1
|
Pennock RL, Coddington LT, Yan X, Overstreet-Wadiche L, Wadiche JI. Afferent convergence to a shared population of interneuron AMPA receptors. Nat Commun 2023; 14:3113. [PMID: 37253743 PMCID: PMC10229553 DOI: 10.1038/s41467-023-38854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Precise alignment of pre- and postsynaptic elements optimizes the activation of glutamate receptors at excitatory synapses. Nonetheless, glutamate that diffuses out of the synaptic cleft can have actions at distant receptors, a mode of transmission called spillover. To uncover the extrasynaptic actions of glutamate, we localized AMPA receptors (AMPARs) mediating spillover transmission between climbing fibers and molecular layer interneurons in the cerebellar cortex. We found that climbing fiber spillover generates calcium transients mediated by Ca2+-permeable AMPARs at parallel fiber synapses. Spillover occludes parallel fiber synaptic currents, indicating that separate, independently regulated afferent pathways converge onto a common pool of AMPARs. Together these findings demonstrate a circuit motif wherein glutamate 'spill-in' from an unconnected afferent pathway co-opts synaptic receptors, allowing activation of postsynaptic AMPARs even when canonical glutamate release is suppressed.
Collapse
Affiliation(s)
- Reagan L Pennock
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Luke T Coddington
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Xiaohui Yan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Presynaptic AMPA Receptors in Health and Disease. Cells 2021; 10:cells10092260. [PMID: 34571906 PMCID: PMC8470629 DOI: 10.3390/cells10092260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.
Collapse
|
3
|
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: The quest continues. Neuropharmacology 2021; 195:108688. [PMID: 34174263 DOI: 10.1016/j.neuropharm.2021.108688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Michael G Stewart
- Dept of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
4
|
Kowalska M, Fijałkowski Ł, Nowaczyk A. Assessment of Paroxetine Molecular Interactions with Selected Monoamine and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:6293. [PMID: 34208199 PMCID: PMC8230779 DOI: 10.3390/ijms22126293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Thus far, many hypotheses have been proposed explaining the cause of depression. Among the most popular of these are: monoamine, neurogenesis, neurobiology, inflammation and stress hypotheses. Many studies have proven that neurogenesis in the brains of adult mammals occurs throughout life. The generation of new neurons persists throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. For this reason, the search for drugs acting in this mechanism seems to be a priority for modern pharmacotherapy. Paroxetine is one of the most commonly used antidepressants. However, the exact mechanism of its action is not fully understood. The fact that the therapeutic effect after the administration of paroxetine occurs after a few weeks, even if the levels of monoamine are rapidly increased (within a few minutes), allows us to assume a neurogenic mechanism of action. Due to the confirmed dependence of depression on serotonin, norepinephrine, dopamine and γ-aminobutyric acid levels, studies have been undertaken into paroxetine interactions with these primary neurotransmitters using in silico and in vitro methods. We confirmed that paroxetine interacts most strongly with monoamine transporters and shows some interaction with γ-aminobutyric acid transporters. However, studies of the potency inhibitors and binding affinity values indicate that the neurogenic mechanism of paroxetine's action may be determined mainly by its interactions with serotonin transporters.
Collapse
Affiliation(s)
| | | | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland; (M.K.); (Ł.F.)
| |
Collapse
|
5
|
Tyurikova O, Zheng K, Nicholson E, Timofeeva Y, Semyanov A, Volynski KE, Rusakov DA. Fluorescence lifetime imaging reveals regulation of presynaptic Ca 2+ by glutamate uptake and mGluRs, but not somatic voltage in cortical neurons. J Neurochem 2021; 156:48-58. [PMID: 32418206 PMCID: PMC8436763 DOI: 10.1111/jnc.15094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Brain function relies on vesicular release of neurotransmitters at chemical synapses. The release probability depends on action potential-evoked presynaptic Ca2+ entry, but also on the resting Ca2+ level. Whether these basic aspects of presynaptic calcium homeostasis show any consistent trend along the axonal path, and how they are controlled by local network activity, remains poorly understood. Here, we take advantage of the recently advanced FLIM-based method to monitor presynaptic Ca2+ with nanomolar sensitivity. We find that, in cortical pyramidal neurons, action potential-evoked calcium entry (range 10-300 nM), but not the resting Ca2+ level (range 10-100 nM), tends to increase with higher order of axonal branches. Blocking astroglial glutamate uptake reduces evoked Ca2+ entry but has little effect on resting Ca2+ whereas both appear boosted by the constitutive activation of group 1/2 metabotropic glutamate receptors. We find no consistent effect of transient somatic depolarization or hyperpolarization on presynaptic Ca2+ entry or its basal level. The results unveil some key aspects of presynaptic machinery in cortical circuits, shedding light on basic principles of synaptic connectivity in the brain.
Collapse
Affiliation(s)
- Olga Tyurikova
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Kaiyu Zheng
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Yulia Timofeeva
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Computer Science, Centre for Complexity Science, University of WarwickCoventryUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Dmitri A. Rusakov
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
6
|
Korczak M, Kurowski P, Leśniak A, Grönbladh A, Filipowska A, Bujalska-Zadrożny M. GABA B receptor intracellular signaling: novel pathways for depressive disorder treatment? Eur J Pharmacol 2020; 885:173531. [PMID: 32871173 DOI: 10.1016/j.ejphar.2020.173531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Affecting over 320 million people around the world, depression has become a formidable challenge for modern medicine. In addition, an increasing number of studies cast doubt on the monoamine theory of depressive disorder and, worryingly, antidepressant medications only significantly benefit patients with severe depression. Thus, it is not surprising that researchers have shown an increased interest in new theories attempting to explain the pathogenesis of this disease. One example is the excitatory/inhibitory transmission imbalance theory. These abnormalities involve glutamate and γ-aminobutyric acid (GABA) signaling. Studies on GABAB receptors and their antagonists are particularly promising for the treatment of depressive disorders. In this paper, intracellular pathways controlled by GABAB receptors and their links to depression are described, including the impact of ketamine on GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Maciej Korczak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kurowski
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland.
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Alfhild Grönbladh
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, The Uppsala University, Uppsala, Sweden
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, The Silesian University of Technology, Zabrze, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Soria FN, Miguelez C, Peñagarikano O, Tønnesen J. Current Techniques for Investigating the Brain Extracellular Space. Front Neurosci 2020; 14:570750. [PMID: 33177979 PMCID: PMC7591815 DOI: 10.3389/fnins.2020.570750] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The brain extracellular space (ECS) is a continuous reticular compartment that lies between the cells of the brain. It is vast in extent relative to its resident cells, yet, at the same time the nano- to micrometer dimensions of its channels and reservoirs are commonly finer than the smallest cellular structures. Our conventional view of this compartment as largely static and of secondary importance for brain function is rapidly changing, and its active dynamic roles in signaling and metabolite clearance have come to the fore. It is further emerging that ECS microarchitecture is highly heterogeneous and dynamic and that ECS geometry and diffusional properties directly modulate local diffusional transport, down to the nanoscale around individual synapses. The ECS can therefore be considered an extremely complex and diverse compartment, where numerous physiological events are unfolding in parallel on spatial and temporal scales that span orders of magnitude, from milliseconds to hours, and from nanometers to centimeters. To further understand the physiological roles of the ECS and identify new ones, researchers can choose from a wide array of experimental techniques, which differ greatly in their applicability to a given sample and the type of data they produce. Here, we aim to provide a basic introduction to the available experimental techniques that have been applied to address the brain ECS, highlighting their main characteristics. We include current gold-standard techniques, as well as emerging cutting-edge modalities based on recent super-resolution microscopy. It is clear that each technique comes with unique strengths and limitations and that no single experimental method can unravel the unknown physiological roles of the brain ECS on its own.
Collapse
Affiliation(s)
- Federico N. Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
8
|
Polter AM, Barcomb K, Tsuda AC, Kauer JA. Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons. Eur J Neurosci 2018; 47:1208-1218. [PMID: 29480954 PMCID: PMC6487867 DOI: 10.1111/ejn.13879] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Ventral tegmental area (VTA) dopaminergic neurons are key components of the reward pathway, and their activity is powerfully controlled by a diverse array of inhibitory GABAergic inputs. Two major sources of GABAergic nerve terminals within the VTA are local VTA interneurons and neurons in the rostromedial tegmental nucleus (RMTg). Here, using optogenetics, we compared synaptic properties of GABAergic synapses on VTA dopamine neurons using selective activation of afferents that originate from these two cell populations. We found little evidence of co-release of glutamate from either input, but RMTg-originating synaptic currents were reduced by strychnine, suggesting co-release of glycine and GABA. VTA-originating synapses displayed a lower initial release probability, and at higher frequency stimulation, short-term depression was more marked in VTA- but not RMTg-originating synapses. We previously reported that nitric oxide (NO)-induced potentiation of GABAergic synapses on VTA dopaminergic cells is lost after exposure to drugs of abuse or acute stress; in these experiments, multiple GABAergic afferents were simultaneously activated by electrical stimulation. Here we found that optogenetically-activated VTA-originating synapses on presumptive dopamine neurons also exhibited NO-induced potentiation, whereas RMTg-originating synapses did not. Despite providing a robust inhibitory input to the VTA, RMTg GABAergic synapses are most likely not those previously shown by our work to be persistently altered by addictive drugs and stress. Our work emphasises the idea that dopamine neuron excitability is controlled by diverse inhibitory inputs expected to exert varying degrees of inhibition and to participate differently in a range of behaviours.
Collapse
Affiliation(s)
- Abigail M. Polter
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
- current address: George Washington University, Department of Pharmacology and Physiology, Washington, DC 20037
- contributed equally
| | - Kelsey Barcomb
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
- contributed equally
| | - Ayumi C. Tsuda
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
| | - Julie A. Kauer
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
| |
Collapse
|
9
|
Konishi S. Pursuit of Neurotransmitter Functions: Being Attracted with Fascination of the Synapse. YAKUGAKU ZASSHI 2017; 137:459-475. [PMID: 28381725 DOI: 10.1248/yakushi.16-00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the beginning of the 1970s, only two chemical substances, acetylcholine and γ-aminobutyric acid (GABA), had been definitely established as neurotransmitters. Under such circumstances, I started my scientific career in Professor Masanori Otsuka's lab searching for the transmitter of primary sensory neurons. Until 1976, lines of evidence had accumulated indicating that the undecapeptide substance P could be released as a transmitter from primary afferent fibers into spinal synapses, although the substance P-mediated synaptic response had yet to be identified. Peripheral synapses could serve as a good model and thus, it was demonstrated in the prevertebral sympathetic ganglia by1985 that substance P released from axon collaterals of primary sensory neurons acts as the transmitter mediating non-cholinergic slow excitatory postsynaptic potential (EPSP). At that time, we also found that autonomic synapses were useful to uncover the transmitter role of the opioid peptide enkephalins, whose functions had been unknown since their discovery in 1975. Accordingly, enkephalins were found to serve a transmitter role in mediating presynaptic inhibition of cholinergic fast and non-cholinergic slow transmission in the prevertebral sympathetic ganglia. In 1990s, we attempted to devise a combined technique of brain slices and patch-clamp recordings. We applied it to study the regulatory mechanisms that operate around cerebellar GABAergic inhibitory synapses, because most of the studies then had centered on excitatory synapses and because inhibitory synapses are crucially involved in brain functions and disorders. Consequently, we discovered novel forms of heterosynaptic interactions, dual actions of a single transmitter, and receptor crosstalk, the details of which are described in this review.
Collapse
Affiliation(s)
- Shiro Konishi
- Department of Pharmacology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
10
|
Transmembrane AMPAR regulatory protein γ-2 is required for the modulation of GABA release by presynaptic AMPARs. J Neurosci 2015; 35:4203-14. [PMID: 25762667 DOI: 10.1523/jneurosci.4075-14.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic ionotropic glutamate receptors (iGluRs) play important roles in the control of synaptogenesis and neurotransmitter release, yet their regulation is poorly understood. In particular, the contribution of transmembrane auxiliary proteins, which profoundly shape the trafficking and gating of somatodendritic iGluRs, is unknown. Here we examined the influence of transmembrane AMPAR regulatory proteins (TARPs) on presynaptic AMPARs in cerebellar molecular layer interneurons (MLIs). 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a partial agonist at TARP-associated AMPARs, enhanced spontaneous GABA release in wild-type mice but not in stargazer mice that lack the prototypical TARP stargazin (γ-2). These findings were replicated in mechanically dissociated Purkinje cells with functional adherent synaptic boutons, demonstrating the presynaptic locus of modulation. In dissociated Purkinje cells from stargazer mice, AMPA was able to enhance mIPSC frequency, but only in the presence of the positive allosteric modulator cyclothiazide. Thus, ordinarily, presynaptic AMPARs are unable to enhance spontaneous release without γ-2, which is required predominantly for its effects on channel gating. Presynaptic AMPARs are known to reduce action potential-driven GABA release from MLIs. Although a G-protein-dependent non-ionotropic mechanism has been suggested to underlie this inhibition, paradoxically we found that γ-2, and thus AMPAR gating, was required. Following glutamate spillover from climbing fibers or application of CNQX, evoked GABA release was reduced; in stargazer mice such effects were markedly attenuated in acute slices and abolished in the dissociated Purkinje cell-nerve bouton preparation. We suggest that γ-2 association, by increasing charge transfer, allows presynaptic AMPARs to depolarize the bouton membrane sufficiently to modulate both phasic and spontaneous release.
Collapse
|
11
|
Mitoma H, Yoneda M, Saitow F, Suzuki H, Matsunaga A, Ikawa M, Mizusawa H. Presynaptic dysfunction caused by cerebrospinal fluid from a patient with the ataxic form of Hashimoto's encephalopathy. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/ncn3.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education; Tokyo Medical University; Tokyo Japan
| | - Makoto Yoneda
- Faculty of Nursing and Social Welfare Science; Fukui Prefectural University; Fukui Japan
| | - Fumihito Saitow
- Department of Pharmacology; Nippon Medical School; Tokyo Japan
| | - Hidenori Suzuki
- Department of Pharmacology; Nippon Medical School; Tokyo Japan
| | - Akiko Matsunaga
- Department of Neurology; University of Fukui Hospital; Fukui Japan
| | - Masamichi Ikawa
- Department of Neurology; University of Fukui Hospital; Fukui Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
12
|
Neuronal adaptation involves rapid expansion of the action potential initiation site. Nat Commun 2014; 5:3817. [PMID: 24851940 PMCID: PMC4050282 DOI: 10.1038/ncomms4817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022] Open
Abstract
Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma–axon recordings combined with axonal Na+ and Ca2+ imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na+ channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. Neuronal adaptation to repetitive stimuli is required for the correct functioning of neuronal networks. Here, the authors show that rapid expansion of the axonal spike-initiation site accompanied by local spike deceleration is the cell adaptation mechanism that responds to repetitive excitatory inputs.
Collapse
|
13
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
14
|
Shabani M, Mahnam A, Sheibani V, Janahmadi M. Alterations in the Intrinsic Burst Activity of Purkinje Neurons in Offspring Maternally Exposed to the CB1 Cannabinoid Agonist WIN 55212-2. J Membr Biol 2013; 247:63-72. [DOI: 10.1007/s00232-013-9612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
15
|
Kisfali M, Lrincz T, Vizi ES. Comparison of Ca2+ transients and [Ca2+]i in the dendrites and boutons of non-fast-spiking GABAergic hippocampal interneurons using two-photon laser microscopy and high- and low-affinity dyes. J Physiol 2013; 591:5541-53. [PMID: 23981718 DOI: 10.1113/jphysiol.2013.258863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using two-photon laser microscopy, high- and low-affinity dyes and patch clamp electrophysiology, we successfully measured somatic stimulation-evoked Ca(2+) transients simultaneously in the dendrites and axonal boutons of the same non-fast-spiking GABAergic interneurons in acute slice preparations obtained from hippocampal area CA1. The advantage of the acute preparation is that both neuronal connections and anatomy are maintained. Calculated as unperturbed values, the amplitudes of Ca(2+) transients and changes in [Ca(2+)]i in response to somatic single or burst stimulation were much higher in boutons (428 nM/AP) than in dendrites (49 nM/AP), leading to the conclusion that the much greater influx of Ca(2+) observed in terminals might be due to a higher density of N-type voltage-sensitive Ca(2+) channels compared to the L-type channels present in dendrites. Whereas the decay of Ca(2+) transients recorded in dendrites was primarily mono-exponential, the decay in boutons was bi-exponential, as indicated by an initial fast phase, followed by a much slower reduction in fluorescence intensity. The extrusion of Ca(2+) was much faster in boutons than in dendrites. To avoid saturation effects and the flawed conversion of fluorescence measures of [Ca(2+)]i, we assessed the limits of [Ca(2+)] measurements (which ranged between 6 and 82% of the applied dye saturation) when high- and low-affinity dyes were applied at different concentrations. When two APs were delivered at a high frequency (>3 Hz) of stimulation, the low-affinity indicators OGB-6F (KD = 3.0 μM) and OGB-5N (KD = 20 μM) were able to accurately reflect the changes in ΔF/F produced by the consecutive APs. There was no difference in the endogenous buffer capacity (κE), which can shape Ca(2+) signals, calculated in dendrites (κE = 354) or boutons (κE = 458).
Collapse
Affiliation(s)
- Máté Kisfali
- E. S. Vizi: Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony str. 43, Budapest, 1083 Hungary.
| | | | | |
Collapse
|
16
|
The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. J Neurosci 2013; 33:7811-24. [PMID: 23637173 DOI: 10.1523/jneurosci.5384-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm in the vicinity of stellate cell interneurons and Purkinje cell dendrites. The mechanisms used to maintain network excitability and Purkinje cell output in the face of this rapid change in calcium gradient have remained an enigma. Here we use single and dual patch recordings in an in vitro slice preparation of Sprague Dawley rats to investigate the effects of physiological decreases in [Ca](o) on the excitability of cerebellar stellate cells and their inhibitory regulation of Purkinje cells. We find that a Ca(v)3-K(v)4 ion channel complex expressed in stellate cells acts as a calcium sensor that responds to a decrease in [Ca]o by dynamically adjusting stellate cell output to maintain inhibitory charge transfer to Purkinje cells. The Ca(v)3-K(v)4 complex thus enables an adaptive regulation of inhibitory input to Purkinje cells during fluctuations in [Ca](o), providing a homeostatic control mechanism to regulate Purkinje cell excitability during repetitive afferent activity.
Collapse
|
17
|
Bats C, Farrant M, Cull-Candy SG. A role of TARPs in the expression and plasticity of calcium-permeable AMPARs: evidence from cerebellar neurons and glia. Neuropharmacology 2013; 74:76-85. [PMID: 23583927 PMCID: PMC3751754 DOI: 10.1016/j.neuropharm.2013.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 02/04/2023]
Abstract
The inclusion of GluA2 subunits has a profound impact on the channel properties of AMPA receptors (AMPARs), in particular rendering them impermeable to calcium. While GluA2-containing AMPARs are the most abundant in the central nervous system, GluA2-lacking calcium-permeable AMPARs are also expressed in wide variety of neurons and glia. Accumulating evidence suggests that the dynamic control of the GluA2 content of AMPARs plays a critical role in development, synaptic plasticity, and diverse neurological conditions ranging from ischemia-induced brain damage to drug addiction. It is thus important to understand the molecular mechanisms involved in regulating the balance of AMPAR subtypes, particularly the role of their co-assembled auxiliary subunits. The discovery of transmembrane AMPAR regulatory proteins (TARPs), initially within the cerebellum, has transformed the field of AMPAR research. It is now clear that these auxiliary subunits play a key role in multiple aspects of AMPAR trafficking and function in the brain. Yet, their precise role in AMPAR subtype-specific regulation has only recently received particular attention. Here we review recent findings on the differential regulation of calcium-permeable (CP-) and -impermeable (CI-) AMPARs in cerebellar neurons and glial cells, and discuss the critical involvement of TARPs in this process. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’. Calcium-permeable AMPARs are present in various cerebellar neurons and glial cells. The contribution of calcium-permeable AMPARs to transmission is dynamically regulated. TARPs influence the relative expression of AMPAR subtypes. Evidence suggests that TARPs play a role in calcium-permeable AMPAR plasticity.
Collapse
Affiliation(s)
- Cécile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
18
|
Abstract
Cerebellar Purkinje neurons receive synaptic inputs from three different sources: the excitatory parallel fibre and climbing fibre synapses as well as the inhibitory synapses from molecular layer stellate and basket cells. These three synaptic systems use distinct mechanisms in order to generate Ca(2+) signals that are specialized for specific modes of neurotransmitter release and post-synaptic signal integration. In this review, we first describe the repertoire of Ca(2+) regulatory mechanisms that generate and regulate the amplitude and timing of Ca(2+) fluxes during synaptic transmission and then explore how these mechanisms interact to generate the unique functional properties of each of the Purkinje neuron synapses.
Collapse
|
19
|
Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC. The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 2012; 302:F316-28. [DOI: 10.1152/ajprenal.00464.2011] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Na+- and Cl−-dependent GABA-betaine transporter (BGT1) has received attention mostly as a protector against osmolarity changes in the kidney and as a potential controller of the neurotransmitter GABA in the brain. Nevertheless, the cellular distribution of BGT1, and its physiological importance, is not fully understood. Here we have quantified mRNA levels using TaqMan real-time PCR, produced a number of BGT1 antibodies, and used these to study BGT1 distribution in mice. BGT1 (protein and mRNA) is predominantly expressed in the liver (sinusoidal hepatocyte plasma membranes) and not in the endothelium. BGT1 is also present in the renal medulla, where it localizes to the basolateral membranes of collecting ducts (particularly at the papilla tip) and the thick ascending limbs of Henle. There is some BGT1 in the leptomeninges, but brain parenchyma, brain blood vessels, ependymal cells, the renal cortex, and the intestine are virtually BGT1 deficient in 1- to 3-mo-old mice. Labeling specificity was assured by processing tissue from BGT1-deficient littermates in parallel as negative controls. Addition of 2.5% sodium chloride to the drinking water for 48 h induced a two- to threefold upregulation of BGT1, tonicity-responsive enhancer binding protein, and sodium- myo-inositol cotransporter 1 (slc5a3) in the renal medulla, but not in the brain and barely in the liver. BGT1-deficient and wild-type mice appeared to tolerate the salt treatment equally well, possibly because betaine is one of several osmolytes. In conclusion, this study suggests that BGT1 plays its main role in the liver, thereby complementing other betaine-transporting carrier proteins (e.g., slc6a20) that are predominantly expressed in the small intestine or kidney rather than the liver.
Collapse
Affiliation(s)
- Y. Zhou
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S. Holmseth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - R. Hua
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. C. Lehre
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. M. Olofsson
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I. Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de studios Avanzados del Instituto Politécnico Nacional, México City, Mexico; and
| | - S. A. Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - N. C. Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Combined computational and experimental approaches to understanding the Ca(2+) regulatory network in neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:569-601. [PMID: 22453961 DOI: 10.1007/978-94-007-2888-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca(2+) is a ubiquitous signaling ion that regulates a variety of neuronal functions by binding to and altering the state of effector proteins. Spatial relationships and temporal dynamics of Ca(2+) elevations determine many cellular responses of neurons to chemical and electrical stimulation. There is a wealth of information regarding the properties and distribution of Ca(2+) channels, pumps, exchangers, and buffers that participate in Ca(2+) regulation. At the same time, new imaging techniques permit characterization of evoked Ca(2+) signals with increasing spatial and temporal resolution. However, understanding the mechanistic link between functional properties of Ca(2+) handling proteins and the stimulus-evoked Ca(2+) signals they orchestrate requires consideration of the way Ca(2+) handling mechanisms operate together as a system in native cells. A wide array of biophysical modeling approaches is available for studying this problem and can be used in a variety of ways. Models can be useful to explain the behavior of complex systems, to evaluate the role of individual Ca(2+) handling mechanisms, to extract valuable parameters, and to generate predictions that can be validated experimentally. In this review, we discuss recent advances in understanding the underlying mechanisms of Ca(2+) signaling in neurons via mathematical modeling. We emphasize the value of developing realistic models based on experimentally validated descriptions of Ca(2+) transport and buffering that can be tested and refined through new experiments to develop increasingly accurate biophysical descriptions of Ca(2+) signaling in neurons.
Collapse
|
21
|
Lehre A, Rowley N, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson A, Poblete-Naredo I, Rusakov D, Madsen K, Clausen R, Schousboe A, White H, Danbolt N. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 2011; 95:70-81. [PMID: 21459558 PMCID: PMC3376448 DOI: 10.1016/j.eplepsyres.2011.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/02/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. Once released, it is removed from the extracellular space by cellular uptake catalyzed by GABA transporter proteins. Four GABA transporters (GAT1, GAT2, GAT3 and BGT1) have been identified. Inhibition of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test, and the i.v. pentylenetetrazol threshold test. We confirm that BGT1 mRNA is present in the brain, but find that the levels are several hundred times lower than those of GAT1 mRNA; possibly explaining the apparent lack of phenotype. In conclusion, the present results do not support a role for BGT1 in the control of seizure susceptibility and cannot provide a mechanistic understanding of the synergism that has been previously reported with tiagabine and EF1502.
Collapse
Affiliation(s)
- A.C. Lehre
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - N.M. Rowley
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - Y. Zhou
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - S. Holmseth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - C. Guo
- HHMI, Janelia Farm Research Campus, Ashburn, VA, USA
| | - T. Holen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - R. Hua
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - P. Laake
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A.M. Olofsson
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - I. Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F., Mexico
| | - D.A. Rusakov
- UCL Institute of Neurology, University College London, UK
| | - K.K. Madsen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - R.P. Clausen
- Department of medicinal chemistry, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - A. Schousboe
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - H.S. White
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - N.C. Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| |
Collapse
|
22
|
Pugh JR, Jahr CE. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci 2011; 31:565-74. [PMID: 21228165 PMCID: PMC3242478 DOI: 10.1523/jneurosci.4506-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 11/21/2022] Open
Abstract
We report that activation of GABA(A) receptors on cerebellar granule cell axons modulates both transmitter release and the excitability of the axon and soma. Axonal GABA(A) receptors depolarize the axon, increasing its excitability and causing calcium influx at axonal varicosities. GABA-mediated subthreshold depolarizations in the axon spread electrotonically to the soma, promoting orthodromic action potential initiation. When chloride concentrations are unperturbed, GABA iontophoresis elicits spikes and increases excitability of parallel fibers, indicating that GABA(A) receptor-mediated responses are normally depolarizing. GABA release from molecular layer interneurons activates parallel fiber GABA(A) receptors, and this, in turn, increases release probability at synapses between parallel fibers and molecular layer interneurons. These results describe a positive feedback mechanism whereby transmission from granule cells to Purkinje cells and molecular layer interneurons will be strengthened during granule cell spike bursts evoked by sensory stimulation.
Collapse
Affiliation(s)
- Jason R. Pugh
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Craig E. Jahr
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
23
|
Satake S, Song SY, Konishi S, Imoto K. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons. Eur J Neurosci 2010; 32:1843-53. [PMID: 21070388 DOI: 10.1111/j.1460-9568.2010.07469.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitters diffuse out of the synaptic cleft and act on adjacent synapses to exert concerted control of the synaptic strength within neural pathways that converge on single target neurons. The excitatory transmitter released from climbing fibers (CFs), presumably glutamate, is shown to inhibit γ-aminobutyric acid (GABA) release at basket cell (BC)-Purkinje cell (PC) synapses in the rat cerebellar cortex through its extrasynaptic diffusion and activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on BC axon terminals. This study aimed at examining how the CF transmitter-diffusion-mediated presynaptic inhibition is controlled by glutamate transporters. Pharmacological blockade of the PC-selective neuronal transporter EAAT4 markedly enhanced CF-induced inhibition of GABAergic transmission. Tetanic CF-stimulation elicited long-term potentiation of glutamate transporters in PCs, and thereby attenuated the CF-induced inhibition. Combined use of electrophysiology and immunohistochemistry revealed a significant inverse relationship between the level of EAAT4 expression and the inhibitory action of CF-stimulation on the GABA release at different cerebellar lobules - the CF-induced inhibition was profound in lobule III, where the EAAT4 expression level was low, whereas it was minimal in lobule X, where EAAT4 was abundant. The findings clearly demonstrate that the neuronal glutamate transporter EAAT4 in PCs plays a critical role in the extrasynaptic diffusion of CF transmitter - it appears not only to retrogradely determine the degree of CF-mediated inhibition of GABAergic inputs to the PC by controlling the glutamate concentration for intersynaptic diffusion, but also regulate synaptic information processing in the cerebellar cortex depending on its differential regional distribution as well as use-dependent plasticity of uptake efficacy.
Collapse
Affiliation(s)
- Shin'ichiro Satake
- Department of Information Physiology, National Institute for Physiological Sciences (NIPS), Myodaiji-cho, Okazaki, Japan
| | | | | | | |
Collapse
|
24
|
Kochlamazashvili G, Henneberger C, Bukalo O, Dvoretskova E, Senkov O, Lievens PMJ, Westenbroek R, Engel AK, Catterall WA, Rusakov DA, Schachner M, Dityatev A. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron 2010; 67:116-28. [PMID: 20624596 PMCID: PMC3378029 DOI: 10.1016/j.neuron.2010.05.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2010] [Indexed: 12/21/2022]
Abstract
Although the extracellular matrix plays an important role in regulating use-dependent synaptic plasticity, the underlying molecular mechanisms are poorly understood. Here we examined the synaptic function of hyaluronic acid (HA), a major component of the extracellular matrix. Enzymatic removal of HA with hyaluronidase reduced nifedipine-sensitive whole-cell Ca(2+) currents, decreased Ca(2+) transients mediated by L-type voltage-dependent Ca(2+) channels (L-VDCCs) in postsynaptic dendritic shafts and spines, and abolished an L-VDCC-dependent component of long-term potentiation (LTP) at the CA3-CA1 synapses in the hippocampus. Adding exogenous HA, either by bath perfusion or via local delivery near recorded synapses, completely rescued this LTP component. In a heterologous expression system, exogenous HA rapidly increased currents mediated by Ca(v)1.2, but not Ca(v)1.3, subunit-containing L-VDCCs, whereas intrahippocampal injection of hyaluronidase impaired contextual fear conditioning. Our observations unveil a previously unrecognized mechanism by which the perisynaptic extracellular matrix influences use-dependent synaptic plasticity through regulation of dendritic Ca(2+) channels.
Collapse
Affiliation(s)
- Gaga Kochlamazashvili
- Zentrum für Molekulare Neurobiologie Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 85, Hamburg 20251, Germany
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Morego 30, 16163 Genova, Italy
| | - Christian Henneberger
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olena Bukalo
- Zentrum für Molekulare Neurobiologie Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 85, Hamburg 20251, Germany
| | - Elena Dvoretskova
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Morego 30, 16163 Genova, Italy
| | - Oleg Senkov
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
- Department of Clinical Neurobiology, University of Heidelberg, Heidelberg 69120, Germany
| | - Patricia M.-J. Lievens
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Morego 30, 16163 Genova, Italy
| | - Ruth Westenbroek
- Department of Pharmacology, University of Washington, F427 HSB, Seattle, WA 98195, USA
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - William A. Catterall
- Department of Pharmacology, University of Washington, F427 HSB, Seattle, WA 98195, USA
| | - Dmitri A. Rusakov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 85, Hamburg 20251, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 85, Hamburg 20251, Germany
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Morego 30, 16163 Genova, Italy
| |
Collapse
|
25
|
Saftenku EÉ. Estimation of the Capacity of Heterogeneously Distributed Endogenous Calcium Buffers in a Neuron. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Paredes DA, Cartford MC, Catlow BJ, Samec A, Avilas M, George A, Schlunck A, Small B, Bickford PC. Neurotransmitter release during delay eyeblink classical conditioning: role of norepinephrine in consolidation and effect of age. Neurobiol Learn Mem 2009; 92:267-82. [PMID: 18809505 PMCID: PMC2752948 DOI: 10.1016/j.nlm.2008.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Delay classical eyeblink conditioning (EBC) is an important model of associative, cerebellar-dependent learning. Norepinephrine (NE) plays a significant modulatory role in the acquisition of learning; however, other neurotransmitters are also involved. The goal was to determine whether NE, gamma-aminobutyric acid (GABA) and glutamate (GLU) release are observed in cerebellar cortex during EBC, and whether such release was selectively associated with training. Further studies examined the role of the beta-noradrenergic receptor in consolidation of the learned response by local infusion of propranolol at 5-120 min following training into the cerebellar cortex. In vivo microdialysis coupled to EBC was performed to examine neurotransmitter release. An increase in the extracellular level of NE was observed during EBC and was maximal on day 1 and diminished in amplitude with subsequent days of training. No changes in baseline NE release were observed in pseudoconditioning indicating that NE release is directly related to the associative learning process. The extracellular levels of GABA were also increased selectively during paired training however, the magnitude of GABA release increased over days of training. GLU release was observed to increase during both paired and unpaired training, suggesting that learning does not occur prior to the information arriving in the cerebellum. When propranolol was administered at either 5-, 60-, or 120-min post-training, there was an inhibition of conditioned responses, these data support the hypothesis that NE is important for consolidation of learning. In another set of experiments we demonstrate that the timing of release of NE, GABA and glutamate are significantly delayed in onset and lengthened in duration in the 22-month-old F344 rats. Over days of training the timing of release becomes closer to the timing of training and this is associated with increased learning of conditioned responses in the aged rats.
Collapse
Affiliation(s)
- D A Paredes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
28
|
Scott R, Lalic T, Kullmann DM, Capogna M, Rusakov DA. Target-cell specificity of kainate autoreceptor and Ca2+-store-dependent short-term plasticity at hippocampal mossy fiber synapses. J Neurosci 2008; 28:13139-49. [PMID: 19052205 PMCID: PMC2691894 DOI: 10.1523/jneurosci.2932-08.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/09/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022] Open
Abstract
Presynaptic kainate receptors (KARs) modulate transmission between dentate granule cells and CA3 pyramidal neurons. Whether presynaptic KARs affect other synapses made by granule cell axons [mossy fibers (MFs)], on hilar mossy cells or interneurons, is not known. Nor is it known whether glutamate release from a single MF is sufficient to activate these receptors. Here, we monitor Ca(2+) in identified MF boutons traced from granule cell bodies. We show that a single action potential in a single MF activates both presynaptic KARs and Ca(2+) stores, contributing to use-dependent facilitation at MF-CA3 pyramidal cell synapses. Rapid local application of kainate to the giant MF bouton has no detectable effect on the resting Ca(2+) but facilitates action-potential-evoked Ca(2+) entry through a Ca(2+) store-dependent mechanism. Localized two-photon uncaging of the Ca(2+) store receptor ligand IP(3) directly confirms the presence of functional Ca(2+) stores at these boutons. In contrast, presynaptic Ca(2+) kinetics at MF synapses on interneurons or mossy cells are insensitive to KAR blockade, to local kainate application or to photolytic release of IP(3). Consistent with this, postsynaptic responses evoked by activation of a single MF show KAR-dependent paired-pulse facilitation in CA3 pyramidal cells, but not in interneurons or mossy cells. Thus, KAR-Ca(2+) store coupling acts as a synapse-specific, short-range autoreceptor mechanism.
Collapse
Affiliation(s)
- Ricardo Scott
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Tatjana Lalic
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford OX1 3TH, United Kingdom
| | - Dimitri M. Kullmann
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Marco Capogna
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford OX1 3TH, United Kingdom
| | - Dmitri A. Rusakov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| |
Collapse
|
29
|
Christie JM, Jahr CE. Dendritic NMDA receptors activate axonal calcium channels. Neuron 2008; 60:298-307. [PMID: 18957221 PMCID: PMC2644657 DOI: 10.1016/j.neuron.2008.08.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/20/2008] [Accepted: 08/29/2008] [Indexed: 11/23/2022]
Abstract
NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca(2+) and monovalent cations, they could alter release directly by increasing presynaptic Ca(2+) or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca(2+) channels (VSCCs). Using two-photon microscopy to measure Ca(2+) excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca(2+) transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca(2+) entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons, indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca(2+) -dependent forms of presynaptic plasticity and release.
Collapse
Affiliation(s)
- Jason M Christie
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
30
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
31
|
Rossi B, Maton G, Collin T. Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurones. J Physiol 2008; 586:5129-45. [PMID: 18772200 DOI: 10.1113/jphysiol.2008.159921] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Axons of cerebellar molecular layer interneurones (MLIs) bear ionotropic glutamate receptors. Here, we show that these receptors elicit cytosolic [Ca2+] transients in axonal varicosities following glutamate spillover induced by stimulation of parallel fibres (PFs). A spatial profile analysis indicates that these transients occur at the same locations when induced by PF stimulation or trains of action potentials. They are not affected by the NMDAR antagonist AP-V, but are abolished by the AMPAR inhibitor GYKI-53655. Mimicking glutamate spillover by a puff of AMPA triggers axonal [Ca2+]i transients even in the presence of TTX. Addition of specific voltage-dependent Ca2+ channel (VDCC) blockers such as omega-AGAIVA and omega-conotoxin GVIA or broad range inhibitors such as Cd2+ did not significantly inhibit the signal indicating the involvement of Ca2+-permeable AMPARs. This hypothesis is further supported by the finding that the subunit specific AMPAR antagonist IEM-1460 blocks 75% of the signal. Bath application of AMPA increases the frequency and mean peak amplitude of GABAergic mIPSCs, an effect that is blocked by philanthotoxin-433 (PhTx) and reinforced by facilitating concentrations of ryanodine. By contrast, a high concentration of ryanodine or dantrolene reduced the effects of AMPA on mIPSCs. Single-cell RT-PCR experiments show that all GluR1-4 subunits are potentially expressed in MLI. Taken together, the results suggest that Ca2+-permeable AMPARs are colocalized with VDCCs in axonal varicosities and can be activated by glutamate spillover through PF stimulation. The AMPAR-mediated Ca2+ signal is amplified by Ca2+-induced Ca2+ release from intracellular stores, leading to GABA release by MLIs.
Collapse
Affiliation(s)
- Bénédicte Rossi
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France
| | | | | |
Collapse
|
32
|
Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008; 9:423-36. [PMID: 18464791 DOI: 10.1038/nrn2379] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.
Collapse
Affiliation(s)
- Paulo S Pinheiro
- Laboratoire Physiologie Cellulaire de la Synapse, Centre National de la Recherche Scientifique Unite mixte de recherche 5091, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux, France
| | | |
Collapse
|
33
|
Astori S, Köhr G. Sustained granule cell activity disinhibits juvenile mouse cerebellar stellate cells through presynaptic mechanisms. J Physiol 2007; 586:575-92. [PMID: 18033809 DOI: 10.1113/jphysiol.2007.146522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA release from cerebellar molecular layer interneurons can be modulated by presynaptic glutamate and/or GABA B receptors upon perfusing the respective agonists. However, it is unclear how release and potential spillover of endogenous transmitter lead to activation of presynaptic receptors. High frequency firing of granule cells, as observed in vivo upon sensory stimulation, could lead to glutamate and/or GABA spillover. Here, we established sustained glutamatergic activity in the granule cell layer of acute mouse cerebellar slices and performed 190 paired recordings from connected stellate cells. Train stimulation at 50 Hz reduced by about 30% the peak amplitude of IPSCs evoked by brief depolarization of the presynaptic cell in 2-week-old mice. A presynaptic mechanism was indicated by changes in failure rate, paired-pulse ratio and coefficient of variation of evoked IPSCs. Furthermore, two-photon Ca2+ imaging in identified Ca2+ hot spots of stellate cell axons confirmed reduced presynaptic Ca2+ influx after train stimulation within the granular layer. Pharmacological experiments indicated that glutamate released from parallel fibres activated AMPARs in stellate cells, evoking GABA release from surrounding cells. Consequential GABA spillover activated presynaptic GABA B Rs, which reduced the amplitude of eIPSCs. Two-thirds of the total disinhibitory effect were mediated by GABA B Rs, one-third being attributable to presynaptic AMPARs. This estimation was confirmed by the observation that bath applied baclofen induced a more pronounced reduction of evoked IPSCs than kainate. Granule cell-mediated disinhibition persisted at near-physiological temperature but was strongly diminished in 3-week-old mice. At this age, GABA release probability was not reduced and presynaptic GABA B Rs were still detectable, but GABA uptake appeared to be advanced, attenuating GABA spillover. Thus, sustained granule cell activity modulates stellate cell-to-stellate cell synapses, involving transmitter spillover during a developmentally restricted period.
Collapse
Affiliation(s)
- Simone Astori
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Liu SJ. Biphasic Modulation of GABA Release From Stellate Cells by Glutamatergic Receptor Subtypes. J Neurophysiol 2007; 98:550-6. [PMID: 17537903 DOI: 10.1152/jn.00352.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The release of inhibitory transmitters from CNS neurons can be modulated by ionotropic glutamate receptors that are present in the presynaptic terminals. In the cerebellum, glutamate released from climbing fibers (but not from parallel fibers) activates presynaptic AMPA receptors and suppresses the release of the inhibitory transmitter GABA from basket cells onto postsynaptic Purkinje cells. This input-specific modulation has been attributed to the close proximity of the climbing fibers to the axons of the basket cells. Our recent work indicates that glutamate released from parallel fibers can “spill over” and reach the axons of stellate cells. Here I test the possibility that this spillover glutamate can activate presynaptic AMPA receptors in stellate cells and in this way modulate their release of GABA. I find that stimulation of parallel fibers activates AMPA receptors and transiently suppresses autoreceptor and autaptic GABAergic currents in stellate cells. Activation of AMPA receptors reduces the release of GABA and the suppression occurs more frequently in immature cells that have a high release probability. By contrast the release of GABA from mature stellate cells that have a low release probability is potentiated by the activation of NMDA-type glutamate receptors on presynaptic terminals. Thus during development, the glutamatergic modulation of GABA release switches from an AMPA-receptor–mediated transient suppression to a NMDA-receptor–induced lasting potentiation.
Collapse
Affiliation(s)
- Siqiong June Liu
- Department of Biology, Mueller Laboratory, Penn State University, State College, PA 16802, USA.
| |
Collapse
|
35
|
Santamaria F, Tripp PG, Bower JM. Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 2006; 97:248-63. [PMID: 17050824 DOI: 10.1152/jn.01098.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential "beamlike" activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.
Collapse
Affiliation(s)
- Fidel Santamaria
- Research Imaging Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-6240, USA
| | | | | |
Collapse
|
36
|
Abstract
Classically, a high-power association relates the neurotransmitter release probability to the concentration of presynaptic Ca2+. Activated by the action potential waveform, voltage-gated Ca2+ channels mediate Ca2+entry into presynaptic terminals. Inside the terminal, Ca2+ ions rapidly bind to endogenous intracellular buffers and could trigger Ca2+ release from internal Ca2+ stores. The resulting space-time profile of free Ca2+ determines the time course and probability of neurotransmitter release through the interaction with molecular release triggers strategically located in the vicinity of release sites. Following a rapid concentration transient, excess Ca2+ has to be removed from the cytosol through the process involving Ca2+ uptake by the endoplasmatic reticulum stores, sequestration by mitochondria, and/or extrusion into the extracellular medium. The ongoing synaptic activity could affect any of the multiple factors that shape presynaptic Ca2+ dynamics, thus arbitrating use-dependent modification of the neurotransmitter release probability. Here we present an overview of major players involved in Ca2+-dependent presynaptic regulation of neurotransmitter release and discuss the relationships arising between their actions.
Collapse
|
37
|
Scott R, Rusakov DA. Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J Neurosci 2006; 26:7071-81. [PMID: 16807336 PMCID: PMC2684687 DOI: 10.1523/jneurosci.0946-06.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission between hippocampal mossy fibers (MFs) and CA3 pyramidal cells exhibits remarkable use-dependent plasticity. The underlying presynaptic mechanisms, however, remain poorly understood. Here, we have used fluorescent Ca2+ indicators Fluo-4, Fluo-5F, and Oregon Green BAPTA-1 to investigate Ca2+ dynamics in individual giant MF boutons (MFBs) in area CA3 traced from the somata of granule cells held in whole-cell mode. In an individual MFB, a single action potential induces a brief peak of free Ca2+ (estimated in the range of 8-9 microm) followed by an elevation to approximately 320 nm, which slowly decays to its resting level of approximately 110 nm. Changes in the somatic membrane potential influence presynaptic Ca2+ entry at proximal MFBs in the hilus. This influence decays with distance along the axon, with a length constant of approximately 200 microm. In giant MFBs in CA3, progressive saturation of endogenous Ca2+ buffers during repetitive spiking amplifies rapid Ca2+ peaks and the residual Ca2+ severalfold, suggesting a causal link to synaptic facilitation. We find that internal Ca2+ stores contribute to maintaining the low resting Ca2+ providing approximately 22% of the buffering/extrusion capacity of giant MFBs. Rapid Ca2+ release from stores represents up to 20% of the presynaptic Ca2+ transient evoked by a brief train of action potentials. The results identify the main components of presynaptic Ca2+ dynamics at this important cortical synapse.
Collapse
|
38
|
Satake S, Song SY, Cao Q, Satoh H, Rusakov DA, Yanagawa Y, Ling EA, Imoto K, Konishi S. Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurosci 2006; 26:2278-89. [PMID: 16495455 PMCID: PMC3375000 DOI: 10.1523/jneurosci.4894-05.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/31/2022] Open
Abstract
The climbing fiber (CF) neurotransmitter not only excites the postsynaptic Purkinje cell (PC) but also suppresses GABA release from inhibitory interneurons converging onto the same PC depending on AMPA-type glutamate receptor (AMPAR) activation. Although the CF-/AMPAR-mediated inhibition of GABA release provides a likely mechanism boosting the CF input-derived excitation, how the CF transmitter reaches target AMPARs to elicit this action remains unknown. Here, we report that the CF transmitter diffused from its release sites directly targets GluR2/GluR3 AMPARs on interneuron terminals to inhibit GABA release. A weak GluR3-AMPAR agonist, bromohomoibotenic acid, produced excitatory currents in the postsynaptic PCs without presynaptic inhibitory effect on GABAergic transmission. Conversely, a specific inhibitor of the GluR2-lacking/Ca2+-permeable AMPARs, philanthotoxin-433, did not affect the CF-induced inhibition but suppressed AMPAR-mediated currents in Bergmann glia. A low-affinity GluR antagonist, gamma-D-glutamylglycine, or retardation of neurotransmitter diffusion by dextran reduced the inhibitory action of CF-stimulation, whereas blockade of glutamate transporters enhanced the CF-induced inhibition. The results suggest that the CF transmitter released after repeated stimulation overwhelms local glutamate uptake and thereby diffuses from the release site to reach GluR2/GluR3 AMPARs on nearby interneuron terminals. Double immunostaining showed that GluR2/3 subunits and glutamate decarboxylase or synaptophysin are colocalized at the perisomatic GABAergic processes surrounding PCs. Finally, electron microscopy detected specific immunoreactivity for GluR2/3 at the presynaptic terminals of symmetric axosomatic synapses on the PC. These findings demonstrate that the CF transmitter directly inhibits GABA release from interneurons to the PC, relying on extrasynaptic diffusion and local heterogeneity in AMPAR subunit compositions.
Collapse
|