1
|
Olencewicz G, Holt R, Sharma M. Phonological awareness and reading outcomes in children with a history of otitis media: a review. Int J Audiol 2025; 64:429-436. [PMID: 39105670 DOI: 10.1080/14992027.2024.2383698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE A review was conducted to investigate the current evidence for effects of otitis media (OM) on phonological awareness and reading skills in children under 12 years old. DESIGN A review conducted in 2024 to identify articles between 1978 and 2024 related to OM and its impact on (pre-)reading skills. STUDY SAMPLE An initial search across six databases provided 6808 research outputs. After screening, 27 articles were retained. Screening of the references on the selected articles provided an additional 6, giving 33 articles in the final review. RESULTS The selected research papers did not all evaluate the same phonological awareness or reading skills. Of the studies, 20 identified that a history of OM impacted reading outcomes. Twelve studies found no significant impact while one study showed an impact which resolved with time. CONCLUSION The findings do not show a consistent association between a history of OM and phonological processing or reading skills. This is likely due to the wide range of methodologies employed and variability in the focus of the respective studies. Future research, including longitudinal studies, would be beneficial to infer the potential impacts of OM on phonological processing or reading skills.
Collapse
Affiliation(s)
| | - Rebecca Holt
- Department of Linguistics, Macquarie University, Sydney, Australia
| | - Mridula Sharma
- Department of Linguistics, Macquarie University, Sydney, Australia
- College of Nursing & Health Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Lozier NR, Aizenstein MA, Williams ED, Rubio ME. Gonad-derived steroid hormones mediate a sex difference in the maturation of auditory encoding in the cochlea from adolescence to early adulthood in C57BL/6J mice. Hear Res 2025; 457:109187. [PMID: 39827525 PMCID: PMC12097696 DOI: 10.1016/j.heares.2025.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Sexually mature females of multiple mammalian species were previously reported to have increased peripheral auditory sensitivity, often measured as higher auditory brainstem response (ABR) wave I amplitude compared to males. Here, we determined potential hormonal and genetic (i.e., XX- vs. XY-linked genes) contributions to this sex difference by recording ABRs in gonadally intact and gonadectomized female and male wildtype (WT) and four core genotypes (FCG) C57BL/6J mice. WT females at postnatal day 38 (P38) and P65, and FCG mice with ovaries at P65 had higher wave I amplitude than males, and the difference was absent in gonadectomized mice. Furthermore, in WT mice, we addressed the initiation and duration of the sex difference in wave amplitude from pre-pubescence (P25) through maturation from post-pubescent late adolescence to early adulthood (P38, P65, and P95) in both the cochlea and cochlear nucleus. In both female and male mice, wave I amplitude decreased by 50 % from P25 to P95. However, the amplitude in females was 22 % and 11 % higher than males at P38 and P65, respectively. In gonadectomized mice, there was no sex difference in wave I amplitude at any age tested, due to a decrease in gonadectomized females. In contrast, we found that wave II amplitude remains relatively constant over these ages in both sham and gonadectomized WT female and male mice. Together, the data suggest that gonad-derived hormones differentially refine the maturation of wave I, but not wave II, amplitude between late adolescence and early adulthood.
Collapse
Affiliation(s)
- Nicholas R Lozier
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max A Aizenstein
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Essence D Williams
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marίa E Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Zhu J, Liu Y, Wang Y, Lv M, Qiu W, Jin W, Guo Q, Wang D, Zhao S. Bonebridge implants versus atresiaplasty in children with unilateral congenital aural atresia: A comparison study of audiological outcomes. Int J Pediatr Otorhinolaryngol 2024; 184:112050. [PMID: 39191005 DOI: 10.1016/j.ijporl.2024.112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES To evaluate and compare audiological outcomes of atresiaplasty and Bonebridge (BB) implantation in patients with unilateral congenital aural atresia (UCAA), to guide clinical decision-making. METHODS Twenty-seven subjects diagnosed with UCAA were included in the study. Thirteen were implanted with the BB, while 14 undergone atresiaplasty. All patients underwent pre-and post-surgery examinations, including pure-tone audiometry, sound field threshold (SFT), speech reception threshold (SRT), word recognition score (WRS), and horizontal sound source localization tests. RESULTS (1) Postoperatively, the average SFT decreased by 11.79 ± 5.93 dB HL in the atresiaplasty group and by 24.46 ± 9.36 dB HL in the BB group, with a significantly greater decrease in the BB group compared to the atresiaplasty group (P < 0.05). (2) Both groups demonstrated a significant improvement in average disyllabic WRS postoperatively under normal ear-masking conditions, with the BB group showing a significantly higher improvement than the atresiaplasty group. (3) When the speech signal was presented from the CAA side with noise from the normal hearing side, both surgical groups exhibited a significant decrease in postoperative signal-to-noise ratio compared to preoperative levels, with improvements of 2.14 ± 2.95 dB SNR in the atresiaplasty group and 4.92 ± 5.83 dB SNR in the BB group (P < 0.05). (4) The average minimum audible angle preoperative in the atresiaplasty group was 29.71 ± 18.42°, which decreased to 18.1 ± 10.07° at 6 months postoperatively, showing a statistically significant improvement (P < 0.05). CONCLUSION We concluded that both atresiaplasty and Bonebridge implantation can significantly improve speech perception under both quiet and noisy conditions in children with UCAA. BoneBridge implantation appears to provide better audiological outcomes than atresiaplasty. Atresiaplasty can significantly improve the accuracy of sound localization. No significant improvement in sound localization accuracy was observed in the short period after Bonebridge implantation. Further research should be conducted with a larger sample size and longer follow-up time.
Collapse
Affiliation(s)
- Jikai Zhu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Yujie Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Yuan Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Mengshuang Lv
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Wenxi Qiu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Wen Jin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Qianhui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Danni Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China
| | - Shouqin Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, 100730, China.
| |
Collapse
|
4
|
Ono M, Ito T. Hearing loss-related altered neuronal activity in the inferior colliculus. Hear Res 2024; 449:109033. [PMID: 38797036 DOI: 10.1016/j.heares.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
5
|
Stancu M, Wohlfrom H, Heß M, Grothe B, Leibold C, Kopp-Scheinpflug C. Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis. Proc Natl Acad Sci U S A 2024; 121:e2316439121. [PMID: 38442165 PMCID: PMC10945791 DOI: 10.1073/pnas.2316439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Mihai Stancu
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
- Graduate School of Systemic Neurosciences, Planegg-Martinsried82152, Germany
| | - Hilde Wohlfrom
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Martin Heß
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Christian Leibold
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau79110, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| |
Collapse
|
6
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
7
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Köppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. J Neurosci 2024; 44:e0940232023. [PMID: 37989591 PMCID: PMC10851688 DOI: 10.1523/jneurosci.0940-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Tiffany Wang
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Ira Kraemer
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Paula T Kuokkanen
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| |
Collapse
|
8
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Koeppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526884. [PMID: 36778252 PMCID: PMC9915572 DOI: 10.1101/2023.02.02.526884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.
Collapse
|
10
|
Lozier NR, Muscio S, Pal I, Cai HM, Rubio ME. Sex differences in glutamate AMPA receptor subunits mRNA with fast gating kinetics in the mouse cochlea. Front Syst Neurosci 2023; 17:1100505. [PMID: 36936507 PMCID: PMC10017478 DOI: 10.3389/fnsys.2023.1100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Evidence shows that females have increased supra-threshold peripheral auditory processing compared to males. This is indicated by larger auditory brainstem responses (ABR) wave I amplitude, which measures afferent spiral ganglion neuron (SGN)-auditory nerve synchrony. However, the underlying molecular mechanisms of this sex difference are mostly unknown. We sought to elucidate sex differences in ABR wave I amplitude by examining molecular markers known to affect synaptic transmission kinetics. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate fast excitatory transmission in mature SGN afferent synapses. Each AMPAR channel is a tetramer composed of GluA2, 3, and 4 subunits (Gria2, 3, and 4 genes), and those lacking GluA2 subunits have larger currents, are calcium-permeable, and have faster gating kinetics. Moreover, alternatively spliced flip and flop isoforms of each AMPAR subunit affect channel kinetics, having faster kinetics those AMPARs containing Gria3 and Gria4 flop isoforms. We hypothesized that SGNs of females have more fast-gating AMPAR subunit mRNA than males, which could contribute to more temporally precise synaptic transmission and increased SGN synchrony. Our data show that the index of Gria3 relative to Gria2 transcripts on SGN was higher in females than males (females: 48%; males: 43%), suggesting that females have more SGNs with higher Gria3 mRNA relative to Gria2. Analysis of the relative abundance of the flip and flop alternatively spliced isoforms showed that females have a 2-fold increase in fast-gating Gria3 flop mRNA, while males have more slow-gating (2.5-fold) of the flip. We propose that Gria3 may in part mediate greater SGN synchrony in females. Significance Statement: Females of multiple vertebrate species, including fish and mammals, have been reported to have enhanced sound-evoked synchrony of afferents in the auditory nerve. However, the underlying molecular mediators of this physiologic sex difference are unknown. Elucidating potential molecular mechanisms related to sex differences in auditory processing is important for maintaining healthy ears and developing potential treatments for hearing loss in both sexes. This study found that females have a 2-fold increase in Gria3 flop mRNA, a fast-gating AMPA-type glutamate receptor subunit. This difference may contribute to greater neural synchrony in the auditory nerve of female mice compared to males, and this sex difference may be conserved in all vertebrates.
Collapse
Affiliation(s)
- Nicholas R. Lozier
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Muscio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - María E. Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Rutherford MA, Bhattacharyya A, Xiao M, Cai HM, Pal I, Rubio ME. GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology. eLife 2023; 12:e80950. [PMID: 36648432 PMCID: PMC9891727 DOI: 10.7554/elife.80950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J Gria3-knockout mice (i.e., subunit GluA3KO) we determined cochlear function, synapse ultrastructure, and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes, and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3WT, but not GluA3KO, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3KO and GluA2-lacking synapses were observed only in GluA3KO. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3KO, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3KO than GluA3WT. However, GluA3KO contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (threefold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of Gria3 caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca2+-permeable AMPARs.
Collapse
Affiliation(s)
- Mark A Rutherford
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Maria Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Otolaryngology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
12
|
Fernandes VM, Mondelli MFCG, José MR, Gomide MR, Lauris JRP, Feniman MR. Salivary Cortisol and Sustained Auditory Attention in Children with and without Cleft Lip and Palate. Int Arch Otorhinolaryngol 2022; 26:e605-e614. [PMID: 36405466 PMCID: PMC9668409 DOI: 10.1055/s-0041-1735130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 10/19/2022] Open
Abstract
Introduction Cortisol is a hormone involved in the response to stress. Attention is a function that can change due to exposure to stress. Objectives To verify the correlation between the level of salivary cortisol and sustained auditory attention in children with cleft lip and palate, as well as to compare the results of the variables analyzed between female and male patients. Methods In total, 103 children aged 6 to 11 years, were divided into 2 groups: those with cleft lip and palate (experimental group, EG; n = 69) and the control group (CG; n = 34). The Sustained Auditory Attention Ability Test (SAAAT) and salivary cortisol levels, measured by an enzyme immunoassay kit (Salimetrics, Stage College, PA, US), were calculated and compared regarding the two groups. The statistical tests used were the Mann-Whitney test and the Spearman correlation. Results The median level of salivary cortisol was of 0.03615 µl/dL and 0.18000 µl/dL respectively for the EG and CG, with a significant difference between the groups ( p = 0.000). Absence of statistical significance (total error score = 0.656; vigilance decrement = 0.051) was observed the for SAAAT among the EG (median total error score = 12.00; 25th percentile [25%] = 7.00; 75th percentile [75%] = 21.00; and vigilance decrement = 1.00; 25% = 0.00; 75% = 2.50) and the CG (median total error score = 12.00; 25% = 6.00; 75% = 24.00; and vigilance decrement = 0.00; 25% = -1.00; 75% = 2.00). Conclusion All children had median levels of salivary cortisol and scores for sustained auditory attention within normal parameters. A significant correlation between the level of salivary cortisol and the ability to sustain auditory attention was observed in children without cleft lip and palate. There were no differences regarding the SAAAT and salivary cortisol between female and male patients.
Collapse
Affiliation(s)
- Viviane Mendes Fernandes
- Postgraduate Program in Rehabilitation Sciences, Hospital de Reabilitação de Anomalias Craniofaciais, Bauru, São Paulo, Brasil
| | | | - Maria Renata José
- Programa de Pós-Graduação em Distúrbios da Comunicação, Universidade de Tuiuti do Paraná, Curitiba, Paraná, Brasil
| | - Márcia Ribeiro Gomide
- Postgraduate Program in Rehabilitation Sciences, Hospital de Reabilitação de Anomalias Craniofaciais, Bauru, São Paulo, Brasil
| | - José Roberto Pereira Lauris
- Departament of Speech Therapy, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brasil
| | - Mariza Ribeiro Feniman
- Departament of Speech Therapy, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brasil
| |
Collapse
|
13
|
Wong NF, Xu-Friedman MA. Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses. J Neurosci 2022; 42:6211-6220. [PMID: 35790402 PMCID: PMC9374128 DOI: 10.1523/jneurosci.0666-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
14
|
Kurioka T, Mizutari K, Satoh Y, Shiotani A. Correlation of blast-induced tympanic membrane perforation with peripheral cochlear synaptopathy. J Neurotrauma 2022; 39:999-1009. [PMID: 35243914 DOI: 10.1089/neu.2021.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory organs, including the tympanic membrane, cochlea, and central auditory pathway, are the most fragile components of the human body when exposed to blast overpressure. Tympanic membrane perforation (TMP) is the most frequent symptom in blast-exposed patients. However, the impact of TMP on the inner ear and central auditory system is not fully understood. We aimed to analyze the effect of blast-induced TMP on the auditory pathophysiological changes in mice after blast exposure. Mice aged 7 weeks were exposed to blast overpressure to induce TMP and allowed to survive for 2 months. All TMP cases had spontaneously healed by week 3 following the blast exposure. Compared to controls, blast-exposed mice exhibited a significant elevation in hearing thresholds and an apparent disruption of stereocilia in the outer hair cells, regardless of the occurrence or absence of TMP. The reduction in synapses in the inner hair cells, which is known as the most frequent pathology in blast-exposed cochleae, was significantly more severe in mice without TMP. However, a decrease in the number of excitatory central synapses labeled by VGLUT-1 in the cochlear nucleus was observed regardless of the absence or presence of TMP. Our findings suggest that blast-induced TMP mitigates peripheral cochlear synaptic disruption but leaves the central auditory synapses unaffected, indicating that central synaptic disruption is independent of TMP and peripheral cochlear synaptic disruption. Synaptic deterioration in the peripheral and central auditory systems can contribute to the promotion of blast-induced hearing impairment, including abnormal auditory perception.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| |
Collapse
|
15
|
Deng T, Li J, Liu J, Xu F, Liu X, Mi J, Bergquist J, Wang H, Yang C, Lu L, Song X, Yao C, Tian G, Zheng QY. Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice. Front Neurosci 2021; 15:745668. [PMID: 34867157 PMCID: PMC8636065 DOI: 10.3389/fnins.2021.745668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related hearing loss (ARHL) is associated with cognitive dysfunction; however, the detailed underlying mechanisms remain unclear. The aim of this study is to investigate the potential underlying mechanism with a system genetics approach. A transcriptome-wide association study was performed on aged (12–32 months old) BXD mice strains. The hippocampus gene expression was obtained from 56 BXD strains, and the hearing acuity was assessed from 54 BXD strains. Further correlation analysis identified a total of 1,435 hearing-related genes in the hippocampus (p < 0.05). Pathway analysis of these genes indicated that the impaired glutamatergic synapse pathway is involved in ARHL (p = 0.0038). Further gene co-expression analysis showed that the expression level of glutamine synthetase (Gls), which is significantly correlated with ARHL (n = 26, r = −0.46, p = 0.0193), is a crucial regulator in glutamatergic synapse pathway and associated with learning and memory behavior. In this study, we present the first systematic evaluation of hippocampus gene expression pattern associated with ARHL, learning, and memory behavior. Our results provide novel potential molecular mechanisms involved in ARHL and cognitive dysfunction association.
Collapse
Affiliation(s)
- Tingzhi Deng
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jingjing Li
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Second Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Jian Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fuyi Xu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xiaoya Liu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jia Mi
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jonas Bergquist
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Chunhua Yang
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xicheng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Cuifang Yao
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Geng Tian
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qing Yin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
16
|
Holder JT, Gifford RH. Effect of Increased Daily Cochlear Implant Use on Auditory Perception in Adults. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4044-4055. [PMID: 34546763 PMCID: PMC9132064 DOI: 10.1044/2021_jslhr-21-00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Purpose Despite the recommendation for cochlear implant (CI) processor use during all waking hours, variability in average daily wear time remains high. Previous work has shown that objective wear time is significantly correlated with speech recognition outcomes. We aimed to investigate the causal link between daily wear time and speech recognition outcomes and assess one potential underlying mechanism, spectral processing, driving the causal link. We hypothesized that increased CI use would result in improved speech recognition via improved spectral processing. Method Twenty adult CI recipients completed two study visits. The baseline visit included auditory perception testing (speech recognition and spectral processing measures), questionnaire administration, and documentation of data logging from the CI software. Participants watched an educational video, and they were informed of the compensation schedule. Participants were then asked to increase their daily CI use over a 4-week period during everyday life. Baseline measures were reassessed following the 4-week period. Results Seventeen out of 20 participants increased their daily CI use. On average, participants' speech recognition improved by 3.0, 2.4, and 7.0 percentage points per hour of increased average daily CI use for consonant-nucleus-consonant words, AzBio sentences, and AzBio sentences in noise, respectively. Questionnaire scores were similar between visits. Spectral processing showed significant improvement and accounted for a small amount of variance in the change in speech recognition values. Conclusions Improved consistency of processor use over a 4-week period yielded significant improvements in speech recognition scores. Though a significant factor, spectral processing is likely not the only mechanism driving improvement in speech recognition; further research is warranted.
Collapse
Affiliation(s)
- Jourdan T. Holder
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - René H. Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Krohs C, Körber C, Ebbers L, Altaf F, Hollje G, Hoppe S, Dörflinger Y, Prosser HM, Nothwang HG. Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. J Neurosci 2021; 41:6796-6811. [PMID: 34193555 PMCID: PMC8360680 DOI: 10.1523/jneurosci.0139-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.
Collapse
Affiliation(s)
- Constanze Krohs
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Christoph Körber
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Lena Ebbers
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Faiza Altaf
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Giulia Hollje
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Simone Hoppe
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Yvette Dörflinger
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Hans Gerd Nothwang
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
- Excellence Cluster Hearing4all, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
18
|
Okada M, Welling DB, Liberman MC, Maison SF. Chronic Conductive Hearing Loss Is Associated With Speech Intelligibility Deficits in Patients With Normal Bone Conduction Thresholds. Ear Hear 2021; 41:500-507. [PMID: 31490800 PMCID: PMC7056594 DOI: 10.1097/aud.0000000000000787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The main objective of this study is to determine whether chronic sound deprivation leads to poorer speech discrimination in humans. DESIGN We reviewed the audiologic profile of 240 patients presenting normal and symmetrical bone conduction thresholds bilaterally, associated with either an acute or chronic unilateral conductive hearing loss of different etiologies. RESULTS Patients with chronic conductive impairment and a moderate, to moderately severe, hearing loss had lower speech recognition scores on the side of the pathology when compared with the healthy side. The degree of impairment was significantly correlated with the speech recognition performance, particularly in patients with a congenital malformation. Speech recognition scores were not significantly altered when the conductive impairment was acute or mild. CONCLUSIONS This retrospective study shows that chronic conductive hearing loss was associated with speech intelligibility deficits in patients with normal bone conduction thresholds. These results are as predicted by a recent animal study showing that prolonged, adult-onset conductive hearing loss causes cochlear synaptopathy.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Toon Ehime, Japan
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - D. Bradley Welling
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - M. Charles Liberman
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - Stéphane F. Maison
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| |
Collapse
|
19
|
Eroglu S, Cevizci R, Turan Dizdar H, Tansuker HD, Bulut E, Dilci A, Ustun S, Sirvanci S, Kaya OT, Bayazit D, Cakir BO, Oktay MF, Bayazit YA. Association of Conductive Hearing Loss with the Structural Changes in the Organ of Corti. ORL J Otorhinolaryngol Relat Spec 2021; 83:272-279. [PMID: 33784680 DOI: 10.1159/000513871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate the association of conductive hearing loss (CHL) with the structural changes in the organ of Corti. METHODS Twenty ears of 10 healthy adult Wistar albino rats were included in the study. The right ears (n = 10) of the animals served as controls (group 1), and no surgical intervention was performed in these ears. A tympanic membrane perforation without annulus removal was performed under operative microscope on the left ears (n = 5) in 5 of 10 animals (group 2). A tympanic membrane perforation with annulus removal was performed under operative microscope on the left ears (n = 5) of the remaining 5 animals (group 3). Auditory brainstem response testing was performed in the animals before the interventions. After 3 months, the animals were sacrificed, their temporal bones were removed, and inner ears were investigated using scanning electron microscopy (SEM). The organ of Corti was evaluated from the cochlear base to apex in the modiolar axis, and the parameters were scored semiquantitatively. RESULTS In group 1, the pre- and post-intervention hearing thresholds were similar (p > 0.05). In group 2, a hearing decrease of at least 5 dB was encountered in all test frequencies (p > 0.05). In group 3, at the frequency range of 2-32 kHz, there was a significant hearing loss after 3 months (p < 0.01). After 3 months, the hearing thresholds in group 2 and 3 were higher than group 1 (p < 0.01). The hearing threshold in group 3 was higher than group 2 (p < 0.01). On SEM evaluation, the general cell morphology and stereocilia of the outer hair cells were preserved in all segments of the cochlea in group 1 with a mean SEM score of 0.2. There was segmental degeneration in the general cell morphology and outer hair cells in group 2 with a mean SEM score of 2.2. There was widespread degeneration in the general cell morphology and outer hair cells in group 3 with a mean SEM score of 3.2. The SEM scores of group 2 and 3 were significantly higher than group 1 (p < 0.05). The SEM scores of group 3 were significantly higher than group 2 (p < 0.05). CONCLUSION CHL may be associated with an inner ear damage. The severity of damage appears to be associated with severity and duration of CHL. Early correction of CHL is advocated in order to reverse or prevent progression of the inner ear damage, which will enhance the success rates of hearing restoration surgeries. Subjective differences and compliance of the hearing aid users may be due to the impact of CHL on inner ear structures.
Collapse
Affiliation(s)
- Sinan Eroglu
- Department of Otolaryngology, Istanbul Bahcelievler State Hospital, Istanbul, Turkey
| | - Rasit Cevizci
- Department of Otolaryngology, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | | | - Hasan Deniz Tansuker
- Department of Otolaryngology, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Erdogan Bulut
- Department of Otolarygology, University of Miami Ear Institute, Miami, Florida, USA
| | - Alper Dilci
- Department of Otolarygology, Osmaniye State Hospital, Osmaniye, Turkey
| | - Selin Ustun
- Department of Otolaryngology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ozlem Tugce Kaya
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Dilara Bayazit
- Department of Audiology, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Omur Cakir
- Department of Otolaryngology, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | | | | |
Collapse
|
20
|
Henton A, Tzounopoulos T. What's the buzz? The neuroscience and the treatment of tinnitus. Physiol Rev 2021; 101:1609-1632. [PMID: 33769102 DOI: 10.1152/physrev.00029.2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tinnitus is a pervasive public health issue that affects ∼15% of the United States population. Similar estimates have also been shown on a global scale, with similar prevalence found in Europe, Asia, and Africa. The severity of tinnitus is heterogeneous, ranging from mildly bothersome to extremely disruptive. In the United States, ∼10-20% of individuals who experience tinnitus report symptoms that severely reduce their quality of life. Due to the huge personal and societal burden, in the last 20 yr a concerted effort on basic and clinical research has significantly advanced our understanding and treatment of this disorder. Yet, neither full understanding, nor cure exists. We know that tinnitus is the persistent involuntary phantom percept of internally generated nonverbal indistinct noises and tones, which in most cases is initiated by acquired hearing loss and maintained only when this loss is coupled with distinct neuronal changes in auditory and extra-auditory brain networks. Yet, the exact mechanisms and patterns of neural activity that are necessary and sufficient for the perceptual generation and maintenance of tinnitus remain incompletely understood. Combinations of animal model and human research will be essential in filling these gaps. Nevertheless, the existing progress in investigating the neurophysiological mechanisms has improved current treatment and highlighted novel targets for drug development and clinical trials. The aim of this review is to thoroughly discuss the current state of human and animal tinnitus research, outline current challenges, and highlight new and exciting research opportunities.
Collapse
Affiliation(s)
- A Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Hintze A, Gültas M, Semmelhack EA, Wichmann C. Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice. iScience 2021; 24:102282. [PMID: 33851098 PMCID: PMC8022229 DOI: 10.1016/j.isci.2021.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Endbulbs of Held are located in the anteroventral cochlear nucleus and present the first central synapses of the auditory pathway. During development, endbulbs mature functionally to enable rapid and powerful synaptic transmission with high temporal precision. This process is accompanied by morphological changes of endbulb terminals. Loss of the hair cell-specific protein otoferlin (Otof) abolishes neurotransmission in the cochlea and results in the smaller endbulb of Held terminals. Thus, peripheral hearing impairment likely also leads to alterations in the morphological synaptic vesicle (SV) pool size at individual endbulb of Held active zones (AZs). Here, we investigated endbulb AZs in pre-hearing, young, and adult wild-type and Otof−/− mice. During maturation, SV numbers at endbulb AZs increased in wild-type mice but were found to be reduced in Otof−/− mice. The SV population at a distance of 0–15 nm was most strongly affected. Finally, overall SV diameters decreased in Otof−/− animals during maturation. Maturation of wt endbulb of Held active zones leads to more synaptic vesicles At endbulbs of otoferlin knockout mice, synaptic vesicles decline with age Mainly two distinct synaptic vesicle populations are affected Synaptic vesicles sizes are reduced in six-month-old otoferlin knockout animals
Collapse
Affiliation(s)
- Anika Hintze
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Esther A Semmelhack
- Developmental, Neural, and Behavioral Biology MSc/PhD Program, University of Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Outer Hair Cell Glutamate Signaling through Type II Spiral Ganglion Afferents Activates Neurons in the Cochlear Nucleus in Response to Nondamaging Sounds. J Neurosci 2021; 41:2930-2943. [PMID: 33574178 DOI: 10.1523/jneurosci.0619-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Cochlear outer hair cells (OHCs) are known to uniquely participate in auditory processing through their electromotility, and like inner hair cells, are also capable of releasing vesicular glutamate onto spiral ganglion (SG) neurons: in this case, onto the sparse Type II SG neurons. However, unlike glutamate signaling at the inner hair cell-Type I SG neuron synapse, which is robust across a wide spectrum of sound intensities, glutamate signaling at the OHC-Type II SG neuron synapse is weaker and has been hypothesized to occur only at intense, possibly damaging sound levels. Here, we tested the ability of the OHC-Type II SG pathway to signal to the brain in response to moderate, nondamaging sound (80 dB SPL) as well as to intense sound (115 dB SPL). First, we determined the VGluTs associated with OHC signaling and then confirmed the loss of glutamatergic synaptic transmission from OHCs to Type II SG neurons in KO mice using dendritic patch-clamp recordings. Next, we generated genetic mouse lines in which vesicular glutamate release occurs selectively from OHCs, and then assessed c-Fos expression in the cochlear nucleus in response to sound. From these analyses, we show, for the first time, that glutamatergic signaling at the OHC-Type II SG neuron synapse is capable of activating cochlear nucleus neurons, even at moderate sound levels.SIGNIFICANCE STATEMENT Evidence suggests that cochlear outer hair cells (OHCs) release glutamate onto Type II spiral ganglion neurons only when exposed to loud sound, and that Type II neurons are activated by tissue damage. Knowing whether moderate level sound, without tissue damage, activates this pathway has functional implications for this fundamental auditory pathway. We first determined that OHCs rely largely on VGluT3 for synaptic glutamate release. We then used a genetically modified mouse line in which OHCs, but not inner hair cells, release vesicular glutamate to demonstrate that moderate sound exposure activates cochlear nucleus neurons via the OHC-Type II spiral ganglion pathway. Together, these data indicate that glutamate signaling at the OHC-Type II afferent synapse participates in auditory function at moderate sound levels.
Collapse
|
23
|
Kurioka T, Mogi S, Tanaka M, Yamashita T. Activity-Dependent Neurodegeneration and Neuroplasticity of Auditory Neurons Following Conductive Hearing Loss in Adult Mice. Cell Mol Neurobiol 2021; 41:31-42. [PMID: 32180095 PMCID: PMC11448668 DOI: 10.1007/s10571-020-00829-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
We examined the functional and structural changes of auditory neurons (ANs) in adult mice after conductive hearing loss (CHL). Earplugs (EPs) were bilaterally inserted in male 8-week-old mice for 4 weeks [EP(+) group] and subsequently removed for 4 weeks [EP(+/-) group]. We examined the control mice [EP(-) group] with no EPs inserted at 12 weeks. The auditory brainstem response (ABR) was measured to determine the cochlear function before and after EP insertion, after EP removal, and at 4 weeks following EP removal. We examined the cochleae for hair cell (HC) and spiral ganglion neuron survival, synaptic and neural properties, and AN myelination. There was a significant elevation of the ABR threshold across all tested frequencies after EP insertion. After removing the occlusion, these threshold shifts were fully recovered. Compared with the EP(-) mice, the EP(+) mice showed a significant decrease in the ABR peak 1 amplitude and a significantly prolonged latency at all tested frequencies. There was no significant effect of auditory deprivation on the survival of HCs and ANs. Conversely, auditory deprivation caused significant damage to the synapses and myelin and a significant decrease in the AN size. Although functional changes in the ABR amplitude and latency did not fully recover in the EP(+/-) mice, almost all anatomical changes were fully recovered in the EP(+/-) mice; however, cochlear synapses only showed partial recovery. These results suggest that auditory activities are required to maintain peripheral auditory synapses and myelination in adults. The auditory deprivation model allows for assessment of the mechanisms of synaptopathy and demyelination in the auditory periphery, and synaptic and myelin regeneration in sensorineural hearing loss.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan.
| | - Sachiyo Mogi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| | - Manabu Tanaka
- Bio-Imaging Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
24
|
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Sci Rep 2020; 10:20594. [PMID: 33244141 PMCID: PMC7693270 DOI: 10.1038/s41598-020-77754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.
Collapse
|
25
|
Moore S, Meschkat M, Ruhwedel T, Trevisiol A, Tzvetanova ID, Battefeld A, Kusch K, Kole MHP, Strenzke N, Möbius W, de Hoz L, Nave KA. A role of oligodendrocytes in information processing. Nat Commun 2020; 11:5497. [PMID: 33127910 PMCID: PMC7599337 DOI: 10.1038/s41467-020-19152-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Myelinating oligodendrocytes enable fast propagation of action potentials along the ensheathed axons. In addition, oligodendrocytes play diverse non-canonical roles including axonal metabolic support and activity-dependent myelination. An open question remains whether myelination also contributes to information processing in addition to speeding up conduction velocity. Here, we analyze the role of myelin in auditory information processing using paradigms that are also good predictors of speech understanding in humans. We compare mice with different degrees of dysmyelination using acute multiunit recordings in the auditory cortex, in combination with behavioral readouts. We find complex alterations of neuronal responses that reflect fatigue and temporal acuity deficits. We observe partially discriminable but similar deficits in well myelinated mice in which glial cells cannot fully support axons metabolically. We suggest a model in which myelination contributes to sustained stimulus perception in temporally complex paradigms, with a role of metabolically active oligodendrocytes in cortical information processing.
Collapse
Affiliation(s)
- Sharlen Moore
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, USA
| | - Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Iva D Tzvetanova
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Section of Pharmacology, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Arne Battefeld
- Department of Axonal Signaling, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Nicola Strenzke
- Institute for Auditory Neuroscience, University Medical Center, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
- Charité Medical University, Neuroscience Research Center, Berlin, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
26
|
Abstract
During development and adulthood, the normal activity of the auditory nerve plays a critical role in the maintenance of both fundamental structural, molecular, and functional parameters of auditory nerve synapses, and the postsynaptic excitatory or inhibitory neurons within the cochlear nucleus (CN). In addition, normal activity within the synaptic circuits of the CN is key to developing and maintaining appropriate synapse connectivity as well as the initiation of binaural sound processing in the superior olivary complex (SOC). Development plays a critical role in the proper neuronal connectivity and establishes a topographic map along the entire auditory pathway. Furthermore, evidence shows that neurons and synaptic circuits in the auditory brainstem are not hard-wired, but instead are plastic in response to hearing deficits. Whether this plasticity in response to hearing loss is compensatory or pathological is still unknown.
Collapse
Affiliation(s)
- María Eulalia Rubio
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh, School of Medicine, BST3 Building, room #10016, 3501 Fifth Venue, Pittsburgh, PA, 15261
| |
Collapse
|
27
|
Sivadas A, Broadie K. HOW DOES MY BRAIN COMMUNICATE WITH MY BODY? FRONTIERS FOR YOUNG MINDS 2020; 8. [PMID: 33304908 DOI: 10.3389/frym.2020.540970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses. J Neurosci 2020; 40:6896-6909. [PMID: 32747441 DOI: 10.1523/jneurosci.1175-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023] Open
Abstract
Multiple forms of homeostasis influence synaptic function under diverse activity conditions. Both presynaptic and postsynaptic forms of homeostasis are important, but their relative impact on fidelity is unknown. To address this issue, we studied auditory nerve synapses onto bushy cells in the cochlear nucleus of mice of both sexes. These synapses undergo bidirectional presynaptic and postsynaptic homeostatic changes with increased and decreased acoustic stimulation. We found that both young and mature synapses exhibit similar activity-dependent changes in short-term depression. Experiments using chelators and imaging both indicated that presynaptic Ca2+ influx decreased after noise exposure, and increased after ligating the ear canal. By contrast, Ca2+ cooperativity was unaffected. Experiments using specific antagonists suggest that occlusion leads to changes in the Ca2+ channel subtypes driving neurotransmitter release. Furthermore, dynamic-clamp experiments revealed that spike fidelity primarily depended on changes in presynaptic depression, with some contribution from changes in postsynaptic intrinsic properties. These experiments indicate that presynaptic Ca2+ influx is homeostatically regulated in vivo to enhance synaptic fidelity.SIGNIFICANCE STATEMENT Homeostatic mechanisms in synapses maintain stable function in the face of different levels of activity. Both juvenile and mature auditory nerve synapses onto bushy cells modify short-term depression in different acoustic environments, which raises the question of what the underlying presynaptic mechanisms are and the relative importance of presynaptic and postsynaptic contributions to the faithful transfer of information. Changes in short-term depression under different acoustic conditions were a result of changes in presynaptic Ca2+ influx. Spike fidelity was affected by both presynaptic and postsynaptic changes after ear occlusion and was only affected by presynaptic changes after noise-rearing. These findings are important for understanding regulation of auditory synapses under normal conditions and also in disorders following noise exposure or conductive hearing loss.
Collapse
|
29
|
Yu X, Wang X, Sakano H, Zorio DAR, Wang Y. Dynamics of the fragile X mental retardation protein correlates with cellular and synaptic properties in primary auditory neurons following afferent deprivation. J Comp Neurol 2020; 529:481-500. [PMID: 32449186 DOI: 10.1002/cne.24959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Afferent activity dynamically regulates neuronal properties and connectivity in the central nervous system. The Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates cellular and synaptic properties in an activity-dependent manner. Whether and how FMRP level and localization are regulated by afferent input remains sparsely examined and how such regulation is associated with neuronal response to changes in sensory input is unknown. We characterized changes in FMRP level and localization in the chicken nucleus magnocellularis (NM), a primary cochlear nucleus, following afferent deprivation by unilateral cochlea removal. We observed rapid (within 2 hr) aggregation of FMRP immunoreactivity into large granular structures in a subset of deafferented NM neurons. Neurons that exhibited persistent FMRP aggregation at 12-24 hr eventually lost cytoplasmic Nissl substance, indicating cell death. A week later, FMRP expression in surviving neurons regained its homeostasis, with a slightly reduced immunostaining intensity and enhanced heterogeneity. Correlation analyses under the homeostatic status (7-14 days) revealed that neurons expressing relatively more FMRP had a higher capability of maintaining cell body size and ribosomal activity, as well as a better ability to detach inactive presynaptic terminals. Additionally, the intensity of an inhibitory postsynaptic protein, gephyrin, was reduced following deafferentation and was positively correlated with FMRP intensity, implicating an involvement of FMRP in synaptic dynamics in response to reduced afferent inputs. Collectively, this study demonstrates that afferent input regulates FMRP expression and localization in ways associated with multiple types of neuronal responses and synaptic rearrangements.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Xiaoyu Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China
| | - Hitomi Sakano
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Diego A R Zorio
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
30
|
Transient Conductive Hearing Loss Regulates Cross-Modal VGLUT Expression in the Cochlear Nucleus of C57BL/6 Mice. Brain Sci 2020; 10:brainsci10050260. [PMID: 32365514 PMCID: PMC7287693 DOI: 10.3390/brainsci10050260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Auditory nerve fibers synapse onto the cochlear nucleus (CN) and are labeled using the vesicular glutamate transporter-1 (VGLUT-1), whereas non-auditory inputs are labeled using the VGLUT-2. However, the underlying regulatory mechanism of VGLUT expression in the CN remains unknown. We examined whether a sound level decrease, without primary neural damage, induces cellular and VGLUT expression change in the CN, and examined the potential for neural plasticity of the CN using unilateral conductive hearing loss models. We inserted earplugs in 8-week-old mice unilaterally for 4 weeks and subsequently removed them for another 4 weeks. Although the threshold of an auditory brainstem response significantly increased across all tested frequencies following earplug insertion, it completely recovered after earplug removal. Auditory deprivation had no significant impact on spiral ganglion and ventral CN (VCN) neurons’ survival. Conversely, although the cell size and VGLUT-1 expression in the VCN significantly decreased after earplug insertion, VGLUT-2 expression in the granule cell lamina significantly increased. These cell sizes decreased and the alterations in VGLUT-1 and -2 expression almost completely recovered at 1 month after earplug removal. Our results suggested that the cell size and VGLUT expression in the CN have a neuroplasticity capacity, which is regulated by increases and decreases in sound levels. Restoration of the sound levels might partly prevent cell size decrease and maintain VGLUT expression in the CN.
Collapse
|
31
|
Patel PA, Liang C, Arora A, Vijayan S, Ahuja S, Wagley PK, Settlage R, LaConte LEW, Goodkin HP, Lazar I, Srivastava S, Mukherjee K. Haploinsufficiency of X-linked intellectual disability gene CASK induces post-transcriptional changes in synaptic and cellular metabolic pathways. Exp Neurol 2020; 329:113319. [PMID: 32305418 DOI: 10.1016/j.expneurol.2020.113319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Heterozygous mutations in the X-linked gene CASK are associated with intellectual disability, microcephaly, pontocerebellar hypoplasia, optic nerve hypoplasia and partially penetrant seizures in girls. The Cask+/- heterozygous knockout female mouse phenocopies the human disorder and exhibits postnatal microencephaly, cerebellar hypoplasia and optic nerve hypoplasia. It is not known if Cask+/- mice also display seizures, nor is known the molecular mechanism by which CASK haploinsufficiency produces the numerous documented phenotypes. 24-h video electroencephalography demonstrates that despite sporadic seizure activity, the overall electrographic patterns remain unaltered in Cask+/- mice. Additionally, seizure threshold to the commonly used kindling agent, pentylenetetrazol, remains unaltered in Cask+/- mice, indicating that even in mice the seizure phenotype is only partially penetrant and may have an indirect mechanism. RNA sequencing experiments on Cask+/- mouse brain uncovers a very limited number of changes, with most differences arising in the transcripts of extracellular matrix proteins and the transcripts of a group of nuclear proteins. In contrast to limited changes at the transcript level, quantitative whole-brain proteomics using iTRAQ quantitative mass-spectrometry reveals major changes in synaptic, metabolic/mitochondrial, cytoskeletal, and protein metabolic pathways. Unbiased protein-protein interaction mapping using affinity chromatography demonstrates that CASK may form complexes with proteins belonging to the same functional groups in which altered protein levels are observed. We discuss the mechanism of the observed changes in the context of known molecular function/s of CASK. Overall, our data indicate that the phenotypic spectrum of female Cask+/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies. We therefore surmise that CASK haploinsufficiency is likely to affect brain structure and function due to dysregulation of several cellular pathways including synaptic signaling and cellular metabolism.
Collapse
Affiliation(s)
- P A Patel
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - C Liang
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - A Arora
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - S Vijayan
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - S Ahuja
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - P K Wagley
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - R Settlage
- Advanced Research Computing, Virginia Tech, Blacksburg, VA, United States
| | - L E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - H P Goodkin
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - I Lazar
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - S Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - K Mukherjee
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.
| |
Collapse
|
32
|
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus. J Neurosci 2020; 40:2471-2484. [PMID: 32051325 DOI: 10.1523/jneurosci.2573-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/21/2022] Open
Abstract
The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.
Collapse
|
33
|
Clarkson C, Smeal RM, Hasenoehrl MG, White JA, Rubio ME, Wilcox KS. Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol 2020; 326:113196. [PMID: 31935368 DOI: 10.1016/j.expneurol.2020.113196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
The persistent unresponsiveness of many of the acquired epilepsies to traditional antiseizure medications has motivated the search for prophylactic drug therapies that could reduce the incidence of epilepsy in this at risk population. These studies are based on the idea of a period of epileptogenesis that can follow a wide variety of brain injuries. Epileptogenesis is hypothesized to involve changes in the brain not initially associated with seizures, but which result finally in seizure prone networks. Understanding these changes will provide crucial clues for the development of prophylactic drugs. Using the repeated low-dose kainate rat model of epilepsy, we have studied the period of epileptogenesis following status epilepticus, verifying the latent period with continuous EEG monitoring. Focusing on ultrastructural properties of the tripartite synapse in the CA1 region of hippocampus we found increased astrocyte ensheathment around both the presynaptic and postsynaptic elements, reduced synaptic AMPA receptor subunit and perisynaptic astrocyte GLT-1 expression, and increased number of docked vesicles at the presynaptic terminal. These findings were associated with an increase in frequency of the mEPSCs observed in patch clamp recordings of CA1 pyramidal cells. The results suggest a complex set of changes, some of which have been associated with increasingly excitable networks such as increased vesicles and mEPSC frequency, and some associated with compensatory mechanisms, such as increased astrocyte ensheathment. The diversity of ultrastructural and electrophysiological changes observed during epileptogeneiss suggests that potential drug targets for this period should be broadened to include all components of the tripartite synapse.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Dept. of Neurobiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Roy M Smeal
- Dept. of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Meredith G Hasenoehrl
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, United States of America
| | - John A White
- Dept. of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - Maria E Rubio
- Dept. of Neurobiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America; Dept. of Otolaryngology, Univ. of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| | - Karen S Wilcox
- Dept. of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, United States of America; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, United States of America.
| |
Collapse
|
34
|
Ultrastructural and molecular features of excitatory and glutamatergic synapses. The auditory nerve synapses. VITAMINS AND HORMONES 2020; 114:23-51. [PMID: 32723545 DOI: 10.1016/bs.vh.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamatergic synapses mediate fast synaptic transmission in the central nervous system. New developments highlight the importance of the synapse structural and molecular remodeling during development, aging and in neurological disorders. This chapter summarizes key structural and molecular aspects of the presynaptic and postsynaptic components of glutamatergic synapses in the brain. In addition, this chapter describes how the structure of the postsynaptic density and ionotropic glutamate content contribute to the function of auditory nerve synapses in the lower auditory brainstem.
Collapse
|
35
|
Wang X, Liu J, Zhang J. Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex. Front Neurosci 2019; 13:477. [PMID: 31133797 PMCID: PMC6524417 DOI: 10.3389/fnins.2019.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities.
Collapse
Affiliation(s)
- Xiuwen Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
36
|
Qi Y, Yu S, Du Z, Qu T, He L, Xiong W, Wei W, Liu K, Gong S. Long-Term Conductive Auditory Deprivation During Early Development Causes Irreversible Hearing Impairment and Cochlear Synaptic Disruption. Neuroscience 2019; 406:345-355. [PMID: 30742960 DOI: 10.1016/j.neuroscience.2019.01.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Conductive hearing loss is a prevalent condition globally. It remains unclear whether conductive hearing loss that occurs during early development disrupts auditory peripheral systems. In this study, a mouse model of conductive auditory deprivation (CAD) was achieved using external auditory canal closure on postnatal day 12, which marks the onset of external ear canal opening. Short-term (2 weeks) and long-term (6 weeks) deprivations involving external ear canal closure were conducted. Mice were examined immediately, 4 weeks, and 8 weeks after deprivation. Short-term deprivation induced reversible auditory brainstem response (ABR) threshold and latencies of ABR wave I, whereas long-term deprivation caused irreversible ABR thresholds and latencies of ABR wave I. Complete recovery of ribbon synapses and latencies of ABR wave I was observed in the short-term group. In contrast, we observed irreversible ABR thresholds, latencies of ABR wave I, and quantity of ribbon synapses in the long-term deprivation group. Positive 8-hydroxy-2'-deoxyguanosine signals were noted in cochlear hair cells in the long-term group, suggesting that long-term auditory deprivation could disrupt auditory maturation via mitochondrial damage in cochlear hair cells. Conversely, no significant changes in cellular morphology were observed in cochlear hair cells and spiral ganglion cells in either short- or long-term groups. Collectively, our findings suggest that long-term conductive hearing deprivation during early stages of auditory development can cause significant and irreversible disruption that persists into adulthood.
Collapse
Affiliation(s)
- Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shukui Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
37
|
Lauer AM, Dent ML, Sun W, Xu-Friedman MA. Effects of Non-traumatic Noise and Conductive Hearing Loss on Auditory System Function. Neuroscience 2019; 407:182-191. [PMID: 30685543 DOI: 10.1016/j.neuroscience.2019.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/25/2023]
Abstract
The effects of traumatic noise-exposure and deafening on auditory system function have received a great deal of attention. However, lower levels of noise as well as temporary conductive hearing loss also have consequences on auditory physiology and hearing. Here we review how abnormal acoustic experience at early ages affects the ascending and descending auditory pathways, as well as hearing behavior.
Collapse
Affiliation(s)
- Amanda M Lauer
- Dept of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, United States
| | - Micheal L Dent
- Dept. Psychology, University at Buffalo, SUNY, United States
| | - Wei Sun
- Dept. Communicative Disorders and Sciences, University at Buffalo, SUNY, United States
| | | |
Collapse
|
38
|
Valdez TA, Carr JA, Kavanagh KR, Schwartz M, Blake D, Bruns O, Bawendi M. Initial findings of shortwave infrared otoscopy in a pediatric population. Int J Pediatr Otorhinolaryngol 2018; 114:15-19. [PMID: 30262355 PMCID: PMC7077808 DOI: 10.1016/j.ijporl.2018.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the feasibility of Shortwave infrared (SWIR) otoscopy in a pediatric population and establish differences with visible otoscopy. METHODS Pediatric patients 3 years of age and older seen in the otolaryngology clinic with an audiogram and tympanogram obtained within a week of the visit were recruited for video otoscopy using visible light otoscopy and SWIR otoscopy. Videos were rated by two otolaryngologists based on ability to identify the promontory, ability to identify the ossicular chain and presence or absence of middle ear fluid. RESULTS A total of 74 video recordings of ears were obtained in 20 patients. We obtained interpretable images in 63/74 (85.1%) ears. There was no statistical significance between ability to perform SWIR otoscopy versus white light video otoscopy as indicated by a p-value of 0.376. There was high inter-rater agreement for identification of both the promontory and the ossicular chain with Kappa values of 0.81 and 0.92 respectively. There was statistical significance between SWIR otoscopy and visible otoscopy in the ability to image the promontory (p = 0.012) and the ossicular chain (p = 0.010). Increased contrast of middle ear fluid was seen in SWIR otoscopy when compared to visible otoscopy. CONCLUSION SWIR otoscopy is feasible in a pediatric population and could offer some advantages over visible light otoscopy such as better visualization of the middle ear structures through the tympanic membrane and increased contrast for middle ear effusions.
Collapse
Affiliation(s)
- Tulio A Valdez
- Stanford University, Department of Otolaryngology Head & Neck Surgery, USA.
| | - Jessica A Carr
- Massachusetts Institute of Technology, Department of Chemistry
| | | | - Marissa Schwartz
- University of Connecticut Health Center, Division of Otolaryngology
| | - Danielle Blake
- University of Connecticut Health Center, Division of Otolaryngology
| | - Oliver Bruns
- Massachusetts Institute of Technology, Department of Chemistry
| | - Moungi Bawendi
- Massachusetts Institute of Technology, Department of Chemistry
| |
Collapse
|
39
|
Catanese A, Garrido D, Walther P, Roselli F, Boeckers TM. Nutrient limitation affects presynaptic structures through dissociable Bassoon autophagic degradation and impaired vesicle release. J Cereb Blood Flow Metab 2018; 38:1924-1939. [PMID: 29972341 PMCID: PMC6259322 DOI: 10.1177/0271678x18786356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute mismatch between metabolic requirements of neurons and nutrients/growth factors availability characterizes several neurological conditions such as traumatic brain injury, stroke and hypoglycemia. Although the effects of this mismatch have been investigated at cell biological level, the effects on synaptic structure and function are less clear. Since synaptic activity is the most energy-demanding neuronal function and it is directly linked to neuronal networks functionality, we have explored whether nutrient limitation (NL) affects the ultrastructure, function and composition of pre and postsynaptic terminals. We show that upon NL, presynaptic terminals show disorganized vesicle pools and reduced levels of the active zone protein Bassoon (but not of Piccolo). Moreover, NL triggers an impaired vesicle release, which is reversed by re-administration of glucose but not by the blockade of autophagic or proteasomal protein degradation. This reveals a dissociable correlation between presynaptic architecture and vesicle release, since restoring vesicle fusion does not necessarily depend from the rescue of Bassoon levels. Thus, our data show that the presynaptic compartment is highly sensitive to NL and the rescue of presynaptic function requires re-establishment of the metabolic supply rather than preventing local protein degradation.
Collapse
Affiliation(s)
- Alberto Catanese
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,2 International Graduate School in Molecular Medicine Ulm (IGradU), Ulm University, Ulm, Germany
| | - Débora Garrido
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,2 International Graduate School in Molecular Medicine Ulm (IGradU), Ulm University, Ulm, Germany
| | - Paul Walther
- 3 Electron Microscopy Institute, Ulm University, Ulm, Germany
| | - Francesco Roselli
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,4 Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
40
|
Sheppard A, Liu X, Ding D, Salvi R. Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure. Neurosci Lett 2018; 687:183-188. [PMID: 30273699 DOI: 10.1016/j.neulet.2018.09.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023]
Abstract
Remarkably, the central auditory system can modify the strength of its sound-evoked neural response based on prior acoustic experiences, a phenomenon referred to as central gain. Gain changes are well documented following traumatic noise exposure, but much less is known about central gain dynamics following prolonged exposure to low-level noise, a common acoustic experience in many urban and work environments. We recently reported that the neural output of the cochlea is reduced, while gain was enhanced in the inferior colliculus (IC) following a 5-week exposure to 75 dB noise. To determine if similar effects were present at even lower intensities, we exposed rats to a 65 dB noise expecting to see little to no change in the cochlea or IC. The exposure had little effect on distortion product otoacoustic emissions and did not cause any hair cell loss. However, the amplitude of the CAP, which reflects the neural output of cochlea, was depressed by 50-75%. Surprisingly, neural responses from the IC were enhanced up to 70%, mainly at frequencies within the noise exposure band. One-week post-exposure, CAP amplitudes returned to normal at frequencies within or above the exposure band, whereas responses evoked by frequencies below the exposure band were enhanced by more than 80%. In contrast, IC responses below the exposure frequency were depressed 10-20% whereas responses within the exposure frequency band were enhanced 10-20%. Thus, the central auditory system dynamically up- and down-regulates its gain to maintain supra-threshold neural responses within a narrow homeostatic range; a function that likely contributes to the prevention of sounds from being perceived as muffled or too loud.
Collapse
Affiliation(s)
- Adam Sheppard
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Xiaopeng Liu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA; Department of Speech Pathology and Audiology, Asia University, Taiwan
| |
Collapse
|
41
|
Central Compensation in Auditory Brainstem after Damaging Noise Exposure. eNeuro 2018; 5:eN-CFN-0250-18. [PMID: 30123822 PMCID: PMC6096756 DOI: 10.1523/eneuro.0250-18.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A growing literature suggests that the auditory system can compensate for peripheral loss through increased central neural activity. The current study sought to investigate the link between noise exposure, increases in central gain, synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperreactive to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks (2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can compensate for peripheral loss to restore some aspects of auditory function.
Collapse
|
42
|
Murru L, Vezzoli E, Longatti A, Ponzoni L, Falqui A, Folci A, Moretto E, Bianchi V, Braida D, Sala M, D'Adamo P, Bassani S, Francolini M, Passafaro M. Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2-/y Mice. Cereb Cortex 2018; 27:5369-5384. [PMID: 28968657 PMCID: PMC5939231 DOI: 10.1093/cercor/bhx221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Intellectual disability affects 2–3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1–GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1–GluA2 binding restored synaptic function in Tm4sf2−/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2−/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.
Collapse
Affiliation(s)
- Luca Murru
- CNR Institute of Neuroscience, 20129 Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy.,Department of Biosciences and Centre for Stem Cell Research, University of Milan and Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" Milan, Italy
| | - Anna Longatti
- CNR Institute of Neuroscience, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milan, Italy
| | - Andrea Falqui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University for Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Veronica Bianchi
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | | - Patrizia D'Adamo
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | |
Collapse
|
43
|
Teichert M, Liebmann L, Hübner CA, Bolz J. Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex. Sci Rep 2017; 7:17423. [PMID: 29234064 PMCID: PMC5727212 DOI: 10.1038/s41598-017-17711-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
It has been demonstrated that sensory deprivation results in homeostatic adjustments recovering neuronal activity of the deprived cortex. For example, deprived vision multiplicatively scales up mEPSC amplitudes in the primary visual cortex, commonly referred to as synaptic scaling. However, whether synaptic scaling also occurs in auditory cortex after auditory deprivation remains elusive. Using periodic intrinsic optical imaging in adult mice, we show that conductive hearing loss (CHL), initially led to a reduction of primary auditory cortex (A1) responsiveness to sounds. However, this was followed by a complete recovery of A1 activity evoked sounds above the threshold for bone conduction, 3 days after CHL. Over the same time course patch-clamp experiments in slices revealed that mEPSC amplitudes in A1 layers 2/3 pyramids scaled up multiplicatively in CHL mice. No recovery of sensory evoked A1 activation was evident in TNFα KO animals, which lack synaptic scaling. Additionally, we could show that the suppressive effect of sounds on visually evoked visual cortex activity completely recovered along with TNFα dependent A1 homeostasis in WT animals. This is the first demonstration of homeostatic multiplicative synaptic scaling in the adult A1. These findings suggest that mild hearing loss massively affects auditory processing in adult A1.
Collapse
Affiliation(s)
- Manuel Teichert
- University of Jena, Institute of General Zoology and Animal Physiology, 07743, Jena, Germany
| | - Lutz Liebmann
- University of Jena, University Hospital Jena, Institute of Human Genetics, 07743, Jena, Germany
| | - Christian A Hübner
- University of Jena, University Hospital Jena, Institute of Human Genetics, 07743, Jena, Germany
| | - Jürgen Bolz
- University of Jena, Institute of General Zoology and Animal Physiology, 07743, Jena, Germany.
| |
Collapse
|
44
|
Teichert M, Bolz J. Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing. Neuroimage 2017; 159:459-472. [DOI: 10.1016/j.neuroimage.2017.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
|
45
|
Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss. J Neurosci 2017; 37:323-332. [PMID: 28077712 DOI: 10.1523/jneurosci.0523-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023] Open
Abstract
Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. SIGNIFICANCE STATEMENT Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior.
Collapse
|
46
|
Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body. J Neurosci 2017; 37:8239-8255. [PMID: 28760859 PMCID: PMC5566870 DOI: 10.1523/jneurosci.3728-16.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/31/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022] Open
Abstract
Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d of age. Earplugs were used to induce ∼50 dB elevation in auditory thresholds. If introduced at hearing onset, trapezoid body fibers developed thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment.SIGNIFICANCE STATEMENT The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiological limit of action potential generation, precision, and speed. In this study we demonstrate for the first time that changes in peripheral activity modifies the thickness of myelin in sensory neurons, not only in development but also in mature animals. The current study suggests that changes in CNS myelination occur as a downstream mechanism following peripheral deficit. Given the required submillisecond temporal precision for binaural auditory processing, reduced myelination might augment sensorineural hearing impairment.
Collapse
|
47
|
Fernández-Montoya J, Martin YB, Negredo P, Avendaño C. Changes in the axon terminals of primary afferents from a single vibrissa in the rat trigeminal nuclei after active touch deprivation or exposure to an enriched environment. Brain Struct Funct 2017; 223:47-61. [PMID: 28702736 DOI: 10.1007/s00429-017-1472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023]
Abstract
Lasting modifications of sensory input induce structural and functional changes in the brain, but the involvement of primary sensory neurons in this plasticity has been practically ignored. Here, we examine qualitatively and quantitatively the central axonal terminations of a population of trigeminal ganglion neurons, whose peripheral axons innervate a single mystacial vibrissa. Vibrissa follicles are heavily innervated by myelinated and unmyelinated fibers that exit the follicle mainly through a single deep vibrissal nerve. We made intraneural injections of a mixture of cholera-toxin B (CTB) and isolectin B4, tracers for myelinated and unmyelinated fibers, respectively, in three groups of young adult rats: controls, animals subjected to chronic haptic touch deprivation by unilateral whisker trimming, and rats exposed for 2 months to environmental enrichment. The regional and laminar pattern of terminal arborizations in the trigeminal nuclei of the brain stem did not show gross changes after sensory input modification. However, there were significant and widespread increases in the number and size of CTB-labeled varicosities in the enriched condition, and a prominent expansion in both parameters in laminae III-IV of the caudal division of the spinal nucleus in the whisker trimming condition. No obvious changes were detected in IB4-labeled terminals in laminae I-II. These results show that a prolonged exposure to changes in sensory input without any neural damage is capable of inducing structural changes in terminals of primary afferents in mature animals, and highlight the importance of peripheral structures as the presumed earliest players in sensory experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, UFV, Edificio E, Ctra. M-115, Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
48
|
García-Hernández S, Abe M, Sakimura K, Rubio ME. Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors. Hear Res 2016; 344:284-294. [PMID: 28011083 DOI: 10.1016/j.heares.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
AMPA glutamate receptor complexes with fast kinetics conferred by subunits like GluA3 and GluA4 are essential for temporal precision of synaptic transmission. The specific role of GluA3 in auditory processing and experience related changes in the auditory brainstem remain unknown. We investigated the role of the GluA3 in auditory processing by using wild type (WT) and GluA3 knockout (GluA3-KO) mice. We recorded auditory brainstem responses (ABR) to assess auditory function and used electron microscopy to evaluate the ultrastructure of the auditory nerve synapse on bushy cells (AN-BC synapse). Since labeling for GluA3 subunit increases on auditory nerve synapses within the cochlear nucleus in response to transient sound reduction, we investigated the role of GluA3 in experience-dependent changes in auditory processing. We induced transient sound reduction by plugging one ear and evaluated ABR threshold and peak amplitude recovery for up to 60 days after ear plug removal in WT and GluA3-KO mice. We found that the deletion of GluA3 leads to impaired auditory signaling that is reflected in decreased ABR peak amplitudes, an increased latency of peak 2, early onset hearing loss and reduced numbers and sizes of postsynaptic densities (PSDs) of AN-BC synapses. Additionally, the lack of GluA3 hampers ABR threshold recovery after transient ear plugging. We conclude that GluA3 is required for normal auditory signaling, normal ultrastructure of AN-BC synapses in the cochlear nucleus and normal experience-dependent changes in auditory processing after transient sound reduction.
Collapse
Affiliation(s)
- Sofía García-Hernández
- Department of Otolaryngology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Manabu Abe
- Niigata University Brain Research Institute, Japan
| | | | - María E Rubio
- Department of Otolaryngology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|