1
|
Birnie MT, Baram TZ. The evolving neurobiology of early-life stress. Neuron 2025; 113:1474-1490. [PMID: 40101719 PMCID: PMC12097948 DOI: 10.1016/j.neuron.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Because early-life stress is common and constitutes a strong risk factor for cognitive and mental health disorders, it has been the focus of a multitude of studies in humans and experimental models. Yet, we have an incomplete understanding of what is perceived as stressful by the developing brain, what aspects of stress influence brain maturation, what developmental ages are particularly vulnerable to stress, which molecules mediate the effects of stress on brain operations, and how transient stressful experiences can lead to enduring emotional and cognitive dysfunctions. Here, we discuss these themes, highlight the challenges and progress in resolving them, and propose new concepts and avenues for future research.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Sun K, Cao C. The effects of childhood maltreatment, recent interpersonal and noninterpersonal stress, and HPA-axis multilocus genetic variation on prospective changes in adolescent depressive symptoms: A multiwave longitudinal study. Dev Psychopathol 2025; 37:543-554. [PMID: 38389485 DOI: 10.1017/s0954579424000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Based on a multiwave, two-year prospective design, this study is the first to examine the extent to which multilocus hypothalamic-pituitary-adrenal axis (HPA axis)-related genetic variants, childhood maltreatment, and recent stress jointly predicted prospective changes in adolescent depressive symptoms. A theory-driven multilocus genetic profile score (MGPS) was calculated to combine the effects of six common polymorphisms within HPA-axis related genes (CRHR1, NR3C1, NR3C2, FKBP5, COMT, and HTR1A) in a sample of Chinese Han adolescents (N = 827; 50.2% boys; Mage = 16.45 ± 1.36 years). The results showed that the three-way interaction of HPA-axis related MGPS, childhood maltreatment and recent interpersonal, but not noninterpersonal, stress significantly predicted prospective changes in adolescent depressive symptoms. For adolescents with high but not low HPA-axis related MGPS, exposure to severe childhood maltreatment predisposed individuals more vulnerable to recent interpersonal stress, exhibiting greater prospective changes in adolescent depressive symptoms. The findings provide preliminary evidence for the cumulative risk mechanism regarding gene-by-environment-by-environment (G × E1 × E2) interactions that underlie the longitudinal development of adolescent depressive symptoms and show effects specific to interpersonal stress.
Collapse
Affiliation(s)
- Kexin Sun
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Cong Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| |
Collapse
|
3
|
Looschen K, Jeffers A, Chakraborty S, Salisbury C, Dodge A, Hochstetler M, Mitra S. Adolescent stress avoidance influences cue-induced heroin seeking and chaperonin gene expression in the dorsal striatum of adult female rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2025:1-9. [PMID: 40073296 DOI: 10.1080/00952990.2025.2469793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Background: Females remain underrepresented in opioid use disorder (OUD) research, particularly regarding dorsal striatal neuroadaptations. Chaperonins seem to play a role in opioid-induced neural plasticity, yet their contribution to OUD-related changes in the dorsal striatum (DS) remains poorly understood. Given known sex differences in opioid sensitivity, it is important to determine how chaperonin expression contributes to OUD-related adaptations in females.Objective: To investigate how stressor controllability during adolescence influences heroin self-administration (SA) and responses to drug-paired cues in adult female rats, focusing on differential gene expression of chaperonins in the DS.Methods: Female rats were exposed to stress avoidance training during adolescence. These rats underwent, in adulthood, heroin SA followed by cue-induced seeking tests after early and prolonged abstinence.Results: Heroin intake during SA was similar between stress-avoiding and stress-naïve females (n = 8/group, p = .89). However, stress-avoiding females exhibited reduced drug-seeking behavior in response to drug cues at 14 days of abstinence compared to controls (p < .05; d = 0.99), suggesting a protective effect of stressor controllability. qPCR showed that the gene expression of Hspa5, a heat shock protein, was elevated in the dorsolateral striatum (DLS) of stress-avoiding females (p < .05; Cohen d > 1.0). Hspb1 gene expression was upregulated in the dorsomedial striatum (DMS) of stress-avoiding females (p < .05; d > 1.0).Conclusion: These findings suggest that chaperonin dysregulation links opioid exposure and stress avoidance conditions. Increased Hspa5 in the DLS and Hspb1 in the DMS may contribute to the observed behavioral differences supporting further preclinical investigation with clinical implications for stress and OUD.
Collapse
Affiliation(s)
- Kassandra Looschen
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ann Jeffers
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Songjukta Chakraborty
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Colin Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Anastasia Dodge
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Mason Hochstetler
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
4
|
Kimmitt AA, Angelier F, Grace JK. Postnatal glucocorticoid exposure causes long-lasting effects on competitive but not neophobic behaviors in a common songbird. Horm Behav 2025; 169:105696. [PMID: 39999589 DOI: 10.1016/j.yhbeh.2025.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Postnatal stress can affect behavior and physiology in vertebrates, but long-term effects of early-life stress experience are not well understood, especially in wild species. Glucocorticoids, steroid hormones that mediate a suite of physiological and behavioral traits in response to a changing environment, might play an important role in programming long-term responses. We examined the effects of early-life exposure to corticosterone, the primary avian glucocorticoid, on neophobic and competitive behaviors in the house sparrow (Passer domesticus). We manipulated circulating corticosterone levels in wild, free-living nestlings, then measured behavior at the juvenile and adult stages in captivity. Birds were independently tested on their response to a novel object (i.e., neophobia) and tested in their nest group on their response to a limited food source (i.e., competitive behaviors). We had alternate predictions: (1) corticosterone-treated birds would exhibit fewer neophobic behaviors and more competitive behaviors than controls if early-life corticosterone exposure adaptively prepares animals for high-stress environments; or (2) corticosterone-treated birds would be more neophobic and less competitive compared to controls if high early-life corticosterone exposure outpaces the organism's capacity to regulate stability. Additionally, we predicted that postnatal corticosterone exposure might affect juvenile behavior more than adult behavior if responses can be modulated by individual experiences over time. We found that early-life corticosterone exposure largely did not predict neophobic behaviors in response to a novel object and environment but did predict competitive behaviors in juveniles. Corticosterone-treated juvenile males tended to be less competitive and displaced more frequently than control juvenile males, whereas corticosterone-treated juvenile females tended to be more competitive than control juvenile females; however, these patterns were no longer present by adulthood. We conclude that early-life stress might have sex-specific effects in a bird's competitive ability in their first year of life, which could impact survival in populations facing novel stressors.
Collapse
Affiliation(s)
- Abigail A Kimmitt
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States; Department of Biology, Hofstra University, Hempstead, NY, United States
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, Villiers en Bois, France
| | - Jacquelyn K Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
5
|
Jappy D, Sokolov R, Dobryakova Y, Krut’ V, Maltseva K, Fedulina A, Smirnov I, Rozov A. Early-life stress differentially affects CA3 synaptic inputs converging on apical and basal dendrites of CA1 pyramidal neurons. Front Neural Circuits 2025; 19:1533791. [PMID: 40045983 PMCID: PMC11879977 DOI: 10.3389/fncir.2025.1533791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/24/2025] [Indexed: 05/13/2025] Open
Abstract
There is evidence that stress factors and negative experiences in early in life may affect brain development leading to mental disorders in adulthood. At the early stage of postnatal ontogenesis, the central nervous system has high plasticity, which decreases with maturation. Most likely, this high plasticity is necessary for establishing synaptic connections between different types of neurons, regulating the strength of individual synapses, and ultimately forming properly functioning neuronal networks. The vast majority of studies have examined the effects of early-life stress (ELS) on gene expression or behavior and memory. However, the impact of ELS on functional synaptic development and on the plastic properties of excitatory and inhibitory synapses are currently much less understood. Based on data obtained in a few studies it has been suggested that ELS reduces long-term potentiation (LTP) at Schaffer collateral to CA1 pyramidal cell synapses in adulthood. Nevertheless, different groups have reported somewhat contradictory results. In this report we show that ELS differentially affects LTP at CA3 to CA1 pyramidal cell inputs, at synapses on apical dendrites LTP is reduced, while LTP at synapses formed by CA3 pyramidal cells on basal dendrites remains unaffected.
Collapse
Affiliation(s)
- David Jappy
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Rostislav Sokolov
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - Yulia Dobryakova
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Viktoriya Krut’
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Ksenia Maltseva
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - Anastasia Fedulina
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - Ivan Smirnov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
6
|
Schwabe L. Memory Under Stress: From Adaptation to Disorder. Biol Psychiatry 2025; 97:339-348. [PMID: 38880463 DOI: 10.1016/j.biopsych.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Stressful events are ubiquitous in everyday life. Exposure to these stressors initiates the temporally orchestrated release of a multitude of hormones, peptides, and neurotransmitters that target brain areas that have been critically implicated in learning and memory. This review summarizes recent insights on the profound impact of stress on 4 fundamental processes of memory: memory formation, memory contextualization, memory retrieval, and memory flexibility. Stress mediators instigate dynamic alterations in these processes, thereby facilitating efficient responding under stress and the creation of a decontextualized memory representation that can effectively aid coping with novel future threats. While they are generally adaptive, the same stress-related changes may contribute to the rigid behaviors, uncontrollable intrusions, and generalized fear responding seen in anxiety disorders and posttraumatic stress disorder. Drawing on recent discoveries in cognitive neuroscience and psychiatry, this review discusses how stress-induced alterations in memory processes can simultaneously foster adaptation to stressors and fuel psychopathology. The transition from adaptive to maladaptive changes in the impact of stress on memory hinges on the nuanced interplay of stressor characteristics and individual predispositions. Thus, taking individual differences in the cognitive response to stressors into account is essential for any successful treatment of stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2025; 97:372-381. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Hanif S, Sclar M, Lee J, Nichols C, Likhtik E, Burghardt NS. Social isolation during adolescence differentially affects spatial learning in adult male and female mice. Learn Mem 2025; 32:a054059. [PMID: 39824649 PMCID: PMC11801479 DOI: 10.1101/lm.054059.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery. We socially isolated male and female 129Sv/Ev mice throughout adolescence (postnatal days 29-56), provided a 2-week resocialization recovery period, and then tested spatial learning and cognitive flexibility in the active place avoidance task. After behavioral testing, mice were injected with 5'-bromo-2'-deoxyuridine (BrdU) so that lasting effects of social isolation on cell proliferation in the dentate gyrus could be examined. Tissue was also stained for doublecortin (DCX). We found that in males, isolation led to a modest impairment in the rate of initial spatial learning, whereas in females, initial learning was unaffected. However, when the location of the shock zone was switched during the conflict variant of the task, cognitive flexibility was impaired in females only. Similarly, social isolation reduced cell proliferation and the number of immature neurons in the ventral dentate gyrus only in females. Together, these findings indicate that social isolation during adolescence differentially impairs spatial processing in males and females, with effects that persist into adulthood.
Collapse
Affiliation(s)
- Sadiyah Hanif
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Mia Sclar
- Biology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Jinah Lee
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Psychology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Caleb Nichols
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Ekaterina Likhtik
- Biology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Biology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Nesha S Burghardt
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Psychology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
9
|
Bordes J, Bajaj T, Miranda L, van Doeselaar L, Brix LM, Narayan S, Yang H, Mitra S, Kovarova V, Springer M, Kleigrewe K, Müller-Myhsok B, Gassen NC, Schmidt MV. Sex-specific fear acquisition following early life stress is linked to amygdala and hippocampal purine and glutamate metabolism. Commun Biol 2024; 7:1684. [PMID: 39702524 DOI: 10.1038/s42003-024-07396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Early life stress (ELS) can negatively impact health, increasing the risk of stress-related disorders, such as post-traumatic stress disorder (PTSD). Importantly, PTSD disproportionately affects women, emphasizing the critical need to explore how sex differences influence the genetic and metabolic neurobiological pathways underlying trauma-related behaviors. This study uses the limited bedding and nesting (LBN) paradigm to model ELS and investigate its sex-specific effects on fear memory formation. Employing innovative unsupervised behavioral classification, the current study reveals distinct behavioral patterns associated with fear acquisition and retrieval in male and female mice following ELS. Females exposed to LBN display heightened active fear responses, contrasting with males. Furthermore, the study examined the crucial link between behavioral regulation and cellular metabolism in key brain regions involved in fear and stress processing. Sex-specific and stress-dependent alterations were observed in purine, pyrimidine, and glutamate metabolism within the basolateral amygdala, the dorsal hippocampus, and the ventral hippocampus. These findings provide crucial insights into the complex interplay between metabolic pathways, the neurobiological underpinnings of fear memory, and stress responses. Importantly, they emphasize the significance of considering sex-specific metabolic alterations when investigating stress-related disorders, opening potential avenues for the development of targeted interventions.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
10
|
Rozov A, Fedulina A, Krut’ V, Sokolov R, Sulimova A, Jappy D. Influence of early-life stress on hippocampal synaptic and network properties. Front Neural Circuits 2024; 18:1509254. [PMID: 39749113 PMCID: PMC11693662 DOI: 10.3389/fncir.2024.1509254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
According to the World Health Organization, the number of people suffering from depressive disorders worldwide is approaching 350 million. The consequences of depressive disorders include considerable worsening of the quality of life, which frequently leads to social isolation. One of the key factors which may cause depression in adulthood is early life stress, in particular, insufficient maternal care during infancy. Studies performed with children raised in orphanages have shown that long-term complete absence of maternal care (chronic early life stress) leads to vulnerability to emotional disorders, including depression, in adulthood. All of the above dictates the need for a deep understanding of the mechanisms of the pathogenicity of stress in neurogenesis. Therefore, the consequences of stress experienced in the early stages of development are actively studied in animal models. A large body of evidence has accumulated indicating stress-induced changes in gene expression and behavioral disorders in adulthood. However, the connection between the molecular biology of neurons and complex behavior runs through the synaptic connections linking these neurons into complex neural networks. In turn, coordinated activity in neuronal ensembles, achieved by a balance of synaptic excitation and inhibition, is the basis of complex behavior. Unfortunately, the effect of stress on synaptic interactions of neurons remains poorly understood.
Collapse
Affiliation(s)
- Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anastasia Fedulina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Viktoriya Krut’
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Rostislav Sokolov
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Arina Sulimova
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Fanikos M, Kohn SA, Stamato R, Brenhouse HC, Gildawie KR. Impacts of age and environment on postnatal microglial activity: Consequences for cognitive function following early life adversity. PLoS One 2024; 19:e0306022. [PMID: 38917075 PMCID: PMC11198844 DOI: 10.1371/journal.pone.0306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Early life adversity (ELA) increases the likelihood of later-life neuropsychiatric disorders and cognitive dysfunction. Importantly, ELA, neuropsychiatric disorders, and cognitive deficits all involve aberrant immune signaling. Microglia are the primary neuroimmune cells and regulate brain development. Microglia are particularly sensitive to early life insults, which can program their responses to future challenges. ELA in the form of maternal separation (MS) in rats alters later-life microglial morphology and the inflammatory profile of the prefrontal cortex, a region important for cognition. However, the role of microglial responses during MS in the development of later cognition is not known. Therefore, here we aimed to determine whether the presence of microglia during MS mediates long-term impacts on adult working memory. Clodronate liposomes were used to transiently deplete microglia from the brain, while empty liposomes were used as a control. We hypothesized that if microglia mediate the long-term impacts of ELA on working memory in adulthood, then depleting microglia during MS would prevent these deficits. Importantly, microglial function shifts throughout the neonatal period, so an exploratory investigation assessed whether depletion during the early versus late neonatal period had different effects on adult working memory. Surprisingly, empty liposome treatment during the early, but not late, postnatal period induced microglial activity changes that compounded with MS to impair working memory in females. In contrast, microglial depletion later in infancy impaired later life working memory in females, suggesting that microglial function during late infancy plays an important role in the development of cognitive function. Together, these findings suggest that microglia shift their sensitivity to early life insults across development. Our findings also highlight the potential for MS to impact some developmental processes only when compounded with additional neuroimmune challenges in a sex-dependent manner.
Collapse
Affiliation(s)
- Michaela Fanikos
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Skylar A. Kohn
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Rebecca Stamato
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Heather C. Brenhouse
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kelsea R. Gildawie
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Wilkinson MP, Robinson ES, Mellor JR. Analysis of hippocampal synaptic function in a rodent model of early life stress. Wellcome Open Res 2024; 9:300. [PMID: 39221440 PMCID: PMC11362746 DOI: 10.12688/wellcomeopenres.22276.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.
Collapse
Affiliation(s)
- Matthew P. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
- Hello Bio Ltd, Bristol, BS11 0QL, UK
| | - Emma S.J. Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jack R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| |
Collapse
|
15
|
Zhang Y, Zhang XQ, Niu WP, Sun M, Zhang Y, Li JT, Si TM, Su YA. TAAR1 in dentate gyrus is involved in chronic stress-induced impairments in hippocampal plasticity and cognitive function. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110995. [PMID: 38514038 DOI: 10.1016/j.pnpbp.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Multiple lines of evidence suggest that the trace amine-associated receptor 1 (TAAR1) holds promise as a potential target for stress-related disorders, such as treating major depressive disorder (MDD). The role of TAAR1 in the regulation of adult neurogenesis is recently supported by transcriptomic data. However, it remains unknown whether TAAR1 in dentate gyrus (DG) mediate chronic stress-induced negative effects on hippocampal plasticity and related behavior in mice. The present study consisted of a series of experiments using RNAscope, genetic approaches, behavioral tests, immunohistochemical staining, Golgi-Cox technique to unravel the effects of TAAR1 on alterations of dentate neuronal plasticity and cognitive function in the chronic social defeat stress model. The mice subjected to chronic defeat stress exhibited a noteworthy decrease in the mRNA level of TAAR1 in DG. Additionally, they exhibited compromised social memory and spatial object recognition memory, as well as impaired proliferation and maturation of adult-born dentate granule cells. Moreover, the selective knockout TAAR1 in DG mostly mimicked the cognitive function deficits and neurogenesis impairment induced by chronic stress. Importantly, the administration of the selective TAAR1 partial agonist RO5263397 during stress exposure attenuated the adverse effects of chronic stress on cognitive function, adult neurogenesis, dendritic arborization, and the synapse number of dentate neurons in DG. In summary, our findings suggest that TAAR1 plays a crucial role in mediating the detrimental effects of chronic stress on hippocampal plasticity and cognition. TAAR1 agonists exhibit therapeutic potential for individuals suffering from cognitive impairments associated with MDD.
Collapse
Affiliation(s)
- Yue Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wei-Pan Niu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Meng Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
16
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
17
|
Shin HS, Lee SH, Moon HJ, So YH, Jang HJ, Lee KH, Ahn C, Jung EM. Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. Brain Res Bull 2024; 208:110903. [PMID: 38367676 DOI: 10.1016/j.brainresbull.2024.110903] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Chronic stress is a pervasive and complex issue that contributes significantly to various mental and physical health disorders. Using the previously established chronic unpredictable stress (CUS) model, which simulates human stress situations, it has been shown that chronic stress induces major depressive disorder (MDD) and memory deficiency. However, this established model is associated with several drawbacks, such as limited research reproducibility and the inability to sustain stress response. To resolve these issues, we developed a new CUS model (CUS+C) that included exogenous corticosterone exposure to induce continuous stress response. Thereafter, we evaluated the effect of this new model on brain health. Thus, we observed that the use of the CUS+C model decreased body and brain weight gain and induced an uncontrolled coat state as well as depressive-like behavior in adult mice. It also impaired learning memory function and cognitive abilities, reduced adult hippocampal neurogenesis as well as the number of hippocampal astrocytes, and downregulated glial fibrillary acidic protein expression in the brains of adult mice. These findings can promote the utilization and validity of the animal stress model and provide new information for the treatment of chronic stress-induced depressive and memory disorders.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hyeon Jung Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Liu J, Zaidi A, Pike CJ. Microglia/macrophage-specific deletion of TLR-4 protects against neural effects of diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580189. [PMID: 38405877 PMCID: PMC10888944 DOI: 10.1101/2024.02.13.580189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is associated with numerous adverse neural effects, including reduced neurogenesis, cognitive impairment, and increased risks for developing Alzheimer's disease (AD) and vascular dementia. Obesity is also characterized by chronic, low-grade inflammation that is implicated in mediating negative consequences body-wide. Toll-like receptor 4 (TLR4) signaling from peripheral macrophages is implicated as an essential regulator of the systemic inflammatory effects of obesity. In the brain, obesity drives chronic neuroinflammation that involves microglial activation, however the contributions of microglia-derived TLR4 signaling to the consequences of obesity are poorly understood. To investigate this issue, we first generated mice that carry an inducible, microglia/macrophage-specific deletion of TLR4 that yields long-term TLR4 knockout only in brain indicating microglial specificity. Next, we analyzed the effects of microglial TLR4 deletion on systemic and neural effects of a 16-week of exposure to control versus obesogenic high-fat diets. In male mice, TLR4 deletion generally yielded limited effects on diet-induced systemic metabolic dysfunction but significantly reduced neuroinflammation and impairments in neurogenesis and cognitive performance. In female mice maintained on obesogenic diet, TLR4 deletion partially protected against weight gain, adiposity, and metabolic impairments. Compared to males, females showed milder diet-induced neural consequences, against which TLR4 deletion was protective. Collectively, these findings demonstrate a central role of microglial TLR4 signaling in mediating the neural effects of obesogenic diet and highlight sexual dimorphic responses to both diet and TLR4.
Collapse
|
19
|
Kos A, Lopez JP, Bordes J, de Donno C, Dine J, Brivio E, Karamihalev S, Luecken MD, Almeida-Correa S, Gasperoni S, Dick A, Miranda L, Büttner M, Stoffel R, Flachskamm C, Theis FJ, Schmidt MV, Chen A. Early life adversity shapes social subordination and cell type-specific transcriptomic patterning in the ventral hippocampus. SCIENCE ADVANCES 2023; 9:eadj3793. [PMID: 38039370 PMCID: PMC10691768 DOI: 10.1126/sciadv.adj3793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
Adverse events in early life can modulate the response to additional stressors later in life and increase the risk of developing psychiatric disorders. The underlying molecular mechanisms responsible for these effects remain unclear. Here, we uncover that early life adversity (ELA) in mice leads to social subordination. Using single-cell RNA sequencing (scRNA-seq), we identified cell type-specific changes in the transcriptional state of glutamatergic and GABAergic neurons in the ventral hippocampus of ELA mice after exposure to acute social stress in adulthood. These findings were reflected by an alteration in excitatory and inhibitory synaptic transmission induced by ELA in response to acute social stress. Finally, enhancing the inhibitory network function through transient diazepam treatment during an early developmental sensitive period reversed the ELA-induced social subordination. Collectively, this study significantly advances our understanding of the molecular, physiological, and behavioral alterations induced by ELA, uncovering a previously unknown cell type-specific vulnerability to ELA.
Collapse
Affiliation(s)
- Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carlo de Donno
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Malte D. Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany
| | | | - Serena Gasperoni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lucas Miranda
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Cornelia Flachskamm
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
21
|
Iribarne J, Brachetta V, Kittlein M, Schleich C, Zenuto R. Effects of acute maternal stress induced by predator cues on spatial learning and memory of offspring in the subterranean rodent Ctenomys talarum. Anim Cogn 2023; 26:1997-2008. [PMID: 37632596 DOI: 10.1007/s10071-023-01822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
One of the main selection pressures to which animals are exposed in nature is predation, which affects a wide variety of biological traits. When the mother experiences this stressor during pregnancy and/or lactation, behavioral and physiological responses may be triggered in the offspring as well. Thus, in order to broaden and deepen knowledge on the transgenerational effects of predation stress, we evaluated how maternal stress experienced during pregnancy and/or lactation affects the spatial abilities of progeny at the onset of adulthood in the subterranean rodent Ctenomys talarum. The results showed that, contrary to what was observed in other rodent species, maternal exposure to predator cues during pregnancy and lactation did not negatively affect the spatial abilities of the offspring, even registering some minor positive effects. Concomitantly, no effects of predatory cues on physiological parameters associated with stress were observed in the progeny. This difference in results between the present study and previous works on maternal stress highlights the importance of considering the species to be evaluated (strain, age and origin-wild or captive-) and the type of stressor used (artificial or natural, intensity of exposure) in the evaluation of the possible transgenerational effects of maternal stress.
Collapse
Affiliation(s)
- J Iribarne
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | - V Brachetta
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - M Kittlein
- Grupo de Ecologia y Genetica de Poblacion de Mamiferos, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - C Schleich
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - R Zenuto
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
22
|
Reid BM, Georgieff MK. The Interaction between Psychological Stress and Iron Status on Early-Life Neurodevelopmental Outcomes. Nutrients 2023; 15:3798. [PMID: 37686831 PMCID: PMC10490173 DOI: 10.3390/nu15173798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
This review presents evidence from animal and human studies demonstrating the possible connection and significant impact of poor iron status and psychological distress on neurocognitive development during pregnancy and the neonatal period, with implications for long-term cognition. Stress and iron deficiency are independently prevalent and thus are frequently comorbid. While iron deficiency and early-life stress independently contribute to long-term neurodevelopmental alterations, their combined effects remain underexplored. Psychological stress responses may engage similar pathways as infectious stress, which alters fundamental iron metabolism processes and cause functional tissue-level iron deficiency. Psychological stress, analogous to but to a lesser degree than infectious stress, activates the hypothalamic-pituitary-adrenocortical (HPA) axis and increases proinflammatory cytokines. Chronic or severe stress is associated with dysregulated HPA axis functioning and a proinflammatory state. This dysregulation may disrupt iron absorption and utilization, likely mediated by the IL-6 activation of hepcidin, a molecule that impedes iron absorption and redistributes total body iron. This narrative review highlights suggestive studies investigating the relationship between psychological stress and iron status and outlines hypothesized mechanistic pathways connecting psychological stress exposure and iron metabolism. We examine findings regarding the overlapping impacts of early stress exposure to iron deficiency and children's neurocognitive development. We propose that studying the influence of psychological stress on iron metabolism is crucial for comprehending neurocognitive development in children exposed to prenatal and early postnatal stressors and for children at risk of early iron insufficiency. We recommend future directions for dual-exposure studies exploring iron as a potential mediating pathway between early stress and offspring neurodevelopment, offering opportunities for targeted interventions.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, RI 02906, USA
| | - Michael K. Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| |
Collapse
|
23
|
MacLeod KJ, English S, Ruuskanen SK, Taborsky B. Stress in the social context: a behavioural and eco-evolutionary perspective. J Exp Biol 2023; 226:jeb245829. [PMID: 37529973 PMCID: PMC10445731 DOI: 10.1242/jeb.245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The social environment is one of the primary sources of challenging stimuli that can induce a stress response in animals. It comprises both short-term and stable interactions among conspecifics (including unrelated individuals, mates, potential mates and kin). Social stress is of unique interest in the field of stress research because (1) the social domain is arguably the most complex and fluctuating component of an animal's environment; (2) stress is socially transmissible; and (3) stress can be buffered by social partners. Thus, social interactions can be both the cause and cure of stress. Here, we review the history of social stress research, and discuss social stressors and their effects on organisms across early life and adulthood. We also consider cross-generational effects. We discuss the physiological mechanisms underpinning social stressors and stress responses, as well as the potential adaptive value of responses to social stressors. Finally, we identify outstanding challenges in social stress research, and propose a framework for addressing these in future work.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Suvi K. Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, FI-40014, Finland
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Barbara Taborsky
- Division of Behavioural Biology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Institute for Advanced Study, 14193 Berlin, Germany
| |
Collapse
|
24
|
Ferreira de Sá N, Camarini R, Suchecki D. One day away from mum has lifelong consequences on brain and behaviour. Neuroscience 2023:S0306-4522(23)00276-2. [PMID: 37352967 DOI: 10.1016/j.neuroscience.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
This chapter presents a brief overview of attachment theory and discusses the importance of the neonatal period in shaping an individual's physiological and behavioural responses to stress later in life, with a focus on the role of the parent-infant relationship, particularly in rodents. In rodents, the role of maternal behaviours goes far beyond nutrition, thermoregulation and excretion, acting as hidden regulators of the pup's physiology and development. In this review, we will discuss the inhibitory role of specific maternal behaviours on the ACTH and corticosterone (CORT) stress response. The interest of our group to explore the long-term consequences of maternal deprivation for 24 h (DEP) at different ages (3 days and 11 days) in rats was sparked by its opposite effects on ACTH and CORT levels. In early adulthood, DEP3 animals (males and females alike) show greater negative impact on affective behaviours and stress related parameters than DEP11, indicating that the latter is more resilient in tests of anxiety-like behaviour. These findings create an opportunity to explore the neurobiological underpinnings of vulnerability and resilience to stress-related disorders. The chapter also provides a brief historical overview and highlights the relevance of attachment theory, and how DEP helps to understand the effects of childhood parental loss as a risk factor for depression, schizophrenia, and PTSD in both childhood and adulthood. Furthermore, we present the concept of environmental enrichment (EE), its effects on stress responses and related behavioural changes and its benefits for rats previously subjected to DEP, along with the clinical implications of DEP and EE.
Collapse
Affiliation(s)
- Natália Ferreira de Sá
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo
| | - Rosana Camarini
- Department of Pharmacology - Instituto de Ciências Biomédicas, Universidade de São Paulo
| | - Deborah Suchecki
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo.
| |
Collapse
|
25
|
Lourenço-Silva MI, Ulans A, Campbell AM, Almeida Paz ICL, Jacobs L. Social-pair judgment bias testing in slow-growing broiler chickens raised in low- or high-complexity environments. Sci Rep 2023; 13:9393. [PMID: 37296295 PMCID: PMC10256692 DOI: 10.1038/s41598-023-36275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Impacts of environmental complexity on affective states in slow-growing broiler chickens (Gallus gallus domesticus) are unknown. Chickens' performance in judgment bias tests (JBT) can be limited as they are tested individually, causing fear and anxiety. The objectives were to apply a social-pair JBT to assess the effect of environmental complexity on slow-growing broiler chickens` affective states, and assess the impact of fearfulness, anxiety, and chronic stress on JBT performance. Six-hundred Hubbard Redbro broilers were housed in six low-complexity (similar to commercial) or six high-complexity (permanent and temporary enrichments) pens. Twelve chicken pairs were trained (1 pair/pen, n = 24 chickens) using a multimodal approach (visual and spatial cues), with reward and neutral cues of opposing color and location. Three ambiguous cues were tested: near-positive, middle, and near-neutral cues. Approach and pecking behavior were recorded. Eighty-three percent of chickens (20/24) were successfully trained in 13 days. Fearfulness, anxiety, and chronic stress did not impact chickens' performance. Chickens successfully discriminated between cues. Low-complexity chickens approached the middle cue faster than high-complexity chickens, indicating that they were in a more positive affective state. The environmental complexity provided in this study did not improve affective states in slow-growing broiler chickens compared to a control. A social-pair JBT resulted in excellent learning and testing outcomes in slow-growing broilers.
Collapse
Affiliation(s)
- M I Lourenço-Silva
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences (FMVZ), São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A Ulans
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A M Campbell
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - I C L Almeida Paz
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences (FMVZ), São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - L Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
26
|
Zanta NC, Assad N, Suchecki D. Neurobiological mechanisms involved in maternal deprivation-induced behaviours relevant to psychiatric disorders. Front Mol Neurosci 2023; 16:1099284. [PMID: 37122626 PMCID: PMC10133561 DOI: 10.3389/fnmol.2023.1099284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Parental care is essential for proper development of stress response and emotion-related behaviours. Epidemiological studies show that parental loss in childhood represents a major risk factor for the development of mental disorders throughout the lifespan, including schizophrenia, depression, and anxiety. In most mammalian species, the mother is the main source of care and maternal behaviours regulate several physiological systems. Maternal deprivation (DEP) for 24 h is a paradigm widely used to disinhibit the hypothalamic-pituitary-adrenal axis response to stress during the stress hyporesponsive period. In this mini-review we will highlight the main DEP-induced neurobiological and behavioural outcomes, including alterations on stress-related hormones, neurogenesis, neurotransmitter/neuromodulatory systems and neuroinflammation. These neurobiological changes may be reflected by aberrant behaviours, which are relevant to the study of mental disorders. The evidence indicates that DEP consequences depend on the sex, the age when the DEP takes place and the age when the animals are evaluated, reflecting dynamic plasticity and individual variability. Individual variability and sex differences have a great relevance for the study of biological factors of stress resilience and vulnerability and the DEP paradigm is a suitable model for evaluation of phenotypes of stress- and emotion-related psychopathologies.
Collapse
|
27
|
Mattheiss SR, Levinson H, Rosenberg-Lee M, Graves WW. Exposure to violence is associated with decreased neural connectivity in emotion regulation and cognitive control, but not working memory, networks after accounting for socioeconomic status: a preliminary study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:15. [PMID: 36503615 PMCID: PMC9743673 DOI: 10.1186/s12993-022-00201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
Previous research has demonstrated behavioral and neural differences associated with experiencing adversity. However, adversity is unlikely to be a monolithic construct, and we expect that examining effects of more specific components such as exposure to violence in the home community will yield more concretely interpretable results. Here we account for effects of low socioeconomic status (SES) to examine the specific effects of exposure to violence on functional connectivity between brain areas known to be related to emotion regulation and working memory. Decreased resting state functional connectivity for individuals exposed to high compared to low levels of violence during childhood was predicted for two sets of areas: (1) bilateral amygdala with anterior medial regions involved in cognitive control of emotion, and (2) the right dorsolateral prefrontal cortex (dlPFC) with frontal and parietal regions implicated in working memory. Consistent with our predictions, increasing exposure to violence was related to decreased resting state functional connectivity between the right amygdala and anterior cingulate cortex, even after accounting for SES. Also after accounting for SES, exposure to violence was related to reductions in connectivity between the right dlPFC and frontal regions, but not with parietal regions typically associated with working memory. Overall, this pattern suggests increased exposure to violence in childhood is associated with reduced connectivity among key areas of the circuitry involved in emotion regulation and cognitive control, but not working memory. These results offer insight into the neural underpinnings of behavioral outcomes associated with exposure to violence, laying the foundation for ultimately designing interventions to address the effects of such exposure.
Collapse
Affiliation(s)
- Samantha R. Mattheiss
- grid.454556.30000 0000 9565 5747Psychology Department, Felician University, Lodi, NJ USA
| | - Hillary Levinson
- grid.430387.b0000 0004 1936 8796Psychology Department, Rutgers University - Newark, Newark, NJ USA
| | - Miriam Rosenberg-Lee
- grid.430387.b0000 0004 1936 8796Psychology Department, Rutgers University - Newark, Newark, NJ USA
| | - William W. Graves
- grid.430387.b0000 0004 1936 8796Psychology Department, Rutgers University - Newark, Newark, NJ USA
| |
Collapse
|
28
|
Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway. Eur J Pharmacol 2022; 938:175385. [PMID: 36379259 DOI: 10.1016/j.ejphar.2022.175385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression is a common disorder with a complex pathogenesis. Tanshinone IIA (TAN IIA) is a botanical agent with neuroprotective and antidepressant properties. OBJECTIVE To examine the effects of TAN IIA on chronic unpredictable mild stress (CUMS)-induced depression-like behavior and cognitive impairment in rats. METHODS Rats were exposed to CUMS for 4 weeks, followed by the oral administration of TAN IIA, Deanxit (DEAN), or normal saline for an additional 4 weeks. The control rats were fed with regular chow and administered with normal saline for 4 weeks. Behavioral tests were performed to assess the effects of TAN IIA on depression-like behavior and cognitive impairment in rats with CUMS. The morphology of dendrites was analyzed by Golgi staining. Immunofluorescence staining was performed to determine protein localization. RESULTS TAN IIA treatment ameliorated CUMS-induced depression-like behavior and cognitive impairment in rats. TAN IIA treatment also reversed the effects of CUMS on dendritic complexity and the levels of gamma-aminobutyric acid (GABA) in the hippocampus and prefrontal cortex. Rats with CUMS showed decreased levels of brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin receptor kinase B (TrkB), upregulated expression of GABA transporter 1 (GAT1), and reduced expression of synaptic proteins in the hippocampus, while TAN IIA treatment significantly diminished the effects of CUMS exposure. In addition, GAT1 was colocalized with N-methyl-D-aspartate receptor 2B. CONCLUSION TAN IIA ameliorates CUMS-induced depression-like behavior and cognitive impairment in rats by regulating the BDNF/TrkB/GAT1 signaling pathway, suggesting that TAN IIA may be a candidate drug for the treatment of depression.
Collapse
|
29
|
Leschik J, Gentile A, Cicek C, Péron S, Tevosian M, Beer A, Radyushkin K, Bludau A, Ebner K, Neumann I, Singewald N, Berninger B, Lessmann V, Lutz B. Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol 2022; 217:102333. [PMID: 35872219 DOI: 10.1016/j.pneurobio.2022.102333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany.
| | - Antonietta Gentile
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Department of Systems Medicine, Tor Vergata University, Rome 00183, Italy
| | - Cigdem Cicek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100 Ankara, Turkey; Faculty of Medicine, Department of Medical Biochemistry, Yuksek Ihtisas University, 06520 Ankara, Turkey
| | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom
| | - Margaryta Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Annika Beer
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | | | - Anna Bludau
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Inga Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE11UL, United Kingdom
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| |
Collapse
|
30
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
32
|
Chin JSR, Phan TAN, Albert LT, Keene AC, Duboué ER. Long lasting anxiety following early life stress is dependent on glucocorticoid signaling in zebrafish. Sci Rep 2022; 12:12826. [PMID: 35896563 PMCID: PMC9329305 DOI: 10.1038/s41598-022-16257-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic adversity in early childhood is associated with increased anxiety and a propensity for substance abuse later in adulthood, yet the effects of early life stress (ELS) on brain development remain poorly understood. The zebrafish, Danio rerio, is a powerful model for studying neurodevelopment and stress. Here, we describe a zebrafish model of ELS and identify a role for glucocorticoid signaling during a critical window in development that leads to long-term changes in brain function. Larval fish subjected to chronic stress in early development exhibited increased anxiety-like behavior and elevated glucocorticoid levels later in life. Increased stress-like behavior was only observed when fish were subjected to ELS within a precise time window in early development, revealing a temporal critical window of sensitivity. Moreover, enhanced anxiety-like behavior only emerges after two months post-ELS, revealing a developmentally specified delay in the effects of ELS. ELS leads to increased levels of baseline cortisol, and resulted in a dysregulation of cortisol receptors' mRNA expression, suggesting long-term effects on cortisol signaling. Together, these findings reveal a 'critical window' for ELS to affect developmental reprogramming of the glucocorticoid receptor pathway, resulting in chronic elevated stress.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Tram-Anh N Phan
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Lydia T Albert
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Alex C Keene
- College of Arts and Sciences, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA.
| |
Collapse
|
33
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
34
|
Eskandari F, Salimi M, Hedayati M, Zardooz H. Maternal separation induced resilience to depression and spatial memory deficit despite intensifying hippocampal inflammatory responses to chronic social defeat stress in young adult male rats. Behav Brain Res 2022; 425:113810. [PMID: 35189174 DOI: 10.1016/j.bbr.2022.113810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Early life adversity has been suggested to affect neuroendocrine responses to subsequent stressors and accordingly vulnerability for behavioral disorders. This is the first work to study the effects of maternal separation (MS) stress on the co-occurrence of depression and cognitive impairments along with hippocampal inflammatory response under chronic social defeat stress (CSDS) in young adult male rats. During the first two postnatal weeks, the male pups were either exposed to MS or left undisturbed with their mothers (Std). Subsequently, starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for three weeks. Totally, there were four groups (n = 10/group), namely Std-Con, Ms-Con, Std-CSDS, and MS-CSDS. Pup retrieval test was performed on daily basis from PND1 to PND14. During the last week of the CSDS exposure, in the light phase, the behavioral tests and the retro-orbital blood sampling were performed to assess basal plasma corticosterone levels. Afterwards, the hippocampus of the animals was removed to measure the interleukin 1β (IL-1β) content. Exposure to CSDS increased the plasma corticosterone levels and induced social avoidance along with memory deficit. Maternal separation intensified hippocampal IL-1β contents as well as the plasma corticosterone levels in response to CSDS. Meanwhile, it facilitated the spatial learning and potentiated resilience to social avoidance and memory deficit. In conclusion, although maternal separation increased the basal plasma corticosterone levels, it could facilitate the learning process and induce resilience to the onset of depression and memory deficit in response to CSDS, probably through the compensatory increase in maternal care and the induction of mild hippocampal inflammatory response.
Collapse
Affiliation(s)
- Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Social Information-Processing in Children with Adverse Experiences. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The concept of childhood adversity has been highlighted in the literature, given its relevance and impact on child development. According to the adaptation-based approach, children who develop in adverse environments adapt cognitively and behaviorally to them. The purpose of this study was to investigate possible relationships between adverse experiences and social information processes of threat detection behaviors and hostile attribution bias, in school-aged children. To this end, a non-probabilistic sample of 67 children from 7 to 10 years of age was constituted. We developed three instruments to assess: (1) adverse experiences, (2) threat detection behaviors, and (3) hostile attribution bias. Results reveal that adverse experiences are significantly correlated with and predict threat detection behaviors. However, children with more adverse experiences do not demonstrate a higher hostile attribution bias. This study contributes to the knowledge about how adverse experiences are related to children’s social information-processing and functioning, which can have implications for the elaboration of intervention programs.
Collapse
|
36
|
Learning Ability and Hippocampal Transcriptome Responses to Early and Later Life Environmental Complexities in Dual-Purpose Chicks. Animals (Basel) 2022; 12:ani12050668. [PMID: 35268235 PMCID: PMC8909157 DOI: 10.3390/ani12050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we hypothesized that complex early-life environments enhance the learning ability and the hippocampal plasticity when the individual is faced with future life challenges. Chicks were divided into a barren environment group (BG), a litter materials group (LG), and a perches and litter materials group (PLG) until 31 days of age, and then their learning abilities were tested following further rearing in barren environments for 22 days. In response to the future life challenge, the learning ability showed no differences among the three groups. In the hippocampal KEGG pathways, the LG chicks showed the downregulation of neural-related genes neuronal growth regulator 1 (NEGR1) and neurexins (NRXN1) in the cell adhesion molecules pathway compared to the BG (p < 0.05). Immune-related genes TLR2 in Malaria and Legionellosis and IL-18 and IL18R1 in the TNF signaling pathway were upregulated in the LG compared to in the BG (p < 0.05). Compared to the BG, the PLG displayed upregulated TLR2A in Malaria (p < 0.05). The PLG showed upregulated neural-related gene, i.e., neuronal acetylcholine receptor subunit alpha-7-like (CHRNA8) in the nicotine addiction pathway and secretagogin (SCGN) gene expression, as compared to the LG (p < 0.05). In conclusion, early-life environmental complexities had limited effects on the learning ability in response to a future life challenge. Early-life perches and litter materials can improve neural- and immune-related gene expression and functional pathways in the hippocampus of chicks.
Collapse
|
37
|
Nicolas S, McGovern AJ, Hueston CM, O'Mahony SM, Cryan JF, O'Leary OF, Nolan YM. Prior maternal separation stress alters the dendritic complexity of new hippocampal neurons and neuroinflammation in response to an inflammatory stressor in juvenile female rats. Brain Behav Immun 2022; 99:327-338. [PMID: 34732365 DOI: 10.1016/j.bbi.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1β in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
38
|
It is Not (Always) the Mismatch That Beats You-On the Relationship Between Interaction of Early and Recent Life Stress and Emotion Regulation, an fMRI Study. Brain Topogr 2021; 35:219-231. [PMID: 34775569 PMCID: PMC8860803 DOI: 10.1007/s10548-021-00880-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Stress may impact the ability to effectively regulate emotions. To study the impact of stressful experiences in early and recent life on emotion regulation, we examined the relationship between early life stress, recent stress, and brain activation during cognitive reappraisal. We investigated two regulation goals: the decrease and increase of emotional response to both negative and positive stimuli. Furthermore, two models of stress consequences were examined: the cumulative and match/mismatch models. A total of 83 participants (Mage = 21.66) took part in the study. There was an interaction between cumulative stress and stimuli valence in the cuneus, superior lateral occipital cortex, superior parietal lobule, supramarginal gyrus extending to superior temporal gyrus, and precentral gyrus extending to supplementary motor area. Interaction between mismatched stress index and stimuli valence was found in the left hippocampus, left insula extending to the orbitofrontal cortex and amygdala, and in a cluster including the anterior cingulate cortex, superior frontal gyrus, and frontal pole. Furthermore, there were differences between the effects of cumulative and mismatched stress indices on brain activation during reappraisal of positive but not negative stimuli. Results indicate that cumulative stress and match/mismatch approaches are both useful for explaining brain activation during reappraisal. This finding is important for our understanding of the multifaceted impact of stress on emotion regulation.
Collapse
|
39
|
Kahl BL, Kavanagh PS, Gleaves DH. Extending a Life History Model of Psychopathology: Expectations and Schemas as Potential Mechanisms. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2021. [DOI: 10.1007/s40806-021-00300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Dagan O, Groh AM, Madigan S, Bernard K. A Lifespan Development Theory of Insecure Attachment and Internalizing Symptoms: Integrating Meta-Analytic Evidence via a Testable Evolutionary Mis/Match Hypothesis. Brain Sci 2021; 11:brainsci11091226. [PMID: 34573246 PMCID: PMC8469853 DOI: 10.3390/brainsci11091226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Attachment scholars have long argued that insecure attachment patterns are associated with vulnerability to internalizing symptoms, such as depression and anxiety symptoms. However, accumulating evidence from the past four decades, summarized in four large meta-analyses evaluating the link between insecure attachment subtypes and internalizing symptoms, provide divergent evidence for this claim. This divergent evidence may be accounted for, at least in part, by the developmental period under examination. Specifically, children with histories of deactivating (i.e., insecure/avoidant) but not hyperactivating (i.e., insecure/resistant) attachment patterns in infancy and early childhood showed elevated internalizing symptoms. In contrast, adolescents and adults with hyperactivating (i.e., insecure/preoccupied) but not deactivating (i.e., insecure/dismissing) attachment classifications showed elevated internalizing symptoms. In this paper, we summarize findings from four large meta-analyses and highlight the divergent meta-analytic findings that emerge across different developmental periods. We first present several potential methodological issues that may have contributed to these divergent findings. Then, we leverage clinical, developmental, and evolutionary perspectives to propose a testable lifespan development theory of attachment and internalizing symptoms that integrates findings across meta-analyses. According to this theory, subtypes of insecure attachment patterns may be differentially linked to internalizing symptoms depending on their mis/match with the developmentally appropriate orientation tendency toward caregivers (in childhood) or away from them (i.e., toward greater independence in post-childhood). Lastly, we offer future research directions to test this theory.
Collapse
Affiliation(s)
- Or Dagan
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence:
| | - Ashley M. Groh
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Sheri Madigan
- Department of Psychology, Alberta Children’s Hospital Research Institute, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada;
| | - Kristin Bernard
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
41
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
The relationship between early and recent life stress and emotional expression processing: A functional connectivity study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:588-603. [PMID: 32342272 PMCID: PMC7266792 DOI: 10.3758/s13415-020-00789-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this study was to characterize neural activation during the processing of negative facial expressions in a non-clinical group of individuals characterized by two factors: the levels of stress experienced in early life and in adulthood. Two models of stress consequences were investigated: the match/mismatch and cumulative stress models. The match/mismatch model assumes that early adversities may promote optimal coping with similar events in the future through fostering the development of coping strategies. The cumulative stress model assumes that effects of stress are additive, regardless of the timing of the stressors. Previous studies suggested that stress can have both cumulative and match/mismatch effects on brain structure and functioning and, consequently, we hypothesized that effects on brain circuitry would be found for both models. We anticipated effects on the neural circuitry of structures engaged in face perception and emotional processing. Hence, the amygdala, fusiform face area, occipital face area, and posterior superior temporal sulcus were selected as seeds for seed-based functional connectivity analyses. The interaction between early and recent stress was related to alterations during the processing of emotional expressions mainly in to the cerebellum, middle temporal gyrus, and supramarginal gyrus. For cumulative stress levels, such alterations were observed in functional connectivity to the middle temporal gyrus, lateral occipital cortex, precuneus, precentral and postcentral gyri, anterior and posterior cingulate gyri, and Heschl's gyrus. This study adds to the growing body of literature suggesting that both the cumulative and the match/mismatch hypotheses are useful in explaining the effects of stress.
Collapse
|
43
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
44
|
Sierra-Fonseca JA, Hamdan JN, Cohen AA, Cardenas SM, Saucedo S, Lodoza GA, Gosselink KL. Neonatal Maternal Separation Modifies Proteostasis Marker Expression in the Adult Hippocampus. Front Mol Neurosci 2021; 14:661993. [PMID: 34447296 PMCID: PMC8383781 DOI: 10.3389/fnmol.2021.661993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to early-life stress (ELS) can persistently modify neuronal circuits and functions, and contribute to the expression of misfolded and aggregated proteins that are hallmarks of several neurodegenerative diseases. The healthy brain is able to clear dysfunctional proteins through the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). Accumulating evidence indicates that impairment of these pathways contributes to enhanced protein aggregation and neurodegeneration. While stress is a known precipitant of neurological decline, few specific mechanistic links underlying this relationship have been identified. We hypothesized that neonatal maternal separation (MatSep), a well-established model of ELS, has the ability to alter the levels of UPS and ALP components in the brain, and thus has the potential to disrupt proteostasis. The expression of proteostasis-associated protein markers was evaluated by immunoblotting in the hippocampus and cortex of adult Wistar rats that were previously subjected to MatSep. We observed multiple sex- and MatSep-specific changes in the expression of proteins in the ALP, mitophagy, and UPS pathways, particularly in the hippocampus of adult animals. In contrast, MatSep had limited influence on proteostasis marker expression in the cortex of adult animals. Our results indicate that MatSep can selectively modify the intracellular protein degradation machinery in ways that may impact the development and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Jorge A. Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Jameel N. Hamdan
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Alexis A. Cohen
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Neuroscience Program, Smith College, Northampton, MA, United States
| | - Sonia M. Cardenas
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Sigifredo Saucedo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Gabriel A. Lodoza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| |
Collapse
|
45
|
The Impact of Stress Within and Across Generations: Neuroscientific and Epigenetic Considerations. Harv Rev Psychiatry 2021; 29:303-317. [PMID: 34049337 DOI: 10.1097/hrp.0000000000000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of stress and trauma on biological systems in humans can be substantial. They can result in epigenetic changes, accelerated brain development and sexual maturation, and predisposition to psychopathology. Such modifications may be accompanied by behavioral, emotional, and cognitive overtones during one's lifetime. Exposure during sensitive periods of neural development may lead to long-lasting effects that may not be affected by subsequent environmental interventions. The cumulative effects of life stressors in an individual may affect offspring's methylome makeup and epigenetic clocks, neurohormonal modulation and stress reactivity, and physiological and reproductive development. While offspring may suffer deleterious effects from parental stress and their own early-life adversity, these factors may also confer traits that prove beneficial and enhance fitness to their own environment. This article synthesizes the data on how stress shapes biological and behavioral dimensions, drawing from preclinical and human models. Advances in this field of knowledge should potentially allow for an improved understanding of how interventions may be increasingly tailored according to individual biomarkers and developmental history.
Collapse
|
46
|
Zhang Q, Liu F, Yan W, Wu Y, Wang M, Wei J, Wang S, Zhu X, Chai X, Zhao S. Prolonged maternal separation alters neurogenesis and synaptogenesis in postnatal dentate gyrus of mice. Bipolar Disord 2021; 23:376-390. [PMID: 32805776 DOI: 10.1111/bdi.12986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.
Collapse
Affiliation(s)
- Qianru Zhang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Shuzhong Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
Rule L, Yang J, Watkin H, Hall J, Brydges NM. Environmental enrichment rescues survival and function of adult-born neurons following early life stress. Mol Psychiatry 2021; 26:1898-1908. [PMID: 32286496 DOI: 10.1038/s41380-020-0718-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Adverse experiences early in life are associated with the development of psychiatric illnesses. The hippocampus is likely to play pivotal role in generating these effects: it undergoes significant development during childhood and is extremely reactive to stress. In rodent models, stress in the pre-pubertal period impairs adult hippocampal neurogenesis (AHN) and behaviours which rely on this process. In normal adult animals, environmental enrichment (EE) is a potent promoter of AHN and hippocampal function. Whether exposure to EE during adolescence can restore normal hippocampal function and AHN following pre-pubertal stress (PPS) is unknown. We investigated EE as a treatment for reduced AHN and hippocampal function following PPS in a rodent model. Stress was administered between post-natal days (PND) 25-27, EE from PND 35 to early adulthood, when behavioural testing and assessment of AHN took place. PPS enhanced fear reactions to a conditioned stimulus (CS) following a trace fear protocol and reduced the survival of 4-week-old adult-born neurons throughout the adult hippocampus. Furthermore, we show that fewer adult-born neurons were active during recall of the CS stimulus following PPS. All effects were reversed by EE. Our results demonstrate lasting effects of PPS on the hippocampus and highlight the utility of EE during adolescence for restoring normal hippocampal function. EE during adolescence is a promising method of enhancing impaired hippocampal function resulting from early life stress, and due to multiple benefits (low cost, few side effects, widespread availability) should be more thoroughly explored as a treatment option in human sufferers of childhood adversity.
Collapse
Affiliation(s)
- Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jessica Yang
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Nichola Marie Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
48
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
49
|
Xie YH, Zhou CN, Liang X, Tang J, Yang CM, Luo YM, Chao FL, Jiang L, Wang J, Qi YQ, Zhu PL, Li Y, Xiao K, Tang Y. Anti-Lingo-1 antibody ameliorates spatial memory and synapse loss induced by chronic stress. J Comp Neurol 2021; 529:1571-1583. [PMID: 32965038 DOI: 10.1002/cne.25038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/10/2022]
Abstract
Chronic stress can induce cognitive impairment, and synapse number was significantly decreased in the hippocampus of rats suffering from chronic stress. Lingo-1 is a potent negative regulator of axonal outgrowth and synaptic plasticity. In the current study, the effects of anti-Lingo-1 antibody on the spatial learning and memory abilities and hippocampal synapses of stressed rats were investigated. After 4 weeks of stress exposure, the model group was randomly divided into a chronic stress group and an anti-Lingo-1 group. Then, the anti-Lingo-1 group rats were treated with anti-Lingo-1 antibody (8 mg/kg) for 3 weeks. The effects of anti-Lingo-1 antibody on the spatial learning and memory abilities were investigated with the Morris water maze test. Immunohistological staining and an unbiased stereological method were used to estimate the total number of dendritic spine synapses in the hippocampus. At the behavioral level, after 3 weeks of treatment, the anti-Lingo-1 group rats displayed significantly more platform location crossings in the Morris water maze test than the chronic stress group rats. Anti-Lingo-1 significantly prevented the declines in dendritic spine synapses and postsynaptic density protein-95 (PSD-95) expression in the dentate gyrus and the CA1 and CA3 regions of the hippocampus. The present results indicated that anti-Lingo-1 antibody may be a safe and effective drug for alleviating memory impairment in rats after chronic stress and protecting synapses in the hippocampus of stressed rats.
Collapse
Affiliation(s)
- Yu-Han Xie
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Chun-Mao Yang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Yan-Min Luo
- Department of Physiology, Chongqing Medical University, Chongqing, P.R. China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, P.R. China
| | - Jin Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Ying-Qiang Qi
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Pei-Lin Zhu
- Department of Physiology, Chongqing Medical University, Chongqing, P.R. China
| | - Yue Li
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Kai Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
50
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|