1
|
Zamanian MY, Kamran Z, Tavakoli MR, Oghenemaro EF, Abohassan M, Kubaev A, Nathiya D, Kaur P, Zwamel AH, Abdulamer RS. The Role of ΔFosB in the Pathogenesis of Levodopa-Induced Dyskinesia: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2025; 62:7393-7412. [PMID: 39890697 DOI: 10.1007/s12035-025-04720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Levodopa-induced dyskinesia (LID) represents a significant complication associated with the long-term administration of levodopa (L-DOPA) for the treatment of Parkinson's disease (PD). This review examines the critical role of ΔFosB, a transcription factor, in the pathogenesis of LID and explores potential therapeutic interventions. ΔFosB accumulates within the striatum in response to chronic dopaminergic stimulation, thereby driving maladaptive changes that culminate in dyskinesia. Its persistent expression modifies gene transcription, influencing neuronal plasticity and contributing to the sustained presence of dyskinetic movements. This study explains how ΔFosB functions at the molecular level, focusing on its connections with dopamine D1 receptors, the cAMP/PKA signaling pathway, and its regulatory effects on downstream targets such as DARPP-32 and GluA1 AMPA receptor subunits. Additionally, it examines how neuronal nitric oxide synthase (nNOS) affects ΔFosB levels and the development of LID. This review also considers the interactions between ΔFosB and other signaling pathways, such as ERK and mTOR, in the context of LID and striatal plasticity. Emerging therapeutic strategies targeting ΔFosB and its associated pathways include pharmacological interventions like ranitidine, 5-hydroxytryptophan, and carnosic acid. Furthermore, this study addresses the role of JunD, another component of the AP-1 transcription factor complex, in the pathogenesis of LID. Understanding the molecular mechanisms by which ΔFosB contributes to LID offers promising avenues for developing novel treatments that could mitigate dyskinesia and improve the quality of life for PD patients undergoing long-term L-DOPA therapy.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Resan Shakir Abdulamer
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Park HY, Ryu YK, Lee GS, Go J, Kim JE, Min KS, Lee CH, Moon JH, Kim KS. Sitagliptin attenuates L-dopa-induced dyskinesia by regulating mitochondrial proteins and neuronal activity in a 6-OHDA-induced mouse model of Parkinson's disease. J Neural Transm (Vienna) 2025; 132:827-843. [PMID: 40095077 DOI: 10.1007/s00702-025-02907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
L-dopa-induced dyskinesia (LID) is an incapacitating complication of long-term administration of L-dopa therapy that commonly affects patients with Parkinson's disease (PD) due to the widespread use of the causative drug. Herein, we investigated the therapeutic potential of sitagliptin, a drug used to treat type 2 diabetes mellitus, to treat LID. 6-hydroxydopamine (6-OHDA) was unilaterally injected into the left side of the substantia nigra pas compacta to induce a mouse model of PD. After four weeks of 6-OHDA induction, L-dopa was administered with or without sitagliptin for 11 consecutive days. LID was monitored using abnormal involuntary movement (AIM) scoring, conducted on days 5 and 10 of L-dopa treatment. Comparative proteomic analysis was performed on the 6-OHDA-lesioned striatum by comparing groups treated with vehicle + L-dopa and sitagliptin + L-dopa. Sitagliptin combined with L-dopa significantly attenuated AIM scores in 6-OHDA-lesioned mice. Proteomic analysis following sitagliptin treatment showed an increase in proteins involved in mitochondrial function regulation and a decrease in proteins associated with cytoskeleton function regulation. Changes in the expression of Ndufb2, a subunit of NADH: ubiquinone oxidoreductase (complex I), and Arc, an immediate early gene (IEG), which showed the most significant increase and decrease, respectively, were validated using western blotting and RT-PCR analysis. These findings suggest that sitagliptin may have therapeutic potential by enhancing mitochondrial functions and suppressing neuronal activity in the striatum, thereby mitigating the incapacitating complications associated with long-term L-dopa use in patients with PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Uchida K, Das G, Talukder AH, Kageyama K, Itoi K. Long-lasting expression of FosB/ΔFosB immunoreactivity following acute stress in the paraventricular and supraoptic nuclei of the rat hypothalamus. Neurosci Res 2025:104911. [PMID: 40412556 DOI: 10.1016/j.neures.2025.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/28/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
We examined expression profiles of FosB/∆FosB immunoreactivity and fosB gene transcripts in the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON) of rats following acute surgical stress (SS) and restraint stress (RS) and compared them with those of c-Fos immunoreactivity and c-fos mRNA. Following SS, the number of FosB/ΔFosB-ir cells markedly increased, the time course of which was slow-onset and long-lasting, in contrast with rapid-onset and short-lived c-Fos expression. Characteristically long-lasting FosB/ΔFosB expression was also observed following RS. On the other hand, fosB mRNA was short-lived, and its time course not much different from that of c-fos mRNA; thus, the long-lasting expression of FosB/∆FosB immunoreactivity may be attributed to the longer half-life of FosB proteins, and not to the persistent expression of fosB gene transcripts. Following SS, FosB/ΔFosB immunoreactivity was present mainly in PVH corticotropin-releasing factor (CRF) neurons and SON vasopressin (AVP) neurons, while c-Fos immunoreactivity in either PVH CRF neurons, or AVP and oxytocin neurons in PVH and SON. Following RS, FosB/ΔfosB- and c-Fos expression was almost restricted to PVH CRF neurons. The present study raises the possibility that FosB proteins in discrete populations of hypothalamic neuroendocrine neurons may play roles in forming adaptability to and/or resilience against stress, which takes longer than the acute phase response.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Gopal Das
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Ashraf H Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Kazunori Kageyama
- Division of Metabolism and Diabetes, School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8551, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan; Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan,.
| |
Collapse
|
4
|
Kambey PA, Wu J, Liu W, Su M, Buberwa W, Tang C. Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson's disease. Gene Ther 2024; 31:614-624. [PMID: 39384937 DOI: 10.1038/s41434-024-00492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson's Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson's disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Huangpu District, Guangzhou, China.
| | - Jiao Wu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Mingyu Su
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Wokuheleza Buberwa
- Department of Neurology, The second affiliated hospital of Xi'an Jiaotong University, 710049, Xi'an, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
5
|
Liu K, Zhang Z, Xu Y, Wu Y, Lian P, Ma Z, Tang Z, Zhang X, Yang X, Zhai H, Zhang L, Xu Y, Cao X. AMPK-mediated autophagy pathway activation promotes ΔFosB degradation to improve levodopa-induced dyskinesia. Cell Signal 2024; 118:111125. [PMID: 38432574 DOI: 10.1016/j.cellsig.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Tan Y, Cheng C, Zheng C, Zeng W, Yang X, Xu Y, Zhang Z, Ma Z, Xu Y, Cao X. Activation of mGlu 2/3 receptors in the striatum alleviates L-DOPA-induced dyskinesia and inhibits abnormal postsynaptic molecular expression. Pharmacol Biochem Behav 2023; 231:173637. [PMID: 37714223 DOI: 10.1016/j.pbb.2023.173637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 μL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.
Collapse
Affiliation(s)
- Yang Tan
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chi Cheng
- Department of Neurology, Hanchuan People's Hospital, 432300, China
| | - Cong Zheng
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
7
|
Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022; 13:3211. [PMID: 35680891 PMCID: PMC9184492 DOI: 10.1038/s41467-022-30844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.
Collapse
Affiliation(s)
- Bérénice Coutant
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Thibault Tarpin
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Caroline Mailhes-Hamon
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Bertrand Degos
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
8
|
Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW. Carnosic Acid Alleviates Levodopa-Induced Dyskinesia and Cell Death in 6-Hydroxydopamine-lesioned Rats and in SH-SY5Y Cells. Front Pharmacol 2021; 12:703894. [PMID: 34434108 PMCID: PMC8381221 DOI: 10.3389/fphar.2021.703894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the impact of carnosic acid (CA) from rosemary on the levodopa (L-dopa)-induced dyskinesia (LID) in rats treated with 6-hydroxydopamine (6-OHDA). To establish the model of LID, 6-OHDA-lesioned rats were injected intraperitoneally with 30 mg/kg L-dopa once a day for 36 days. Rats were daily administrated with 3 or 15 mg/kg CA by oral intubation prior to L-dopa injection for 4 days. Rats pretreated with CA had reduced L-dopa-induced abnormal involuntary movements (AIMs) and ALO scores (a sum of axial, limb, and orofacial scores). Moreover, the increases of dopamine D1-receptor, p-DARPP-32, ΔFosB, p-ERK1/2, and p-c-Jun ser63, along with the decrease in p-c-Jun ser73, induced by L-dopa in 6-OHDA-treated rats were significantly reversed by pretreatment with CA. In addition, we used the model of SH-SY5Y cells to further examine the neuroprotective mechanisms of CA on L-dopa-induced cytotoxicity. SH-SY5Y cells were treated with CA for 18 h, and then co-treated with 400 μM L-dopa for the indicated time points. The results showed that pretreatment of CA attenuated the cell death and nuclear condensation induced by L-dopa. By the immunoblots, the reduction of Bcl-2, p-c-Jun ser73, and parkin and the induction of cleaved caspase 3, cleaved Poly (ADP-ribose) polymerase, p-ERK1/2, p-c-Jun ser63, and ubiquitinated protein by L-dopa were improved in cells pretreated with CA. In conclusion, CA ameliorates the development of LID via regulating the D1R signaling and prevents L-dopa-induced apoptotic cell death through modulating the ERK1/2-c-Jun and inducing the parkin. This study suggested that CA can be used to alleviate the adverse effects of LID for PD patients.
Collapse
Affiliation(s)
- Chun-Yi Lai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Fieblinger T. Striatal Control of Movement: A Role for New Neuronal (Sub-) Populations? Front Hum Neurosci 2021; 15:697284. [PMID: 34354577 PMCID: PMC8329243 DOI: 10.3389/fnhum.2021.697284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
The striatum is a very heterogenous brain area, composed of different domains and compartments, albeit lacking visible anatomical demarcations. Two populations of striatal spiny projection neurons (SPNs) build the so-called direct and indirect pathway of the basal ganglia, whose coordinated activity is essential to control locomotion. Dysfunction of striatal SPNs is part of many movement disorders, such as Parkinson’s disease (PD) and L-DOPA-induced dyskinesia. In this mini review article, I will highlight recent studies utilizing single-cell RNA sequencing to investigate the transcriptional profiles of striatal neurons. These studies discover that SPNs carry a transcriptional signature, indicating both their anatomical location and compartmental identity. Furthermore, the transcriptional profiles reveal the existence of additional distinct neuronal populations and previously unknown SPN sub-populations. In a parallel development, studies in rodent models of PD and L-DOPA-induced dyskinesia (LID) report that direct pathway SPNs do not react uniformly to L-DOPA therapy, and that only a subset of these neurons is underlying the development of abnormal movements. Together, these studies demonstrate a new level of cellular complexity for striatal (dys-) function and locomotor control.
Collapse
Affiliation(s)
- Tim Fieblinger
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Chesler K, Motz C, Vo H, Douglass A, Allen RS, Feola AJ, Pardue MT. Initiation of L-DOPA Treatment After Detection of Diabetes-Induced Retinal Dysfunction Reverses Retinopathy and Provides Neuroprotection in Rats. Transl Vis Sci Technol 2021; 10:8. [PMID: 34003986 PMCID: PMC8054623 DOI: 10.1167/tvst.10.4.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose L-DOPA treatment initiated at the start of hyperglycemia preserves retinal and visual function in diabetic rats. Here, we investigated a more clinically relevant treatment strategy in which retinal and visual dysfunction designated the beginning of the therapeutic window for L-DOPA treatment. Methods Spatial frequency thresholds using optomotor response and oscillatory potential (OP) delays using electroretinograms were compared at baseline, 3, 6, and 10 weeks after streptozotocin (STZ) between diabetic and control rats. L-DOPA/carbidopa treatment (DOPA) or vehicle was delivered orally 5 days per week beginning at 3 weeks after STZ, when significant retinal and visual deficits were measured. At 10 weeks after STZ, retinas were collected to measure L-DOPA, dopamine, and 3,4-dihydroxyphenylacetic acid (DOPAC) levels using high-performance liquid chromatography. Results Spatial frequency thresholds decreased at 6 weeks in diabetic vehicle rats (28%), whereas diabetic DOPA rats had stable thresholds (<1%) that maintained to 10 weeks, creating significantly higher thresholds compared with diabetic vehicle rats (P < 0.0001). OP2 implicit times in response to dim, rod-driven stimuli were decreased in diabetic compared with control rats (3 weeks, P < 0.0001; 10 weeks, P < 0.01). With L-DOPA treatment, OP2 implicit times recovered in diabetic rats to be indistinguishable from control rats by 10 weeks after STZ. Rats treated with L-DOPA showed significantly increased retinal L-DOPA (P < 0.001) and dopamine levels (P < 0.05). Conclusions L-DOPA treatment started after the detection of retinal and visual dysfunction showed protective effects in diabetic rats. Translational Relevance Early retinal functional deficits induced by diabetes can be used to identify an earlier therapeutic window for L-DOPA treatment which protects from further vision loss and restores retinal function.
Collapse
Affiliation(s)
- Kyle Chesler
- Atlanta VA Healthcare System, Atlanta, GA, USA.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Cara Motz
- Atlanta VA Healthcare System, Atlanta, GA, USA.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Harrison Vo
- Atlanta VA Healthcare System, Atlanta, GA, USA
| | | | - Rachael S Allen
- Atlanta VA Healthcare System, Atlanta, GA, USA.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew J Feola
- Atlanta VA Healthcare System, Atlanta, GA, USA.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Atlanta VA Healthcare System, Atlanta, GA, USA.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Beck G, Zhang J, Fong K, Mochizuki H, Mouradian MM, Papa SM. Striatal ΔFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Ther 2021; 28:760-770. [PMID: 33707771 PMCID: PMC8433270 DOI: 10.1038/s41434-021-00249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022]
Abstract
L-Dopa-induced dyskinesia (LID) is associated with upregulation of striatal ΔFosB in animal models and patients with Parkinson’s disease (PD). A mechanistic role of ΔFosB is suspected because its transgenic overexpression leads to early appearance of LID in rodents and primates. The present study in rodents is aimed at exploring the therapeutic potential of striatal ΔFosB gene suppression to control LID in patients with PD. To determine the effect of reducing striatal ΔFosB expression, we used RNAi gene knockdown in a rat model of PD and assessed abnormal involuntary movements (AIMs) in response to L-Dopa. Rats with dopamine depletion received striatal injections of rAAV-ΔFosB shRNA or a control virus before exposure to chronic L-Dopa treatment. Development of AIMs during the entire L-Dopa treatment period was markedly inhibited by ΔFosB gene knockdown and its associated molecular changes. The antiparkinsonian action of L-Dopa was unchanged by ΔFosB gene knockdown. These results suggest a major role for ΔFosB in the development of LID, and support exploring strategies to reduce striatal ΔFosB levels in patients with PD.
Collapse
Affiliation(s)
- Goichi Beck
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jie Zhang
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kayoko Fong
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Dyavar SR, Potts LF, Beck G, Dyavar Shetty BL, Lawson B, Podany AT, Fletcher CV, Amara RR, Papa SM. Transcriptomic approach predicts a major role for transforming growth factor beta type 1 pathway in L-Dopa-induced dyskinesia in parkinsonian rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12690. [PMID: 32741046 DOI: 10.1111/gbb.12690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023]
Abstract
Dyskinesia induced by long-term L-Dopa (LID) therapy in Parkinson disease is associated with altered striatal function whose molecular bases remain unclear. Here, a transcriptomic approach was applied for comprehensive analysis of distinctively regulated genes in striatal tissue, their specific pathways, and functional- and disease-associated networks in a rodent model of LID. This approach has identified transforming growth factor beta type 1 (TGFβ1) as a highly upregulated gene in dyskinetic animals. TGFβ1 pathway is a top aberrantly regulated pathway in the striatum following LID development based on differentially expressed genes (> 1.5 fold change and P < 0.05). The induction of TGFβ1 pathway specific genes, TGFβ1, INHBA, AMHR2 and PMEPA1 was also associated with regulation of NPTX2, PDP1, SCG2, SYNPR, TAC1, TH, TNNT1 genes. Transcriptional network and upstream regulator analyses have identified AKT-centered functional and ERK-centered disease networks revealing the association of TGFβ1, IL-1β and TNFα with LID development. Therefore, results support that TGFβ1 pathway is a major contributor to the pathogenic mechanisms of LID.
Collapse
Affiliation(s)
- Shetty Ravi Dyavar
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Lisa F Potts
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Goichi Beck
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Benton Lawson
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anthony T Podany
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V Fletcher
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Jones-Tabah J, Mohammad H, Hadj-Youssef S, Kim LEH, Martin RD, Benaliouad F, Tanny JC, Clarke PBS, Hébert TE. Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci Rep 2020; 10:14426. [PMID: 32879346 PMCID: PMC7468292 DOI: 10.1038/s41598-020-71121-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
As with many G protein-coupled receptors (GPCRs), the signalling pathways regulated by the dopamine D1 receptor (D1R) are dynamic, cell type-specific, and can change in the face of disease or drug exposures. In striatal neurons, the D1R activates cAMP/protein kinase A (PKA) signalling. However, in Parkinson's disease (PD), alterations in this pathway lead to functional upregulation of extracellular regulated kinases 1/2 (ERK1/2), contributing to L-DOPA-induced dyskinesia (LID). In order to detect D1R activation in vivo and to study the progressive dysregulation of D1R signalling in PD and LID, we developed ratiometric fiber-photometry with Förster resonance energy transfer (FRET) biosensors and optically detected PKA and ERK1/2 signalling in freely moving rats. We show that in Parkinsonian animals, D1R signalling through PKA and ERK1/2 is sensitized, but that following chronic treatment with L-DOPA, these pathways become partially desensitized while concurrently D1R activation leads to greater induction of dyskinesia.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Hanan Mohammad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Shadi Hadj-Youssef
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Lucy E H Kim
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Faïza Benaliouad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
14
|
Li Y, Liu Z, Aglyamova G, Chen J, Chen H, Bhandari M, White MA, Rudenko G, Zhou J. Discovery of phenanthridine analogues as novel chemical probes disrupting the binding of DNA to ΔFosB homodimers and ΔFosB/JunD heterodimers. Bioorg Med Chem Lett 2020; 30:127300. [PMID: 32631520 PMCID: PMC7376976 DOI: 10.1016/j.bmcl.2020.127300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/19/2022]
Abstract
The transcription factor ΔFosB accumulates in response to chronic insults such as drugs of abuse, L-3,4-dihydroxyphenylalanine (l-DOPA) or stress in specific regions of the brain, triggering long lasting neural and behavioral changes that underlie aspects of drug addiction, dyskinesia, and depression. Thus, small molecule chemical probes are urgently needed to investigate biological functions of ΔFosB. Herein we describe the identification of a novel phenanthridine analogue ZL0220 (27) as an active and promising ΔFosB chemical probe with micromolar inhibitory activities against ΔFosB homodimers and ΔFosB/JunD heterodimers.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Galina Aglyamova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Mukund Bhandari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Mark A White
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Gabrielle Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
15
|
Steece-Collier K, Collier TJ, Lipton JW, Stancati JA, Winn ME, Cole-Strauss A, Sellnow R, Conti MM, Mercado NM, Nillni EA, Sortwell CE, Manfredsson FP, Bishop C. Striatal Nurr1, but not FosB expression links a levodopa-induced dyskinesia phenotype to genotype in Fisher 344 vs. Lewis hemiparkinsonian rats. Exp Neurol 2020; 330:113327. [PMID: 32387398 DOI: 10.1016/j.expneurol.2020.113327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Numerous genes, and alterations in their expression, have been identified as risk factors for developing levodopa-induced dyskinesia (LID). However, our understanding of the complexities of molecular changes remains insufficient for development of clinical treatment. In the current study we used gene array, in situ hybridization, immunohistochemistry, and microdialysis to provide a unique compare and contrast assessment of the relationship of four candidate genes to LID, employing three genetically distinct rat strains (Sprague-Dawley (SD), Fischer-344 (F344) and Lewis-RT.1) showing differences in dyskinesia susceptibility and 'first-ever LID' versus 'chronic LID' expression in subjects displaying equal dyskinesia severity. In these studies, rat strains were easily distinguishable for their LID propensity with: 1) a majority of SD rats expressing LID (LID+) and a subset being resistant (LID-); 2) all F344 rats readily developing (LID+); and 3) all Lewis rats being LID-resistant (LID-). Following chronic levodopa, LID+ SD rats showed significant increases in candidate gene expression: Nr4a2/(Nurr1) > > Trh > Inhba = Fosb. However, SD rats with long-standing striatal dopamine (DA) depletion treated with first-ever versus chronic high-dose levodopa revealed that despite identical levels of LID severity: 1) Fosb and Nurr1 transcripts but not protein were elevated with acute LID expression; 2) FOSB/ΔFOSB and NURR1 proteins were elevated only with chronic LID; and 3) Trh transcript and protein were elevated only with chronic LID. Strikingly, despite similar levodopa-induced striatal DA release in both LID-expressing F344 and LID-resistant Lewis rats, Fosb, Trh, Inhba transcripts were significantly elevated in both strains; however, Nurr1 mRNA was significantly increased only in LID+ F344 rats. These findings suggest a need to reevaluate currently accepted genotype-to-phenotype relationships in the expression of LID, specifically that of Fosb, a transcription factor generally assumed to play a causal role, and Nurr1, a transcription factor that has received significant attention in PD research linked to its critical role in the survival and function of midbrain DA neurons but who's striatal expression, generally below levels of detection, has remained largely unexplored as a regulator of LID. Finally these studies introduce a novel 'model' (inbred F344 vs inbred Lewis) that may provide a powerful tool for investigating the role for 'dyskinesia-resistance' genes downstream of 'dyskinesia-susceptibility' genes in modulating LID expression, a concept that has received considerably less attention and offers a new ways of thinking about antidyskinetic therapies.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA.
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mary E Winn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Rhyomi Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Eduardo A Nillni
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
16
|
Farmer K, Abd-Elrahman KS, Derksen A, Rowe EM, Thompson AM, Rudyk CA, Prowse NA, Dwyer Z, Bureau SC, Fortin T, Ferguson SSG, Hayley S. mGluR5 Allosteric Modulation Promotes Neurorecovery in a 6-OHDA-Toxicant Model of Parkinson's Disease. Mol Neurobiol 2019; 57:1418-1431. [PMID: 31754998 DOI: 10.1007/s12035-019-01818-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease. Here, we tested whether the mGluR5-negative allosteric modulator, (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine (CTEP), would be effective in improving motor deficits and promoting neural recovery in a 6-hydroxydopamine (6-OHDA) mouse model. Lesions were induced by 6-ODHA striatal infusion, and 30 days later treatment with CTEP (2 mg/kg) or vehicle commenced for either 1 or 12 weeks. Animals were subjected to behavioral, pathological, and molecular analyses. We also assessed how long the effects of CTEP persisted, and finally, using rapamycin, determined the role of the mTOR pathway. CTEP treatment induced a duration-dependent improvement in apomorphine-induced rotation and performance on rotarod in lesioned mice. Moreover, CTEP promoted a recovery of striatal tyrosine hydroxylase-positive fibers and normalized FosB levels in lesioned mice. The beneficial effects of CTEP were paralleled by an activation of mammalian target of rapamycin (mTOR) pathway and elevated brain-derived neurotrophic factor levels in the striatum of lesioned mice. The mTOR inhibitor, rapamycin (sirolimus), abolished CTEP-induced neurorecovery and rescue of motor deficits. Our findings indicate that mTOR pathway is a useful target to promote recovery and that mGluR5 allosteric regulators may potentially be repurposed to selectively target this pathway to enhance neuroplasticity in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute, Ottawa, Ontario, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Alexa Derksen
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Elyn M Rowe
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Ashley M Thompson
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Christopher A Rudyk
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Natalie A Prowse
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Zachary Dwyer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Samantha C Bureau
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Teresa Fortin
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute, Ottawa, Ontario, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
17
|
Ingallinesi M, Galet B, Pegon J, Faucon Biguet N, Do Thi A, Millan MJ, Mannoury la Cour C, Meloni R. Knock-Down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and L-3-4-Dyhydroxyphenylalanine. Front Pharmacol 2019; 10:1233. [PMID: 31708775 PMCID: PMC6823866 DOI: 10.3389/fphar.2019.01233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
The effects of L-3-4-dyhydroxyphenylalanine (L-DOPA) treatment for replacing the dopamine (DA) loss in Parkinson’s disease (PD) progressively wear off and are hindered by the development of dyskinesia, prompting the search for new treatments. The orphan G protein-coupled receptor 88 (Gpr88) represents a potential new target, as it is highly and almost exclusively expressed in the projecting gamma-Aminobutyric Acid-ergic (GABAergic) medium spiny neurons of the striatum, is implicated in motor activity, and is downregulated by 6-hydroxydopamine (6-OHDA) lesions, an effect that is reversed by L-DOPA. Thus, to evaluate Gpr88 as a potential target for the management of PD and L-DOPA–induced dyskinesia (LID), we inactivated Gpr88 by lentiviral-mediated knock-down with a specifically designed microRNA (miR) (KD-Gpr88) in a 6-OHDA rat model of hemiparkinsonism. Then, we investigated the effects of the KD-Gpr88 in the DA-deprived dorsal striatum on circling behavior and LID as well as on specific markers of striatal neuron activity. The KD-Gpr88 reduced the acute amphetamine-induced and increased L-DOPA–induced turning behavior. Moreover, it normalized the upregulated expression of striatal Gad67 and proenkephalin provoked by the 6-OHDA lesion. Finally, despite promoting ΔFosB accumulation, the KD-Gpr88 was associated neither with the upregulation of prodynorphin, which is causally linked to the severity of LID, nor with the aggravation of LID following chronic L-DOPA treatment in 6-OHDA–lesioned rats. These results thus justify further evaluation of Gpr88 as a potentially novel target for the management of PD as an alternative to L-DOPA therapy.
Collapse
Affiliation(s)
- Manuela Ingallinesi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Benjamin Galet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Jonathan Pegon
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Nicole Faucon Biguet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Anh Do Thi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Mark J Millan
- Center for Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy sur Seine, France
| | | | - Rolando Meloni
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Peng Q, Zhong S, Tan Y, Zeng W, Wang J, Cheng C, Yang X, Wu Y, Cao X, Xu Y. The Rodent Models of Dyskinesia and Their Behavioral Assessment. Front Neurol 2019; 10:1016. [PMID: 31681132 PMCID: PMC6798181 DOI: 10.3389/fneur.2019.01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Dyskinesia, a major motor complication resulting from dopamine replacement treatment, manifests as involuntary hyperkinetic or dystonic movements. This condition poses a challenge to the treatment of Parkinson's disease. So far, several behavioral models based on rodent with dyskinesia have been established. These models have provided an important platform for evaluating the curative effect of drugs at the preclinical research level over the past two decades. However, there are differences in the modeling and behavioral testing procedures among various laboratories that adversely affect the rat and mouse models as credible experimental tools in this field. This article systematically reviews the history, the pros and cons, and the controversies surrounding rodent models of dyskinesia as well as their behavioral assessment protocols. A summary of factors that influence the behavioral assessment in the rodent dyskinesia models is also presented, including the degree of dopamine denervation, stereotaxic lesion sites, drug regimen, monitoring styles, priming effect, and individual and strain differences. Besides, recent breakthroughs like the genetic mouse models and the bilateral intoxication models for dyskinesia are also discussed.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoping Zhong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tan
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - WeiQi Zeng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Ahmed MR, Jayakumar M, Ahmed MS, Zamaleeva AI, Tao J, Li EH, Job JK, Pittenger C, Ohtsu H, Rajadas J. Pharmacological antagonism of histamine H2R ameliorated L-DOPA–induced dyskinesia via normalization of GRK3 and by suppressing FosB and ERK in PD. Neurobiol Aging 2019; 81:177-189. [DOI: 10.1016/j.neurobiolaging.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
20
|
Role of striatal ΔFosB in l-Dopa-induced dyskinesias of parkinsonian nonhuman primates. Proc Natl Acad Sci U S A 2019; 116:18664-18672. [PMID: 31455727 DOI: 10.1073/pnas.1907810116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term dopamine (DA) replacement therapy in Parkinson's disease (PD) leads to the development of abnormal involuntary movements known as l-Dopa-induced dyskinesia (LID). The transcription factor ΔFosB that is highly up-regulated in the striatum following chronic l-Dopa exposure may participate in the mechanisms of altered neuronal responses to DA generating LID. To identify intrinsic effects of elevated ΔFosB on l-Dopa responses, we induced transgenic ΔFosB overexpression in the striatum of parkinsonian nonhuman primates kept naïve of l-Dopa treatment. Elevated ΔFosB levels led to consistent appearance of LID since the initial acute l-Dopa tests. In line with this motor response, striatal projection neurons (SPNs) responded to DA with changes in firing frequency that reversed at the peak of the motor response, and these unstable SPN activity changes in response to DA are typically associated with the emergence of LID. Transgenic ΔFosB overexpression also induced up-regulation of other molecular markers of LID. These results support an autonomous role of striatal ΔFosB in the adaptive mechanisms altering motor responses to chronic DA replacement in PD.
Collapse
|
21
|
Mansouri-Guilani N, Bernard V, Vigneault E, Vialou V, Daumas S, El Mestikawy S, Gangarossa G. VGLUT3 gates psychomotor effects induced by amphetamine. J Neurochem 2019; 148:779-795. [PMID: 30556914 DOI: 10.1111/jnc.14644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Several subtypes of modulatory neurons co-express vesicular glutamate transporters (VGLUTs) in addition to their cognate vesicular transporters. These neurons are believed to establish new forms of neuronal communication. The atypical VGLUT3 is of particular interest since in the striatum this subtype is found in tonically active cholinergic interneurons (TANs) and in a subset of 5-HT fibers. The striatum plays a major role in psychomotor effects induced by amphetamine. Whether and how VGLUT3-operated glutamate/ACh or glutamate/5HT co-transmissions modulates psychostimulants-induced maladaptive behaviors is still unknown. Here, we investigate the involvement of VGLUT3 and glutamate co-transmission in amphetamine-induced psychomotor effects and stereotypies. Taking advantage of constitutive and cell-type specific VGLUT3-deficient mouse lines, we tackled the hypothesis that VGLUT3 could gate psychomotor effects (locomotor activity and stereotypies) induced by acute or chronic administration of amphetamine. Interestingly, VGLUT3-null mice demonstrated blunted amphetamine-induced stereotypies as well as reduced striatal ∆FosB expression. VGLUT3-positive varicosities within the striatum arise in part from 5HT neurons. We tested the involvement of VGLUT3 deletion in serotoninergic neurons in amphetamine-induced stereotypies. Mice lacking VGLUT3 specifically in 5HT fibers showed no alteration to amphetamine sensitivity. In contrast, specific deletion of VGLUT3 in cholinergic neurons partially phenocopied the effects observed in the constitutive knock-out mice. Our results show that constitutive deletion of VGLUT3 modulates acute and chronic locomotor effects induced by amphetamine. They point to the fact that the expression of VGLUT3 in multiple brain areas is pivotal in gating amphetamine-induced psychomotor adaptations. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Nina Mansouri-Guilani
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Véronique Bernard
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Erika Vigneault
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Vincent Vialou
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Stéphanie Daumas
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France.,Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada
| | - Giuseppe Gangarossa
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada.,Unité de Biologie Fonctionnelle et Adaptative (BFA) CNRS UMR8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Differential Expression of Striatal ΔFosB mRNA and FosB mRNA After Different Levodopa Treatment Regimens in a Rat Model of Parkinson's Disease. Neurotox Res 2019; 35:563-574. [PMID: 30645726 DOI: 10.1007/s12640-018-9993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Levodopa-induced dyskinesia (LID) is the main side effect associated with levodopa treatment and represents the biggest challenge for Parkinson's disease therapy. While the overexpression of ΔFosB transcription factor is related to the development of LID, few studies have been undertaken on fosB gene transcriptional regulation induced by levodopa in vivo. The aim of this study is to evaluate the expression of ΔFosB mRNA and FosB mRNA in the striatum after acute, chronic, and subchronic levodopa treatment in rats with unilateral 6-OHDA-lesion in the medial forebrain bundle. qRT-PCR was used to compare the levels of ΔFosB and FosB mRNA expression in the dopamine-denervated striatum following levodopa treatment. While the results obtained after a single levodopa dose indicate a significant increase of ∆FosB mRNA expression in the striatum 1 h post-injection, the levels returned to baseline values after 24 h. After subchronic levodopa treatment, the levels of ∆FosB and FosB mRNA expression were lower 1 h post-administration of levodopa in comparison with acute effect. However, after chronic levodopa treatment, ∆FosB mRNA expression in the striatum persisted in dyskinetic rats only, and positive correlation was found between the levels of ∆FosB mRNA expression 1 h after levodopa administration and the level of dyskinetic severity. In summary, acute levodopa treatment led to highly increased levels of ∆FosB mRNA expression in the striatum. While repeated administration induced a partial desensitization of the fosB gene in the striatum, it did not suppress its activity completely, which could explain why dyskinesia appears after chronic levodopa treatment.
Collapse
|
23
|
Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J, Cheng C, Yang X, Nie S, Xu Y, Zhang Z, Papa SM, Ye K, Cao X. TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect. Front Cell Neurosci 2018; 12:417. [PMID: 30555300 PMCID: PMC6282053 DOI: 10.3389/fncel.2018.00417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson’s disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substantia nigra. Here, we investigated the therapeutic effect of Taltirelin, a long-acting TRH analog on 6-hydroxydopamine-lesioned hemi-Parkinsonian rat model. 1–10 mg/kg Taltirelin i.p. administration significantly improved the locomotor function and halted the electrophysiological abnormities of PD animals without inducing dyskinesia even with high-dose for 7 days treatment. Microdialysis showed that Taltirelin gently and persistently promoted DA release in the cortex and striatum, while L-DOPA induced a sharp rise of DA especially in the cortex. The DA-releasing effect of Taltirelin was alleviated by reserpine, vanoxerine (GBR12909) or AMPT, indicating a mechanism involving vesicular monoamine transporter-2 (VMAT-2), dopamine transporter (DAT) and tyrosine hydroxylase (TH). The in vivo and in vitro experiments further supported that Taltirelin affected the regulation of TH expression in striatal neurons, which was mediated by p-ERK1/2. Together, this study demonstrated that Taltirelin improved motor function of hemi-PD rats without inducing dyskinesia, thus supporting a further exploration of Taltirelin for PD treatment.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
A MAPK/c-Jun-mediated switch regulates the initial adaptive and cell death responses to mitochondrial damage in a neuronal cell model. Int J Biochem Cell Biol 2018; 104:73-86. [PMID: 30236993 DOI: 10.1016/j.biocel.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is defined by the progressive loss of dopaminergic neurons. Mitochondrial dysfunction and oxidative stress are associated with PD although it is not fully understood how neurons respond to these stresses. How adaptive and apoptotic neuronal stress response pathways are regulated and the thresholds at which they are activated remains ambiguous. Utilising SH-SY5Y neuroblastoma cells, we show that MAPK/AP-1 pathways are critical in regulating the response to mitochondrial uncoupling. Here we found the AP-1 transcription factor c-Jun can act in either a pro- or anti-apoptotic manner, depending on the level of stress. JNK-mediated cell death in differentiated cells only occurred once a threshold of stress was surpassed. We also identified a novel feedback loop between Parkin activity and the c-Jun response, suggesting defective mitophagy may initiate MAPK/c-Jun-mediated neuronal loss observed in PD. Our data supports the hypothesis that blocking cell death pathways upstream of c-Jun as a therapeutic target in PD may not be appropriate due to crossover of the pro- and anti-apoptotic responses. Boosting adaptive responses or targeting specific aspects of the neuronal death response may therefore represent more viable therapeutic strategies.
Collapse
|
25
|
Fieblinger T, Zanetti L, Sebastianutto I, Breger LS, Quintino L, Lockowandt M, Lundberg C, Cenci MA. Striatonigral neurons divide into two distinct morphological-physiological phenotypes after chronic L-DOPA treatment in parkinsonian rats. Sci Rep 2018; 8:10068. [PMID: 29968767 PMCID: PMC6030109 DOI: 10.1038/s41598-018-28273-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic regression of striatal spiny projection neurons (SPNs) is a pathological hallmark of Parkinson's disease (PD). Here we investigate how chronic dopamine denervation and dopamine replacement with L-DOPA affect the morphology and physiology of direct pathway SPNs (dSPNS) in the rat striatum. We used a lentiviral vector optimized for retrograde labeling (FuG-B-GFP) to identify dSPNs in rats with 6-hydroxydopamine (6-OHDA) lesions. Changes in morphology and physiology of dSPNs were assessed through a combination of patch-clamp recordings and two photon microscopy. The 6-OHDA lesion caused a significant reduction in dSPN dendritic complexity. Following chronic L-DOPA treatment, dSPNs segregated into two equal-sized clusters. One group (here called "cluster-1"), showed sustained dendritic atrophy and a partially normalized electrophysiological phenotype. The other one ("cluster-2") exhibited dendritic regrowth and a strong reduction of intrinsic excitability. Interestingly, FosB/∆FosB induction by L-DOPA treatment occurred preferentially in cluster-2 dSPNs. Our study demonstrates the feasibility of retrograde FuG-B-GFP labeling to study dSPNs in the rat and reveals, for the first time, that a subgroup of dSPNs shows dendritic sprouting in response to chronic L-DOPA treatment. Investigating the mechanisms and significance of this response will greatly improve our understanding of the adaptations induced by dopamine replacement therapy in PD.
Collapse
Affiliation(s)
- T Fieblinger
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden. .,Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstr. 19, D-14193, Berlin, Germany.
| | - L Zanetti
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Pharmacy, Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - I Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - L S Breger
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden.,CNRS, Institut des Maladies Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - L Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M Lockowandt
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - C Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M A Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
26
|
Rouillard C, Baillargeon J, Paquet B, St-Hilaire M, Maheux J, Lévesque C, Darlix N, Majeur S, Lévesque D. Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Yang X, Zhu Z, Ding X, Wang X, Cui G, Hua F, Xiang J. CaMKII inhibition ameliorated levodopa-induced dyskinesia by downregulating tyrosine hydroxylase activity in an experimental model of Parkinson's disease. Brain Res 2018; 1687:66-73. [PMID: 29452071 DOI: 10.1016/j.brainres.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Levodopa (L-dopa) remains the best treatment for Parkinson's disease (PD). However, long-term L-dopa treatment induces dyskinesia. The mechanism of L-dopa-induced dyskinesia (LID) is not fully understood. Enhanced activity of protein kinase A (PKA) and pulsatile dopamine (DA) stimulation plays an important role in LID. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for DA synthesis. Decreased TH activity causes reduced pulsatile DA stimulation, which in turn reduces LID. Moreover, TH is a substrate of CaMKII. However, it is unknown whether inhibition of CaMKII reduces LID by downregulating the activity of TH. In this study, we found that CaMKII antagonist KN-93 reduced DA released in PC12 cells; in the meantime, KN-93 reduced phosphorylated levels of CaMKIIα and TH at Ser 40. Intrastriatal administration of KN-93 reduced LID without affecting the antiparkinsonian effect of L-dopa in PD mice. Mechanistically, KN-93 treatmentreduced phosphorylated CaMKIIα levels and subsequently downregulated phosphorylated TH at Ser 40 expression. Consequently, extracellular DA efflux was reduced andthe activation threshold of the PKA pathway was lowered. Moreover, KN-93 treatment reduced the expression of Arc and Penk, two immediate early genes, induced by chronic L-dopa. These data indicate that inhibition of CaMKIIα decreases LID at least partially by suppressing TH activity and subsequently reducing extracellular DA efflux and the activity of the PKA pathway, suggesting that CaMKIIα may be an alternative target for the treatment of LID.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Zhongfang Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiqing Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
28
|
Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm (Vienna) 2018; 125:1171-1186. [PMID: 29396608 PMCID: PMC6060907 DOI: 10.1007/s00702-018-1847-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
A large number of signaling abnormalities have been implicated in the emergence and expression of l-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of l-DOPA, through a variety of mechanisms affecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of l-DOPA leads to intermittent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifications of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis. Enhanced levels of multiple effector targets, including several transcription factors have been implicated in LID and associated changes in synaptic plasticity and morphology. This article provides an overview of the intracellular modifications occurring in SPN and associated with LID.
Collapse
|
29
|
Girasole AE, Lum MY, Nathaniel D, Bair-Marshall CJ, Guenthner CJ, Luo L, Kreitzer AC, Nelson AB. A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. Neuron 2018; 97:787-795.e6. [PMID: 29398356 DOI: 10.1016/j.neuron.2018.01.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Parkinson's disease is characterized by the progressive loss of midbrain dopamine neurons. Dopamine replacement therapy with levodopa alleviates parkinsonian motor symptoms but is complicated by the development of involuntary movements, termed levodopa-induced dyskinesia (LID). Aberrant activity in the striatum has been hypothesized to cause LID. Here, to establish a direct link between striatal activity and dyskinesia, we combine optogenetics and a method to manipulate dyskinesia-associated neurons, targeted recombination in active populations (TRAP). We find that TRAPed cells are a stable subset of sensorimotor striatal neurons, predominantly from the direct pathway, and that reactivation of TRAPed striatal neurons causes dyskinesia in the absence of levodopa. Inhibition of TRAPed cells, but not a nonspecific subset of direct pathway neurons, ameliorates LID. These results establish that a distinct subset of striatal neurons is causally involved in LID and indicate that successful therapeutic strategies for treating LID may require targeting functionally selective neuronal subtypes.
Collapse
Affiliation(s)
- Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Matthew Y Lum
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | | | | | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Anatol C Kreitzer
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Department of Physiology, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; The Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Zhou L, Verstreken P. Reprogramming neurodegeneration in the big data era. Curr Opin Neurobiol 2018; 48:167-173. [PMID: 29331684 DOI: 10.1016/j.conb.2017.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/02/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified numerous genetic risk variants for late-onset Alzheimer's disease (AD) and Parkinson's disease (PD). However, deciphering the functional consequences of GWAS data is challenging due to a lack of reliable model systems to study the genetic variants that are often of low penetrance and non-coding identities. Pluripotent stem cell (PSC) technologies offer unprecedented opportunities for molecular phenotyping of GWAS variants in human neurons and microglia. Moreover, rapid technological advances in whole-genome RNA-sequencing and epigenome mapping fuel comprehensive and unbiased investigations of molecular alterations in PSC-derived disease models. Here, we review and discuss how integrated studies that utilize PSC technologies and genome-wide approaches may bring new mechanistic insight into the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Lujia Zhou
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Tronci E, Francardo V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm (Vienna) 2017; 125:1137-1144. [PMID: 29242978 DOI: 10.1007/s00702-017-1825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Appearance of L-DOPA-induced dyskinesia (LID) represents a major limitation in the pharmacological therapy with the dopamine precursor L-DOPA. Indeed, the vast majority of parkinsonian patients develop dyskinesia within 9-10 years of L-DOPA oral administration. This makes the discovery of new therapeutic strategies an important need. In the last decades, several animal models of Parkinson's disease (PD) have been developed, to both study mechanisms underlying PD pathology and treatment-induced side effects (i.e., LID) and to screen for new potential anti-parkinsonian and anti-dyskinetic treatments. Among all the models developed, the 6-OHDA-lesioned rodents represent the models of choice to mimic PD motor symptoms and LID, thanks to their reproducibility and translational value. Under L-DOPA treatment, rodents sustaining 6-OHDA lesions develop abnormal involuntary movements with dystonic and hyperkinetic features, resembling what seen in dyskinetic PD patients. These models have been extensively validated by the evidence that dyskinetic behaviors are alleviated by compounds reducing dyskinesia in patients and non-human primate models of PD. This article will focus on the translational value of the 6-OHDA rodent models of LID, highlighting their main features, advantages and disadvantages in preclinical research.
Collapse
Affiliation(s)
- Elisabetta Tronci
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cittadella Universitaria, SS554 Km 4.5, 09042, Monserrato, Italy.
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, Papa SM, Cao X. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci 2017; 11:112. [PMID: 28337120 PMCID: PMC5343040 DOI: 10.3389/fnins.2017.00112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) represents one of the major problems of the long-term therapy of patients with Parkinson's disease (PD). Although, the pathophysiologic mechanisms underlying LID are not completely understood, activation of the extracellular signal regulated kinase (ERK) is recognized to play a key role. ERK is phosphorylated by mitogen-activated protein kinase kinase (MEK), and thus MEK inhibitor can prevent ERK activation. Here the effect of the MEK inhibitor PD98059 on LID and the associated molecular changes were examined. Rats with unilateral 6-OHDA lesions of the nigrostriatal pathway received daily L-DOPA treatment for 3 weeks, and abnormal involuntary movements (AIMs) were assessed every other day. PD98059 was injected in the lateral ventricle daily for 12 days starting from day 10 of L-DOPA treatment. Striatal molecular markers of LID were analyzed together with gene regulation using microarray. The administration of PD98059 significantly reduced AIMs. In addition, ERK activation and other associated molecular changes including ΔFosB were reversed in rats treated with the MEK inhibitor. PD98059 induced significant up-regulation of 418 transcripts and down-regulation of 378 transcripts in the striatum. Tyrosine hydroxylase (Th) and aryl hydrocarbon receptor nuclear translocator (Arnt) genes were down-regulated in lesioned animals and up-regulated in L-DOPA-treated animals. Analysis of protein levels showed that PD98059 reduced the striatal TH. These results support the association of p-ERK1/2, ΔFosB, p-H3 to the regulation of TH and ARNT in the mechanisms of LID, and pinpoint other gene regulatory changes, thus providing clues for identifying new targets for LID therapy.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Stella M Papa
- Department of Neurology, Yerkes National Primate Research Center, Emory University School of Medicine Atlanta, GA, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
33
|
Han C, Nie S, Chen G, Ma K, Xiong N, Zhang Z, Xu Y, Wang T, Papa SM, Cao X. Intrastriatal injection of ionomycin profoundly changes motor response to l-DOPA and its underlying molecular mechanisms. Neuroscience 2016; 340:23-33. [PMID: 27771532 DOI: 10.1016/j.neuroscience.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Long-term l-DOPA treatment of Parkinson's disease is accompanied with fluctuations of motor responses and l-DOPA-induced dyskinesia (LID). Phosphorylation of the dopamine and c-AMP regulated phosphoprotein of 32kDa (DARPP-32) plays a role in the pathogenesis of LID, and thus dephosphorylation of this protein by activated calcineurin may help reduce LID. One important activator of calcineurin is the Ca2+ ionophore ionomycin. Here, we investigated whether intrastriatal injection of ionomycin to hemiparkinsonian rats produced changes in l-DOPA responses including LID. We also analyzed the effects of ionomycin on key molecular mediators of LID. Results confirmed our hypothesis that ionomycin could downregulate the phosphorylation of DARPP32 at Thr-34 and reduce LID. Besides, ionomycin decreased two established molecular markers of LID, FosB/ΔFosB and phosphorylated ERK1/2. Ionomycin also decreased the phosphorylation of three main subunits of the NMDA receptor, NR1 phosphorylated at ser896, NR2A phosphorylated at Tyr-1325, and NR2B phosphorylated at Tyr-1472. Furthermore, the anti-LID effect of striatally injected ionomycin was not accompanied by reduction of the antiparkinsonian action of l-DOPA. These data indicate that ionomycin largely interacts with striatal mechanisms that are critical to the l-DOPA motor response highlighting the role of protein dephosphorylation by calcineurin.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Bez F, Francardo V, Cenci MA. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion. Neurobiol Dis 2016; 94:213-25. [DOI: 10.1016/j.nbd.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 12/26/2022] Open
|
35
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 PMCID: PMC5079267 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
36
|
Park HY, Ryu YK, Go J, Son E, Kim KS, Kim MR. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model. Exp Neurobiol 2016; 25:174-84. [PMID: 27574484 PMCID: PMC4999423 DOI: 10.5607/en.2016.25.4.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eunjung Son
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.; University of Science and Technology, Daejeon 34113, Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chung-Nam National University, Daejeon 34134, Korea
| |
Collapse
|
37
|
Xie CL, Lin JY, Wang MH, Zhang Y, Zhang SF, Wang XJ, Liu ZG. Inhibition of Glycogen Synthase Kinase-3β (GSK-3β) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci Rep 2016; 6:23527. [PMID: 26997328 PMCID: PMC4800499 DOI: 10.1038/srep23527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/08/2016] [Indexed: 11/26/2022] Open
Abstract
Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can alleviate most of the manifestations of Parkinson's disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). Evidence points towards an involvement of Glycogen Synthase Kinase-3β (GSK-3β) in development of LID. In the present study, we found that animals rendered dyskinetic by L-dopa treatment, administration of TDZD8 (2mg/kg) obviously prevented the severity of AIM score, as well as improvement in motor function (P < 0.05). Moreover, the TDZD8-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of LID. TDZD8 reduced the phosphorylation levels of tau, DARPP32, ERK and PKA protein, which represent molecular markers of LID, as well as reduced L-dopa-induced FosB mRNA and PPEB mRNA levels in the lesioned striatum. In addition, we found that TDZD8 antidyskinetic properties were overcome by D1 receptor, as pretreatment with SKF38393 (5 mg/kg, 10 mg/kg, respectively), a D1 receptor agonist, blocked TDZD8 antidyskinetic actions. This study supported the hypothesis that GSK-3β played an important role in the development and expression of LID. Inhibition of GSK-3β with TDZD8 reduced the development of ALO AIM score and associated molecular changes in 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Cheng-long Xie
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Jing-Ya Lin
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Mei-Hua Wang
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Su-fang Zhang
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Xi-Jin Wang
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiaotong University, 200092, 1665 Kongjiang Road, Shanghai, China
| |
Collapse
|
38
|
A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury. Genetics 2016; 203:599-609. [PMID: 26993135 DOI: 10.1534/genetics.115.184648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke.
Collapse
|
39
|
A Role for Mitogen- and Stress-Activated Kinase 1 in L-DOPA-Induced Dyskinesia and ∆FosB Expression. Biol Psychiatry 2016; 79:362-371. [PMID: 25193242 PMCID: PMC4309747 DOI: 10.1016/j.biopsych.2014.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/29/2014] [Accepted: 07/15/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement of mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in ∆FosB- or ∆cJun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction. RESULTS Genetic inactivation of MSK1 attenuated LID and reduced the phosphorylation of histone H3 at Ser10 in the striatum. Chromatin immunoprecipitation analysis showed that this reduction occurred at the level of the fosB gene promoter. In line with this observation, the accumulation of ∆FosB produced by chronic L-DOPA was reduced in MSK1 knockout. Moreover, inducible overexpression of ∆FosB in striatonigral medium spiny neurons exacerbated dyskinetic behavior, whereas overexpression of ∆cJun, which reduces ∆FosB-dependent transcriptional activation, counteracted LID. CONCLUSIONS Results indicate that abnormal regulation of MSK1 contributes to the development of LID and to the concomitant increase in striatal ∆FosB, which may occur via increased histone H3 phosphorylation at the fosB promoter. Results also show that accumulation of ∆FosB in striatonigral neurons is causally related to the development of dyskinesia.
Collapse
|
40
|
Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0190. [PMID: 26009769 DOI: 10.1098/rstb.2014.0190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mechanisms are proposed to play a role in L-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates L-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with L-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with L-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented L-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after L-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.
Collapse
Affiliation(s)
- Mariza Bortolanza
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Maurício Dos Santos-Pereira
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Paris, France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Gadd45β ameliorates L-DOPA-induced dyskinesia in a Parkinson's disease mouse model. Neurobiol Dis 2016; 89:169-79. [PMID: 26875664 DOI: 10.1016/j.nbd.2016.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
The dopamine precursor 3,4-dihydroxyphenyl-l-alanine (L-DOPA) is currently the most efficacious pharmacotherapy for Parkinson's disease (PD). However, long-term L-DOPA treatment leads to the development of abnormal involuntary movements (AIMs) in patients and animal models of PD. Recently, involvement of growth arrest and DNA damage-inducible 45β (Gadd45β) was reported in neurological and neurobehavioral dysfunctions. However, little is known about the role of Gadd45β in the dopaminergic nigrostriatal pathway or L-DOPA-induced dyskinesia (LID). To address this issue, we prepared an animal model of PD using unilateral 6-hydroxydopamine (6-OHDA) lesions in the substantia nigra of Gadd45β(+/+) and Gadd45β(-/-) mice. Dyskinetic symptoms were triggered by repetitive administration of L-DOPA in these 6-OHDA-lesioned mice. Whereas dopamine denervation in the dorsal striatum decreased Gadd45β mRNA, chronic L-DOPA treatment significantly increased Gadd45β mRNA expression in the 6-OHDA-lesioned striatum of wild-type mice. Using unilaterally 6-OHDA-lesioned Gadd45β(+/+) and Gadd45β(-/-) mice, we found that mice lacking Gadd45β exhibited long-lasting increases in AIMs following repeated administration of L-DOPA. By contrast, adeno-associated virus-mediated expression of Gadd45β in the striatum reduced AIMs in Gadd45β knockout mice. The deficiency of Gadd45β in LID increased expression of ΔFosB and c-Fos in the lesioned striatum 90 min after the last administration of L-DOPA following 11days of daily L-DOPA treatments. These data suggest that the increased expression of Gadd45β induced by repeated administration of L-DOPA may be beneficial in patients with PD.
Collapse
|
42
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, Vilarrasa-Blasi R, Sánchez-Pla A, Mosquera JL, Soriano J, López-Barneo J, Canals JM, Alberch J, Raya Á, Vila M, Consiglio A, Martín-Subero JI, Ezquerra M, Tolosa E. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med 2015; 7:1529-46. [PMID: 26516212 PMCID: PMC4693505 DOI: 10.15252/emmm.201505439] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022] Open
Abstract
The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD.
Collapse
Affiliation(s)
- Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Iria Carballo-Carbajal
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Neurodegenerative Diseases Research Laboratory, Hospital Vall d'Hebron Vall d'Hebron Research Institute (VHIR) Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Giancarlo Castellano
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roger Torrent
- Institute for Biomedicine (IBUB) University of Barcelona (UB), Barcelona, Spain
| | - Yvonne Richaud
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain Centre for Networked Biomedical Research on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | | | - Roser Vilarrasa-Blasi
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Sánchez-Pla
- Department of Statistics, University of Barcelona (UB), Barcelona, Spain Department of Statistics, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - José Luis Mosquera
- Department of Statistics, University of Barcelona (UB), Barcelona, Spain
| | - Jordi Soriano
- Departament d'Estructura i Constituents de la Matèria (ECM), Facultat de Física, University of Barcelona (UB), Barcelona, Spain
| | - José López-Barneo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Institute of Biomedicine of Seville (IBiS) Hospital Universitario Virgen del Rocío Consejo Superior de Investigaciones Científicas (CSIC) University of Seville, Seville, Spain
| | - Josep M Canals
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| | - Jordi Alberch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| | - Ángel Raya
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain Centre for Networked Biomedical Research on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Neurodegenerative Diseases Research Laboratory, Hospital Vall d'Hebron Vall d'Hebron Research Institute (VHIR) Universitat Autònoma de Barcelona (UAB), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonella Consiglio
- Institute for Biomedicine (IBUB) University of Barcelona (UB), Barcelona, Spain Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Brescia, Italy
| | - José I Martín-Subero
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Eduardo Tolosa
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Movement Disorders Unit, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
44
|
Zhu W, Mao Z, Zhu C, Li M, Cao C, Guan Y, Yuan J, Xie G, Guan X. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats. Neuroscience 2015; 313:174-83. [PMID: 26621120 DOI: 10.1016/j.neuroscience.2015.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/24/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.
Collapse
Affiliation(s)
- W Zhu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Z Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - M Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Cao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Y Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Yuan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - G Xie
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - X Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
46
|
Ahmed MR, Bychkov E, Li L, Gurevich VV, Gurevich EV. GRK3 suppresses L-DOPA-induced dyskinesia in the rat model of Parkinson's disease via its RGS homology domain. Sci Rep 2015; 5:10920. [PMID: 26043205 PMCID: PMC4455246 DOI: 10.1038/srep10920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Degeneration of dopaminergic neurons causes Parkinson's disease. Dopamine replacement therapy with L-DOPA is the best available treatment. However, patients develop L-DOPA-induced dyskinesia (LID). In the hemiparkinsonian rat, chronic L-DOPA increases rotations and abnormal involuntary movements modeling LID, via supersensitive dopamine receptors. Dopamine receptors are controlled by G protein-coupled receptor kinases (GRKs). Here we demonstrate that LID is attenuated by overexpression of GRK3 in the striatum, whereas knockdown of GRK3 by microRNA exacerbated it. Kinase-dead GRK3 and its separated RGS homology domain (RH) suppressed sensitization to L-DOPA, whereas GRK3 with disabled RH did not. RH alleviated LID without compromising anti-akinetic effect of L-DOPA. RH binds striatal Gq. GRK3, kinase-dead GRK3, and RH inhibited accumulation of ∆FosB, a marker of LID. RH-dead mutant was ineffective, whereas GRK3 knockdown exacerbated ∆FosB accumulation. Our findings reveal a novel mechanism of GRK3 control of the dopamine receptor signaling and the role of Gq in LID.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Lingyong Li
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
47
|
Yang X, Zhao H, Shi H, Wang X, Zhang S, Zhang Z, Zu J, Zhang W, Shen X, Cui G, Hua F. Intranigral administration of substance P receptor antagonist attenuated levodopa-induced dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2015; 271:168-74. [PMID: 26001615 DOI: 10.1016/j.expneurol.2015.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/20/2015] [Accepted: 05/13/2015] [Indexed: 11/30/2022]
Abstract
Levodopa (L-dopa) remains the most effective drug in the treatment of Parkinson's disease (PD). However, L-dopa-induced dyskinesia (LID) has hindered its use for PD patients. The mechanisms of LID are not fully understood. Substance P (SP) receptor antagonist has been shown to reduce parkinsonism in animal models of PD, and ameliorate LID in PD rats. But the concrete mechanism is not fully understood. To address this issue, we produced a rat model of PD using 6-hydroxydompamine (6-OHDA) injections, and valid PD rats were intranigrally administrated with different doses of SP receptor antagonist LY303870 (5 nmol/day, 10 nmol/day and 20 nmol/day) following L-dopa (6 mg/kg/day, i.p.) plus benserazide (12 mg/kg/day, i.p.) for 23 days. We found that nigral SP levels were increased on days 3, 7 and 14 and decreased on day 21 after 6-hydroxydompamine lesions. But nigral SP levels kept increasing after repeated L-dopa administration in PD rats. Intranigral administration of low and moderate LY303870 reduced abnormal involuntary movements (AIMs) while improving motor deficits in PD rats treated with L-dopa plus benserazide. Microdialysis revealed that LY303870 (10 nmol/day) treatment attenuated the increase of striatal dopamine and the reduction of γ-aminobutyric acid in ventromedial thalamus of PD rats primed with L-dopa. Additionally, LY303870 (10 nmol/day) treatment prior to L-dopa administration reduced the phosphorylated levels of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa at Thr 34 and extracellular signal-regulated kinases 1/2 as well as the levels of activity-regulated cytoskeleton-associated protein and Penk in L-dopa-primed PD rats. Taken together, these data showed that low and moderate SP receptor antagonists LY303870 could ameliorate LID via neurokinin 1 receptor without affecting therapeutic effect of L-dopa.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Hui Zhao
- Department of Neurology, Xuzhou Central Hospital, China
| | - Hongjuan Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical College, China
| | - Shenyang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Xia Shen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China.
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, China.
| |
Collapse
|
48
|
Keber U, Klietz M, Carlsson T, Oertel WH, Weihe E, Schäfer MKH, Höglinger GU, Depboylu C. Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience 2015; 298:302-17. [PMID: 25892702 DOI: 10.1016/j.neuroscience.2015.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/28/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is the therapeutic gold standard in Parkinson's disease. However, long-term treatment is complicated by the induction of debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesias (LIDs). Until today the underlying mechanisms of LID pathogenesis are not fully understood. The aim of this study was to reveal new factors, which may be involved in the induction of LID. We have focused on the expression of striatal tyrosine hydroxylase-positive (TH+) neurons, which are capable of producing either L-DOPA or dopamine (DA) in target areas of ventral midbrain DAergic neurons. To address this issue, a daily L-DOPA dose was administered over the course of 15 days to mice with unilateral 6-hydroxydopamine-induced lesions of the medial forebrain bundle and LIDs were evaluated. Remarkably, the number of striatal TH+ neurons strongly correlated with both induction and severity of LID as well as ΔFosB expression as an established molecular marker for LID. Furthermore, dyskinetic mice showed a marked augmentation of serotonergic fiber innervation in the striatum, enabling the decarboxylation of L-DOPA to DA. Axial, limb and orolingual dyskinesias were predominantly associated with TH+ neurons in the lateral striatum, whereas medially located TH+ neurons triggered locomotive rotations. In contrast, identified accumbal and cortical TH+ cells did not contribute to the generation of LID. Thus, striatal TH+ cells and serotonergic terminals may cooperatively synthesize DA and subsequently contribute to supraphysiological synaptic DA concentrations, an accepted cause in LID pathogenesis.
Collapse
Affiliation(s)
- U Keber
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - M Klietz
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - T Carlsson
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Section of Pharmacology, Institute for Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden(†)
| | - W H Oertel
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - E Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - M K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - G U Höglinger
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany(†); Department of Neurology, Technical University, Munich, Germany
| | - C Depboylu
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
49
|
Potts LF, Park ES, Woo JM, Dyavar Shetty BL, Singh A, Braithwaite SP, Voronkov M, Papa SM, Mouradian MM. Dual κ-agonist/μ-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol 2015; 77:930-41. [PMID: 25820831 DOI: 10.1002/ana.24375] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/17/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Effective medical management of levodopa-induced dyskinesia (LID) remains an unmet need for patients with Parkinson disease (PD). Changes in opioid transmission in the basal ganglia associated with LID suggest a therapeutic opportunity. Here we determined the impact of modulating both mu and kappa opioid receptor signaling using the mixed agonist/antagonist analgesic nalbuphine in reducing LID and its molecular markers in the nonhuman primate model. METHODS 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated macaques with advanced parkinsonism and reproducible LID received a range of nalbuphine doses or saline subcutaneously as: (1) monotherapy, (2) acute coadministration with levodopa, and (3) chronic coadministration for 1 month. Animals were assessed by blinded examiners for motor disability and LID severity using standardized rating scales. Plasma levodopa levels were determined with and without nalbuphine, and postmortem brain samples were subjected to Western blot analyses. RESULTS Nalbuphine reduced LID in a dose-dependent manner by 48% (p < 0.001) without compromising the anti-PD effect of levodopa or changing plasma levodopa levels. There was no tolerance to the anti-LID effect of nalbuphine given chronically. Nalbuphine coadministered with levodopa was well tolerated and did not cause sedation. Nalbuphine monotherapy had no effect on motor disability. Striatal tissue analyses showed that nalbuphine cotherapy blocks several molecular correlates of LID, including overexpression of ΔFosB, prodynorphin, dynorphin A, cyclin-dependent kinase 5, and increased phosphorylation of DARPP-32 at threonine-34. INTERPRETATION Nalbuphine reverses the molecular milieu in the striatum associated with LID and is a safe and effective anti-LID agent in the primate model of PD. These findings support repurposing this analgesic for the treatment of LID.
Collapse
Affiliation(s)
- Lisa F Potts
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Eun S Park
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jong-Min Woo
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, Piscataway, NJ
| | - Bhagya L Dyavar Shetty
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Arun Singh
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | | | | | - Stella M Papa
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, Piscataway, NJ.,MentiNova, New Brunswick, NJ
| |
Collapse
|
50
|
Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. J Neurosci 2015; 35:96-111. [PMID: 25568106 DOI: 10.1523/jneurosci.5231-13.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Parkinson's disease, long-term dopamine replacement therapy is complicated by the appearance of L-DOPA-induced dyskinesia (LID). One major hypothesis is that LID results from an aberrant transcriptional program in striatal neurons induced by L-DOPA and triggered by the activation of ERK. To identify these genes, we performed transcriptome analyses in the striatum in 6-hydroxydopamine-lesioned mice. A time course analysis (0-6 h after treatment with L-DOPA) identified an acute signature of 709 genes, among which genes involved in protein phosphatase activity were overrepresented, suggesting a negative feedback on ERK activation by l-DOPA. l-DOPA-dependent deregulation of 28 genes was blocked by pretreatment with SL327, an inhibitor of ERK activation, and 26 genes were found differentially expressed between highly and weakly dyskinetic animals after treatment with L-DOPA. The intersection list identified five genes: FosB, Th, Nptx2, Nedd4l, and Ccrn4l. Nptx2 encodes neuronal pentraxin II (or neuronal activity-regulated pentraxin, Narp), which is involved in the clustering of glutamate receptors. We confirmed increased Nptx2 expression after L-DOPA and its blockade by SL327 using quantitative RT-PCR in independent experiments. Using an escalating L-DOPA dose protocol, LID severity was decreased in Narp knock-out mice compared with their wild-type littermates or after overexpression of a dominant-negative form of Narp in the striatum. In conclusion, we have identified a molecular signature induced by L-DOPA in the dopamine-denervated striatum that is dependent on ERK and associated with LID. Here, we demonstrate the implication of one of these genes, Nptx2, in the development of LID.
Collapse
|