1
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Filchenko I, Eberhard-Moscicka AK, Picard JL, Schmidt MH, Aktan Süzgün M, Wiest R, Bernasconi C, Gutierrez Herrera C, Bassetti CLA. Thalamic Stroke and Sleep Study: Sleep-Wake, Autonomic Regulation, and Cognition. Stroke 2025; 56:1528-1541. [PMID: 40135332 DOI: 10.1161/strokeaha.124.049156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Thalamic stroke (TS) often presents with complex clinical manifestations, including sleep-wake disturbances, cognitive deficits, and autonomic dysregulation, yet the interaction between these functional alterations remains poorly understood. We aimed to investigate these interactions in a case-control lesion study. METHODS Patients with acute TS and no-stroke controls were included prospectively in this study. The data were collected from June 2020 to September 2022 at the stroke unit or sleep laboratory of the Inselspital (Bern). Sleep-wake variables (questionnaires, actigraphy, polysomnography including electroencephalography-based sleep macroarchitecture and microarchitecture, and analysis of electroencephalography spectral power), nocturnal heart rate variability, and cognition (5 tests: processing speed, attention, working memory, visual memory, and verbal memory) were assessed at study inclusion (within 5 days poststroke for patients with stroke). RESULTS Data from 16 patients with TS and 32 control volunteers were analyzed. All patients with stroke had lesions of the ventral nuclei, while 9 of 16 patients with stroke also had lesions in the mediodorsal nucleus (1 bilateral). TS was characterized by long sleep duration and high nocturnal heart rate variability with parasympathetic dominance. The alterations in sleep electroencephalography included a decrease in cyclic alternating pattern index, slow spindle density, the quantity of isolated sawtooth wave segments, and electroencephalography spectral power predominantly affecting the alpha band. The mediodorsal lesions were associated with a decrease in sleep spindle amplitude and slow wave amplitude and with an increase in phasic rapid eye movement sleep. Furthermore, patients with TS had deficits in processing speed, working memory, and verbal memory, mostly pronounced in patients with mediodorsal lesions. In a combined data set, multiple correlations were observed between sleep-wake, autonomic, and cognitive parameters, many of which depended on the presence of a TS. CONCLUSIONS These findings emphasize the role of the thalamus in the regulation of sleep-wake, autonomic, and cognitive functions and their interactions and provide the theoretical basis for the therapies targeting the thalamus.
Collapse
Affiliation(s)
- Irina Filchenko
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Graduate School for Health Sciences (I.F.), University of Bern, Switzerland
| | - Aleksandra Katarzyna Eberhard-Moscicka
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Department of Psychology (A.K.E.-M.), University of Bern, Switzerland
| | - Jasmine Lea Picard
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Markus Helmut Schmidt
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Merve Aktan Süzgün
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Center for Sleep Medicine, Department of Neurology, Medical University of Innsbruck, Austria (M.A.S.)
| | - Roland Wiest
- Department of Neuroradiology (R.W.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Corrado Bernasconi
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Carolina Gutierrez Herrera
- Center of Experimental Neurology (C.G.H.), Bern University Hospital, University of Bern, Switzerland
- Department of Biomedical Research (C.G.H.), Bern University Hospital, University of Bern, Switzerland
| | - Claudio Lino Alberto Bassetti
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| |
Collapse
|
3
|
Hatori S, Yamaguchi ST, Kobayashi R, Okamoto K, Zhou Z, Kotake KT, Matsui F, Hioki H, Norimoto H. Sleep homeostasis in lizards and the role of the cortex. Proc Natl Acad Sci U S A 2025; 122:e2415929122. [PMID: 40244675 PMCID: PMC12037050 DOI: 10.1073/pnas.2415929122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Slow-wave sleep (SWS) and rapid eye movement sleep are the two primary components of electrophysiological sleep (e-sleep) in mammals and birds. Slow waves in the cortex not only characterize SWS but are also used as biological markers for sleep homeostasis, given their rebound after sleep deprivation (SD). Recently, it has been reported that the Australian dragon Pogona vitticeps exhibits a two-stage sleep pattern in the dorsal ventricular ridge (DVR), which includes a homologue of the mammalian claustrum (CLA). It remains unclear whether reptilian e-sleep, which has been characterized by activity outside the cortex, compensates for sleep loss, as observed in mammals. We here report a significant rebound in the local field potential (LFP) after 7 h of SD. Meanwhile, the mean bout length of each sleep state remained unaffected. We further investigated a possible role of the cortex in e-sleep regulation and homeostasis in Pogona and found that although a corticotomy had no obvious effect on the LFP features of baseline sleep, it abolished LFP power rebound in the CLA/DVR after SD. These findings suggest that e-sleep homeostasis is a common feature in amniotes and that the cortex is involved in regulating activity rebounds in reptiles and mammals.
Collapse
Affiliation(s)
- Sena Hatori
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Sho T. Yamaguchi
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Riho Kobayashi
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Graduate School of Medicine, Juntendo University, Tokyo113-8421, Japan
| | - Zhiwen Zhou
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Koki T. Kotake
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Futaba Matsui
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Graduate School of Medicine, Juntendo University, Tokyo113-8421, Japan
| | - Hiroaki Norimoto
- Laboratory for Neuroethology, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| |
Collapse
|
4
|
Okabe N, Wei X, Abumeri F, Batac J, Hovanesyan M, Dai W, Azarapetian S, Campagna J, Pilati N, Marasco A, Alvaro G, Gunthorpe MJ, Varghese J, Cramer SC, Mody I, Carmichael ST. Parvalbumin interneurons regulate rehabilitation-induced functional recovery after stroke and identify a rehabilitation drug. Nat Commun 2025; 16:2556. [PMID: 40089466 PMCID: PMC11910580 DOI: 10.1038/s41467-025-57860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Motor disability is a critical impairment in stroke patients. Rehabilitation has a limited effect on recovery; but there is no medical therapy for post-stroke recovery. The biological mechanisms of rehabilitation in the brain remain unknown. Here, using a photothrombotic stroke model in male mice, we demonstrate that rehabilitation after stroke selectively enhances synapse formation in presynaptic parvalbumin interneurons and postsynaptic neurons in the rostral forelimb motor area with axonal projections to the caudal forelimb motor area where stroke was induced (stroke-projecting neuron). Rehabilitation improves motor performance and neuronal functional connectivity, while inhibition of stroke-projecting neurons diminishes motor recovery. Stroke-projecting neurons show decreased dendritic spine density, reduced external synaptic inputs, and a lower proportion of parvalbumin synapse in the total GABAergic input. Parvalbumin interneurons regulate neuronal functional connectivity, and their activation during training is necessary for recovery. Furthermore, gamma oscillation, a parvalbumin-regulated rhythm, is increased with rehabilitation-induced recovery in animals after stroke and stroke patients. Pharmacological enhancement of parvalbumin interneuron function improves motor recovery after stroke, reproducing rehabilitation recovery. These findings identify brain circuits that mediate rehabilitation-recovery and the possibility for rational selection of pharmacological agents to deliver the first molecular-rehabilitation therapeutic.
Collapse
Affiliation(s)
- Naohiko Okabe
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Xiaofei Wei
- Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Farah Abumeri
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jonathan Batac
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Mary Hovanesyan
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Weiye Dai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Srbui Azarapetian
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jesus Campagna
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Agostino Marasco
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Giuseppe Alvaro
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Martin J Gunthorpe
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - John Varghese
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Steven C Cramer
- Department of Neurology, UCLA, California Rehabilitation Institute, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Canonichesi J, Bellingacci L, Rivelli F, Tozzi A. Enhancing sleep quality in synucleinopathies through physical exercise. Front Cell Neurosci 2025; 19:1515922. [PMID: 39959465 PMCID: PMC11825755 DOI: 10.3389/fncel.2025.1515922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.
Collapse
Affiliation(s)
| | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Gardani M, Baylan S, Zouhar V. Preliminary feasibility and efficacy of a brief behavioural treatment for insomnia after acquired brain injury: A case series. J Sleep Res 2025:e14441. [PMID: 39789696 DOI: 10.1111/jsr.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Insomnia after acquired brain injury (ABI) is common and can negatively impact an individual's rehabilitation, recovery, and quality of life. The present study investigated the feasibility and preliminary efficacy of a Brief Behavioural Treatment for Insomnia (BBTI) in a community sample following ABI. Ten participants were recruited. Seven participants attended four weekly sessions of BBTI and kept a daily sleep diary. Participants completed a semi-structured sleep interview at baseline and self-report measures of sleep, anxiety, and depression pre- and post-treatment as well as a treatment acceptability questionnaire post-treatment. Follow-up data were collected at 1-, 2-, and 3-months post-treatment. Visual analyses of the data were performed on a case-by-case basis. Five of the seven participants (71%) no longer met the criteria for insomnia disorder on the Sleep Condition Indicator (SCI) post-treatment. Treatment effects on sleep outcomes were either maintained or augmented at follow-ups. BBTI was found to be well tolerated, as evidenced by the high overall retention rates (70%) and positive feedback on the treatment acceptability questionnaire. These results provide preliminary evidence of BBTI being both feasible to use and potentially efficacious in individuals with post-brain-injury insomnia. Larger-scale randomised controlled trials are needed to establish the effectiveness of BBTI following ABI.
Collapse
Affiliation(s)
- Maria Gardani
- Department of Clinical and Health Psychology, School of Health in Social Science, The University of Edinburgh, Edinburgh, UK
| | - Satu Baylan
- Department of Clinical and Health Psychology, School of Health in Social Science, The University of Edinburgh, Edinburgh, UK
- Regional Neuropsychology Service, NHS Greather Glasgow and Clyde, Glasgow, UK
| | - Veronika Zouhar
- Department of Clinical and Health Psychology, School of Health in Social Science, The University of Edinburgh, Edinburgh, UK
- NHS Lothian, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
7
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Tscherpel C, Mustin M, Massimini M, Paul T, Ziemann U, Fink GR, Grefkes C. Local neuronal sleep after stroke: The role of cortical bistability in brain reorganization. Brain Stimul 2024; 17:836-846. [PMID: 39019396 DOI: 10.1016/j.brs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Acute cerebral ischemia triggers a number of cellular mechanisms not only leading to excitotoxic cell death but also to enhanced neuroplasticity, facilitating neuronal reorganization and functional recovery. OBJECTIVE Transferring these cellular mechanisms to neurophysiological correlates adaptable to patients is crucial to promote recovery post-stroke. The combination of TMS and EEG constitutes a promising readout of neuronal network activity in stroke patients. METHODS We used the combination of TMS and EEG to investigate the development of local signal processing and global network alterations in 40 stroke patients with motor deficits alongside neural reorganization from the acute to the chronic phase. RESULTS We show that the TMS-EEG response reflects information about reorganization and signal alterations associated with persistent motor deficits throughout the entire post-stroke period. In the early post-stroke phase and in a subgroup of patients with severe motor deficits, TMS applied to the lesioned motor cortex evoked a sleep-like slow wave response associated with a cortical off-period, a manifestation of cortical bistability, as well as a rapid disruption of the TMS-induced formation of causal network effects. Mechanistically, these phenomena were linked to lesions affecting ascending activating brainstem fibers. Of note, slow waves invariably vanished in the chronic phase, but were highly indicative of a poor functional outcome. CONCLUSION In summary, we found evidence that transient effects of sleep-like slow waves and cortical bistability within ipsilesional M1 resulting in excessive inhibition may interfere with functional reorganization, leading to a less favorable functional outcome post-stroke, pointing to a new therapeutic target to improve recovery of function.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Maike Mustin
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marcello Massimini
- Department of Biomedical and Clinical Science 'L. Sacco', University Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Theresa Paul
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Sheybani L, Vivekananda U, Rodionov R, Diehl B, Chowdhury FA, McEvoy AW, Miserocchi A, Bisby JA, Bush D, Burgess N, Walker MC. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat Commun 2023; 14:7397. [PMID: 38036557 PMCID: PMC10689494 DOI: 10.1038/s41467-023-42971-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - James A Bisby
- Division of Psychiatry, University College London, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Neil Burgess
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
11
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. Front Neurol 2023; 14:1243575. [PMID: 38099067 PMCID: PMC10719949 DOI: 10.3389/fneur.2023.1243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
- Benjamin K. Simpson
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rohit Rangwani
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aamir Abbasi
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeffrey M. Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chrystal M. Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289359. [PMID: 37205348 PMCID: PMC10187327 DOI: 10.1101/2023.05.01.23289359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Zeng G, Zhou Y, Yang Y, Ruan L, Tan L, Luo H, Ruan J. Neural oscillations after acute large artery atherosclerotic cerebral infarction during resting state and sleep spindles. J Sleep Res 2023; 32:e13889. [PMID: 36944554 DOI: 10.1111/jsr.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Electroencephalogram-microstate analysis was conducted using low-resolution electromagnetic tomography (LORETA)-KEY to evaluate dynamic brain network changes in patients with acute large artery atherosclerotic cerebral infarction (LAACI) during the rest and sleep stages. This study included 35 age- and sex-matched healthy controls and 34 patients with acute LAACI. Each participant performed a 3-h, 19-channel video electroencephalogram test. Subsequently, 20 epochs of 2-s sleep spindles during stage N2 sleep and five epochs of 10-s electroencephalogram data in the resting state for each participant were obtained. In both the resting state and sleep spindles, patients with LAACI displayed altered neural oscillations. The parameters of microstate A (coverage, occurrence, and duration) increased during the resting state in the patients with LAACI compared with healthy controls. The coverage and occurrence of microstate B and D were reduced in the LAACI group compared with the healthy controls (p < 0.05). Moreover, during sleep spindles, the duration of microstate A and the transition probability from microstate A and B to C decreased, but the coverage of microstate B and the transition rate from microstate B to D increased (p < 0.05) in the LAACI group compared with the healthy controls. These results enable better understanding of how neural oscillations are modified in patients with LAACI during the resting state and sleep spindles. Following LAACI, the dynamic brain network undergoes changes during sleep spindles and the resting state. Continued long-term investigations are required to determine how well these changes in brain dynamics reflect the clinical characteristics of patients with LAACI.
Collapse
Affiliation(s)
- Guoli Zeng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurology, Luzhou People's Hospital, Luzhou, China
| | - Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
14
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
15
|
Wan Q, Liu K, Wang X, Luo S, Yuan X, Wang C, Jiang J, Wu W. The top 100 most cited papers in insomnia: A bibliometric analysis. Front Psychiatry 2023; 13:1040807. [PMID: 36683985 PMCID: PMC9845786 DOI: 10.3389/fpsyt.2022.1040807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Objective The number of citations to a paper represents the weight of that work in a particular area of interest. Several highly cited papers are listed in the bibliometric analysis. This study aimed to identify and analyze the 100 most cited papers in insomnia research that might appeal to researchers and clinicians. Methods We reviewed the Web of Science (WOS) Core Collection database to identify articles from 1985 to 24 March 2022. The R bibliometric package was used to further analyze citation counts, authors, year of publication, source journal, geographical origin, subject, article type, and level of evidence. Word co-occurrence in 100 articles was visualized using VOS viewer software. Results A total of 44,654 manuscripts were searched on the Web of Science. Between 2001 and 2021, the top 100 influential manuscripts were published, with a total citation frequency of 38,463. The top countries and institutions contributing to the field were the U.S. and Duke University. Morin C.M. was the most productive author, ranking first in citations. Sleep had the highest number of manuscripts published in the top 100 (n = 31), followed by Sleep Medicine Reviews (n = 9). The most cited manuscript (Bastien et al., Sleep Medicine, 2001; 3,384 citations) reported clinical validation of the Insomnia Severity Index (ISI) as a brief screening indicator for insomnia and as an outcome indicator for treatment studies. Co-occurrence analyses suggest that psychiatric disorders combined with insomnia and cognitive behavioral therapy remain future research trends. Conclusion This study provides a detailed list of the most cited articles on insomnia. The analysis provides researchers and clinicians with a detailed overview of the most cited papers on insomnia over the past two decades. Notably, COVID-19, anxiety, depression, CBT, and sleep microstructure are potential areas of focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenzhong Wu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Bozic I, Rusterholz T, Mikutta C, Del Rio-Bermudez C, Nissen C, Adamantidis A. Coupling between the prelimbic cortex, nucleus reuniens, and hippocampus during NREM sleep remains stable under cognitive and homeostatic demands. Eur J Neurosci 2023; 57:106-128. [PMID: 36310348 DOI: 10.1111/ejn.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.
Collapse
Affiliation(s)
- Ivan Bozic
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carlos Del Rio-Bermudez
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Ruch S, Schmidig FJ, Knüsel L, Henke K. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 2022; 264:119682. [PMID: 36240988 DOI: 10.1016/j.neuroimage.2022.119682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations.
Collapse
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Otfried-Müller-Str. 45, Tübingen 72076, Germany; Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Flavio Jean Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Leona Knüsel
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Li H, Han Y, Sheng F, Kong F, Dong J. Influence and significance of bilateral upper-extremity training on recovery of upper-extremity motor function for hemiplegic patients with mild-moderate cerebral apoplexy: a randomised controlled study. Afr Health Sci 2022; 22:375-382. [PMID: 36910402 PMCID: PMC9993293 DOI: 10.4314/ahs.v22i3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The recovery of coordination ability of both hands is conductive to improving the activity of daily living for hemiplegic patients. Objective To explore the influence and significance of bilateral upper-extremity training on recovery of upper-extremity motor function for hemiplegic patients with mild-moderate cerebral apoplexy. Methods Patients were divided into control group and experimental group. The patients in the control group only exercised the upper limbs on the affected side, while the patients in the experimental group exercised the upper limbs on both sides. The Fugl Mayer Assessment Upper Extremity Scale (FMA-UE), Upper Extermities Functional Test (UEFT), modified Barthel index (MBI) and Brunnstrom scores were evaluated in the two groups before and after treatment. Results After four weeks, six weeks and eight weeks of treatment, scores of FMA-UE, UEFT, MBI and Brunnstrom for patients increased with the extension of training time, and FMA-UE, UEFT, MBI and Brunnstrom scores for patients of the two groups after four weeks six weeks and eight weeks of treatment showed a significant difference (P<0.05). Conclusion The improvement of upper-extremity motor function can be facilitated via relatively conventional training of bilateral upper-extremity training adopted by hemiplegic patients with mild-moderate cerebral apoplexy.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Yuanyuan Han
- Department of Rehabilitation Medicine, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Feng Sheng
- Department of Rehabilitation Medicine, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Fanliang Kong
- Department of Rehabilitation Medicine, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Jing Dong
- Department of Rehabilitation Medicine, Affiliated Hospital of Jilin Medical College, Jilin, China
| |
Collapse
|
20
|
Chen PW, O’Brien MK, Horin AP, McGee Koch LL, Lee JY, Xu S, Zee PC, Arora VM, Jayaraman A. Sleep Monitoring during Acute Stroke Rehabilitation: Toward Automated Measurement Using Multimodal Wireless Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:6190. [PMID: 36015951 PMCID: PMC9414899 DOI: 10.3390/s22166190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sleep plays a critical role in stroke recovery. However, there are limited practices to measure sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality. Wireless, body-worn sensors offer a solution for continuous sleep monitoring. In this study, we explored the feasibility of (1) collecting overnight biophysical data from patients with subacute stroke using a simple sensor system and (2) constructing machine-learned algorithms to detect sleep stages. Ten individuals with stroke in an inpatient rehabilitation hospital wore two wireless sensors during a single night of sleep. Polysomnography served as ground truth to classify different sleep stages. A population model, trained on data from multiple patients and tested on data from a separate patient, performed poorly for this limited sample. Personal models trained on data from one patient and tested on separate data from the same patient demonstrated markedly improved performance over population models and research-grade wearable devices to detect sleep/wake. Ultimately, the heterogeneity of biophysical signals after stroke may present a challenge in building generalizable population models. Personal models offer a provisional method to capture high-resolution sleep metrics from simple wearable sensors by leveraging a single night of polysomnography data.
Collapse
Affiliation(s)
- Pin-Wei Chen
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | - Megan K. O’Brien
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - Adam P. Horin
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | - Lori L. McGee Koch
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | | | - Shuai Xu
- Sibel Health Inc., Niles, IL 60714, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Phyllis C. Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Vineet M. Arora
- Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Ganguly K, Khanna P, Morecraft RJ, Lin DJ. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 2022; 110:2363-2385. [PMID: 35926452 PMCID: PMC9366919 DOI: 10.1016/j.neuron.2022.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Stroke is a leading cause of disability. While neurotechnology has shown promise for improving upper limb recovery after stroke, efficacy in clinical trials has been variable. Our central thesis is that to improve clinical translation, we need to develop a common neurophysiological framework for understanding how neurotechnology alters network activity. Our perspective discusses principles for how motor networks, both healthy and those recovering from stroke, subserve reach-to-grasp movements. We focus on neural processing at the resolution of single movements, the timescale at which neurotechnologies are applied, and discuss how this activity might drive long-term plasticity. We propose that future studies should focus on cross-area communication and bridging our understanding of timescales ranging from single trials within a session to across multiple sessions. We hope that this perspective establishes a combined path forward for preclinical and clinical research with the goal of more robust clinical translation of neurotechnology.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA.
| | - Preeya Khanna
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - David J Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
22
|
Biskamp J, Isla Cainzos S, Higgen FL, Gerloff C, Magnus T. Normalization of Aperiodic Electrocorticography Components Indicates Fine Motor Recovery After Sensory Cortical Stroke in Mice. Stroke 2022; 53:2945-2953. [PMID: 35770668 DOI: 10.1161/strokeaha.122.039335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Electrophysiological signatures of ischemic stroke might help to develop a deeper understanding of the mechanisms of recovery. However, to identify critical windows for novel treatment approaches, suitable readout parameters in vivo with the potential to close the gap between functional modifications within the peri-infarct cortex and behavioral outcome on the systems-level are still lacking. METHODS Wild-type mice were trained in a skilled reaching task and underwent permanent distal medial cerebral artery occlusion or sham intervention. Functional deficits and their recovery were monitored both behaviorally and electrophysiologically recording multichannel electrocorticography from both hemispheres. RESULTS Ischemic strokes are located in sensory cortical areas. Affected mice presented fine motor deficits of their contralateral forepaw. Analyses of electrocorticography signals from awake animals demonstrated a modulation of the shape of power spectral density in the vicinity of the infarct. While power spectral density consists of both rhythmic oscillatory and nonrhythmic, aperiodic components, the alteration of spectrum shape was reflected in a transient increase of aperiodic exponents in the peri-infarct cortex. The relative power and frequency of slow oscillations remained unchanged. Exponents derived from motor areas significantly correlated with fine motor recovery, thus indicating functional modifications of neuronal activity. CONCLUSIONS Aperiodic spectral exponents exhibited a unique spatiotemporal profile in the mouse cortex after stroke and might complement future translational studies providing a dynamic link from pathophysiology to behavior.
Collapse
Affiliation(s)
- Jonatan Biskamp
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sara Isla Cainzos
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
23
|
Tang S, Sours Rhodes C, Jiang L, Chen H, Roys S, Badjatia N, Raghavan P, Zhuo J, Gullapalli RP. Association between Sleep Disturbances at Subacute Stage of Mild Traumatic Brain Injury and Long-Term Outcomes. Neurotrauma Rep 2022; 3:276-285. [PMID: 35982983 PMCID: PMC9380873 DOI: 10.1089/neur.2022.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mild (mTBI) traumatic brain injury (TBI) accounts for the majority of all TBI cases. Evidence has suggested that patients with mTBI can suffer from long-lasting cognitive deficits, persistent symptoms, and decreased quality of life. Sleep disorders are commonly observed after TBI, with the prevalence rate of sleep disturbances in persons with TBI being much higher than that in the general population. Poor sleep quality can impair cognitive functions in the general population. This effect of sleep disturbances may impede the recovery processes in the population with TBI. The objective of this study is to add to our understanding of the relationship between self-reported sleep problems and other post-concussion symptoms and look at the association between early sleep problems and long-term outcomes in mTBI. Post-concussion symptoms, neurocognitive functions, level of global outcomes, and rating of satisfaction of life were assessed in 64 patients with mTBI. The results revealed that the presence of sleep disturbances co-occur with an increased level of overall post-concussion symptoms at the subacute stage of mTBI, particularly with symptoms including poor concentration, memory problems, and irritability. In addition, sleep disturbance at the subacute stage is associated with persistent poor concentration and memory problems, as well as worse neurocognitive function, slower overall recovery, and lower satisfactory of life at the long term. Our findings suggest that sleep disturbance can be a prognostic factor of long-term outcomes after mTBI. Early interventions to improve sleep quality can have potential benefits to facilitate the recovery process from mTBI.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Advanced Imaging Research (CAIR), Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chandler Sours Rhodes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Li Jiang
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Advanced Imaging Research (CAIR), Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hegang Chen
- Department of Epidemiology and Public Health, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven Roys
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Advanced Imaging Research (CAIR), Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Neeraj Badjatia
- Neurology Program and Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Advanced Imaging Research (CAIR), Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Advanced Imaging Research (CAIR), Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
25
|
Kim J, Guo L, Hishinuma A, Lemke S, Ramanathan DS, Won SJ, Ganguly K. Recovery of consolidation after sleep following stroke-interaction of slow waves, spindles, and GABA. Cell Rep 2022; 38:110426. [PMID: 35235787 DOI: 10.1016/j.celrep.2022.110426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Sleep is known to promote recovery after stroke. Yet it remains unclear how stroke affects neural processing during sleep. Using an experimental stroke model in rats along with electrophysiological monitoring of neural firing and sleep microarchitecture, here we show that sleep processing is altered by stroke. We find that the precise coupling of spindles to global slow oscillations (SOs), a phenomenon that is known to be important for memory consolidation, is disrupted by a pathological increase in "isolated" local delta waves. The transition from this pathological to a physiological state-with increased spindle coupling to SO-is associated with sustained performance gains during recovery. Interestingly, post-injury sleep could be pushed toward a physiological state via a pharmacological reduction of tonic γ-aminobutyric acid (GABA). Together, our results suggest that sleep processing after stroke is impaired due to an increase in delta waves and that its restoration can be important for recovery.
Collapse
Affiliation(s)
- Jaekyung Kim
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ling Guo
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - April Hishinuma
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Lemke
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dhakshin S Ramanathan
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Seok Joon Won
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Karunesh Ganguly
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Howell SN, Griesbach GS. Sleep-wake disturbances in supra-and infratentorial stroke: an analysis of post-acute sleep architecture and apnea. Sleep Med 2021; 88:81-86. [PMID: 34740169 DOI: 10.1016/j.sleep.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Sleep-wake disturbances (SWD) are common following stroke, and often extend into the post-acute to chronic periods of recovery. Of particular interest to recovery is a reduction in rapid eye movement (REM) sleep, as we know REM sleep to be important for learning and memory. While there is a breadth of evidence linking SWD and stroke, much less work has been done to identify and determine if differences in sleep architecture and apnea severity are dependent on stroke infarct topographies. METHODS A retrospective chart review was conducted of 48 ischemic stroke patients having underwent a full, overnight polysomnography (PSG). All patients were over 30 days post-injury (post-acute) at the time of the PSG. Patients were divided into supra- and infratentorial infarct topography groups based on available medical and imaging records. In addition to sleep study record review, cognitive and outcome measures were examined. RESULTS Results showed that patients with infratentorial stroke had poorer sleep efficiency, decreased REM sleep, and higher apnea hypopnea index (AHI) than those with supratentorial injuries. Longer continuous REM periods were correlated with higher verbal learning/memory scores, higher levels of positive affect, and lower levels of emotional/behavioral dyscontrol. Neither age nor AHI were significantly correlated with the amount or duration of REM. Slow-wave sleep was significantly reduced across both injury topographies. CONCLUSIONS Infratentorial ischemic stroke patients display significant disruptions in sleep architecture and may require close monitoring for SWDs in the post-acute period to maximize outcome potential. REM sleep is particularly affected when compared to supratentorial ischemic stroke.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Bakersfield, CA, USA; Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Schmidt MH, Dekkers MPJ, Baillieul S, Jendoubi J, Wulf MA, Wenz E, Fregolente L, Vorster A, Gnarra O, Bassetti CLA. Measuring Sleep, Wakefulness, and Circadian Functions in Neurologic Disorders. Sleep Med Clin 2021; 16:661-671. [PMID: 34711389 DOI: 10.1016/j.jsmc.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurologic disorders impact the ability of the brain to regulate sleep, wake, and circadian functions, including state generation, components of state (such as rapid eye movement sleep muscle atonia, state transitions) and electroencephalographic microarchitecture. At its most extreme, extensive brain damage may even prevent differentiation of sleep stages from wakefulness (eg, status dissociatus). Given that comorbid sleep-wake-circadian disorders are common and can adversely impact the occurrence, evolution, and management of underlying neurologic conditions, new technologies for long-term monitoring of neurologic patients may potentially usher in new diagnostic strategies and optimization of clinical management.
Collapse
Affiliation(s)
- Markus H Schmidt
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA.
| | - Martijn P J Dekkers
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Sébastien Baillieul
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland; Univ. Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, Service Universitaire de Pneumologie Physiologie, Grenoble 38000, France
| | - Jasmine Jendoubi
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Marie-Angela Wulf
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Elena Wenz
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Livia Fregolente
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Albrecht Vorster
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland
| | - Oriella Gnarra
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland; Sensory-Motor System Lab, IRIS, ETH Zurich, Switzerland
| | - Claudio L A Bassetti
- Department of Neurology, Bern University Hospital (Inselspital) and University Bern, Switzerland; Department of Neurology, University of Sechenow, Moscow, Russia
| |
Collapse
|
28
|
Hao S, Zhong Z, Qu W, Huang Z, Sun F, Qiu M. Melatonin supplementation in the subacute phase after ischemia alleviates postischemic sleep disturbances in rats. Brain Behav 2021; 11:e2366. [PMID: 34520636 PMCID: PMC8553311 DOI: 10.1002/brb3.2366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sleep disorders are highly prevalent among stroke survivors and impede stroke recovery. It is well established that melatonin has neuroprotective effects in animal models of ischemic stroke. However, as a modulator of endogenous physiological circadian rhythms, the effects of melatonin on poststroke sleep disorders remain unclear. In the present study, we investigated how melatonin delivered intraperitoneally once daily in the subacute phase after stroke onset, influencing neuronal survival, motor recovery, and sleep-wake profiles in rats. METHODS Transient ischemic stroke in male Sprague-Dawley rats was induced with 30 min occlusion of the middle cerebral artery. Melatonin or vehicle was delivered intraperitoneally once daily in the subacute phase, from 2 to 7 days after stroke. Electroencephalogram and electromyogram recordings were obtained simultaneously. RESULTS Compared to the effects observed in the vehicle-treated ischemic group, after 6 daily consecutive treatment of melatonin at 10 mg/kg starting at ischemic/reperfusion day 2, the infarct volume was significantly decreased (from 39.6 to 26.2%), and the degeneration of axons in the ipsilateral striatum and the contralateral corpus callosum were significantly alleviated. Sensorimotor performances were obviously improved as evidenced by significant increases in the latency to falling off the wire and in the use of the impaired forelimb. In addition to those predictable results of reducing brain tissue damage and mitigating behavioral deficits, repeated melatonin treatment during the subacute phase of stroke also alleviated sleep fragmentation through reducing sleep-wake stage transitions and stage bouts, together with increasing stage durations. Furthermore, daily administration of melatonin at 9 a.m. significantly increased the nonrapid eye movement sleep delta power during both the light and dark periods and decreased the degree of reduction of the circadian index. CONCLUSIONS Melatonin promptly reversed ischemia-induced sleep disturbances. The neuroprotective effects of melatonin on ischemic injury may be partially associated with its role in sleep modulation.
Collapse
Affiliation(s)
- Shu‐Mei Hao
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
| | - Zhi‐Gang Zhong
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei‐Min Qu
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Zhi‐Li Huang
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Feng‐Yan Sun
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
| | - Mei‐Hong Qiu
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
29
|
Jaramillo V, Jendoubi J, Maric A, Mensen A, Heyse NC, Eberhard-Moscicka AK, Wiest R, Bassetti CLA, Huber R. Thalamic Influence on Slow Wave Slope Renormalization During Sleep. Ann Neurol 2021; 90:821-833. [PMID: 34516002 PMCID: PMC9291607 DOI: 10.1002/ana.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023]
Abstract
Objective Slow waves are thought to mediate an overall reduction in synaptic strength during sleep. The specific contribution of the thalamus to this so‐called synaptic renormalization is unknown. Thalamic stroke is associated with daytime sleepiness, along with changes to sleep electroencephalography and cognition, making it a unique “experiment of nature” to assess the relationship between sleep rhythms, synaptic renormalization, and daytime functions. Methods Sleep was studied by polysomnography and high‐density electroencephalography over 17 nights in patients with thalamic (n = 12) and 15 nights in patients with extrathalamic (n = 11) stroke. Sleep electroencephalographic overnight slow wave slope changes and their relationship with subjective daytime sleepiness, cognition, and other functional tests were assessed. Results Thalamic and extrathalamic patients did not differ in terms of age, sleep duration, or apnea–hypopnea index. Conversely, overnight slope changes were reduced in a large cluster of electrodes in thalamic compared to extrathalamic stroke patients. This reduction was related to increased daytime sleepiness. No significant differences were found in other functional tests between the 2 groups. Interpretation In patients with thalamic stroke, a reduction in overnight slow wave slope change and increased daytime sleepiness was found. Sleep‐ and wake‐centered mechanisms for this relationship are discussed. Overall, this study suggests a central role of the thalamus in synaptic renormalization. ANN NEUROL 2021;90:821–833
Collapse
Affiliation(s)
- Valeria Jaramillo
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Jasmine Jendoubi
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Armand Mensen
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Natalie C Heyse
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Aleksandra K Eberhard-Moscicka
- Perception and Eye Movement Laboratory, Departments of Neurology and Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio L A Bassetti
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Reto Huber
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich
| |
Collapse
|
30
|
NeuroTec Sitem-Insel Bern: Closing the Last Mile in Neurology. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2021. [DOI: 10.3390/ctn5020013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurology is focused on a model where patients receive their care through repeated visits to clinics and doctor’s offices. Diagnostic tests often require expensive and specialized equipment that are only available in clinics. However, this current model has significant drawbacks. First, diagnostic tests, such as daytime EEG and sleep studies, occur under artificial conditions in the clinic, which may mask or wrongly emphasize clinically important features. Second, early detection and high-quality management of chronic neurological disorders require repeat measurements to accurately capture the dynamics of the disease process, which is impractical to execute in the clinic for economical and logistical reasons. Third, clinic visits remain inaccessible to many patients due to geographical and economical circumstances. Fourth, global disruptions to daily life, such as the one caused by COVID-19, can seriously harm patients if access to in-person clinical visits for diagnostic and treatment purposes is throttled. Thus, translating diagnostic and treatment procedures to patients’ homes will convey multiple substantial benefits and has the potential to substantially improve clinical outcomes while reducing cost. NeuroTec was founded to accelerate the re-imagining of neurology and to promote the convergence of technological, scientific, medical and societal processes. The goal is to identify and validate new digital biomarkers that can close the last mile in neurology by enabling the translation of personalized diagnostics and therapeutic interventions from the clinic to the patient’s home.
Collapse
|
31
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|