1
|
Ehrhardt NM, Flöel A, Li SC, Lucchese G, Antonenko D. Brain oscillatory processes related to sequence memory in healthy older adults. Neurobiol Aging 2024; 139:64-72. [PMID: 38626525 DOI: 10.1016/j.neurobiolaging.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, Dresden 01062, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, Dresden 01062, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse 31, Zurich, Switzerland.
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany
| |
Collapse
|
2
|
Satish A, Keller VG, Raza S, Fitzpatrick S, Horner AJ. Theta and alpha oscillations in human hippocampus and medial parietal cortex support the formation of location-based representations. Hippocampus 2024; 34:284-301. [PMID: 38520305 DOI: 10.1002/hipo.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Our ability to navigate in a new environment depends on learning new locations. Mental representations of locations are quickly accessible during navigation and allow us to know where we are regardless of our current viewpoint. Recent functional magnetic resonance imaging (fMRI) research using pattern classification has shown that these location-based representations emerge in the retrosplenial cortex and parahippocampal gyrus, regions theorized to be critically involved in spatial navigation. However, little is currently known about the oscillatory dynamics that support the formation of location-based representations. We used magnetoencephalogram (MEG) recordings to investigate region-specific oscillatory activity in a task where participants could form location-based representations. Participants viewed videos showing that two perceptually distinct scenes (180° apart) belonged to the same location. This "overlap" video allowed participants to bind the two distinct scenes together into a more coherent location-based representation. Participants also viewed control "non-overlap" videos where two distinct scenes from two different locations were shown, where no location-based representation could be formed. In a post-video behavioral task, participants successfully matched the two viewpoints shown in the overlap videos, but not the non-overlap videos, indicating they successfully learned the locations in the overlap condition. Comparing oscillatory activity between the overlap and non-overlap videos, we found greater theta and alpha/beta power during the overlap relative to non-overlap videos, specifically at time-points when we expected scene integration to occur. These oscillations localized to regions in the medial parietal cortex (precuneus and retrosplenial cortex) and the medial temporal lobe, including the hippocampus. Therefore, we find that theta and alpha/beta oscillations in the hippocampus and medial parietal cortex are likely involved in the formation of location-based representations.
Collapse
Affiliation(s)
- Akul Satish
- Department of Psychology, University of York, York, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Sumaiyah Raza
- Department of Psychology, University of York, York, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Aidan J Horner
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
3
|
Gu L, Li A, Yang R, Yang J, Pang Y, Qu J, Mei L. Category-specific and category-general neural codes of recognition memory in the ventral visual pathway. Cortex 2023; 164:77-89. [PMID: 37207411 DOI: 10.1016/j.cortex.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Researchers have identified category-specific brain regions, such as the fusiform face area (FFA) and parahippocampal place area (PPA) in the ventral visual pathway, which respond preferentially to one particular category of visual objects. In addition to their category-specific role in visual object identification and categorization, regions in the ventral visual pathway play critical roles in recognition memory. Nevertheless, it is not clear whether the contributions of those brain regions to recognition memory are category-specific or category-general. To address this question, the present study adopted a subsequent memory paradigm and multivariate pattern analysis (MVPA) to explore category-specific and category-general neural codes of recognition memory in the visual pathway. The results revealed that the right FFA and the bilateral PPA showed category-specific neural patterns supporting recognition memory of faces and scenes, respectively. In contrast, the lateral occipital cortex seemed to carry category-general neural codes of recognition memory. These results provide neuroimaging evidence for category-specific and category-general neural mechanisms of recognition memory in the ventral visual pathway.
Collapse
Affiliation(s)
- Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Flanagin VL, Klinkowski S, Brodt S, Graetsch M, Roselli C, Glasauer S, Gais S. The precuneus as a central node in declarative memory retrieval. Cereb Cortex 2023; 33:5981-5990. [PMID: 36610736 DOI: 10.1093/cercor/bhac476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Both, the hippocampal formation and the neocortex are contributing to declarative memory, but their functional specialization remains unclear. We investigated the differential contribution of both memory systems during free recall of word lists. In total, 21 women and 17 men studied the same list but with the help of different encoding associations. Participants associated the words either sequentially with the previous word on the list, with spatial locations on a well-known path, or with unique autobiographical events. After intensive rehearsal, subjects recalled the words during functional magnetic resonance imaging (fMRI). Common activity to all three types of encoding associations was identified in the posterior parietal cortex, in particular in the precuneus. Additionally, when associating spatial or autobiographical material, retrosplenial cortex activity was elicited during word list recall, while hippocampal activity emerged only for autobiographically associated words. These findings support a general, critical function of the precuneus in episodic memory storage and retrieval. The encoding-retrieval repetitions during learning seem to have accelerated hippocampus-independence and lead to direct neocortical integration in the sequentially associated and spatially associated word list tasks. During recall of words associated with autobiographical memories, the hippocampus might add spatiotemporal information supporting detailed scenic and contextual memories.
Collapse
Affiliation(s)
- Virginia L Flanagin
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,IFB-LMU, Dept. of Neurology, Marchioninistr. 15, 81377 München, Germany
| | - Svenja Klinkowski
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Melanie Graetsch
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Carolina Roselli
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Kluger FE, Oladimeji DM, Tan Y, Brown NR, Caplan JB. Mnemonic scaffolds vary in effectiveness for serial recall. Memory 2022; 30:869-894. [PMID: 35349387 DOI: 10.1080/09658211.2022.2052322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Memory champions remember vast amounts of information in order and at first encounter by associating each study item to an anchor within a scaffold - a pre-learned, structured memory. The scaffold provides direct-access retrieval cues. Dominated by the familiar-route scaffold (Method of Loci), researchers have little insight into what characteristics of scaffolds make them effective, nor whether individual differences might play a role. We compared participant-generated mnemonic scaffolds: (a) familiar routes (Loci), (b) autobiographical stories (Story), (c) parts of the human body (Body), and (d) routine activities (Routine Activity). Loci, Body, and Story Scaffolds benefited serial recall over Control (no scaffold). The Body and Loci Scaffold were equally superior to the other scaffolds. Measures of visual imagery aptitude and vividness and body responsiveness did not predict accuracy. A second experiment tested whether embodiment could be responsible for the high level of effectiveness of the Body Scaffold; this was not supported. In short, mnemonic scaffolds are not equally effective and embodied cognition may not directly contribute to memory success. The Body Scaffold may be a strong alternative to the Method of Loci and may enhance learning for most learners, including those who do not find the Method of Loci useful.
Collapse
Affiliation(s)
- Felicitas E Kluger
- Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Debby M Oladimeji
- Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Yuwei Tan
- Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Norman R Brown
- Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jeremy B Caplan
- Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu C, Ye Z, Chen C, Axmacher N, Xue G. Hippocampal Representations of Event Structure and Temporal Context during Episodic Temporal Order Memory. Cereb Cortex 2021; 32:1520-1534. [PMID: 34464439 DOI: 10.1093/cercor/bhab304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/13/2022] Open
Abstract
The hippocampus plays an important role in representing spatial locations and sequences and in transforming representations. How these representational structures and operations support memory for the temporal order of random items is still poorly understood. We addressed this question by leveraging the method of loci, a powerful mnemonic strategy for temporal order memory that particularly recruits hippocampus-dependent computations of spatial locations and associations. Applying representational similarity analysis to functional magnetic resonance imaging activation patterns revealed that hippocampal subfields contained representations of multiple features of sequence structure, including spatial locations, location distance, and sequence boundaries, as well as episodic-like temporal context. Critically, the hippocampal CA1 exhibited spatial transformation of representational patterns, showing lower pattern similarity for items in same locations than closely matched different locations during retrieval, whereas the CA23DG exhibited sequential transformation of representational patterns, showing lower pattern similarity for items in near locations than in far locations during encoding. These transformations enabled the encoding of multiple items in the same location and disambiguation of adjacent items. Our results suggest that the hippocampus can flexibly reconfigure multiplexed event structure representations to support accurate temporal order memory.
Collapse
Affiliation(s)
- Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Zhifang Ye
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China.,Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Nikolai Axmacher
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China.,Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
8
|
Meng A, Kaiser M, de Graaf TA, Dücker F, Sack AT, De Weerd P, van de Ven V. Transcranial alternating current stimulation at theta frequency to left parietal cortex impairs associative, but not perceptual, memory encoding. Neurobiol Learn Mem 2021; 182:107444. [PMID: 33895350 DOI: 10.1016/j.nlm.2021.107444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Neural oscillations in the theta range (4-8 Hz) are thought to underlie associative memory function in the hippocampal-cortical network. While there is ample evidence supporting a role of theta oscillations in animal and human memory, most evidence is correlational. Non-invasive brain stimulation (NIBS) can be employed to modulate cortical oscillatory activity to influence brain activity, and possibly modulate deeper brain regions, such as hippocampus, through strong and reliable cortico-hippocampal functional connections. We applied focal transcranial alternating current stimulation (tACS) at 6 Hz over left parietal cortex to modulate brain activity in the putative cortico-hippocampal network to influence associative memory encoding. After encoding and brain stimulation, participants completed an associative memory and a perceptual recognition task. Results showed that theta tACS significantly decreased associative memory performance but did not affect perceptual memory performance. These results show that parietal theta tACS modulates associative processing separately from perceptual processing, and further substantiate the hypothesis that theta oscillations are implicated in the cortico-hippocampal network and associative encoding.
Collapse
Affiliation(s)
- Alyssa Meng
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Felix Dücker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
9
|
Wagner IC, Konrad BN, Schuster P, Weisig S, Repantis D, Ohla K, Kühn S, Fernández G, Steiger A, Lamm C, Czisch M, Dresler M. Durable memories and efficient neural coding through mnemonic training using the method of loci. SCIENCE ADVANCES 2021; 7:7/10/eabc7606. [PMID: 33658191 PMCID: PMC7929507 DOI: 10.1126/sciadv.abc7606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Mnemonic techniques, such as the method of loci, can powerfully boost memory. We compared memory athletes ranked among the world's top 50 in memory sports to mnemonics-naïve controls. In a second study, participants completed a 6-week memory training, working memory training, or no intervention. Behaviorally, memory training enhanced durable, longer-lasting memories. Functional magnetic resonance imaging during encoding and recognition revealed task-based activation decreases in lateral prefrontal, as well as in parahippocampal and retrosplenial cortices in both memory athletes and participants after memory training, partly associated with better performance after 4 months. This was complemented by hippocampal-neocortical coupling during consolidation, which was stronger the more durable memories participants formed. Our findings advance knowledge on how mnemonic training boosts durable memory formation through decreased task-based activation and increased consolidation thereafter. This is in line with conceptual accounts of neural efficiency and highlights a complex interplay of neural processes critical for extraordinary memory.
Collapse
Affiliation(s)
- I C Wagner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands.
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - B N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - P Schuster
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - S Weisig
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - D Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - K Ohla
- Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - S Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
| | - A Steiger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - C Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - M Czisch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - M Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
10
|
Cruzat J, Torralba M, Ruzzoli M, Fernández A, Deco G, Soto-Faraco S. The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia 2021; 154:107775. [PMID: 33592222 DOI: 10.1016/j.neuropsychologia.2021.107775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022]
Abstract
Several studies have shown that attention and perception can depend upon the phase of ongoing neural oscillations at stimulus onset. Here, we extend this idea to the memory domain. We tested the hypothesis that ongoing fluctuations in neural activity impact memory encoding in two experiments using a picture paired-associates task in order to gauge episodic memory performance. Experiment 1 was behavioural only and capitalized on the principle of phase resetting. We tested if subsequent memory performance fluctuates rhythmically, time-locked to a resetting cue presented before the to-be-remembered pairs at different time intervals. We found an indication that behavioural performance was periodically and selectively modulated at Theta frequency (~4 Hz). In Experiment 2, we focused on pre-stimulus ongoing activity using scalp EEG while participants performed a paired-associates task. The pre-registered analysis, using large electrode clusters and generic Theta and Alpha spectral ranges, returned null results of the pre-stimulus phase-behaviour correlation. However, as expected from prior literature, we found that variations in stimulus-related Theta-power predicted subsequent memory performance. Therefore, we used this post-stimulus effect in Theta power to guide a post-hoc pre-stimulus phase analysis in terms of scalp and frequency of interest. This analysis returned a correlation between the pre-stimulus Theta phase and subsequent memory. Altogether, these results suggest that pre-stimulus Theta activity at encoding may impact later memory performance.
Collapse
Affiliation(s)
- Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
| | - Mireia Torralba
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Manuela Ruzzoli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Alba Fernández
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
11
|
Monk AM, Dalton MA, Barnes GR, Maguire EA. The Role of Hippocampal-Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations. J Cogn Neurosci 2021; 33:89-103. [PMID: 32985945 PMCID: PMC7116437 DOI: 10.1162/jocn_a_01634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hippocampus and ventromedial prefrontal cortex (vmPFC) play key roles in numerous cognitive domains including mind-wandering, episodic memory, and imagining the future. Perspectives differ on precisely how they support these diverse functions, but there is general agreement that it involves constructing representations composed of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multielement stimuli. However, it remains unclear whether scenes, rather than other types of multifeature stimuli, preferentially engage hippocampus and vmPFC. Here, we leveraged the high temporal resolution of magnetoencephalography to test participants as they gradually built scene imagery from three successive auditorily presented object descriptions and an imagined 3-D space. This was contrasted with constructing mental images of nonscene arrays that were composed of three objects and an imagined 2-D space. The scene and array stimuli were, therefore, highly matched, and this paradigm permitted a closer examination of step-by-step mental construction than has been undertaken previously. We observed modulation of theta power in our two regions of interest-anterior hippocampus during the initial stage and vmPFC during the first two stages, of scene relative to array construction. Moreover, the scene-specific anterior hippocampal activity during the first construction stage was driven by the vmPFC, with mutual entrainment between the two brain regions thereafter. These findings suggest that hippocampal and vmPFC neural activity is especially tuned to scene representations during the earliest stage of their formation, with implications for theories of how these brain areas enable cognitive functions such as episodic memory.
Collapse
|
12
|
Hoyle B, Taylor J, Zugic L, Filho E. Coordination Cost and Super-Efficiency in Teamwork: The Role of Communication, Psychological States, Cardiovascular Responses, and Brain Rhythms. Appl Psychophysiol Biofeedback 2020; 45:323-341. [PMID: 32562032 PMCID: PMC7644465 DOI: 10.1007/s10484-020-09479-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To advance knowledge on the psychophysiological markers of "coordination cost" in team settings, we explored differences in meta-communication patterns (i.e., silence, speaking, listening, and overlap), perceived psychological states (i.e., core affect, attention, efficacy beliefs), heart rate variability (i.e., RMSSD), and brain rhythms (i.e., alpha, beta and theta absolute power) across three studies involving 48 male dyads (Mage = 21.30; SD = 2.03). Skilled participants cooperatively played three consecutive FIFA-17 (Xbox) games in a dyad against the computer, or competed against the computer in a solo condition and a dyad condition. We observed that playing in a team, in contrast to playing alone, was associated with higher alpha peak and global efficiency in the brain and, at the same time, led to an increase in focused attention as evidenced by participants' higher theta activity in the frontal lobe. Moreover, we observed that overtime participants' brain dynamics moved towards a state of "neural-efficiency", characterized by increased theta and beta activity in the frontal lobe, and high alpha activity across the whole brain. Our findings advance the literature by demonstrating that (1) the notion of coordination cost can be captured at the neural level in the initial stages of team development; (2) by decreasing the costs of switching between tasks, teamwork increases both individuals' attentional focus and global neural efficiency; and (3) communication dynamics become more proficient and individuals' brain patterns change towards neural efficiency over time, likely due to team learning and decreases in intra-team conflict.
Collapse
Affiliation(s)
- Ben Hoyle
- School of Psychology, University of Central Lancashire, Darwin Building 114, Preston, PR1 2HE, UK
- Social Interaction and Performance Science (SINAPSE) Lab, University of Central Lancashire, Preston, UK
| | - Jamie Taylor
- School of Psychology, University of Central Lancashire, Darwin Building 114, Preston, PR1 2HE, UK
| | - Luca Zugic
- School of Psychology, University of Central Lancashire, Darwin Building 114, Preston, PR1 2HE, UK
- Social Interaction and Performance Science (SINAPSE) Lab, University of Central Lancashire, Preston, UK
| | - Edson Filho
- School of Psychology, University of Central Lancashire, Darwin Building 114, Preston, PR1 2HE, UK.
- Social Interaction and Performance Science (SINAPSE) Lab, University of Central Lancashire, Preston, UK.
| |
Collapse
|
13
|
Hippocampal Theta Oscillations Support Successful Associative Memory Formation. J Neurosci 2020; 40:9507-9518. [PMID: 33158958 DOI: 10.1523/jneurosci.0767-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Models of memory formation posit that episodic memory formation depends critically on the hippocampus, which binds features of an event to its context. For this reason, the contrast between study items that are later recollected with their associative pair versus those for which no association is made fails should reveal electrophysiological patterns in the hippocampus selectively involved in associative memory encoding. Extensive data from studies in rodents support a model in which theta oscillations fulfill this role, but results in humans have not been as clear. Here, we used an associative recognition memory procedure to identify hippocampal correlates of successful associative memory encoding and retrieval in patients (10 females and 9 males) undergoing intracranial EEG monitoring. We identified a dissociation between 2-5 Hz and 5-9 Hz theta oscillations, by which power increases in 2-5 Hz oscillations were uniquely linked with successful associative memory in both the anterior and posterior hippocampus. These oscillations exhibited a significant phase reset that also predicted successful associative encoding and distinguished recollected from nonrecollected items at retrieval, as well as contributing to relatively greater reinstatement of encoding-related patterns for recollected versus nonrecollected items. Our results provide direct electrophysiological evidence that 2-5 Hz hippocampal theta oscillations preferentially support the formation of associative memories, although we also observed memory-related effects in the 5-9 Hz frequency range using measures such as phase reset and reinstatement of oscillatory activity.SIGNIFICANCE STATEMENT Models of episodic memory encoding predict that theta oscillations support the formation of interitem associations. We used an associative recognition task designed to elicit strong hippocampal activation to test this prediction in human neurosurgical patients implanted with intracranial electrodes. The findings suggest that 2-5 Hz theta oscillatory power and phase reset in the hippocampus are selectively associated with associative memory judgments. Furthermore, reinstatement of oscillatory patterns in the hippocampus was stronger for successful recollection. Collectively, the findings support a role for hippocampal theta oscillations in human associative memory.
Collapse
|
14
|
Dombrovski AY, Luna B, Hallquist MN. Differential reinforcement encoding along the hippocampal long axis helps resolve the explore-exploit dilemma. Nat Commun 2020; 11:5407. [PMID: 33106508 PMCID: PMC7589536 DOI: 10.1038/s41467-020-18864-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
When making decisions, should one exploit known good options or explore potentially better alternatives? Exploration of spatially unstructured options depends on the neocortex, striatum, and amygdala. In natural environments, however, better options often cluster together, forming structured value distributions. The hippocampus binds reward information into allocentric cognitive maps to support navigation and foraging in such spaces. Here we report that human posterior hippocampus (PH) invigorates exploration while anterior hippocampus (AH) supports the transition to exploitation on a reinforcement learning task with a spatially structured reward function. These dynamics depend on differential reinforcement representations in the PH and AH. Whereas local reward prediction error signals are early and phasic in the PH tail, global value maximum signals are delayed and sustained in the AH body. AH compresses reinforcement information across episodes, updating the location and prominence of the value maximum and displaying goal cell-like ramping activity when navigating toward it.
Collapse
Affiliation(s)
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael N Hallquist
- Department of Psychology, Penn State University, University Park, PA, 16801, USA.
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
15
|
McCormick C, Barry DN, Jafarian A, Barnes GR, Maguire EA. vmPFC Drives Hippocampal Processing during Autobiographical Memory Recall Regardless of Remoteness. Cereb Cortex 2020; 30:5972-5987. [PMID: 32572443 PMCID: PMC7899055 DOI: 10.1093/cercor/bhaa172] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022] Open
Abstract
Our ability to recall past experiences, autobiographical memories (AMs), is crucial to cognition, endowing us with a sense of self and underwriting our capacity for autonomy. Traditional views assume that the hippocampus orchestrates event recall, whereas recent accounts propose that the ventromedial prefrontal cortex (vmPFC) instigates and coordinates hippocampal-dependent processes. Here we sought to characterize the dynamic interplay between the hippocampus and vmPFC during AM recall to adjudicate between these perspectives. Leveraging the high temporal resolution of magnetoencephalography, we found that the left hippocampus and the vmPFC showed the greatest power changes during AM retrieval. Moreover, responses in the vmPFC preceded activity in the hippocampus during initiation of AM recall, except during retrieval of the most recent AMs. The vmPFC drove hippocampal activity during recall initiation and also as AMs unfolded over subsequent seconds, and this effect was evident regardless of AM age. These results recast the positions of the hippocampus and the vmPFC in the AM retrieval hierarchy, with implications for theoretical accounts of memory processing and systems-level consolidation.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Amirhossein Jafarian
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
16
|
Sperl MFJ, Panitz C, Rosso IM, Dillon DG, Kumar P, Hermann A, Whitton AE, Hermann C, Pizzagalli DA, Mueller EM. Fear Extinction Recall Modulates Human Frontomedial Theta and Amygdala Activity. Cereb Cortex 2020; 29:701-715. [PMID: 29373635 DOI: 10.1093/cercor/bhx353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Human functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) studies, as well as animal studies, indicate that the amygdala and frontomedial brain regions are critically involved in conditioned fear and that frontomedial oscillations in the theta range (4-8 Hz) may support communication between these brain regions. However, few studies have used a multimodal approach to probe interactions among these key regions in humans. Here, our goal was to bridge the gap between prior human fMRI, EEG, and animal findings. Using simultaneous EEG-fMRI recordings 24 h after fear conditioning and extinction, conditioned stimuli presented (CS+E, CS-E) and not presented during extinction (CS+N, CS-N) were compared to identify effects specific to extinction versus fear recall. Differential (CS+ vs. CS-) electrodermal, frontomedial theta (EEG) and amygdala responses (fMRI) were reduced for extinguished versus nonextinguished stimuli. Importantly, effects on theta power covaried with effects on amygdala activation. Fear and extinction recall as indicated by theta explained 60% of the variance for the analogous effect in the right amygdala. Our findings show for the first time the interplay of amygdala and frontomedial theta activity during fear and extinction recall in humans and provide insight into neural circuits consistently linked with top-down amygdala modulation in rodents.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany.,Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Isabelle M Rosso
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Daniel G Dillon
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Poornima Kumar
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Andrea Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Alexis E Whitton
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Diego A Pizzagalli
- Department of Psychiatry, Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| |
Collapse
|
17
|
Herweg NA, Solomon EA, Kahana MJ. Theta Oscillations in Human Memory. Trends Cogn Sci 2020; 24:208-227. [PMID: 32029359 PMCID: PMC8310425 DOI: 10.1016/j.tics.2019.12.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
Theta frequency (4-8 Hz) fluctuations of the local field potential have long been implicated in learning and memory. Human studies of episodic memory, however, have provided mixed evidence for theta's role in successful learning and remembering. Re-evaluating these conflicting findings leads us to conclude that: (i) successful memory is associated both with increased narrow-band theta oscillations and a broad-band tilt of the power spectrum; (ii) theta oscillations specifically support associative memory, whereas the spectral tilt reflects a general index of activation; and (iii) different cognitive contrasts (generalized versus specific to memory), recording techniques (invasive versus noninvasive), and referencing schemes (local versus global) alter the balance between the two phenomena to make one or the other more easily detectable.
Collapse
Affiliation(s)
- Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan A Solomon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Spaak E, de Lange FP. Hippocampal and Prefrontal Theta-Band Mechanisms Underpin Implicit Spatial Context Learning. J Neurosci 2020; 40:191-202. [PMID: 31699887 PMCID: PMC6939492 DOI: 10.1523/jneurosci.1660-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Humans can rapidly and seemingly implicitly learn to predict typical locations of relevant items when those items are encountered in familiar spatial contexts. Two important questions remain, however, concerning this type of learning: (1) which neural structures and mechanisms are involved in acquiring and exploiting such contextual knowledge? (2) Is this type of learning truly implicit and unconscious? We now answer both these questions after closely examining behavior and recording neural activity using MEG while observers (male and female) were acquiring and exploiting statistical regularities. Computational modeling of behavioral data suggested that, after repeated exposures to a spatial context, participants' behavior was marked by an abrupt switch to an exploitation strategy of the learnt regularities. MEG recordings showed that hippocampus and prefrontal cortex (PFC) were involved in the task and furthermore revealed a striking dissociation: only the initial learning phase was associated with hippocampal theta band activity, while the subsequent exploitation phase showed a shift in theta band activity to the PFC. Intriguingly, the behavioral benefit of repeated exposures to certain scenes was inversely related to explicit awareness of such repeats, demonstrating the implicit nature of the expectations acquired. Together, these findings demonstrate that (1a) hippocampus and PFC play complementary roles in the implicit, unconscious learning and exploitation of spatial statistical regularities; (1b) these mechanisms are implemented in the theta frequency band; and (2) contextual knowledge can indeed be acquired unconsciously, and awareness of such knowledge can even interfere with the exploitation thereof.SIGNIFICANCE STATEMENT Human visual perception is determined not just by the light that strikes our eyes, but also strongly by our prior knowledge and expectations. Such expectations, particularly about where to expect certain objects given scene context, might be learned implicitly and unconsciously, although this is hotly debated. Furthermore, it is unknown which brain mechanisms underpin this type of learning. We now show that, indeed, spatial prior expectations can be learned without awareness; in fact, strikingly, awareness seems to hinder the exploitation of the relevant knowledge. Furthermore, we demonstrate that one brain mechanism (hippocampal theta-band activity) is responsible for learning in these settings, whereas another mechanism (prefrontal theta-band activity) is involved in exploiting the learned associations.
Collapse
Affiliation(s)
- Eelke Spaak
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Floris P de Lange
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Zerbes G, Schwabe L. Across time and space: spatial-temporal binding under stress. ACTA ACUST UNITED AC 2019; 26:473-484. [PMID: 31732708 PMCID: PMC6859825 DOI: 10.1101/lm.050237.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Successful episodic memory requires binding of event details across spatial and temporal gaps. The neural processes underlying mnemonic binding, however, are not fully understood. Moreover, although acute stress is known to modulate memory, if and how stress changes mnemonic integration across time and space is unknown. To elucidate these issues, we exposed participants to a stressor or a control manipulation shortly before they completed, while electroencephalography was recorded, an encoding task that systematically varied the demands for spatial and temporal integration. Associative memory was tested 24 h later. While early event-related potentials, including the P300 and Late Positive Component, distinguished different levels of spatiotemporal discontinuity, only later Slow Waves were linked to subsequent remembering. Furthermore, theta oscillations were specifically associated with successful mnemonic binding. Although acute stress per se left mnemonic integration largely unaffected, autonomic activity facilitated object memory and glucocorticoids enhanced detail memory, indicative for mnemonic integration. At the neural level, stress amplified the effects of spatiotemporal discontinuity on early information processing. Together, our results indicate that temporal and spatial gaps recruit early neural processes, providing attentional resources. The actual binding success, however, appears to depend on later processes as well as theta power and may be shaped by major stress response systems.
Collapse
Affiliation(s)
- Gundula Zerbes
- Department of Cognitive Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
20
|
A review of neurobiological factors underlying the selective enhancement of memory at encoding, consolidation, and retrieval. Prog Neurobiol 2019; 179:101615. [DOI: 10.1016/j.pneurobio.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022]
|
21
|
Fellner MC, Gollwitzer S, Rampp S, Kreiselmeyr G, Bush D, Diehl B, Axmacher N, Hamer H, Hanslmayr S. Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLoS Biol 2019; 17:e3000403. [PMID: 31356598 PMCID: PMC6687190 DOI: 10.1371/journal.pbio.3000403] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Decreases in low-frequency power (2–30 Hz) alongside high-frequency power increases (>40 Hz) have been demonstrated to predict successful memory formation. Parsimoniously, this change in the frequency spectrum can be explained by one factor, a change in the tilt of the power spectrum (from steep to flat) indicating engaged brain regions. A competing view is that the change in the power spectrum contains several distinct brain oscillatory fingerprints, each serving different computations. Here, we contrast these two theories in a parallel magnetoencephalography (MEG)–intracranial electroencephalography (iEEG) study in which healthy participants and epilepsy patients, respectively, studied either familiar verbal material or unfamiliar faces. We investigated whether modulations in specific frequency bands can be dissociated in time and space and by experimental manipulation. Both MEG and iEEG data show that decreases in alpha/beta power specifically predicted the encoding of words but not faces, whereas increases in gamma power and decreases in theta power predicted memory formation irrespective of material. Critically, these different oscillatory signatures of memory encoding were evident in different brain regions. Moreover, high-frequency gamma power increases occurred significantly earlier compared to low-frequency theta power decreases. These results show that simple “spectral tilt” cannot explain common oscillatory changes and demonstrate that brain oscillations in different frequency bands serve different functions for memory encoding. There are two competing explanations for electrophysiological signatures during cognitive processes. One assumes simultaneous increases in high frequencies paired with decreases in low frequencies, whereas the other suggests that different frequencies index separate oscillatory processes. This study reports data that support the latter view.
Collapse
Affiliation(s)
- Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail: (SH); (MCF)
| | - Stephanie Gollwitzer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Gernot Kreiselmeyr
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Daniel Bush
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Beate Diehl
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Hanslmayr
- School of Psychology, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (SH); (MCF)
| |
Collapse
|
22
|
Usenkо Y, Severynovska О, Kоfan І, Dregval І, Znanetska O. Power spectrum and coherence of electroencephalograms of young people with the use of mnemotechnics. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The increase of external information and the need for processing of large information arrays has been leading to the search for mechanisms of thinking in mental activity, as well as new methods of data protection and reproduction. Power spectrum and coherence of electroencephalograms (EEG) during memorizing of foreign words has been analyzed in many ways: in the usual one with the help of mnemotechnics. The research was conducted during the ovarian phase of the cycle of 11 female students aged 18–20. Registration of EEG activity was carried out according to the international system of H. Jasper,"10–20". The process of recollection of associative information led to the decrease in the power spectrum of the EEG in the alpha range in the frontal and temporal loci of the left hemisphere and the prefrontal sections of both hemispheres, in the beta range it was probable only in T6 zone of beta2 range, in the delta range it was in the prefrontal, posterior lower-frontal and posttemporal loci of both hemispheres, in the central, parietal and occipital regions of the left hemisphere, as well as in the anteriofrontal zone of the right hemisphere, in the theta-range – in the prefrontal and posterior lower-frontal regions of both hemispheres and in the posttemporal and occipital loci of the left hemisphere. Synchronization in the delta range is the reflection of the processes of figural information processing and manipulation. With the increase of attention concentration, the synchronization was observed in the theta range in the anteriofrontal and F4–P4 zones. Interhemispheric functional and symmetrical bonds in the alpha and beta ranges indicate the involvement of the corpus callosum in the process of memorizing foreign words, which facilitates their faster, more correct and easier reproduction, especially with the use of associative images. The decrease of power spectrum in the delta and theta ranges showed that less effort was required to reproduce associative information than to mention unsupported images of foreign words. The effective use of the association method is realized by reduction of the power spectrum of the waves in the alpha range in the frontal and temporal loci of the left hemisphere and the prefrontal sections of both hemispheres, which indicates the activation of mental activity in these zones in the processes of maintaining and reproducing associative information.
Collapse
|
23
|
Caplan JB, Legge EL, Cheng B, Madan CR. Effectiveness of the method of loci is only minimally related to factors that should influence imagined navigation. Q J Exp Psychol (Hove) 2019; 72:2541-2553. [PMID: 31272296 DOI: 10.1177/1747021819858041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The method of loci is arguably the most famous mnemonic strategy and is highly effective for memorising lists of non-spatial information in order. As described and instructed, this strategy apparently relies on a spatial/navigational metaphor. The user imagines moving through an environment, placing (study) and reporting (recall) list items along the way. However, whether the method relies critically on this spatial/navigation metaphor is unknown. An alternative hypothesis is that the navigation component is superfluous to memory success, and the method of loci is better viewed as a special case of a larger class of imagery-based peg strategies. Training participants on three virtual environments varying in their characteristics (an apartment, an open field, and a radial-arm maze), we asked participants to use each trained environment as the basis of the method of loci to learn five 11-word lists. Performance varied significantly across environment. However, the effects were small in magnitude. Further tests suggested that navigation-relevant knowledge and ability were not major determinants of success in verbal memory, even for participants who were confirmed to have been compliant with the strategy. These findings echo neuroimaging findings that navigation-based cognition does occur during application of the method of loci, but imagined navigation is unlikely to be directly responsible for its effectiveness. Instead, the method of loci may be best viewed as a variant of peg methods.
Collapse
Affiliation(s)
- Jeremy B Caplan
- 1 Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,2 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Lg Legge
- 1 Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,3 Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Bevin Cheng
- 1 Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher R Madan
- 1 Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,4 School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Reggente N, Essoe JKY, Baek HY, Rissman J. The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
The Neural Dynamics of Novel Scene Imagery. J Neurosci 2019; 39:4375-4386. [PMID: 30902867 PMCID: PMC6538850 DOI: 10.1523/jneurosci.2497-18.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Retrieval of long-term episodic memories is characterized by synchronized neural activity between hippocampus and ventromedial prefrontal cortex (vmPFC), with additional evidence that vmPFC activity leads that of the hippocampus. It has been proposed that the mental generation of scene imagery is a crucial component of episodic memory processing. If this is the case, then a comparable interaction between the two brain regions should exist during the construction of novel scene imagery. To address this question, we leveraged the high temporal resolution of MEG to investigate the construction of novel mental imagery. We tasked male and female humans with imagining scenes and single isolated objects in response to one-word cues. We performed source-level power, coherence, and causality analyses to characterize the underlying interregional interactions. Both scene and object imagination resulted in theta power changes in the anterior hippocampus. However, higher theta coherence was observed between the hippocampus and vmPFC in the scene compared with the object condition. This interregional theta coherence also predicted whether imagined scenes were subsequently remembered. Dynamic causal modeling of this interaction revealed that vmPFC drove activity in hippocampus during novel scene construction. Additionally, theta power changes in the vmPFC preceded those observed in the hippocampus. These results constitute the first evidence in humans that episodic memory retrieval and scene imagination rely on similar vmPFC–hippocampus neural dynamics. Furthermore, they provide support for theories emphasizing similarities between both cognitive processes and perspectives that propose the vmPFC guides the construction of context-relevant representations in the hippocampus. SIGNIFICANCE STATEMENT Episodic memory retrieval is characterized by a dialog between hippocampus and ventromedial prefrontal cortex (vmPFC). It has been proposed that the mental generation of scene imagery is a crucial component of episodic memory processing. An ensuing prediction would be of a comparable interaction between the two brain regions during the construction of novel scene imagery. Here, we leveraged the high temporal resolution of MEG and combined it with a scene imagination task. We found that a hippocampal–vmPFC dialog existed and that it took the form of vmPFC driving the hippocampus. We conclude that episodic memory and scene imagination share fundamental neural dynamics and the process of constructing vivid, spatially coherent, contextually appropriate scene imagery is strongly modulated by vmPFC.
Collapse
|
26
|
Rondina II R, Olsen RK, Li L, Meltzer JA, Ryan JD. Age-related changes to oscillatory dynamics during maintenance and retrieval in a relational memory task. PLoS One 2019; 14:e0211851. [PMID: 30730952 PMCID: PMC6366750 DOI: 10.1371/journal.pone.0211851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
In aging, structural and/or functional brain changes may precede changes in cognitive performance. We previously showed that despite having hippocampal volumes similar to those of younger adults, older adults showed oscillatory changes during the encoding phase of a short-delay visuospatial memory task that required spatial relations among objects to be bound across time (Rondina et al., 2016). The present work provides a complementary set of analyses to examine age-related changes in oscillatory activity during maintenance and retrieval of those spatial relations in order to provide a comprehensive examination of the neural dynamics that support memory function in aging. Participants were presented with three study objects sequentially. Following a delay (maintenance phase), the objects were re-presented simultaneously and participants had to determine whether the relative spatial relations among the objects had been maintained (retrieval phase). Older adults had similar task accuracy, but slower response times, compared to younger adults. Both groups showed a decrease in theta (2-7Hz), alpha (9-14Hz), and beta (15-30Hz) power during the maintenance phase. During the retrieval phase, younger adults showed theta and beta power increases that predicted greater task accuracy, whereas older adults showed a widespread decrease in each of the three frequency ranges that predicted longer response latencies. Older adults also showed distinct patterns of behaviour-related activity depending on whether the analysis was time-locked to the onset of the stimulus or to the onset of the response during the test phase. These findings suggest that older adults may experience declines in relational binding and/or comparison processes that are reflected in oscillatory changes prior to structural decline.
Collapse
Affiliation(s)
- Renante Rondina II
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RR); (JDR)
| | | | - Lingqian Li
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, Ryerson University, Toronto, Ontario, Canada
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer D. Ryan
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RR); (JDR)
| |
Collapse
|
27
|
Piñeyro Salvidegoitia M, Jacobsen N, Bauer AKR, Griffiths B, Hanslmayr S, Debener S. Out and about: Subsequent memory effect captured in a natural outdoor environment with smartphone EEG. Psychophysiology 2019; 56:e13331. [PMID: 30657185 DOI: 10.1111/psyp.13331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 11/28/2022]
Abstract
Spatiotemporal context plays an important role in episodic memory. While temporal context effects have been frequently studied in the laboratory, ecologically valid spatial context manipulations are difficult to implement in stationary conditions. We investigated whether the neural correlates of successful encoding (subsequent memory effect) can be captured in a real-world environment. An off-the-shelf Android smartphone was used for wireless mobile EEG acquisition and stimulus presentation. Participants encoded single words, each of which was presented at a different location on a university campus. Locations were approximately 10-12 m away from each other, half of them with striking features (landmarks) nearby. We predicted landmarks would improve recall performance. After a first free recall task of verbal stimuli indoors, participants performed a subsequent recall outdoors, in which words and locations were recalled. As predicted, significantly more words presented at landmark locations as well as significantly more landmark than nonlandmark locations were recalled. ERP analysis yielded a larger posterior positive deflection during encoding for hits compared to misses in the 400-800 ms interval. Likewise, time-frequency analysis revealed a significant difference during encoding for hits compared to misses in the form of stronger alpha (200-300 ms) and theta (300-400 ms) power increases. Our results confirm that a vibrant spatial context is beneficial in episodic memory processing and that the underlying neural correlates can be captured with unobtrusive smartphone EEG technology. The advent of mobile EEG technology promises to unveil the relevance of natural physical activity and natural environments on memory.
Collapse
Affiliation(s)
- Maria Piñeyro Salvidegoitia
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Nadine Jacobsen
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Anna-Katharina R Bauer
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Department of Experimental Psychology, Oxford Centre for Human Brain Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Waldhauser GT, Dahl MJ, Ruf-Leuschner M, Müller-Bamouh V, Schauer M, Axmacher N, Elbert T, Hanslmayr S. The neural dynamics of deficient memory control in heavily traumatized refugees. Sci Rep 2018; 8:13132. [PMID: 30177846 PMCID: PMC6120867 DOI: 10.1038/s41598-018-31400-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
Victims of war, torture and natural catastrophes are prone to develop posttraumatic stress disorder (PTSD). These individuals experience the recurrent, involuntary intrusion of traumatic memories. What neurocognitive mechanisms are driving this memory disorder? Here we show that PTSD symptoms in heavily traumatized refugees are related to deficits in the effective control of memory retrieval. In a think/no-think task, PTSD patients were unable to forget memories that they had previously tried to suppress when compared to control participants with the same trauma history but without PTSD. Deficits in voluntary forgetting were clinically relevant since they correlated with memory intrusions in everyday life. Magnetoencephalography (MEG) recorded during suppression attempts revealed that PTSD patients were unable to downregulate signatures of sensory long-term memory traces in the gamma frequency band (70-120 Hz). Thus, our data suggest that the inability to suppress unwanted memories through modulation of gamma activity is related to PTSD symptom severity.
Collapse
Affiliation(s)
- Gerd T Waldhauser
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany.
| | - Martin J Dahl
- Max Planck Institute for Human Development, 14195, Berlin, Germany
| | | | | | - Maggie Schauer
- Department of Psychology, University of Konstanz, 78457, Konstanz, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Thomas Elbert
- Department of Psychology, University of Konstanz, 78457, Konstanz, Germany
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| |
Collapse
|
29
|
Wang RWY, Chen YC, Liu IN, Chuang SW. Temporal and spectral EEG dynamics can be indicators of stealth placement. Sci Rep 2018; 8:9117. [PMID: 29904124 PMCID: PMC6002479 DOI: 10.1038/s41598-018-27294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/18/2018] [Indexed: 12/02/2022] Open
Abstract
Stealth placement marketing, where consumers are unaware that they are being marketed to, attempts to reduce the audiences' resistance to traditional persuasive advertising. It is a form of advertising that involves targeted exposure of brands or products incorporated in other works, usually with or without explicit reference to the brands or products. Brand placement can be presented in different visual and auditory forms in video programs. The present study proposed that different 'representations' (i.e., representable or non-representable) and 'sounds' (i.e., speech or musical sound) of brand placement can affect the viewers' perception of the brand. Event-related potential results indicated significant differences in P1, N1, P2, N270, and P3. Further, event-related spectral perturbation results indicated significant differences in theta, alpha, beta, and gamma (30-100 Hz), in the right parietal, right occipital area, and limbic lobe. 'Non-representable' or 'speech sound' brand placement induced significant temporal and spectral EEG dynamics in viewers.
Collapse
Affiliation(s)
- Regina W Y Wang
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.
- The Department of Industrial and Commercial Design, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.
| | - Yi-Chung Chen
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- The Department of Industrial and Commercial Design, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| | - I-Ning Liu
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- The Department of Industrial and Commercial Design, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| | - Shang-Wen Chuang
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
- Taiwan Building Technology Center, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| |
Collapse
|
30
|
Müller NCJ, Konrad BN, Kohn N, Muñoz-López M, Czisch M, Fernández G, Dresler M. Hippocampal-caudate nucleus interactions support exceptional memory performance. Brain Struct Funct 2018; 223:1379-1389. [PMID: 29138923 PMCID: PMC5869896 DOI: 10.1007/s00429-017-1556-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Participants of the annual World Memory Championships regularly demonstrate extraordinary memory feats, such as memorising the order of 52 playing cards in 20 s or 1000 binary digits in 5 min. On a cognitive level, memory athletes use well-known mnemonic strategies, such as the method of loci. However, whether these feats are enabled solely through the use of mnemonic strategies or whether they benefit additionally from optimised neural circuits is still not fully clarified. Investigating 23 leading memory athletes, we found volumes of their right hippocampus and caudate nucleus were stronger correlated with each other compared to matched controls; both these volumes positively correlated with their position in the memory sports world ranking. Furthermore, we observed larger volumes of the right anterior hippocampus in athletes. Complementing these structural findings, on a functional level, fMRI resting state connectivity of the anterior hippocampus to both the posterior hippocampus and caudate nucleus predicted the athletes rank. While a competitive interaction between hippocampus and caudate nucleus is often observed in normal memory function, our findings suggest that a hippocampal-caudate nucleus cooperation may enable exceptional memory performance. We speculate that this cooperation reflects an integration of the two memory systems at issue-enabling optimal combination of stimulus-response learning and map-based learning when using mnemonic strategies as for example the method of loci.
Collapse
Affiliation(s)
- Nils C J Müller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Monica Muñoz-López
- Human Neuroanatomy Laboratory, School of Medicine and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | | | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
31
|
The Sync/deSync Model: How a Synchronized Hippocampus and a Desynchronized Neocortex Code Memories. J Neurosci 2018; 38:3428-3440. [PMID: 29487122 DOI: 10.1523/jneurosci.2561-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 11/21/2022] Open
Abstract
Neural oscillations are important for memory formation in the brain. The desynchronization of alpha (10 Hz) oscillations in the neocortex has been shown to predict successful memory encoding and retrieval. However, when engaging in learning, it has been found that the hippocampus synchronizes in theta (4 Hz) oscillations, and that learning is dependent on the phase of theta. This inconsistency as to whether synchronization is "good" for memory formation leads to confusion over which oscillations we should expect to see and where during learning paradigm experiments. This paper seeks to respond to this inconsistency by presenting a neural network model of how a well functioning learning system could exhibit both of these phenomena, i.e., desynchronization of alpha and synchronization of theta during successful memory encoding.We present a spiking neural network (the Sync/deSync model) of the neocortical and hippocampal system. The simulated hippocampus learns through an adapted spike-time dependent plasticity rule, in which weight change is modulated by the phase of an extrinsically generated theta oscillation. Additionally, a global passive weight decay is incorporated, which is also modulated by theta phase. In this way, the Sync/deSync model exhibits theta phase-dependent long-term potentiation and long-term depression. We simulated a learning paradigm experiment and compared the oscillatory dynamics of our model with those observed in single-cell and scalp-EEG studies of the medial temporal lobe. Our Sync/deSync model suggests that both the desynchronization of neocortical alpha and the synchronization of hippocampal theta are necessary for successful memory encoding and retrieval.SIGNIFICANCE STATEMENT A fundamental question is the role of rhythmic activation of neurons, i.e., how and why their firing oscillates between high and low rates. A particularly important question is how oscillatory dynamics between the neocortex and hippocampus support memory formation. We present a spiking neural-network model of such memory formation, with the central ideas that (1) in neocortex, neurons need to break out of an alpha oscillation to represent a stimulus (i.e., alpha desynchronizes), whereas (2) in hippocampus, the firing of neurons at theta facilitates formation of memories (i.e., theta synchronizes). Accordingly, successful memory formation is marked by reduced neocortical alpha and increased hippocampal theta. This pattern has been observed experimentally and gives our model its name-the Sync/deSync model.
Collapse
|