
dos Santos DFC, Yang WH, Franchini E. A scoping review of rapid weight loss in judo athletes: prevalence, magnitude, effects on performance, risks, and recommendations. Phys Act Nutr 2024; 28:1-12. [PMID: 39501688 PMCID: PMC11540994 DOI: 10.20463/pan.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 11/09/2024] Open
Abstract
PURPOSE Combat sports, such as judo, are weight categorized. Weight control was established to promote fair disputes among individuals. However, combat sports athletes adopt rapid weight loss (RWL) to obtain an advantage over smaller and lighter opponents. This scoping review article presents the prevalence, magnitude, and methods of RWL and its effects on physical and competitive performance, health risks, and psychological effects. Specific recommendations for attenuating the effects of RWL are also presented. METHODS Studies were retrieved from Web of Science, PubMed, and Scopus databases. Four hundred and forty-six articles were identified, of which fifty-three were considered eligible for this review. RESULTS The results showed that the prevalence of RWL was between 40% and 92.9% and that athletes reduced their body mass by approximately 5%. Although the literature suggests that RWL impairs the performance and psychological well-being of athletes, these results were obtained when recovery time was not provided. CONCLUSION No negative effects on performance were observed when the recovery time was >4 h. However, health risks due to RWL practices should be considered, and RWL should be avoided.
Collapse
Affiliation(s)
- Danilo F. C. dos Santos
- Martial Arts and Combat Sports Research Group, Sport Department, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Gyeonggi-do, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Gyeonggi-do, Republic of Korea
| | - Emerson Franchini
- Martial Arts and Combat Sports Research Group, Sport Department, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Chung N. Impact of the ketogenic diet on body fat, muscle mass, and exercise performance: a review. Phys Act Nutr 2023; 27:1-7. [PMID: 38297470 PMCID: PMC10844723 DOI: 10.20463/pan.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The purpose of this review was to investigate the effects of the ketogenic diet (KD), on body fat, muscle mass, and exercise performance. As the KD is a subject of ongoing debate, we also present the existing evidence regarding its potential benefits in the aforementioned areas of body fat, muscle mass, and exercise performance. METHODS A literature search was conducted using the keywords "ketogenic diet, low-carbohydrate diet, high-fat diet, body fat, muscle mass, and exercise performance" in PubMed, Web of Science, and Google Scholar. RESULTS The KD effectively reduced body fat in the short term and, preserved muscle mass during weight loss, however, its impact on exercise performance remains inconclusive owing to various factors. CONCLUSION While controversial, it is undeniable that the KD has the potential to affect body fat, muscle mass, and exercise performance. Consequently, additional research is required to elucidate the underlying mechanisms across various populations, optimize their implementation, and understand their long-term effects.
Collapse
Affiliation(s)
- Nana Chung
- Department of Physical Education, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
6
|
Hsu C, Huang YW, Lin SM, Lu CS, Chen CY, Chang CK. Low- or moderate-carbohydrate calorie-restricted diets have similar effects on body composition and taekwondo performance after high-carbohydrate recovery meals. Eur J Sport Sci 2023; 23:1983-1992. [PMID: 37010257 DOI: 10.1080/17461391.2023.2199423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Low-carbohydrate (LC) diets are popular among general and athletic populations attempting to lose body mass. This study investigated the effect of a 7-day LC or moderate-carbohydrate (MC) calorie-restricted diet followed by 18-h recovery on body composition and taekwondo-specific performance. In this randomised cross-over study, 12 male taekwondo athletes consumed an LC (10% of carbohydrate, 41% of protein, 49% of fat, and 15.8 ± 0.4 kcal/kg/day) or an isocaloric MC diet (60% of carbohydrate, 30% of protein, and 10% of fat) for 7 days. The participants then consumed a carbohydrate-rich recovery dinner (39.2 ± 3.1 kcal/kg) followed by breakfast (6.2 ± 0.4 kcal/kg) in both the trials. Three repeated sprint ability (RSA) tests were conducted after breakfast. The taekwondo-specific reaction battery was administered before the first RSA test and after each RSA test. The participants experienced similar magnitudes of significant loss of body mass in the LC (-2.4 ± 1.7%) and MC (-2.3 ± 1.7%) trials. Fat mass and fat percentage significantly decreased in the MC trial but remained unchanged in the LC trial after body mass loss. Fat free mass was maintained in both the trials. The average and peak power in the RSA tests and the premotor reaction time were similar between the trials. The participants experienced significantly higher fatigue in the LC trial. In conclusion, both the diets can help athletes rapidly lose body mass while maintaining performance as long as an adequate amount of carbohydrate is consumed during the recovery period.
Collapse
Affiliation(s)
- Chin Hsu
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Yun-Wen Huang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Shu-Mei Lin
- Department of Nutrition, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ching-Shih Lu
- Department of Nutrition, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chung-Yu Chen
- Department of Physical Education, National Taiwan University of Sport, Taichung, Taiwan
| | - Chen-Kang Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| |
Collapse
|
7
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
8
|
Henselmans M, Bjørnsen T, Hedderman R, Vårvik FT. The Effect of Carbohydrate Intake on Strength and Resistance Training Performance: A Systematic Review. Nutrients 2022; 14:nu14040856. [PMID: 35215506 PMCID: PMC8878406 DOI: 10.3390/nu14040856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
High carbohydrate intakes are commonly recommended for athletes of various sports, including strength trainees, to optimize performance. However, the effect of carbohydrate intake on strength training performance has not been systematically analyzed. A systematic literature search was conducted for trials that manipulated carbohydrate intake, including supplements, and measured strength, resistance training or power either acutely or after a diet and strength training program. Studies were categorized as either (1) acute supplementation, (2) exercise-induced glycogen depletion with subsequent carbohydrate manipulation, (3) short-term (2–7 days) carbohydrate manipulation or (4) changes in performance after longer-term diet manipulation and strength training. Forty-nine studies were included: 19 acute, six glycogen depletion, seven short-term and 17 long-term studies. Participants were strength trainees or athletes (39 studies), recreationally active (six studies) or untrained (four studies). Acutely, higher carbohydrate intake did not improve performance in 13 studies and enhanced performance in six studies, primarily in those with fasted control groups and workouts with over 10 sets per muscle group. One study found that a carbohydrate meal improved performance compared to water but not in comparison to a sensory-matched placebo breakfast. There was no evidence of a dose-response effect. After glycogen depletion, carbohydrate supplementation improved performance in three studies compared to placebo, in particular during bi-daily workouts, but not in research with isocaloric controls. None of the seven short-term studies found beneficial effects of carbohydrate manipulation. Longer-term changes in performance were not influenced by carbohydrate intake in 15 studies; one study favored the higher- and one the lower-carbohydrate condition. Carbohydrate intake per se is unlikely to strength training performance in a fed state in workouts consisting of up to 10 sets per muscle group. Performance during higher volumes may benefit from carbohydrates, but more studies with isocaloric control groups, sensory-matched placebos and locally measured glycogen depletion are needed.
Collapse
Affiliation(s)
- Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Correspondence: ; Tel.: +31-61-809-5999
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| | - Richie Hedderman
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
| | - Fredrik Tonstad Vårvik
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| |
Collapse
|
9
|
Noakes TD. What Is the Evidence That Dietary Macronutrient Composition Influences Exercise Performance? A Narrative Review. Nutrients 2022; 14:862. [PMID: 35215511 PMCID: PMC8875928 DOI: 10.3390/nu14040862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
The introduction of the needle muscle biopsy technique in the 1960s allowed muscle tissue to be sampled from exercising humans for the first time. The finding that muscle glycogen content reached low levels at exhaustion suggested that the metabolic cause of fatigue during prolonged exercise had been discovered. A special pre-exercise diet that maximized pre-exercise muscle glycogen storage also increased time to fatigue during prolonged exercise. The logical conclusion was that the athlete's pre-exercise muscle glycogen content is the single most important acutely modifiable determinant of endurance capacity. Muscle biochemists proposed that skeletal muscle has an obligatory dependence on high rates of muscle glycogen/carbohydrate oxidation, especially during high intensity or prolonged exercise. Without this obligatory carbohydrate oxidation from muscle glycogen, optimum muscle metabolism cannot be sustained; fatigue develops and exercise performance is impaired. As plausible as this explanation may appear, it has never been proven. Here, I propose an alternate explanation. All the original studies overlooked one crucial finding, specifically that not only were muscle glycogen concentrations low at exhaustion in all trials, but hypoglycemia was also always present. Here, I provide the historical and modern evidence showing that the blood glucose concentration-reflecting the liver glycogen rather than the muscle glycogen content-is the homeostatically-regulated (protected) variable that drives the metabolic response to prolonged exercise. If this is so, nutritional interventions that enhance exercise performance, especially during prolonged exercise, will be those that assist the body in its efforts to maintain the blood glucose concentration within the normal range.
Collapse
Affiliation(s)
- Timothy David Noakes
- Department of Applied Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa
| |
Collapse
|
10
|
Roth C, Schoenfeld BJ, Behringer M. Lean mass sparing in resistance-trained athletes during caloric restriction: the role of resistance training volume. Eur J Appl Physiol 2022; 122:1129-1151. [PMID: 35146569 PMCID: PMC9012799 DOI: 10.1007/s00421-022-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Many sports employ caloric restriction (CR) to reduce athletes’ body mass. During these phases, resistance training (RT) volume is often reduced to accommodate recovery demands. Since RT volume is a well-known anabolic stimulus, this review investigates whether a higher training volume helps to spare lean mass during CR. A total of 15 studies met inclusion criteria. The extracted data allowed calculation of total tonnage lifted (repetitions × sets × intensity load) or weekly sets per muscle group for only 4 of the 15 studies, with RT volume being highly dependent on the examined muscle group as well as weekly training frequency per muscle group. Studies involving high RT volume programs (≥ 10 weekly sets per muscle group) revealed low-to-no (mostly female) lean mass loss. Additionally, studies increasing RT volume during CR over time appeared to demonstrate no-to-low lean mass loss when compared to studies reducing RT volume. Since data regarding RT variables applied were incomplete in most of the included studies, evidence is insufficient to conclude that a higher RT volume is better suited to spare lean mass during CR, although data seem to favor higher volumes in female athletes during CR. Moreover, the data appear to suggest that increasing RT volume during CR over time might be more effective in ameliorating CR-induced atrophy in both male and female resistance-trained athletes when compared to studies reducing RT volume. The effects of CR on lean mass sparing seem to be mediated by training experience, pre-diet volume, and energy deficit, with, on average, women tending to spare more lean mass than men. Potential explanatory mechanisms for enhanced lean mass sparing include a preserved endocrine milieu as well as heightened anabolic signaling.
Collapse
Affiliation(s)
- C Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany.
| | - B J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA
| | - M Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Ginnheimer Landstrasse 39, 60487, Frankfurt/Main, Germany
| |
Collapse
|
11
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
12
|
Antonio Paoli A, Mancin L, Caprio M, Monti E, Narici MV, Cenci L, Piccini F, Pincella M, Grigoletto D, Marcolin G. Effects of 30 days of ketogenic diet on body composition, muscle strength, muscle area, metabolism, and performance in semi-professional soccer players. J Int Soc Sports Nutr 2021; 18:62. [PMID: 34530857 PMCID: PMC8447662 DOI: 10.1186/s12970-021-00459-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A ketogenic diet (KD) is a nutritional approach, usually adopted for weight loss, that restricts daily carbohydrates under 30 g/day. KD showed contradictory results on sport performance, whilst no data are available on team sports. We sought to investigate the influence of a KD on different parameters in semi-professional soccer players. METHODS Subjects were randomly assigned to a iso-protein (1.8 g/Kg body weight/day) ketogenic diet (KD) or western diet (WD) for 30 days. Body weight and body composition, resting energy expenditure (REE), respiratory exchange ratio (RER), cross sectional area (CSA) and isometric muscle strength of quadriceps, counter movement jump (CMJ) and yoyo intermittent recovery test time were measured. RESULTS There was a significantly higher decrease of body fat (p = 0.0359), visceral adipose tissue (VAT) (p = 0.0018), waist circumference (p = 0.0185) and extra-cellular water (p = 0.0060) in KD compared to WD group. Lean soft tissue, quadriceps muscle area, maximal strength and REE showed no changes in both groups. RER decreased significantly in KD (p = 0.0008). Yo-yo intermittent test improved significantly (p < 0.0001) in both groups without significant differences between groups. CMJ significantly improved (p = 0.0021) only in KD. CONCLUSIONS This is the first study investigating the effects of a KD on semi-professional soccer players. In our study KD athletes lost fat mass without any detrimental effects on strength, power and muscle mass. When the goal is a rapid weight reduction in such athletes, the use of a KD should be taken into account. TRIAL REGISTRATION registered retrospectively on Clinical Trial registration number NCT04078971 .
Collapse
Affiliation(s)
- A Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy. .,Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107, Murcia, Spain. .,Human Inspired Technology Research Center, University of Padua, Padua, Italy.
| | - Laura Mancin
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy.,Human Inspired Technology Research Center, University of Padua, Padua, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Elena Monti
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy
| | - Lorenzo Cenci
- Human Inspired Technology Research Center, University of Padua, Padua, Italy
| | | | - Matteo Pincella
- Inter FC., Milan, Italy.,FIGC Federazione Italiana Giuoco Calcio (Italian Football Federation), Rome, Italy
| | - Davide Grigoletto
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padua, Via Marzolo, 3, 35131, Padua, Italy
| |
Collapse
|
13
|
Wilson JM, Lowery RP, Roberts MD, Sharp MH, Joy JM, Shields KA, Partl JM, Volek JS, D'Agostino DP. Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Men. J Strength Cond Res 2021; 34:3463-3474. [PMID: 28399015 DOI: 10.1519/jsc.0000000000001935] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Wilson, JM, Lowery, RP, Roberts, MD, Sharp, MH, Joy, JM, Shields, KA, Partl, JM, Volek, JS, and D'Agostino, DP. Effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training men. J Strength Cond Res 34(12): 3463-3474, 2020-This study investigated the impact of an isocaloric and isonitrogenous ketogenic diet (KD) versus a traditional western diet (WD) on changes in body composition, performance, blood lipids, and hormonal profiles in resistance-trained athletes. Twenty-five college-aged men were divided into a KD or traditional WD from weeks 1 to 10, with a reintroduction of carbohydrates from weeks 10 to 11, while participating in a resistance training program. Body composition, strength, power, and blood lipid profiles were determined at weeks 0, 10, and 11. A comprehensive metabolic panel and testosterone levels were also measured at weeks 0 and 11. Lean body mass (LBM) increased in both the KD and WD groups (2.4% and 4.4%, p < 0.01) at week 10. However, only the KD group showed an increase in LBM between weeks 10 and 11 (4.8%, p < 0.0001). Finally, fat mass decreased in both the KD (-2.2 ± 1.2 kg) and WD groups (-1.5 ± 1.6 kg). Strength and power increased to the same extent in the WD and KD conditions from weeks 1 to 11. No changes in any serum lipid measures occurred from weeks 1 to 10; however, a rapid reintroduction of carbohydrate from weeks 10 to 11 raised plasma triglyceride levels in the KD group. Total testosterone increased significantly from weeks 0 to 11 in the KD diet (118 ng·dl) as compared to the WD (-36 ng·dl) from pre to post while insulin did not change. The KD can be used in combination with resistance training to cause favorable changes in body composition, performance, and hormonal profiles in resistance-trained men.
Collapse
Affiliation(s)
| | - Ryan P Lowery
- Applied Science & Performance Institute, Tampa, Florida.,Department of Health and Human Performance, Concordia University Chicago, River Forest, Illinois
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama
| | | | - Jordan M Joy
- Department of Nutrition and Food Science, Texas Woman's University, Denton, Texas
| | - Kevin A Shields
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Jeremy M Partl
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Jeff S Volek
- Department of Human Sciences, Kinesiology Program, Ohio State University, Columbus, Ohio; and
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
14
|
Frączek B, Pięta A, Burda A, Mazur-Kurach P, Tyrała F. Paleolithic Diet-Effect on the Health Status and Performance of Athletes? Nutrients 2021; 13:1019. [PMID: 33801152 PMCID: PMC8004139 DOI: 10.3390/nu13031019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of this meta-analysis was to review the impact of a Paleolithic diet (PD) on selected health indicators (body composition, lipid profile, blood pressure, and carbohydrate metabolism) in the short and long term of nutrition intervention in healthy and unhealthy adults. A systematic review of randomized controlled trials of 21 full-text original human studies was conducted. Both the PD and a variety of healthy diets (control diets (CDs)) caused reduction in anthropometric parameters, both in the short and long term. For many indicators, such as weight (body mass (BM)), body mass index (BMI), and waist circumference (WC), impact was stronger and especially found in the short term. All diets caused a decrease in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), albeit the impact of PD was stronger. Among long-term studies, only PD cased a decline in TC and LDL-C. Impact on blood pressure was observed mainly in the short term. PD caused a decrease in fasting plasma (fP) glucose, fP insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c) in the short run, contrary to CD. In the long term, only PD caused a decrease in fP glucose and fP insulin. Lower positive impact of PD on performance was observed in the group without exercise. Positive effects of the PD on health and the lack of experiments among professional athletes require longer-term interventions to determine the effect of the Paleo diet on athletic performance.
Collapse
Affiliation(s)
- Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Cracow, Poland; (A.P.); (P.M.-K.)
| | - Aleksandra Pięta
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Cracow, Poland; (A.P.); (P.M.-K.)
| | - Adrian Burda
- Department of Econometrics and Operational Research, Cracow University of Economics, 31-510 Cracow, Poland;
| | - Paulina Mazur-Kurach
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Cracow, Poland; (A.P.); (P.M.-K.)
| | - Florentyna Tyrała
- Department of Sports Dietetics, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| |
Collapse
|
15
|
Macedo RCO, Santos HO, Tinsley GM, Reischak-Oliveira A. Low-carbohydrate diets: Effects on metabolism and exercise - A comprehensive literature review. Clin Nutr ESPEN 2020; 40:17-26. [PMID: 33183532 DOI: 10.1016/j.clnesp.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Low-carbohydrate diets (LCD) have gained substantial attention in recent years for their potential in health promotion and treatment of diseases, but they remain controversial in nutrition guidelines and exercise performance. Herein, through a literature review, we discuss the current evidence base by considering management of LCD and potential coupling of these dietary regiments with physical exercise. METHODS We performed a comprehensive literature review with no date limits as a means of including seminal to current studies. RESULTS Reduction of CHO intake decreases muscle glycogen, yielding greater fat oxidation and associated metabolic benefits. LCD may promote fat mass loss and regulation of biochemical parameters, such as lipid and glycemic biomarkers. The therapeutic potential of LCD towards noncommunicable diseases, particularly obesity and its comorbidities, is therefore reasonable as a dietary candidate in this context. Potential benefits to this approach are linked to enhancement of mitochondrial gene expression and mitochondrial biogenesis. As such, LCD may be a feasible tool in a 'periodized nutrition' for athletes and within clinical scenarios. Long-term observational follow-up studies have demonstrated increased mortality and cardiovascular implications of LCD. However, harmful associations may depend on the food source (e.g., animal-based vs. plant-based foods). CONCLUSION LCD may decrease body mass, waist circumference, and improve fat and carbohydrate metabolism. When combined with exercise, LCD seems to be an effective strategy in regulating metabolic factors of cardiovascular diseases. Conversely, LCD may be associated with higher mortality and metabolic dysregulations if it contains large amounts of animal-based foods, particularly saturated fat.
Collapse
Affiliation(s)
- Rodrigo C O Macedo
- University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil; Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
16
|
Abstract
The purpose of the present review is to describe how human physiology at very low carbohydrate intakes relates to the criteria for nutritional essentiality. Although we did not limit ourselves to one particular type or function of carbohydrates, we did primarily focus on glucose utilisation as that function was used to determine the recommended daily allowance. In the general population, the human body is able to endogenously synthesise carbohydrates, and does not show signs of deficiency in the absence of dietary carbohydrates. However, in certain genetic defects, such as glycogen storage disease type I, absence of dietary carbohydrates causes abnormalities that are resolved with dietary supplementation of carbohydrates. Therefore, dietary carbohydrates may be defined as conditionally essential nutrients because they are nutrients that are not required in the diet for the general population but are required for specific subpopulations. Ketosis may be considered a physiological normal state due to its occurrence in infants in addition to at very low carbohydrate intakes. Although sources of dietary carbohydrates can provide beneficial micronutrients, no signs of micronutrient deficiencies have been reported in clinical trials of low-carbohydrate ketogenic diets. Nonetheless, more research is needed on how micronutrient requirements can change depending on the dietary and metabolic context. More research is also needed on the role of dietary fibre during a low-carbohydrate ketogenic diet as the beneficial effects of dietary fibre were determined on a standard diet and several studies have shown beneficial effects of decreasing non-digestible carbohydrates.
Collapse
|
17
|
Barley OR, Chapman DW, Abbiss CR. The Current State of Weight-Cutting in Combat Sports-Weight-Cutting in Combat Sports. Sports (Basel) 2019; 7:E123. [PMID: 31117325 PMCID: PMC6572325 DOI: 10.3390/sports7050123] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
In combat sports, athletes are divided into categories based on gender and body mass. Athletes attempt to compete against a lighter opponent by losing body mass prior to being weighed (i.e., 'weight-cutting'). The purpose of this narrative review was to explore the current body of literature on weight-cutting and outline gaps for further research. Methods of weight-loss include energy intake restriction, total body fluid reduction and pseudo extreme/abusive medical practice (e.g., diuretics). The influence of weight-cutting on performance is unclear, with studies suggesting a negative or no effect. However, larger weight-cuts (~5% of body mass in <24 h) do impair repeat-effort performance. It is unclear if the benefit from competing against a smaller opponent outweighs the observed reduction in physical capacity. Many mechanisms have been proposed for the observed reductions in performance, ranging from reduced glycogen availability to increased perceptions of fatigue. Athletes undertaking weight-cutting may be able to utilise strategies around glycogen, total body water and electrolyte replenishment to prepare for competition. Despite substantial discussion on managing weight-cutting in combat sports, no clear solution has been offered. Given the prevalence of weight-cutting, it is important to develop a deeper understanding of such practices so appropriate advice can be given.
Collapse
Affiliation(s)
- Oliver R Barley
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Dale W Chapman
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
- Performance Support-Physiology and Nutrition, New South Wales Institute of Sport, Sydney Olympic Park, NSW 2127, Australia.
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
18
|
Greene DA, Varley BJ, Hartwig TB, Chapman P, Rigney M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J Strength Cond Res 2019; 32:3373-3382. [PMID: 30335720 DOI: 10.1519/jsc.0000000000002904] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Greene, DA, Varley, BJ, Hartwig, TB, Chapman, P, and Rigney, M. A low-carbohydrate ketogenic diet reduces body mass without compromising performance in powerlifting and Olympic weightlifting athletes. J Strength Cond Res 32(12): 3382-3391, 2018-Weight class athletes use weight-making strategies to compete in specific weight categories with an optimum power-to-weight ratio. There is evidence that low carbohydrate diets might offer specific advantages for weight reduction without the negative impact on strength and power previously hypothesized to accompany carbohydrate restriction. Therefore, the purpose of this study was to determine whether a low-carbohydrate ketogenic diet (LCKD) could be used as a weight reduction strategy for athletes competing in the weight class sports of powerlifting and Olympic weightlifting. Fourteen intermediate to elite competitive lifting athletes (age 34 ± 10.5, n = 5 female) consumed an ad libitum usual diet (UD) (>250 g daily intake of carbohydrates) and an ad libitum LCKD (≤50 g or ≤10% daily intake of carbohydrates) in random order, each for 3 months in a crossover design. Lifting performance, body composition, resting metabolic rate, blood glucose, and blood electrolytes were measured at baseline, 3 months, and 6 months. The LCKD phase resulted in significantly lower body mass (-3.26 kg, p = 0.038) and lean mass (-2.26 kg, p = 0.016) compared with the UD phase. Lean mass losses were not reflected in lifting performances that were not different between dietary phases. No other differences in primary or secondary outcome measures were found between dietary phases. Weight class athletes consuming an ad libitum LCKD decreased body mass and achieved lifting performances that were comparable with their UD. Coaches and athletes should consider using an LCKD to achieve targeted weight reduction goals for weight class sports.
Collapse
Affiliation(s)
- David A Greene
- School of Exercise Science, Australian Catholic University, Strathfield, New South Wales, Australia
| | | | | | | | | |
Collapse
|
19
|
Cholewa JM, Newmire DE, Zanchi NE. Carbohydrate restriction: Friend or foe of resistance-based exercise performance? Nutrition 2018; 60:136-146. [PMID: 30586657 DOI: 10.1016/j.nut.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
It is commonly accepted that adequate carbohydrate availability is necessary for optimal endurance performance. However, for strength- and physique-based athletes, sports nutrition research and recommendations have focused on protein ingestion, with far less attention given to carbohydrates. Varying resistance exercise protocols, such as differences in intensity, volume, and intraset rest prescriptions between strength-training and physique-training goals elicit different metabolic responses, which may necessitate different carbohydrate needs. The results of several acute and chronic training studies suggest that although severe carbohydrate restriction may not impair strength adaptations during a resistance training program, consuming an adequate amount of carbohydrate in the days leading up to testing may enhance maximal strength and strength-endurance performance. Although several molecular studies demonstrate no additive increases in postexercise mammalian target of rapamycin 1 phosphorylation with carbohydrate and protein compared with protein ingestion alone, the effects of chronic resistance training with carbohydrate restriction on muscle hypertrophy are conflicting and require further research to determine a minimal carbohydrate threshold necessary to optimize muscle hypertrophy. This review summarizes the current knowledge regarding carbohydrate availability and resistance training outcomes and poses new research questions that will better help guide carbohydrate recommendations for strength and physique athletes. In addition, given that success in physique sports is based on subjective appearance, and not objective physical performance, we also review the effects of subchronic carbohydrate ingestion during contest preparation on aesthetic appearance.
Collapse
Affiliation(s)
- Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina, USA.
| | - Daniel E Newmire
- Department of Kinesiology and Military Science, University of Texas A&M, Corpus Christi, Texas, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão, São Luís, Brazil; Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luís, Brazil
| |
Collapse
|
20
|
Zinn C, Wood M, Williden M, Chatterton S, Maunder E. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. J Int Soc Sports Nutr 2017; 14:22. [PMID: 28706467 PMCID: PMC5506682 DOI: 10.1186/s12970-017-0180-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Background Low-carbohydrate, high-fat and ketogenic diets are increasingly adopted by athletes for body composition and sports performance enhancements. However, as yet, there is no consensus on their efficacy in improving performance. There is also no comprehensive literature on athletes’ experiences while undertaking this diet. The purpose of this pilot work was two-fold: i. to examine the effects of a non-calorie controlled ketogenic diet on body composition and performance outcomes of endurance athletes, and ii. to evaluate the athletes’ experiences of the ketogenic diet during the 10-week intervention. Methods Using a case study design, five New Zealand endurance athletes (4 females, 1 male) underwent a 10-week ketogenic dietary intervention. Body composition (sum of 8 skinfolds), performance indicators (time to exhaustion, VO2 max, peak power and ventilatory threshold), and gas exchange thresholds were measured at baseline and at 10 weeks. Mean change scores were calculated, and analysed using t-tests; Cohen’s effect sizes and 90% confidence limits were applied to quantify change. Individual interviews conducted at 5 weeks and a focus group at 10 weeks assessed athletes’ ketogenic diet experiences. Data was transcribed and analysed using thematic analysis. Results All athletes increased their ability to utilise fat as a fuel source, including at higher exercise intensities. Mean body weight was reduced by 4 kg ± SD 3.1 (p = 0.046; effect size (ES):0.62), and sum of 8 skinfolds by 25.9 mm ± SD 6.9; ES: 1.27; p = 0.001). Mean time to exhaustion dropped by ~2 min (±SD 0.7; p = 0.004; ES: 0.53). Other performance outcomes showed mean reductions, with some increases or unchanged results in two individuals (VO2 Max: −1.69 ml.kg.min ± SD 3.4 (p = 0.63); peak power: -18 W ± SD 16.4 (p = 0.07), and VT2: -6 W ± SD 44.5 (p = 0.77). Athletes reported experiencing reduced energy levels initially, followed by a return of high levels thereafter, especially during exercise, but an inability to easily undertake high intense bouts. Each athlete reported experiencing enhanced well-being, included improved recovery, improvements in skin conditions and reduced inflammation. Conclusions Despite performance decrements and some negative experiences, athletes were keen to pursue a modified low-carbohydrate, high-fat eating style moving forward due to the unexpected health benefits they experienced. Trial registration ACTRN: ACTRN12617000613303. Registered 28 April 2017, retrospectively registered.
Collapse
Affiliation(s)
- Caryn Zinn
- Auckland University of Technology (AUT). Sports Performance Research Institute New Zealand (SPRINZ). AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, New Zealand
| | - Matthew Wood
- Auckland University of Technology (AUT). Sports Performance Research Institute New Zealand (SPRINZ). AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, New Zealand
| | - Mikki Williden
- Auckland University of Technology (AUT). Sports Performance Research Institute New Zealand (SPRINZ). AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, New Zealand
| | - Simon Chatterton
- Auckland University of Technology (AUT). Sports Performance Research Institute New Zealand (SPRINZ). AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, New Zealand
| | - Ed Maunder
- Auckland University of Technology (AUT). Sports Performance Research Institute New Zealand (SPRINZ). AUT Millennium, 17 Antares Place, Mairangi Bay, Auckland, New Zealand
| |
Collapse
|
21
|
Santos HO. Ketogenic diet and testosterone increase: Is the increased cholesterol intake responsible? To what extent and under what circumstances can there be benefits? Hormones (Athens) 2017; 16:266-270. [PMID: 30091118 DOI: 10.1007/bf03401520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Heitor Oliveira Santos
- Santos School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- , Avenue Pará 1720, district Umuarama, Uberlándia, MG, Brazil.
| |
Collapse
|
22
|
Reale R, Slater G, Burke LM. Individualised dietary strategies for Olympic combat sports: Acute weight loss, recovery and competition nutrition. Eur J Sport Sci 2017; 17:727-740. [DOI: 10.1080/17461391.2017.1297489] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reid Reale
- Department of Sports Nutrition, Australian Institute of Sport, Canberra, Australia
- School of Health and Sport Sciences, University of Sunshine Coast, Sippy Downs, Australia
| | - Gary Slater
- School of Health and Sport Sciences, University of Sunshine Coast, Sippy Downs, Australia
| | - Louise M. Burke
- Department of Sports Nutrition, Australian Institute of Sport, Canberra, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
23
|
TAKAHASHI Y, MATSUNAGA Y, TAMURA Y, TERADA S, HATTA H. Pre-Exercise High-Fat Diet for 3 Days Affects Post-Exercise Skeletal Muscle Glycogen Repletion. J Nutr Sci Vitaminol (Tokyo) 2017; 63:323-330. [DOI: 10.3177/jnsv.63.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Yuki TAMURA
- Department of Sports Sciences, The University of Tokyo
| | - Shin TERADA
- Department of Sports Sciences, The University of Tokyo
| | - Hideo HATTA
- Department of Sports Sciences, The University of Tokyo
| |
Collapse
|
24
|
Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? Br J Nutr 2016; 116:2053-2065. [PMID: 27993175 DOI: 10.1017/s0007114516003949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substantial research has been completed examining the impact of carbohydrate (CHO) intake on endurance exercise, whereas its role in resistance-based exercise performance, adaptation and cell signalling has yet to be fully characterised. This empirical shortcoming has precluded the ability to establish specific CHO recommendations for resistance exercise. This results in recommendations largely stemming from findings based on endurance exercise and/or anecdotal evidence despite the distinct energetic demands and molecular responses mediating adaptation from endurance- and resistance-based exercise. Moreover, the topic of CHO and exercise has become one of polarising nature with divergent views - some substantiated, others lacking evidence. Current literature suggests a moderately high daily CHO intake (3-7 g/kg per d) for resistance training, which is thought to prevent glycogen depletion and facilitate performance and adaptation. However, contemporary investigation, along with an emerging understanding of the molecular underpinnings of resistance exercise adaptation, may suggest that such an intake may not be necessary. In addition to the low likelihood of true glycogen depletion occurring in response to resistance exercise, a diet restrictive in CHO may not be detrimental to acute resistance exercise performance or the cellular signalling activity responsible for adaptation, even when muscle glycogen stores are reduced. Current evidence suggests that signalling of the mammalian target of rapamycin complex 1, the key regulatory kinase for gene translation (protein synthesis), is unaffected by CHO restriction or low muscular glycogen concentrations. Such findings may call into question the current view and subsequent recommendations of CHO intake with regard to resistance-based exercise.
Collapse
|
25
|
Abstract
The ketogenic diet (KD) is used widely as a weight loss strategy and, more rarely, as therapy for some diseases. In many sports, weight control is often necessary (boxing, weightlifting, wrestling, etc.), but the KD usually is not considered. Our hypothesis is that KD might be used to achieve fat loss without affecting strength/power performance negatively.
Collapse
Affiliation(s)
- Antonio Paoli
- 1Department of Biomedical Sciences, University of Padova, Padova; and 2Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy; and 3Biomedical Engineering Laboratory, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | | | | |
Collapse
|
26
|
Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J Nutr Metab 2015; 2015:715859. [PMID: 25949823 PMCID: PMC4408745 DOI: 10.1155/2015/715859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance.
Collapse
|
27
|
Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr 2014; 11:20. [PMID: 24864135 PMCID: PMC4033492 DOI: 10.1186/1550-2783-11-20] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals.
Collapse
Affiliation(s)
- Eric R Helms
- Sport Performance Research in New Zealand (SPRINZ) at AUT Millennium Institute, AUT University, 17 Antares Place, Mairangi Bay, Auckland 0632, New Zealand
| | | | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|