1
|
Rohr-Fukuma M, Stieglitz LH, Bujan B, Jedrysiak P, Oertel MF, Salzmann L, Baumann CR, Imbach LL, Gassert R, Bichsel O. Neurofeedback-enabled beta power control with a fully implanted DBS system in patients with Parkinson's disease. Clin Neurophysiol 2024; 165:1-15. [PMID: 38941959 DOI: 10.1016/j.clinph.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Parkinsonian motor symptoms are linked to pathologically increased beta oscillations in the basal ganglia. Studies with externalised deep brain stimulation electrodes showed that Parkinson patients were able to rapidly gain control over these pathological basal ganglia signals through neurofeedback. Studies with fully implanted deep brain stimulation systems duplicating these promising results are required to grant transferability to daily application. METHODS In this study, seven patients with idiopathic Parkinson's disease and one with familial Parkinson's disease were included. In a postoperative setting, beta oscillations from the subthalamic nucleus were recorded with a fully implanted deep brain stimulation system and converted to a real-time visual feedback signal. Participants were instructed to perform bidirectional neurofeedback tasks with the aim to modulate these oscillations. RESULTS While receiving regular medication and deep brain stimulation, participants were able to significantly improve their neurofeedback ability and achieved a significant decrease of subthalamic beta power (median reduction of 31% in the final neurofeedback block). CONCLUSION We could demonstrate that a fully implanted deep brain stimulation system can provide visual neurofeedback enabling patients with Parkinson's disease to rapidly control pathological subthalamic beta oscillations. SIGNIFICANCE Fully-implanted DBS electrode-guided neurofeedback is feasible and can now be explored over extended timespans.
Collapse
Affiliation(s)
- Manabu Rohr-Fukuma
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland; Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland
| | - Lennart H Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland; Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland
| | | | | | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland; Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland
| | - Lena Salzmann
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Christian R Baumann
- Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland; Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Oliver Bichsel
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland; Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland; Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
2
|
Williams D. Why so slow? Models of parkinsonian bradykinesia. Nat Rev Neurosci 2024; 25:573-586. [PMID: 38937655 DOI: 10.1038/s41583-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Bradykinesia, or slowness of movement, is a defining feature of Parkinson disease (PD) and a major contributor to the negative effects on quality of life associated with this disorder and related conditions. A dominant pathophysiological model of bradykinesia in PD has existed for approximately 30 years and has been the basis for the development of several therapeutic interventions, but accumulating evidence has made this model increasingly untenable. Although more recent models have been proposed, they also appear to be flawed. In this Perspective, I consider the leading prior models of bradykinesia in PD and argue that a more functionally related model is required, one that considers changes that disrupt the fundamental process of accurate information transmission. In doing so, I review emerging evidence of network level functional connectivity changes, information transfer dysfunction and potential motor code transmission error and present a novel model of bradykinesia in PD that incorporates this evidence. I hope that this model may reconcile inconsistencies in its predecessors and encourage further development of therapeutic interventions.
Collapse
Affiliation(s)
- David Williams
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Neurology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
3
|
Tomassini A, Cope TE, Zhang J, Rowe JB. Parkinson's disease impairs cortical sensori-motor decision-making cascades. Brain Commun 2024; 6:fcae065. [PMID: 38505233 PMCID: PMC10950052 DOI: 10.1093/braincomms/fcae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/21/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
The transformation from perception to action requires a set of neuronal decisions about the nature of the percept, identification and selection of response options and execution of the appropriate motor response. The unfolding of such decisions is mediated by distributed representations of the decision variables-evidence and intentions-that are represented through oscillatory activity across the cortex. Here we combine magneto-electroencephalography and linear ballistic accumulator models of decision-making to reveal the impact of Parkinson's disease during the selection and execution of action. We used a visuomotor task in which we independently manipulated uncertainty in sensory and action domains. A generative accumulator model was optimized to single-trial neurophysiological correlates of human behaviour, mapping the cortical oscillatory signatures of decision-making, and relating these to separate processes accumulating sensory evidence and selecting a motor action. We confirmed the role of widespread beta oscillatory activity in shaping the feed-forward cascade of evidence accumulation from resolution of sensory inputs to selection of appropriate responses. By contrasting the spatiotemporal dynamics of evidence accumulation in age-matched healthy controls and people with Parkinson's disease, we identified disruption of the beta-mediated cascade of evidence accumulation as the hallmark of atypical decision-making in Parkinson's disease. In frontal cortical regions, there was inefficient processing and transfer of perceptual information. Our findings emphasize the intimate connection between abnormal visuomotor function and pathological oscillatory activity in neurodegenerative disease. We propose that disruption of the oscillatory mechanisms governing fast and precise information exchanges between the sensory and motor systems contributes to behavioural changes in people with Parkinson's disease.
Collapse
Affiliation(s)
- Alessandro Tomassini
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Jiaxiang Zhang
- Department of Computer Science, Swansea University, Swansea SA18EN, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
4
|
Herz DM, Bange M, Gonzalez-Escamilla G, Auer M, Muthuraman M, Glaser M, Bogacz R, Pogosyan A, Tan H, Groppa S, Brown P. Dynamic modulation of subthalamic nucleus activity facilitates adaptive behavior. PLoS Biol 2023; 21:e3002140. [PMID: 37262014 PMCID: PMC10234560 DOI: 10.1371/journal.pbio.3002140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Adapting actions to changing goals and environments is central to intelligent behavior. There is evidence that the basal ganglia play a crucial role in reinforcing or adapting actions depending on their outcome. However, the corresponding electrophysiological correlates in the basal ganglia and the extent to which these causally contribute to action adaptation in humans is unclear. Here, we recorded electrophysiological activity and applied bursts of electrical stimulation to the subthalamic nucleus, a core area of the basal ganglia, in 16 patients with Parkinson's disease (PD) on medication using temporarily externalized deep brain stimulation (DBS) electrodes. Patients as well as 16 age- and gender-matched healthy participants attempted to produce forces as close as possible to a target force to collect a maximum number of points. The target force changed over trials without being explicitly shown on the screen so that participants had to infer target force based on the feedback they received after each movement. Patients and healthy participants were able to adapt their force according to the feedback they received (P < 0.001). At the neural level, decreases in subthalamic beta (13 to 30 Hz) activity reflected poorer outcomes and stronger action adaptation in 2 distinct time windows (Pcluster-corrected < 0.05). Stimulation of the subthalamic nucleus reduced beta activity and led to stronger action adaptation if applied within the time windows when subthalamic activity reflected action outcomes and adaptation (Pcluster-corrected < 0.05). The more the stimulation volume was connected to motor cortex, the stronger was this behavioral effect (Pcorrected = 0.037). These results suggest that dynamic modulation of the subthalamic nucleus and interconnected cortical areas facilitates adaptive behavior.
Collapse
Affiliation(s)
- Damian M. Herz
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Bange
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miriam Auer
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Foffani G, Alegre M. Brain oscillations and Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:259-271. [PMID: 35034740 DOI: 10.1016/b978-0-12-819410-2.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain oscillations have been associated with Parkinson's disease (PD) for a long time mainly due to the fundamental oscillatory nature of parkinsonian rest tremor. Over the years, this association has been extended to frequencies well above that of tremor, largely owing to the opportunities offered by deep brain stimulation (DBS) to record electrical activity directly from the patients' basal ganglia. This chapter reviews the results of research on brain oscillations in PD focusing on theta (4-7Hz), beta (13-35Hz), gamma (70-80Hz) and high-frequency oscillations (200-400Hz). For each of these oscillations, we describe localization and interaction with brain structures and between frequencies, changes due to dopamine intake, task-related modulation, and clinical relevance. The study of brain oscillations will also help to dissect the mechanisms of action of DBS. Overall, the chapter tentatively depicts PD in terms of "oscillopathy."
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Neural Bioengineering, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; Systems Neuroscience Lab, Program of Neuroscience, CIMA, Universidad de Navarra, Pamplona, Spain; IdisNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Anticipatory human subthalamic area beta-band power responses to dissociable tastes correlate with weight gain. Neurobiol Dis 2021; 154:105348. [PMID: 33781923 PMCID: PMC9208339 DOI: 10.1016/j.nbd.2021.105348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.
Collapse
|
7
|
Nikolov P, Groiss SJ, Schnitzler A. [Deep brain stimulation for Parkinson's disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2021; 89:56-65. [PMID: 33465811 DOI: 10.1055/a-1260-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Deep brain stimulation is an established and evidence-based therapeutic option for the treatment of advanced Parkinson's disease. Main indication and inclusion criteria are the presence of idiopathic Parkinsonism with motor fluctuations and / or dyskinesias and / or with medication refractory tremor, a significant improvement of akinesia / rigidity in response to dopaminergic medication, the absence of relevant cognitive deficits and other significant comorbidities. DBS neurosurgery has a low risk of complications. The clinical programming should follow an established monopolar review algorithm. Regular follow-up visits are required for stimulation monitoring.
Collapse
|
8
|
Meissner SN, Krause V, Südmeyer M, Hartmann CJ, Pollok B. Pre-stimulus beta power modulation during motor sequence learning is reduced in 'Parkinson's disease. Neuroimage Clin 2020; 24:102057. [PMID: 31715558 PMCID: PMC6849445 DOI: 10.1016/j.nicl.2019.102057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/25/2019] [Accepted: 10/23/2019] [Indexed: 11/01/2022]
Abstract
Beta oscillations within motor-cortical areas have been linked to sensorimotor function. In line with this, pathologically altered beta activity in cortico-basal ganglia pathways has been suggested to contribute to the pathophysiology of Parkinson's disease (PD), a neurodegenerative disorder primarily characterized by motor impairment. Although its precise function is still discussed, beta activity might subserve an anticipatory role in preparation of future actions. By reanalyzing previously published data, we aimed at investigating the role of pre-stimulus motor-cortical beta power modulation in motor sequence learning and its alteration in PD. 20 PD patients and 20 healthy controls (HC) performed a serial reaction time task (SRTT) in which reaction time gain presumably reflects the ability to anticipate subsequent sequence items. Randomly varying patterns served as control trials. Neuromagnetic activity was recorded using magnetoencephalography (MEG) and data was reanalyzed with respect to task stimuli onset. Assuming that pre-stimulus beta power modulation is functionally related to motor sequence learning, reaction time gain due to training on the SRTT should vary depending on the amount of beta power suppression prior to stimulus onset. We hypothesized to find less pre-stimulus beta power suppression in PD patients as compared to HC associated with reduced motor sequence learning in patients. Behavioral analyses revealed that PD patients exhibited smaller reaction time gain in sequence relative to random control trials than HC indicating reduced learning in PD. This finding was indeed paralleled by reduced pre-stimulus beta power suppression in PD patients. Further strengthening its functional relevance, the amount of pre-stimulus beta power suppression during sequence training significantly predicted subsequent reaction time advantage in sequence relative to random trials in patients. In conclusion, the present data provide first evidence for the contribution of pre-stimulus motor-cortical beta power suppression to motor sequence learning and support the hypothesis that beta oscillations may subserve an anticipatory, predictive function, possibly compromised in PD.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Department of Neuropsychology, Mauritius Hospital, Meerbusch, Germany
| | - Martin Südmeyer
- Department of Neurology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
9
|
Domenech P, Rheims S, Koechlin E. Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal cortex. Science 2020; 369:369/6507/eabb0184. [DOI: 10.1126/science.abb0184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
Everyday life often requires arbitrating between pursuing an ongoing action plan by possibly adjusting it versus exploring a new action plan instead. Resolving this so-called exploitation-exploration dilemma involves the medial prefrontal cortex (mPFC). Using human intracranial electrophysiological recordings, we discovered that neural activity in the ventral mPFC infers and tracks the reliability of the ongoing plan to proactively encode upcoming action outcomes as either learning signals or potential triggers to explore new plans. By contrast, the dorsal mPFC exhibits neural responses to action outcomes, which results in either improving or abandoning the ongoing plan. Thus, the mPFC resolves the exploitation-exploration dilemma through a two-stage, predictive coding process: a proactive ventromedial stage that constructs the functional signification of upcoming action outcomes and a reactive dorsomedial stage that guides behavior in response to action outcomes.
Collapse
Affiliation(s)
- Philippe Domenech
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Paris Brain Institute, Paris, France
- APHP, Groupe Hospitalier Henri Mondor, DMU Psychiatry, Department of Neurosurgery, Université Paris Est Créteil, Créteil, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, University of Lyon, Lyon, France
- Lyon’s Neuroscience Research Center, INSERM-U1028, CNRS-UMR 5292, Lyon, France
| | - Etienne Koechlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Sciences et Lettres (PSL) Research University, Ecole Normale Supérieure, Paris, France
- Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
10
|
Drummond NM, Chen R. Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neuroimage 2020; 222:117300. [PMID: 32828919 DOI: 10.1016/j.neuroimage.2020.117300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in targeted interrogation of basal ganglia structures and networks with deep brain stimulation in humans has provided insights into the complex functions the subthalamic nucleus (STN). Beyond the traditional role of the STN in modulating motor function, recognition of its role in cognition was initially fueled by side effects seen with STN DBS and later revealed with behavioral and electrophysiological studies. Anatomical, clinical, and electrophysiological data converge on the view that the STN is a pivotal node linking cognitive and motor processes. The goal of this review is to synthesize the literature to date that used DBS to examine the contributions of the STN to motor and non-motor cognitive functions and control. Multiple modalities of research have provided us with an enhanced understanding of the STN and reveal that it is critically involved in motor and non-motor inhibition, decision-making, motivation and emotion. Understanding the role of the STN in cognition can enhance the therapeutic efficacy and selectivity not only for existing applications of DBS, but also in the development of therapeutic strategies to stimulate aberrant circuits to treat non-motor symptoms of Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
11
|
van Wijk BCM, Alkemade A, Forstmann BU. Functional segregation and integration within the human subthalamic nucleus from a micro- and meso-level perspective. Cortex 2020; 131:103-113. [PMID: 32823130 DOI: 10.1016/j.cortex.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022]
Abstract
The subthalamic nucleus (STN) is a core basal ganglia structure involved in the control of motor, cognitive, motivational and affective functions. The (challenged) tripartite subdivision hypothesis places these functions into distinct sensorimotor, cognitive/associative, and limbic subregions based on the topography of cortical projections. To a large extent, this hypothesis is used to motivate the choice of target coordinates for implantation of deep brain stimulation electrodes for treatment of neurological and psychiatric disorders. Yet, the parallel organization of basal ganglia circuits has been known to allow considerable cross-talk, which might contribute to the occurrence of neuropsychiatric side effects when stimulating the dorsolateral, putative sensorimotor, part of the STN for treatment of Parkinson's disease. Any functional segregation within the STN is expected to be reflected both at micro-level microscopy and meso-level neural population activity. As such, we review the current empirical evidence from anterograde tracing and immunocytochemistry studies and from local field potential recordings for delineating the STN into distinct subregions. The spatial distribution of immunoreactivity presents as a combination of gradients, and although neural activity in distinct frequency bands appears spatially clustered, there is substantial overlap in peak locations. We argue that regional specialization without sharply defined borders is likely most representative of the STN's functional organization.
Collapse
Affiliation(s)
- Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
12
|
Wang YY, Sun L, Liu YW, Pan JH, Zheng YM, Wang YF, Zang YF, Zhang H. The Low-Frequency Fluctuation of Trial-by-Trial Frontal Theta Activity and Its Correlation With Reaction-Time Variability in Sustained Attention. Front Psychol 2020; 11:1555. [PMID: 32765356 PMCID: PMC7381245 DOI: 10.3389/fpsyg.2020.01555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Reaction-time variability is a critical index of sustained attention. However, researchers still lack effective measures to establish the association between neurophysiological activity and this behavioral variability. Here, the present study recorded reaction time (RT) and cortical electroencephalogram (EEG) in healthy subjects when they continuously performed an alternative responding task. The frontal theta activity and reaction-time variability were examined trial by trial using the measures of standard deviation (SD) in the time domain and amplitude of low-frequency fluctuation (ALFF) in the frequency domain. Our results showed that the SD of reaction-time variability did not have any correlation with the SD of trial-by-trial frontal theta activity, and the ALFF of reaction-time variability has a significant correlation with the ALFF of trial-by-trial frontal theta activity in 0.01–0.027 Hz. These results suggested the methodological significance of ALFF in establishing the association between neurophysiological activity and reaction-time variability. Furthermore, these findings also support the low-frequency fluctuation as a potential feature of sustained attention.
Collapse
Affiliation(s)
- Yao-Yao Wang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Li Sun
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yi-Wei Liu
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Jia-Hui Pan
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Ming Zheng
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Feng Wang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yu-Feng Zang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hang Zhang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
13
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
14
|
Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2019; 12:1756286419838096. [PMID: 30944587 PMCID: PMC6440024 DOI: 10.1177/1756286419838096] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
During the last 30 years, deep brain stimulation (DBS) has evolved into the clinical standard of care as a highly effective treatment for advanced Parkinson’s disease. Careful patient selection, an individualized anatomical target localization and meticulous evaluation of stimulation parameters for chronic DBS are crucial requirements to achieve optimal results. Current hardware-related advances allow for a more focused, individualized stimulation and hence may help to achieve optimal clinical results. However, current advances also increase the degrees of freedom for DBS programming and therefore challenge the skills of healthcare providers. This review gives an overview of the clinical effects of DBS, the criteria for patient, target, and device selection, and finally, offers strategies for a structured programming approach.
Collapse
Affiliation(s)
- Christian J Hartmann
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sabine Fliegen
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan J Groiss
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol 2019; 130:239-247. [DOI: 10.1016/j.clinph.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
|
16
|
Barlow SE, Medrano P, Seichepine DR, Ross RS. Investigation of the changes in oscillatory power during task switching after mild traumatic brain injury. Eur J Neurosci 2018; 48:3498-3513. [PMID: 30383314 DOI: 10.1111/ejn.14231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/15/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Mild traumatic brain injury (mTBI) can cause persistent cognitive changes. These cognitive changes may be due to changes in neural communication. Task-switching is a cognitive control operation that may be susceptible to mTBI and is associated with oscillations in theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz) ranges. This study aimed to investigate oscillatory power in response to cues indicating a task-switch after mTBI. Electroencephalogram and behavioral data were collected from 21 participants with a history of two or more concussions (mTBI) and 21 age- and gender-matched controls as they performed a task-switching paradigm. Participants differentiated whether visual stimuli were red or green, or circles or squares, depending on a cue. The cue changed every few trials with the first trial after a rule change being termed a switch trial. The mTBI group showed significantly less overall accuracy during the task. Over a posterior parietal region, the mTBI group showed more theta desynchronization than the control group from ~300 to ~600 ms post-cue during switch trials and from ~300 to 400 ms during maintain trials, along with less alpha and beta desynchronization than the control group from ~2,000 to ~2,200 ms post-cue. In a right parietal region, the mTBI group showed less alpha and beta desynchronization from ~525 to ~775 ms post-cue. However, there was no condition × group interaction in the behavior or oscillatory results. These oscillatory differences suggest a change in neural communication is present after mTBI that may relate to global changes in task performance.
Collapse
Affiliation(s)
- Stephanie E Barlow
- Psychology Department, University of New Hampshire, Durham, New Hampshire.,Neuroscience and Behavior Program, University of New Hampshire, Durham, New Hampshire
| | - Paolo Medrano
- Psychology Department, University of New Hampshire, Durham, New Hampshire
| | - Daniel R Seichepine
- Neuropsychology Program, University of New Hampshire at Manchester, Manchester, New Hampshire
| | - Robert S Ross
- Psychology Department, University of New Hampshire, Durham, New Hampshire.,Neuroscience and Behavior Program, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
17
|
Meissner SN, Krause V, Südmeyer M, Hartmann CJ, Pollok B. The significance of brain oscillations in motor sequence learning: Insights from Parkinson's disease. NEUROIMAGE-CLINICAL 2018; 20:448-457. [PMID: 30128283 PMCID: PMC6095950 DOI: 10.1016/j.nicl.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023]
Abstract
Motor sequence learning plays a pivotal role in various everyday activities. Motor-cortical beta oscillations have been suggested to be involved in this type of learning. In Parkinson's disease (PD), oscillatory activity within cortico-basal-ganglia circuits is altered. Pathologically increased beta oscillations have received particular attention as they may be associated with motor symptoms such as akinesia. In the present magnetoencephalography (MEG) study, we investigated PD patients and healthy controls (HC) during implicit motor sequence learning with the aim to shed light on the relation between changes of cortical brain oscillations and motor learning in PD with a particular focus on beta power. To this end, 20 PD patients (ON medication) and 20 age- and sex-matched HC were trained on a serial reaction time task while neuromagnetic activity was recorded using a 306-channel whole-head MEG system. PD patients showed reduced motor sequence acquisition and were more susceptible to interference by random trials after training on the task as compared to HC. Behavioral differences were paralleled by changes at the neurophysiological level. Diminished sequence acquisition was paralleled by less training-related beta power suppression in motor-cortical areas in PD patients as compared to HC. In addition, PD patients exhibited reduced training-related theta activity in motor-cortical areas paralleling susceptibility to interference. The results support the hypothesis that the acquisition of a new motor sequence relies on suppression of motor-cortical beta oscillations, while motor-cortical theta activity might be related to stabilization of the learned sequence as indicated by reduced susceptibility to interference. Both processes appear to be impaired in PD. Motor sequence acquisition and susceptibility to interference is altered in PD. Diminished sequence acquisition is paralleled by less beta power suppression in PD. Higher susceptibility to interference is accompanied by less theta activity in PD. The data imply the relevance of beta and theta activity to motor sequence learning.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany.
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Martin Südmeyer
- Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
18
|
Arnulfo G, Pozzi NG, Palmisano C, Leporini A, Canessa A, Brumberg J, Pezzoli G, Matthies C, Volkmann J, Isaias IU. Phase matters: A role for the subthalamic network during gait. PLoS One 2018; 13:e0198691. [PMID: 29874298 PMCID: PMC5991417 DOI: 10.1371/journal.pone.0198691] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson’s disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson’s disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.
Collapse
Affiliation(s)
- Gabriele Arnulfo
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Nicolò Gabriele Pozzi
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- Department of Electronics, Information and Bioengineering, MBMC Lab, Politecnico di Milano, Milan, Italy
| | - Alice Leporini
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Cernusco s/N (Milan), Italy
| | - Joachim Brumberg
- Department of Nuclear Medicine, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | | | - Cordula Matthies
- Department of Neurosurgery, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Bichsel O, Gassert R, Stieglitz L, Uhl M, Baumann-Vogel H, Waldvogel D, Baumann CR, Imbach LL. Functionally separated networks for self-paced and externally-cued motor execution in Parkinson's disease: Evidence from deep brain recordings in humans. Neuroimage 2018; 177:20-29. [PMID: 29738912 DOI: 10.1016/j.neuroimage.2018.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
Spatially segregated cortico-basal ganglia networks have been proposed for the control of goal-directed and habitual behavior. In Parkinson's disease, selective loss of dopaminergic neurons regulating sensorimotor (habitual) behavior might therefore predominantly cause deficits in habitual motor control, whereas control of goal-directed movement is relatively preserved. Following this hypothesis, we examined the electrophysiology of cortico-basal ganglia networks in Parkinson patients emulating habitual and goal-directed motor control during self-paced and externally-cued finger tapping, respectively, while simultaneously recording local field potentials in the subthalamic nucleus (STN) and surface EEG. Only externally-cued movements induced a pro-kinetic event-related beta-desynchronization, whereas beta-oscillations were continuously suppressed during self-paced movements. Connectivity analysis revealed higher synchronicity (phase-locking value) between the STN and central electrodes during self-paced and higher STN to frontal phase-locking during externally-cued movements. Our data provide direct electrophysiological support for the existence of functionally segregated cortico-basal ganglia networks controlling motor behavior in Parkinson patients, and corroborate the assumption of Parkinson patients being shifted from habitual towards goal-directed behavior.
Collapse
Affiliation(s)
- Oliver Bichsel
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lennart Stieglitz
- Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mechtild Uhl
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Daniel Waldvogel
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Incongruent visual feedback during a postural task enhances cortical alpha and beta modulation in patients with Parkinson's disease. Clin Neurophysiol 2018; 129:1357-1365. [PMID: 29729589 DOI: 10.1016/j.clinph.2018.04.602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/14/2018] [Accepted: 04/01/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In patients with Parkinson's disease (PD), augmented visual feedback (VF) can improve functional motor performance. Conversely, they appear to rely more on visual information than healthy subjects, which is unfavorable when this information is unreliable. Cortical beta activity is thought to be associated with the need for motor adaptation. We here compared event-related EEG parameters during a whole-body postural weight-shifting task between congruent and incongruent feedback conditions. METHODS Twenty-four patients with PD and fifteen healthy, age- and gender-matched controls performed rhythmic swaying movements. VF was presented in real-time (congruent), delayed (incongruent), or was entirely absent. We estimated source activity in four regions-of-interest and determined motor-related spectral power and power modulation in alpha and beta frequency bands. RESULTS For congruent VF no significant differences in cortical activity between the two groups were present. For incongruent VF, the PD group showed significantly higher beta modulation in primary motor cortex, and higher alpha modulation in primary visual cortex. CONCLUSIONS Event-related beta modulation in the motor network and alpha modulation in visual areas discriminated between groups, suggesting altered visuomotor processing in PD patients. SIGNIFICANCE This study finds evidence for increased modulation of alpha/beta activity during perceptual-motor tasks in PD, possibly indicating an unwarranted higher confidence in VF.
Collapse
|
21
|
Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. Curr Biol 2018; 28:1169-1178.e6. [PMID: 29606416 PMCID: PMC5912902 DOI: 10.1016/j.cub.2018.02.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
Abstract
To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson’s disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients’ ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. We performed temporally patterned stimulation of the subthalamic nucleus in humans During stimulation, Parkinson’s patients performed a perceptual decision-making task Stimulation effects on behavior were confined to a short window during deliberation Here, stimulation affected changes in decision thresholds during difficult decisions
Collapse
|
22
|
Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task. J Neurosci 2018; 38:2482-2494. [PMID: 29437929 DOI: 10.1523/jneurosci.2659-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 11/21/2022] Open
Abstract
Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (≤60 Hz) neural oscillatory activities similar to those associated with schizophrenia during working memory processes. Here, we recorded local field potentials (LFPs) and single-unit activity from the lateral prefrontal cortex (LPFC) of three male rhesus macaque monkeys while they performed a rule-based prosaccade and antisaccade working memory task both before and after systemic injections of a subanesthetic dose (≤0.7 mg/kg) of ketamine. Accompanying working-memory impairment, ketamine enhanced the low-gamma-band (30-60 Hz) and dampened the beta-band (13-30 Hz) oscillatory activities in the LPFC during both delay periods and intertrial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes because stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike field phase consistency in almost all frequencies up to 60 Hz. Our findings support NMDAR antagonists in nonhuman primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia.SIGNIFICANCE STATEMENT Low doses of ketamine, an NMDAR blocker, produce working memory deficits similar to those observed in schizophrenia. In the lateral prefrontal cortex, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects during both task and nontask periods. Ketamine induced stronger gamma (30-60 Hz) and weaker beta (13-30 Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single-cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working memory deficit in schizophrenia.
Collapse
|
23
|
Zavala B, Damera S, Dong JW, Lungu C, Brown P, Zaghloul KA. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict. Cereb Cortex 2018; 27:496-508. [PMID: 26494798 DOI: 10.1093/cercor/bhv244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict.
Collapse
Affiliation(s)
- Baltazar Zavala
- Surgical Neurology Branch.,Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | - Codrin Lungu
- Office of Clinical Director, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Brown
- Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford OX1 3TH, UK
| | | |
Collapse
|
24
|
Zavala BA, Jang AI, Zaghloul KA. Human subthalamic nucleus activity during non-motor decision making. eLife 2017; 6:e31007. [PMID: 29243587 PMCID: PMC5780045 DOI: 10.7554/elife.31007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023] Open
Abstract
Recent studies have implicated the subthalamic nucleus (STN) in decisions that involve inhibiting movements. Many of the decisions that we make in our daily lives, however, do not involve any motor actions. We studied non-motor decision making by recording intraoperative STN and prefrontal cortex (PFC) electrophysiology as participants perform a novel task that required them to decide whether to encode items into working memory. During all encoding trials, beta band (15-30 Hz) activity decreased in the STN and PFC, and this decrease was progressively enhanced as more items were stored into working memory. Crucially, the STN and lateral PFC beta decrease was significantly attenuated during the trials in which participants were instructed not to encode the presented stimulus. These changes were associated with increase lateral PFC-STN coherence and altered STN neuronal spiking. Our results shed light on why states of altered basal ganglia activity disrupt both motor function and cognition.
Collapse
Affiliation(s)
- Baltazar A Zavala
- Surgical Neurology BranchNational Institute of Neurological Disorders and StrokeBethesdaUnited States
| | - Anthony I Jang
- Surgical Neurology BranchNational Institute of Neurological Disorders and StrokeBethesdaUnited States
| | - Kareem A Zaghloul
- Surgical Neurology BranchNational Institute of Neurological Disorders and StrokeBethesdaUnited States
| |
Collapse
|
25
|
Herrojo Ruiz M, Maess B, Altenmüller E, Curio G, Nikulin VV. Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory-motor sequences. Hum Brain Mapp 2017; 38:5161-5179. [PMID: 28703919 PMCID: PMC6866917 DOI: 10.1002/hbm.23722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Singing, music performance, and speech rely on the retrieval of complex sounds, which are generated by the corresponding actions and are organized into sequences. It is crucial in these forms of behavior that the serial organization (i.e., order) of both the actions and associated sounds be monitored and learned. To investigate the neural processes involved in the monitoring of serial order during the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings while participants explicitly learned short piano sequences under the effect of occasional alterations of auditory feedback (AAF). The main result was a prominent and selective modulation of beta (13-30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning and in updating the mapping of the sensorimotor representations. The findings support the notion that the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor and auditory information during an early stage of skill acquisition in music performance. This has potential implications for singing and speech. Hum Brain Mapp 38:5161-5179, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Herrojo Ruiz
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Department of PsychologyWhitehead Building, Goldsmiths, University of LondonLondonSE14 6NWUnited Kingdom
| | - Burkhard Maess
- Research Group “MEG and cortical networks”Max Planck Institute for Human, Cognitive and Brain SciencesLeipzigD‐04103Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' MedicineHanover University of Music, Drama, and MediaHanoverGermany
| | - Gabriel Curio
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Bernstein Center for Computational NeuroscienceBerlin10115Germany
| | - Vadim V. Nikulin
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigD‐04103Germany
- Center for Cognition and Decision MakingNational Research University Higher School of EconomicsRussian Federation
| |
Collapse
|
26
|
Blenkinsop A, Anderson S, Gurney K. Frequency and function in the basal ganglia: the origins of beta and gamma band activity. J Physiol 2017; 595:4525-4548. [PMID: 28334424 DOI: 10.1113/jp273760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/02/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. ABSTRACT Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico.
Collapse
Affiliation(s)
| | - Sean Anderson
- Automatic Control & Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kevin Gurney
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| |
Collapse
|
27
|
Bočková M, Chládek J, Jurák P, Halámek J, Rapcsak SZ, Baláž M, Chrastina J, Rektor I. Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study. J Neural Transm (Vienna) 2017; 124:841-852. [DOI: 10.1007/s00702-017-1719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
28
|
Te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. Impaired auditory-to-motor entrainment in Parkinson's disease. J Neurophysiol 2017; 117:1853-1864. [PMID: 28179479 DOI: 10.1152/jn.00547.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/23/2017] [Accepted: 02/05/2017] [Indexed: 11/22/2022] Open
Abstract
Several electrophysiological studies suggest that Parkinson's disease (PD) patients have a reduced tendency to entrain to regular environmental patterns. Here we investigate whether this reduced entrainment concerns a generalized deficit or is confined to movement-related activity, leaving sensory entrainment intact. Magnetoencephalography was recorded during a rhythmic auditory target detection task in 14 PD patients and 14 control subjects. Participants were instructed to press a button when hearing a target tone amid an isochronous sequence of standard tones. The variable pitch of standard tones indicated the probability of the next tone to be a target. In addition, targets were occasionally omitted to evaluate entrainment uncontaminated by stimulus effects. Response times were not significantly different between groups and both groups benefited equally from the predictive value of standard tones. Analyses of oscillatory beta power over auditory cortices showed equal entrainment to the tones in both groups. By contrast, oscillatory beta power and event-related fields demonstrated a reduced engagement of motor cortical areas in PD patients, expressed in the modulation depth of beta power, in the response to omitted stimuli, and in an absent motor area P300 effect. Together, these results show equally strong entrainment of neural activity over sensory areas in controls and patients, but, in patients, a deficient translation of the adjustment to the task rhythm to motor circuits. We suggest that the reduced activation reflects not merely altered resonance to rhythmic external events, but a compromised recruitment of an endogenous response reflecting internal rhythm generation.NEW & NOTEWORTHY Previous studies suggest that motor cortical activity in PD patients has a reduced tendency to entrain to regular environmental patterns. This study demonstrates that the deficient entrainment in PD concerns the motor system only, by showing equally strong entrainment of neural activity over sensory areas in controls and patients but, in patients, a deficient translation of this adjustment to the task rhythm to motor circuits.
Collapse
Affiliation(s)
- Erik S Te Woerd
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Praamstra
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Herz DM, Tan H, Brittain JS, Fischer P, Cheeran B, Green AL, FitzGerald J, Aziz TZ, Ashkan K, Little S, Foltynie T, Limousin P, Zrinzo L, Bogacz R, Brown P. Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. eLife 2017; 6. [PMID: 28137358 PMCID: PMC5287713 DOI: 10.7554/elife.21481] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/15/2017] [Indexed: 01/29/2023] Open
Abstract
Optimal decision-making requires balancing fast but error-prone and more accurate but slower decisions through adjustments of decision thresholds. Here, we demonstrate two distinct correlates of such speed-accuracy adjustments by recording subthalamic nucleus (STN) activity and electroencephalography in 11 Parkinson’s disease patients during a perceptual decision-making task; STN low-frequency oscillatory (LFO) activity (2–8 Hz), coupled to activity at prefrontal electrode Fz, and STN beta activity (13–30 Hz) coupled to electrodes C3/C4 close to motor cortex. These two correlates differed not only in their cortical topography and spectral characteristics but also in the relative timing of recruitment and in their precise relationship with decision thresholds. Increases of STN LFO power preceding the response predicted increased thresholds only after accuracy instructions, while cue-induced reductions of STN beta power decreased thresholds irrespective of instructions. These findings indicate that distinct neural mechanisms determine whether a decision will be made in haste or with caution. DOI:http://dx.doi.org/10.7554/eLife.21481.001 In everyday decisions, we have to balance how quickly we need to make a decision with how accurate we want our decision to be. For example, if you plan your next holiday you might want to make sure that you pick the best destination without caring too much about the time it takes to arrive at that decision. On the other hand, in your lunch break you might want to quickly choose between the different meals on the menu to make sure you are back at work on time, even though you might overlook a dish that you would have preferred. This effect – that decisions we make in haste are more likely to be suboptimal than slower, more deliberate decisions – is known as the speed-accuracy trade-off. One theory suggests that the activity of a brain area termed the subthalamic nucleus reflects whether people will prioritize speed or accuracy during decision-making. This area is seated deep inside the brain, meaning that it is normally difficult to record its activity. Herz et al. have now recorded the activity of the subthalamic nucleus in individuals with Parkinson’s disease who underwent brain surgery as part of their treatment. When these individuals switched between fast and cautious decision-making, the activity in the subthalamic nucleus changed, as did its relationship with the activity seen in other brain areas. Furthermore, these activity changes predicted how much information participants acquired before committing to a choice. Deep brain stimulation of the subthalamic nucleus is now a standard treatment for Parkinson’s disease. It will be important to assess whether this treatment affects the changes in subthalamic activity that are related to decision-making, and whether this affects whether an individual is more likely to make fast or accurate decisions. DOI:http://dx.doi.org/10.7554/eLife.21481.002
Collapse
Affiliation(s)
- Damian M Herz
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John-Stuart Brittain
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Petra Fischer
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alexander L Green
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - James FitzGerald
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Simon Little
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Rafal Bogacz
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Sato W, Kochiyama T, Uono S, Matsuda K, Usui K, Usui N, Inoue Y, Toichi M. Rapid gamma oscillations in the inferior occipital gyrus in response to eyes. Sci Rep 2016; 6:36321. [PMID: 27805017 PMCID: PMC5090864 DOI: 10.1038/srep36321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022] Open
Abstract
Eyes are an indispensable communication medium for human social interactions. Although previous neuroscientific evidence suggests the activation of the inferior occipital gyrus (IOG) during eye processing, the temporal profile of this activation remains unclear. To investigate this issue, we analyzed intracranial electroencephalograms of the IOG during the presentation of eyes and mosaics, in either averted or straight directions. Time–frequency statistical parametric mapping analyses revealed greater gamma-band activation in the right IOG beginning at 114 ms in response to eyes relative to mosaics, irrespective of their averted or straight direction. These results suggest that gamma oscillations in the right IOG are involved in the early stages of eye processing, such as eye detection.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka 420-8688, Japan
| | - Keiko Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka 420-8688, Japan
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka 420-8688, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka 420-8688, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan.,The Organization for Promoting Developmental Disorder Research, 40 Shogoin-Sannocho, Sakyo, Kyoto 606-8392, Japan
| |
Collapse
|
31
|
Tiedt HO, Ehlen F, Krugel LK, Horn A, Kühn AA, Klostermann F. Subcortical roles in lexical task processing: Inferences from thalamic and subthalamic event-related potentials. Hum Brain Mapp 2016; 38:370-383. [PMID: 27647660 DOI: 10.1002/hbm.23366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023] Open
Abstract
Subcortical functions for language capacities are poorly defined, but may be investigated in the context of deep brain stimulation. Here, we studied event-related potentials recorded from electrodes in the subthalamic nucleus (STN) and the thalamic ventral intermediate nucleus (VIM) together with surface-EEG. Participants completed a lexical decision task (LDT), which required the differentiation of acoustically presented words from pseudo-words by button press. Target stimuli were preceded by prime-words. In recordings from VIM, a slow potential shift apparent at the lower electrode contacts persisted during target stimulus presentation (equally for words and pseudo-words). In contrast, recordings from STN electrodes showed a short local activation on prime-words but not target-stimuli. In both depth-recording regions, further components related to contralateral motor responses to target words were evident. On scalp level, mid-central activations on (pseudo)lexical stimuli were obtained, in line with the expression of N400 potentials. The prolonged activity recorded from VIM, exclusively accompanying the relevant LDT phase, is in line with the idea of thalamic "selective engagement" for supporting the realization of the behavioral focus demanded by the task. In contrast, the phasic prime related activity rather indicates "procedural" STN functions, for example, for trial sequencing or readiness inhibition of prepared target reactions. Hum Brain Mapp 38:370-383, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Lea K Krugel
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Andreas Horn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Laboratory for Brain Network Imaging and Modulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215
| | - Andrea A Kühn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
32
|
Meijer D, te Woerd E, Praamstra P. Timing of beta oscillatory synchronization and temporal prediction of upcoming stimuli. Neuroimage 2016; 138:233-241. [DOI: 10.1016/j.neuroimage.2016.05.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/15/2022] Open
|
33
|
Sato W, Kochiyama T, Uono S, Matsuda K, Usui K, Usui N, Inoue Y, Toichi M. Gamma Oscillations in the Temporal Pole in Response to Eyes. PLoS One 2016; 11:e0162039. [PMID: 27571204 PMCID: PMC5003337 DOI: 10.1371/journal.pone.0162039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
The eyes of an individual act as an indispensable communication medium during human social interactions. Functional neuroimaging studies have revealed that several brain regions are activated in response to eyes and eye gaze direction changes. However, it remains unclear whether the temporal pole is one of these regions. Furthermore, if the temporal pole is activated by these stimuli, the timing and manner in which it is activated also remain unclear. To investigate these issues, we analyzed intracranial electroencephalographic data from the temporal pole that were obtained during the presentation of eyes and mosaics in averted or straight directions and their directional changes. Time-frequency statistical parametric mapping analyses revealed that the bilateral temporal poles exhibited greater gamma-band activation beginning at 215 ms in response to eyes compared with mosaics, irrespective of the direction. Additionally, the right temporal pole showed greater gamma-band activation beginning at 197 ms in response to directional changes of the eyes compared with mosaics. These results suggest that gamma-band oscillations in the temporal pole were involved in the processing of the presence of eyes and changes in eye gaze direction at a relatively late temporal stage compared with the posterior cortices.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606–8507, Japan
- * E-mail:
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619–0288, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606–8507, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420–8688, Japan
| | - Keiko Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420–8688, Japan
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420–8688, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420–8688, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606–8507, Japan
| |
Collapse
|
34
|
Movement-related potentials in Parkinson’s disease. Clin Neurophysiol 2016; 127:2509-19. [DOI: 10.1016/j.clinph.2016.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice. RECENT FINDINGS Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation. SUMMARY Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes.
Collapse
|
36
|
Yokoyama O, Nakayama Y, Hoshi E. Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. J Neurophysiol 2016; 115:1556-76. [PMID: 26792884 DOI: 10.1152/jn.00882.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
37
|
Dunkley BT, Doesburg SM, Jetly R, Sedge PA, Pang EW, Taylor MJ. Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder. Psychiatry Res 2015; 234:172-81. [PMID: 26422117 DOI: 10.1016/j.pscychresns.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Soldiers with post-traumatic stress disorder (PTSD) exhibit elevated gamma-band synchrony in left fronto-temporal cortex, and connectivity measures in these regions correlate with comorbidities and PTSD severity, which suggests increased gamma synchrony is related to symptomology. However, little is known about the role of intrinsic, phase-synchronised networks in the disorder. Using magnetoencephalography (MEG), we characterised spectral connectivity in the default-mode, salience, visual, and attention networks during resting-state in a PTSD population and a trauma-exposed control group. Intrinsic network connectivity was examined in canonical frequency bands. We observed increased inter-network synchronisation in the PTSD group compared with controls in the gamma (30-80 Hz) and high-gamma range (80-150 Hz). Analyses of connectivity and symptomology revealed that PTSD severity was positively associated with beta synchrony in the ventral-attention-to-salience networks, and gamma synchrony within the salience network, but also negatively correlated with beta synchrony within the visual network. These novel results show that frequency-specific, network-level atypicalities may reflect trauma-related alterations of ongoing functional connectivity, and correlations of beta synchrony in attentional-to-salience and visual networks with PTSD severity suggest complicated network interactions mediate symptoms. These results contribute to accumulating evidence that PTSD is a complicated network-based disorder expressed as altered neural interactions.
Collapse
Affiliation(s)
- Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - Sam M Doesburg
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, Canada
| | - Paul A Sedge
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, Canada
| | - Elizabeth W Pang
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Rothe T, Deliano M, Wójtowicz AM, Dvorzhak A, Harnack D, Paul S, Vagner T, Melnick I, Stark H, Grantyn R. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice. Neuroscience 2015; 311:519-38. [PMID: 26546830 DOI: 10.1016/j.neuroscience.2015.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is a severe genetically inherited neurodegenerative disorder. Patients present with three principal phenotypes of motor symptoms: choreatic, hypokinetic-rigid and mixed. The Q175 mouse model of disease offers an opportunity to investigate the cellular basis of the hypokinetic-rigid form of HD. At the age of 1 year homozygote Q175 mice exhibited the following signs of hypokinesia: Reduced frequency of spontaneous movements on a precision balance at daytime (-55%), increased total time spent without movement in an open field (+42%), failures in the execution of unconditioned avoidance reactions (+32%), reduced ability for conditioned avoidance (-96%) and increased reaction times (+65%) in a shuttle box. Local field potential recordings revealed low-frequency gamma oscillations in the striatum as a characteristic feature of HD mice at rest. There was no significant loss of DARPP-32 immunolabeled striatal projection neurons (SPNs) although the level of DARPP-32 immunoreactivity was lower in HD. As a potential cause of hypokinesia, HD mice revealed a strong reduction in striatal KCl-induced dopamine release, accompanied by a decrease in the number of tyrosine hydroxylase-(TH)- and VMAT2-positive synaptic varicosities. The presynaptic TH fluorescence level was also reduced. Patch-clamp experiments were performed in slices from 1-year-old mice to record unitary EPSCs (uEPSCs) of presumed cortical origin in the absence of G-protein-mediated modulation. In HD mice, the maximal amplitudes of uEPSCs amounted to 69% of the WT level which matches the loss of VGluT1+/SYP+ synaptic terminals in immunostained sections. These results identify impairment of cortico-striatal synaptic transmission and dopamine release as a potential basis of hypokinesia in HD.
Collapse
Affiliation(s)
- T Rothe
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | - M Deliano
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | - A Dvorzhak
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - D Harnack
- Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
| | - S Paul
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - T Vagner
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - I Melnick
- Cluster of Excellence NeuroCure, Berlin, Germany; Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - H Stark
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | - R Grantyn
- Cluster of Excellence NeuroCure, Berlin, Germany; Department of Experimental Neurology, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
39
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Imbach LL, Baumann-Vogel H, Baumann CR, Sürücü O, Hermsdörfer J, Sarnthein J. Adaptive grip force is modulated by subthalamic beta activity in Parkinson's disease patients. NEUROIMAGE-CLINICAL 2015; 9:450-7. [PMID: 26594627 PMCID: PMC4596927 DOI: 10.1016/j.nicl.2015.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 01/04/2023]
Abstract
Introduction Healthy subjects scale grip force to match the load defined by physical object properties such as weight, or dynamic properties such as inertia. Patients with Parkinson's disease (PD) show an elevated grip force in dynamic object handling, but temporal aspects of anticipatory grip force control are relatively preserved. In PD patients, beta frequency oscillatory activity in the basal ganglia is suppressed prior to externally paced movements. However, the role of the subthalamic nucleus (STN) in anticipatory grip force control is not known. Methods After implantation of deep brain stimulation (DBS) electrodes in the STN, PD patients performed adaptive and voluntary grip force tasks, while we recorded subthalamic local field potentials (LFP) and scalp EEG. Results During adaptive grip force control (Shake), we found event related desynchronization (ERD) in the beta frequency band, which was time-locked to the grip force. In contrast, during voluntary grip force control (Press) we recorded a biphasic ERD, corresponding to peak grip force and grip force release. Beta synchronization between STN and cortical EEG was reduced during adaptive grip force control. Conclusion The time-locked suppression of beta oscillatory activity in the STN is in line with previous reports of beta ERD prior to voluntary movements. Our results show that the STN is involved in anticipatory grip force control in PD patients. The difference in the phasic beta ERD between the two tasks and the reduction of cortico-subthalamic synchronization suggests that qualitatively different neuronal network states are involved in different grip force control tasks. Subthalamic nucleus is involved in anticipatory grip force control in PD patients. Subthalamic beta activity is the first derivative of grip force in a shaking task. Synchronization between STN and cortex is reduced during the shaking task.
Collapse
Affiliation(s)
- Lukas L Imbach
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland ; University of Zurich, Zurich, Switzerland
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland ; University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland ; Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland ; University of Zurich, Zurich, Switzerland
| | - Oguzkan Sürücü
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, Zurich 8091, Switzerland ; University of Zurich, Zurich, Switzerland
| | - Joachim Hermsdörfer
- Department of Sport and Health Sciences, Georg-Brauchle-Ring 60/62, Technische Universität München, München D-80992, Germany
| | - Johannes Sarnthein
- Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland ; Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, Zurich 8091, Switzerland ; University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Rowland NC, De Hemptinne C, Swann NC, Qasim S, Miocinovic S, Ostrem JL, Knight RT, Starr PA. Task-related activity in sensorimotor cortex in Parkinson's disease and essential tremor: changes in beta and gamma bands. Front Hum Neurosci 2015; 9:512. [PMID: 26441609 PMCID: PMC4585033 DOI: 10.3389/fnhum.2015.00512] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022] Open
Abstract
In Parkinson's disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG) studies in Parkinson's patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinson's, we performed intraoperative, high-resolution (4 mm spacing) ECoG recordings in 10 Parkinson's patients (2 females, ages 47–72) undergoing deep brain stimulation (DBS) lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59–78), a condition not associated with rigidity or akinesia. We show that (1) cortical beta spectral power at rest does not differ between Parkinson's and essential tremor patients (p = 0.85), (2) early motor preparation in Parkinson's patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061), and (3) cortical broadband gamma power is elevated in Parkinson's patients compared to essential tremor patients during both rest and task recordings (p = 0.004). Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinson's patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.
Collapse
Affiliation(s)
- Nathan C Rowland
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Coralie De Hemptinne
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Nicole C Swann
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Salman Qasim
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Svjetlana Miocinovic
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Robert T Knight
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA ; Department of Neurology, University of California, San Francisco San Francisco, CA, USA ; Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA ; Department of Psychology, University of California, Berkeley Berkeley, CA, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
42
|
Mostile G, Nicoletti A, Dibilio V, Luca A, Pappalardo I, Giuliano L, Cicero CE, Sciacca G, Raciti L, Contrafatto D, Bruno E, Sofia V, Zappia M. Electroencephalographic lateralization, clinical correlates and pharmacological response in untreated Parkinson's disease. Parkinsonism Relat Disord 2015; 21:948-53. [DOI: 10.1016/j.parkreldis.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
|
43
|
Zavala B, Zaghloul K, Brown P. The subthalamic nucleus, oscillations, and conflict. Mov Disord 2015; 30:328-38. [PMID: 25688872 DOI: 10.1002/mds.26072] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022] Open
Abstract
The subthalamic nucleus (STN), which is currently the most common target for deep brain stimulation (DBS) for Parkinson's disease (PD), has received increased attention over the past few years for the roles it may play in functions beyond simple motor control. In this article, we highlight several of the theoretical, interventional, and electrophysiological studies that have implicated the STN in response inhibition. Most influential among this evidence has been the reported effect of STN DBS in increasing impulsive responses in the laboratory setting. Yet, how this relates to pathological impulsivity in patients' everyday lives remains uncertain.
Collapse
Affiliation(s)
- Baltazar Zavala
- Experimental Neurology Group, Nuffield Department of Clinical Neurology, University of Oxford John Radcliffe Hospital, Oxford, UK; Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
44
|
Wittmann BC, D'Esposito M. Levodopa administration modulates striatal processing of punishment-associated items in healthy participants. Psychopharmacology (Berl) 2015; 232:135-44. [PMID: 24923987 PMCID: PMC4265314 DOI: 10.1007/s00213-014-3646-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Appetitive and aversive processes share a number of features such as their relevance for action and learning. On a neural level, reward and its predictors are associated with increased firing of dopaminergic neurons, whereas punishment processing has been linked to the serotonergic system and to decreases in dopamine transmission. Recent data indicate, however, that the dopaminergic system also responds to aversive stimuli and associated actions. OBJECTIVES In this pharmacological functional magnetic resonance imaging study, we investigated the contribution of the dopaminergic system to reward and punishment processing in humans. METHODS Two groups of participants received either placebo or the dopamine precursor levodopa and were scanned during alternating reward and punishment anticipation blocks. RESULTS Levodopa administration increased striatal activations for cues presented in punishment blocks. In an interaction with individual personality scores, levodopa also enhanced striatal activation for punishment-predictive compared with neutral cues in participants scoring higher on the novelty-seeking dimension. CONCLUSIONS These data support recent indications that dopamine contributes to punishment processing and suggest that the novelty-seeking trait is a measure of susceptibility to drug effects on motivation. These findings are also consistent with the possibility of an inverted U-shaped response function of dopamine in the striatum, suggesting an optimal level of dopamine release for motivational processing.
Collapse
Affiliation(s)
- Bianca C Wittmann
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA,
| | | |
Collapse
|
45
|
Herrojo Ruiz M, Rusconi M, Brücke C, Haynes JD, Schönecker T, Kühn AA. Encoding of sequence boundaries in the subthalamic nucleus of patients with Parkinson's disease. ACTA ACUST UNITED AC 2014; 137:2715-30. [PMID: 25031238 DOI: 10.1093/brain/awu191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sequential behaviour is widespread not only in humans but also in animals, ranging in different degrees of complexity from locomotion to birdsong or music performance. The capacity to learn new motor sequences relies on the integrity of basal ganglia-cortical loops. In Parkinson's disease the execution of habitual action sequences as well as the acquisition of novel sequences is impaired partly due to a deficiency in being able to generate internal cues to trigger movement sequences. In addition, patients suffering from Parkinson's disease have difficulty initiating or terminating a self-paced sequence of actions. Direct recordings from the basal ganglia in these patients show an increased level of beta (14-30 Hz) band oscillatory activity associated with impairment in movement initiation. In this framework, the current study aims to evaluate in patients with Parkinson's disease the neuronal activity in the subthalamic nucleus related to the encoding of sequence boundaries during the explicit learning of sensorimotor sequences. We recorded local field potential activity from the subthalamic nucleus of 12 patients who underwent deep brain stimulation for the treatment of advanced Parkinson's disease, while the patients in their usual medicated state practiced sequences of finger movements on a digital piano with corresponding auditory feedback. Our results demonstrate that variability in performance during an early phase of sequence acquisition correlates across patients with changes in the pattern of subthalamic beta-band oscillations; specifically, an anticipatory suppression of beta-band activity at sequence boundaries is linked to better performance. By contrast, a more compromised performance is related to attenuation of beta-band activity before within-sequence elements. Moreover, multivariate pattern classification analysis reveals that differential information about boundaries and within-sequence elements can be decoded at least 100 ms before the keystroke from the amplitude of oscillations of subthalamic nucleus activity across different frequency bands, not just from the beta-band. Additional analysis was performed to assess the strength of how much the putative signal encoding class of ordinal position (boundaries, within-sequence elements) is reflected in each frequency band. This analysis demonstrates that suppression of power in the beta-band contains the most class-related information, whereas enhancement of gamma band (31-100 Hz) activity is the second main contributor to the encoding. Our findings support the hypothesis that subthalamic nucleus-mediated gating of salient boundary elements during sequence encoding may be a prerequisite for the adequate acquisition of action sequences and the transition to habitual behaviour.
Collapse
Affiliation(s)
- María Herrojo Ruiz
- 1 Department of Neurology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Rusconi
- 2 Bernstein Centre for Computational Neuroscience Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christof Brücke
- 1 Department of Neurology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John-Dylan Haynes
- 2 Bernstein Centre for Computational Neuroscience Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany 3 Berlin Centre for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany 4 Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany 5 Excellence Cluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany 6 Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Schönecker
- 1 Department of Neurology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- 1 Department of Neurology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany 4 Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany 5 Excellence Cluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. A shift from prospective to reactive modulation of beta-band oscillations in Parkinson's disease. Neuroimage 2014; 100:507-19. [PMID: 24969569 DOI: 10.1016/j.neuroimage.2014.06.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Increased beta (13-30 Hz) oscillatory synchrony in basal ganglia-cortical circuits is a physiological characteristic of Parkinson's disease (PD). While the function of the beta rhythm is unknown, there is evidence that its modulation serves a predictive role, in preparation of future actions. We investigate the relation between predictive beta modulation and entrainment of brain oscillations in a task inviting behavioral entrainment by a regular task structure. MEG was recorded during a serial choice response task, in a group of 12 PD patients and 12 control subjects. In one condition, the reaction stimuli allowed for temporal preparation only (random condition), while in a second condition (predictable condition) the reaction stimuli allowed both temporal and effector preparation. Reaction times were identical between groups, and both groups benefited equally from the known effector side in the predictable condition. Analysis of oscillatory activity, by contrast, revealed marked differences between groups. In patients, the proportion of preparatory beta power desynchronization preceding the reaction stimuli was significantly smaller than in controls, while the proportion of beta desynchronization following the events was larger. In addition to this shift from prospective to reactive modulation of beta-band oscillations, patients showed a trend to reduced motor cortical pre-stimulus delta phase synchronization, and later gamma power synchronization than controls. Delta phase synchronization was, furthermore, significantly correlated with predictive beta desynchronization, supporting the relevance of hierarchical coupling between oscillations of different frequencies for the analysis of oscillatory changes in PD. Together, these features of task-related oscillatory activity indicate that entrainment fails to engender the same predictive mode of motor activation in PD patients as in healthy controls.
Collapse
Affiliation(s)
- Erik S te Woerd
- Radboud University Medical Centre, Dept. of Neurology, Radboud University Nijmegen, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Peter Praamstra
- Radboud University Medical Centre, Dept. of Neurology, Radboud University Nijmegen, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Brittain JS, Sharott A, Brown P. The highs and lows of beta activity in cortico-basal ganglia loops. Eur J Neurosci 2014; 39:1951-9. [PMID: 24890470 PMCID: PMC4285950 DOI: 10.1111/ejn.12574] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/15/2023]
Abstract
Oscillatory activity in the beta (13-30 Hz) frequency band is widespread in cortico-basal ganglia circuits, and becomes prominent in Parkinson's disease (PD). Here we develop the hypothesis that the degree of synchronization in this frequency band is a critical factor in gating computation across a population of neurons, with increases in beta band synchrony entailing a loss of information-coding space and hence computational capacity. Task and context drive this dynamic gating, so that for each state there will be an optimal level of network synchrony, and levels lower or higher than this will impair behavioural performance. Thus, both the pathological exaggeration of synchrony, as observed in PD, and the ability of interventions like deep brain stimulation (DBS) to excessively suppress synchrony can potentially lead to impairments in behavioural performance. Indeed, under physiological conditions, the manipulation of computational capacity by beta activity may itself present a mechanism of action selection and maintenance.
Collapse
Affiliation(s)
- John-Stuart Brittain
- Experimental Neurology Group, Nuffield Department of Clinical Neuroscience, University of OxfordOxford, OX3 9DU, UK
| | - Andrew Sharott
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK
| | - Peter Brown
- Experimental Neurology Group, Nuffield Department of Clinical Neuroscience, University of OxfordOxford, OX3 9DU, UK
| |
Collapse
|
48
|
Sato W, Kochiyama T, Uono S, Matsuda K, Usui K, Inoue Y, Toichi M. Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing. Cortex 2014; 60:52-68. [PMID: 24745564 DOI: 10.1016/j.cortex.2014.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 01/21/2023]
Abstract
Neuroimaging studies have found greater activation in the inferior occipital gyrus (IOG), or occipital face area, in response to faces relative to non-facial stimuli. However, the temporal, frequency, and functional profiles of IOG activity during face processing remain unclear. Here, this issue was investigated by recording intracranial field potentials in the IOG during the presentation of faces, mosaics, and houses in upright and inverted orientations. Time-frequency statistical parametric mapping analyses revealed greater gamma-band activation in the IOG beginning at 110 msec and covering 40-300 Hz in response to upright faces relative to upright houses and mosaics. Phase-amplitude cross-frequency coupling analyses revealed more evident theta-gamma couplings at 115-256 msec during the processing of upright faces as compared with that of upright houses and mosaics. Comparable gamma-band activity was observed during the processing of inverted and upright faces at about 100-200 msec, but weaker activity and different coupling with theta-band activity after 200 msec. These patterns of activity were more evident in the right than in the left IOG. These results, together with other evidence on neural communication, suggest that broadband gamma oscillations in the right IOG conduct rapid and multistage (i.e., both featural and configural) face processing in collaboration with theta oscillations transmitted from other brain regions.
Collapse
Affiliation(s)
- Wataru Sato
- The Hakubi Project, Primate Research Institute, Kyoto University, Japan; The Organization for Promoting Research in Developmental Disorders, Japan.
| | | | - Shota Uono
- Faculty of Human Health Science, Kyoto University, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Keiko Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Motomi Toichi
- The Organization for Promoting Research in Developmental Disorders, Japan; Faculty of Human Health Science, Kyoto University, Japan
| |
Collapse
|
49
|
|
50
|
Cognitive factors modulate activity within the human subthalamic nucleus during voluntary movement in Parkinson's disease. J Neurosci 2013; 33:15815-26. [PMID: 24089489 DOI: 10.1523/jneurosci.1790-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Movement is accompanied by changes in the degree to which neurons in corticobasal ganglia loops synchronize their activity within discrete frequency ranges. Although two principal frequency bands--beta (15-30 Hz) and gamma (60-90 Hz)--have been implicated in motor control, the precise functional correlates of their activities remain unclear. Local field potential (LFP) recordings in humans with Parkinson's disease undergoing surgery for deep brain stimulation to the subthalamic nucleus (STN) indicate that spectral changes both anticipate movement and occur perimovement. The extent to which such changes are modulated by cognitive factors involved in making a correct response seems critical in characterizing the functional associations of these oscillations. Accordingly, by recording LFP activity from the STN in parkinsonian patients, we demonstrate that perimovement beta and gamma reactivity is modulated by task complexity in a dopamine-dependent manner, despite the dynamics of the movement remaining unchanged. In contrast, spectral changes occurring in anticipation of future movement were limited to the beta band and, although modulated by dopaminergic therapy, were not modulated by task complexity. Our findings suggest two dopamine-dependent processes indexed by spectral changes in the STN: (1) an anticipatory activity reflected in the beta band that signals the likelihood of future action but does not proactively change with the cognitive demands of the potential response, and (2) perimovement activity that involves reciprocal beta and gamma band changes and is not exclusively related to explicit motor processing. Rather perimovement activity can also vary with, and may reflect, the cognitive complexity of the task.
Collapse
|