1
|
Milićević N, Burton SD, Wachowiak M, Itskov V. Shapley Fields Reveal Chemotopic Organization in the Mouse Olfactory Bulb Across Diverse Chemical Feature Sets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640432. [PMID: 40060549 PMCID: PMC11888437 DOI: 10.1101/2025.02.26.640432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Representations of chemical features in the neural activity of the olfactory bulb (OB) are not well-understood, unlike the neural code for stimuli of the other sensory modalities. This is because the space of olfactory stimuli lacks a natural coordinate system, and this significantly complicates characterizing neural receptive fields (tuning curves), analogous to those in the other sensory modalities. The degree to which olfactory tuning is spatially organized across the OB, often referred to as chemotopy, is also not well-understood. To advance our understanding of these aspects of olfactory coding, we introduce an interpretable method of Shapley fields, as an olfactory analog of retinotopic receptive fields. Shapley fields are spatial distributions of chemical feature importance for the tuning of OB glomeruli. We used this tool to investigate chemotopy in the OB with diverse sets of chemical features using widefield epifluorescence recordings of the mouse dorsal OB in response to stimuli across a wide range of the chemical space. We found that Shapley fields reveal a weak chemotopic organization of the chemical feature sensitivity of dorsal OB glomeruli. This organization was consistent across animals and mostly agreed across very different chemical feature sets: (i) the expert-curated PubChem database features and (ii) features derived from a Graph Neural Network trained on human olfactory perceptual tasks. Moreover, we found that the principal components of the Shapley fields often corresponded to single commonly accepted chemical classification groups, that therefore could be "recovered" from the neural activity in the mouse OB. Our findings suggest that Shapley fields may serve as a chemical feature-agnostic method for investigating olfactory perception.
Collapse
|
2
|
Giaffar H, Shuvaev S, Rinberg D, Koulakov AA. The primacy model and the structure of olfactory space. PLoS Comput Biol 2024; 20:e1012379. [PMID: 39255274 PMCID: PMC11423968 DOI: 10.1371/journal.pcbi.1012379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding sensory processing involves relating the stimulus space, its neural representation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly in the complexity of the underlying odor input space and perceptual responses. Based on the recently proposed primacy model for concentration invariant odor identity representation and a few assumptions, we have developed a theoretical framework for mapping the odor input space to the response properties of olfactory receptors. We analyze a geometrical structure containing odor representations in a multidimensional space of receptor affinities and describe its low-dimensional implementation, the primacy hull. We propose the implications of the primacy hull for the structure of feedforward connectivity in early olfactory networks. We test the predictions of our theory by comparing the existing receptor-ligand affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Kenyon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets of olfactory receptors in agreement with the primacy theory.
Collapse
Affiliation(s)
- Hamza Giaffar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sergey Shuvaev
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Alexei A. Koulakov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
3
|
Zhang M, Hiki Y, Funahashi A, Kobayashi TJ. A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics. NPJ Syst Biol Appl 2024; 10:76. [PMID: 39019918 PMCID: PMC11255234 DOI: 10.1038/s41540-024-00401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Predicting olfactory perceptions from odorant molecules is challenging due to the complex and potentially discontinuous nature of the perceptual space for smells. In this study, we introduce a deep learning model, Mol-PECO (Molecular Representation by Positional Encoding of Coulomb Matrix), designed to predict olfactory perceptions based on molecular structures and electrostatics. Mol-PECO learns the efficient embedding of molecules by utilizing the Coulomb matrix, which encodes atomic coordinates and charges, as an alternative of the adjacency matrix and its Laplacian eigenfunctions as positional encoding of atoms. With a comprehensive dataset of odor molecules and descriptors, Mol-PECO outperforms traditional machine learning methods using molecular fingerprints and graph neural networks based on adjacency matrices. The learned embeddings by Mol-PECO effectively capture the odor space, enabling global clustering of descriptors and local retrieval of similar odorants. This work contributes to a deeper understanding of the olfactory sense and its mechanisms.
Collapse
Affiliation(s)
- Mengji Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
4
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Seyahi LS, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol 2024; 22:e3002672. [PMID: 38935621 PMCID: PMC11210793 DOI: 10.1371/journal.pbio.3002672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multiwell plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Lucero E. Rogel-Hernandez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Neurosciences Graduate Program, Stanford University, Stanford, California, United States of America
| | - Hodan Farah
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Iris N. Mollhoff
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Lara Selin Seyahi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Thomas R. Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
5
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Selin Seyahi L, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. An efficient behavioral screening platform classifies natural products and other chemical cues according to their chemosensory valence in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.542933. [PMID: 37333363 PMCID: PMC10274637 DOI: 10.1101/2023.06.02.542933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction, and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multi-well plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals, but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University
| | | | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University
- Neurosciences Graduate Program, Stanford University
| | - Hodan Farah
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University
| | - Iris N. Mollhoff
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Biology, Stanford University
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Mechanical Engineering, Stanford University
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science
| | - Lara Selin Seyahi
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University
| | | | | | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University
| |
Collapse
|
6
|
Barth-Maron A, D'Alessandro I, Wilson RI. Interactions between specialized gain control mechanisms in olfactory processing. Curr Biol 2023; 33:5109-5120.e7. [PMID: 37967554 DOI: 10.1016/j.cub.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Gain control is a process that adjusts a system's sensitivity when input levels change. Neural systems contain multiple mechanisms of gain control, but we do not understand why so many mechanisms are needed or how they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control. Conversely, we find that other interneurons are recruited by strong and widespread network input; they specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations, we show how these mechanisms can work together to improve stimulus discrimination while also minimizing temporal distortions in network activity. Our results demonstrate how the robustness of neural network function can be increased by interactions among diverse and specialized mechanisms of gain control.
Collapse
Affiliation(s)
- Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel D'Alessandro
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
8
|
Chandak R, Raman B. Neural manifolds for odor-driven innate and acquired appetitive preferences. Nat Commun 2023; 14:4719. [PMID: 37543628 PMCID: PMC10404252 DOI: 10.1038/s41467-023-40443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Sensory stimuli evoke spiking neural responses that innately or after learning drive suitable behavioral outputs. How are these spiking activities intrinsically patterned to encode for innate preferences, and could the neural response organization impose constraints on learning? We examined this issue in the locust olfactory system. Using a diverse odor panel, we found that ensemble activities both during ('ON response') and after stimulus presentations ('OFF response') could be linearly mapped onto overall appetitive preference indices. Although diverse, ON and OFF response patterns generated by innately appetitive odorants (higher palp-opening responses) were still limited to a low-dimensional subspace (a 'neural manifold'). Similarly, innately non-appetitive odorants evoked responses that were separable yet confined to another neural manifold. Notably, only odorants that evoked neural response excursions in the appetitive manifold could be associated with gustatory reward. In sum, these results provide insights into how encoding for innate preferences can also impact associative learning.
Collapse
Affiliation(s)
- Rishabh Chandak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
9
|
Deroy O. Olfactory abstraction: a communicative and metacognitive account. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210369. [PMID: 36571118 PMCID: PMC9791486 DOI: 10.1098/rstb.2021.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/05/2022] [Indexed: 12/27/2022] Open
Abstract
The usual puzzle raised about olfaction is that of a deficit of abstraction: smells, by contrast notably with colours, do not easily lend themselves to abstract categories and labels. Some studies have argued that the puzzle is culturally restricted and that abstraction is more common outside urban Western societies. Here, I argue that the puzzle is misconstrued and should be reversed: given that odours are constantly changing and that their commonalities are difficult for humans to identify, what is surprising is not that abstract terms are rare, but that they should be used at all for olfaction. Given the nature of the olfactory environment and our cognitive equipment, concrete labels referring to sources seem most adaptive. To explain the use and presence of abstract terms, we need to examine their social and communicative benefits. Here these benefits are spelt out as securing a higher agreement among individuals varying in their olfactory experiences as well as the labels they use, as well as feeling a heightened sense of confidence in one's naming capacities. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Ophelia Deroy
- Faculty of Philosophy, Ludwig Maximilian University, D-80539 Munich, Germany
- Munich Center for Neuroscience, Ludwig Maximilian University, D-80539 Munich, Germany
- Institute of Philosophy, School of Advanced Study, University of London, London EC1E 7HU, UK
| |
Collapse
|
10
|
Tamura K, Okamoto T. Odor descriptive ratings can predict some odor-color associations in different color features of hue or lightness. PeerJ 2023; 11:e15251. [PMID: 37155465 PMCID: PMC10122842 DOI: 10.7717/peerj.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Background Olfactory information can be associated with color information. Researchers have investigated the role of descriptive ratings of odors on odor-color associations. Research into these associations should also focus on the differences in odor types. We aimed to identify the odor descriptive ratings that can predict odor-color corresponding formation, and predict features of the associated colors from the ratings taking into consideration the differences in the odor types. Methods We assessed 13 types of odors and their associated colors in participants with a Japanese cultural background. The associated colors from odors in the CIE L*a*b* space were subjectively evaluated to prevent the priming effect from selecting color patches. We analyzed the data using Bayesian multilevel modeling, which included the random effects of each odor, for investigating the effect of descriptive ratings on associated colors. We investigated the effects of five descriptive ratings, namely Edibility, Arousal, Familiarity, Pleasantness, and Strength on the associated colors. Results The Bayesian multilevel model indicated that the odor description of Edibility was related to the reddish hues of associated colors in three odors. Edibility was related to the yellow hues of colors in the remaining five odors. The Arousal description was related to the yellowish hues in two odors. The Strength of the tested odors was generally related to the color lightness. The present analysis could contribute in investigating the influence of the olfactory descriptive rating that anticipates the associated color for each odor.
Collapse
Affiliation(s)
- Kaori Tamura
- Department of Information and Systems Engineering, Fukuoka Institute of Technology, Fukuoka, Japan
| | | |
Collapse
|
11
|
Arshamian A, Gerkin RC, Kruspe N, Wnuk E, Floyd S, O'Meara C, Garrido Rodriguez G, Lundström JN, Mainland JD, Majid A. The perception of odor pleasantness is shared across cultures. Curr Biol 2022; 32:2061-2066.e3. [PMID: 35381183 PMCID: PMC11672226 DOI: 10.1016/j.cub.2022.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Humans share sensory systems with a common anatomical blueprint, but individual sensory experience nevertheless varies. In olfaction, it is not known to what degree sensory perception, particularly the perception of odor pleasantness, is founded on universal principles,1-5 dictated by culture,6-13 or merely a matter of personal taste.6,8-10,12,14 To address this, we asked 225 individuals from 9 diverse nonwestern cultures-hunter-gatherer to urban dwelling-to rank the monomolecular odorants from most to least pleasant. Contrary to expectations, culture explained only 6% of the variance in pleasantness rankings, whereas individual variability or personal taste explained 54%. Importantly, there was substantial global consistency, with molecular identity explaining 41% of the variance in odor pleasantness rankings. Critically, these universal rankings were predicted by the physicochemical properties of out-of-sample molecules and out-of-sample pleasantness ratings given by a tenth group of western urban participants. Taken together, this shows human olfactory perception is strongly constrained by universal principles.
Collapse
Affiliation(s)
- Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 171 77 Stockholm, Sweden.
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Nicole Kruspe
- Centre for Languages and Literature, Lund University, Helgonabacken 12, 223 62 Lund, Sweden
| | - Ewelina Wnuk
- Department of Anthropology, University College London, 14 Taviton Street, London WC1H 0BW, UK
| | - Simeon Floyd
- Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Carolyn O'Meara
- Instituto de Investigaciones Filológicas, National Autonomous University of Mexico, Circuito Maestro Mario de La Cueva S/N, C.U., Coyoacán, 04510 Ciudad de México, Mexico
| | | | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 171 77 Stockholm, Sweden; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Stockholm University Brain Imaging Centre, Stockholm University, 10405 Stockholm, Sweden; Department of Neuroscience, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
12
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 2021; 19:133. [PMID: 34182994 PMCID: PMC8240315 DOI: 10.1186/s12915-021-01064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. Results First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. Conclusions Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01064-7.
Collapse
Affiliation(s)
- Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Deconstructing the mouse olfactory percept through an ethological atlas. Curr Biol 2021; 31:2809-2818.e3. [PMID: 33957076 DOI: 10.1016/j.cub.2021.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Odor perception in non-humans is poorly understood. Here, we generated the most comprehensive mouse olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants, including 12 at multiple concentrations. These data revealed that mouse behavior is incredibly diverse and changes in response to odorant identity and concentration. Using only behavioral responses observed in other mice, we could predict which of two odorants was presented to a held-out mouse 82% of the time. Considering all 73 possible odorants, we could uniquely identify the target odorant from behavior on the first try 20% of the time and 46% within five attempts. Although mouse behavior is difficult to predict from human perception, they share three fundamental properties: first, odor valence parameters explained the highest variance of olfactory perception. Second, physicochemical properties of odorants can be used to predict the olfactory percept. Third, odorant concentration quantitatively and qualitatively impacts olfactory perception. These results increase our understanding of mouse olfactory behavior and how it compares to human odor perception and provide a template for future comparative studies of olfactory percepts among species.
Collapse
|
15
|
Jraissati Y, Deroy O. Categorizing Smells: A Localist Approach. Cogn Sci 2021; 45:e12930. [PMID: 33389758 DOI: 10.1111/cogs.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Humans are poorer at identifying smells and communicating about them, compared to other sensory domains. They also cannot easily organize odor sensations in a general conceptual space, where geometric distance could represent how similar or different all odors are. These two generalities are more or less accepted by psychologists, and they are often seen as connected: If there is no conceptual space for odors, then olfactory identification should indeed be poor. We propose here an important revision to this conclusion: We believe that the claim that there is no odor space is true only if by odor space, one means a conceptual space representing all possible odor sensations, in the paradigmatic sense used for instance for color. However, in a less paradigmatic sense, local conceptual spaces representing a given subset of odors do exist. Thus the absence of a global odor space does not warrant the conclusion that there is no olfactory conceptual map at all. Here we show how a localist account provides a new interpretation of experts and cross-cultural categorization studies: Rather than being exceptions to the poor olfactory identification and communication usually seen elsewhere, experts and cross-cultural categorization are here taken to corroborate the existence of local conceptual spaces.
Collapse
Affiliation(s)
- Yasmina Jraissati
- Ronin Institute.,Department of Philosophy, American University of Beirut
| | - Ophelia Deroy
- Faculty of Philosophy, Ludwig Maximilian University.,Munich Centre for Neuroscience, Ludwig Maximilian University.,Institute of Philosophy, School of Advanced Study, University of London
| |
Collapse
|
16
|
Kermen F, Mandairon N, Chalençon L. Odor hedonics coding in the vertebrate olfactory bulb. Cell Tissue Res 2021; 383:485-493. [PMID: 33515292 PMCID: PMC7873110 DOI: 10.1007/s00441-020-03372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant's physicochemical properties.
Collapse
Affiliation(s)
- Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| | - Nathalie Mandairon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| | - Laura Chalençon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| |
Collapse
|
17
|
A measure of smell enables the creation of olfactory metamers. Nature 2020; 588:118-123. [DOI: 10.1038/s41586-020-2891-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
|
18
|
Perl O, Nahum N, Belelovsky K, Haddad R. The contribution of temporal coding to odor coding and odor perception in humans. eLife 2020; 9:49734. [PMID: 32031520 PMCID: PMC7007219 DOI: 10.7554/elife.49734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/15/2020] [Indexed: 11/17/2022] Open
Abstract
Whether neurons encode information through their spike rates, their activity times or both is an ongoing debate in systems neuroscience. Here, we tested whether humans can discriminate between a pair of temporal odor mixtures (TOMs) composed of the same two components delivered in rapid succession in either one temporal order or its reverse. These TOMs presumably activate the same olfactory neurons but at different times and thus differ mainly in the time of neuron activation. We found that most participants could hardly discriminate between TOMs, although they easily discriminated between a TOM and one of its components. By contrast, participants succeeded in discriminating between the TOMs when they were notified of their successive nature in advance. We thus suggest that the time of glomerulus activation can be exploited to extract odor-related information, although it does not change the odor perception substantially, as should be expected from an odor code per se.
Collapse
Affiliation(s)
- Ofer Perl
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Nahum Nahum
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Katya Belelovsky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
19
|
A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. J Neurosci Methods 2020; 335:108624. [PMID: 32032715 DOI: 10.1016/j.jneumeth.2020.108624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian olfaction begins with transduction in olfactory receptors, continues with extensive processing in the olfactory bulb, and culminates in cortical representation. Most rodent studies on the functional neuroanatomy of olfaction have concentrated on the olfactory bulb, yet whether this structure is tuned only to basic chemical features of odorants or also to higher-order perceptual features is unclear. NEW METHOD Whereas studies of the human brain can typically uncover involvement of higher-order feature extraction, this has not been possible in the case of the olfactory bulb, inaccessible to fMRI. The present study examined whether a novel method of acquisition using a facial coil could overcome this limitation. RESULTS A series of experiments provided preliminary evidence of odor-driven responses in the human olfactory bulb, and found that these responses differed between individuals. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The present preliminary technical achievement renders possible to design novel human odor fMRI studies by considering the olfactory system from the olfactory bulb to associative areas.
Collapse
|
20
|
Young BD, Escalon JA, Mathew D. Odors: from chemical structures to gaseous plumes. Neurosci Biobehav Rev 2020; 111:19-29. [PMID: 31931034 DOI: 10.1016/j.neubiorev.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity.
Collapse
Affiliation(s)
- Benjamin D Young
- Philosophy and Neuroscience, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States.
| | | | - Dennis Mathew
- Biology and Neuroscience, University of Nevada, Reno, United States.
| |
Collapse
|
21
|
Chae H, Kepple DR, Bast WG, Murthy VN, Koulakov AA, Albeanu DF. Mosaic representations of odors in the input and output layers of the mouse olfactory bulb. Nat Neurosci 2019; 22:1306-1317. [PMID: 31332371 DOI: 10.1038/s41593-019-0442-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
The elementary stimulus features encoded by the olfactory system remain poorly understood. We examined the relationship between 1,666 physical-chemical descriptors of odors and the activity of olfactory bulb inputs and outputs in awake mice. Glomerular and mitral and tufted cell responses were sparse and locally heterogeneous, with only a weak dependence of their positions on physical-chemical properties. Odor features represented by ensembles of mitral and tufted cells were overlapping but distinct from those represented in glomeruli, which is consistent with an extensive interplay between feedforward and feedback inputs to the bulb. This reformatting was well described as a rotation in odor space. The physical-chemical descriptors accounted for a small fraction in response variance, and the similarity of odors in the physical-chemical space was a poor predictor of similarity in neuronal representations. Our results suggest that commonly used physical-chemical properties are not systematically represented in bulbar activity and encourage further searches for better descriptors of odor space.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniel R Kepple
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Watson School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Walter G Bast
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexei A Koulakov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Watson School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Watson School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
22
|
Genetic variation across the human olfactory receptor repertoire alters odor perception. Proc Natl Acad Sci U S A 2019; 116:9475-9480. [PMID: 31040214 DOI: 10.1073/pnas.1804106115] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans use a family of more than 400 olfactory receptors (ORs) to detect odors, but there is currently no model that can predict olfactory perception from receptor activity patterns. Genetic variation in human ORs is abundant and alters receptor function, allowing us to examine the relationship between receptor function and perception. We sequenced the OR repertoire in 332 individuals and examined how genetic variation affected 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity. Genetic variation in a single OR was frequently associated with changes in odorant perception, and we validated 10 cases in which in vitro OR function correlated with in vivo odorant perception using a functional assay. In 8 of these 10 cases, reduced receptor function was associated with reduced intensity perception. In addition, we used participant genotypes to quantify genetic ancestry and found that, in combination with single OR genotype, age, and gender, we can explain between 10% and 20% of the perceptual variation in 15 olfactory phenotypes, highlighting the importance of single OR genotype, ancestry, and demographic factors in the variation of olfactory perception.
Collapse
|
23
|
Abstract
The senses of taste and smell developed early in evolution and are of high ecological and clinical relevance in humans. Chemosensory systems function, in large part, as hazard avoidance systems, thereby ensuring survival. Moreover, they play a critical role in nutrition and in determining the flavor of foods and beverages. Their dysfunction has been shown to be a key element of early stages of a number of diseases, including Alzheimer's and Parkinson's diseases. Advanced neuroimaging methods provide a unique means for understanding, in vivo, neural and psychological processing of smell, taste, and flavor, and how diseases can impact such processing. This chapter provides, from a neuroimaging perspective, a comprehensive overview of the anatomy and physiology involved in the odor and taste processing in the central nervous system. Some methodological challenges associated with chemosensory neuroimaging research are discussed. Multisensory integration, the mechanisms that enable holistic sensory experiences, is emphasized.
Collapse
Affiliation(s)
- Jonas K Olofsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden.
| | - Jessica Freiherr
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci Rep 2018; 8:8444. [PMID: 29855500 PMCID: PMC5981304 DOI: 10.1038/s41598-018-26510-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
A major issue in human olfaction research is to characterize the main dimensions that organize the space of odors. The present study examines this question and shows that, beside pleasantness, trigeminal sensations, and particularly irritation, play an important role. These results were consistent along two different spaces constructed using semantic description and physiological responses to 105 odorants, smelled and described by human participants. Taken together, these findings suggest that salient trigeminal features, in conjunction with pleasantness, are involved in detecting relevant emotional stimuli, and modify the way organisms categorize smells. These results shed light on the importance of trigeminal sensitivity in the well-established defensive function of olfaction.
Collapse
|
25
|
Harel D. Niépce-Bell or Turing: how to test odour reproduction. J R Soc Interface 2017; 13:rsif.2016.0587. [PMID: 28003527 PMCID: PMC5221521 DOI: 10.1098/rsif.2016.0587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Decades before the existence of anything resembling an artificial intelligence system, Alan Turing raised the question of how to test whether machines can think, or, in modern terminology, whether a computer claimed to exhibit intelligence indeed does so. This paper raises the analogous issue for olfaction: how to test the validity of a system claimed to reproduce arbitrary odours artificially, in a way recognizable to humans. Although odour reproduction systems are still far from being viable, the question of how to test candidates thereof is claimed to be interesting and non-trivial, and a novel method is proposed. Despite the similarity between the two questions and their surfacing long before the tested systems exist, the present question cannot be answered adequately by a Turing-like method. Instead, our test is very different: it is conditional, requiring from the artificial no more than is required from the original, and it employs a novel method of immersion that takes advantage of the availability of easily recognizable reproduction methods for sight and sound, a la Nicéphore Niépce and Alexander Graham Bell.
Collapse
Affiliation(s)
- David Harel
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Kepchia D, Sherman B, Haddad R, Luetje CW. Mammalian odorant receptor tuning breadth persists across distinct odorant panels. PLoS One 2017; 12:e0185329. [PMID: 28945824 PMCID: PMC5612731 DOI: 10.1371/journal.pone.0185329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022] Open
Abstract
The molecular receptive range (MRR) of a mammalian odorant receptor (OR) is the set of odorant structures that activate the OR, while the distribution of these odorant structures across odor space is the tuning breadth of the OR. Variation in tuning breadth is thought to be an important property of ORs, with the MRRs of these receptors varying from narrowly to broadly tuned. However, defining the tuning breadth of an OR is a technical challenge. For practical reasons, a screening panel that broadly covers odor space must be limited to sparse coverage of the many potential structures in that space. When screened with such a panel, ORs with different odorant specificities, but equal tuning breadths, might appear to have different tuning breadths due to chance. We hypothesized that ORs would maintain their tuning breadths across distinct odorant panels. We constructed a new screening panel that was broadly distributed across an estimated odor space and contained compounds distinct from previous panels. We used this new screening panel to test several murine ORs that were previously characterized as having different tuning breadths. ORs were expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. MOR256-17, an OR previously characterized as broadly tuned, responded to nine novel compounds from our new screening panel that were structurally diverse and broadly dispersed across an estimated odor space. MOR256-22, an OR previously characterized as narrowly tuned, responded to a single novel compound that was structurally similar to a previously known ligand for this receptor. MOR174-9, a well-characterized receptor with a narrowly tuned MRR, did not respond to any novel compounds in our new panel. These results support the idea that variation in tuning breadth among these three ORs is not an artifact of the screening protocol, but is an intrinsic property of the receptors.
Collapse
Affiliation(s)
- Devin Kepchia
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benjamin Sherman
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rafi Haddad
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
27
|
Ruedenauer FA, Leonhardt SD, Schmalz F, Rössler W, Strube-Bloss MF. Separation of different pollen types by chemotactile sensing in Bombus terrestris. J Exp Biol 2017; 220:1435-1442. [DOI: 10.1242/jeb.153122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022]
Abstract
When tasting food, animals rely on chemical and tactile cues, which determine the animal’s decision on whether or not to eat food. As food nutritional composition has enormous consequences for the survival of animals, food items should generally be tasted before they are eaten or collected for later consumption. Even though recent studies confirmed the importance of e.g. gustatory cues, compared to olfaction only little is known about the representation of chemotactile stimuli at the receptor level (let alone higher brain centers) in animals other than vertebrates. To better understand how invertebrates may process chemotactile cues, we used bumblebees as a model species and combined electroantennographical (EAG) recordings with a novel technique for chemotactile antennal stimulation in bees. The recorded EAG responses to chemotactile stimulation clearly separated volatile compounds by both compound identity and concentration, and could be successfully applied to test the receptor activity evoked by different types of pollen. We found that two different pollen types (apple and almond) (which were readily distinguished by bumblebees in a classical conditioning task) evoked significantly distinct neural activity already at the antennal receptor level. Our novel stimulation technique therefore enables investigation of chemotactile sensing which is highly important for assessing food nutritional quality while foraging. It can further be applied to test other chemosensory behaviors, such as mate or nest mate recognition, or to investigate whether toxic substances, e.g. in pollen, affect neuronal separation of different food types.
Collapse
Affiliation(s)
- Fabian A. Ruedenauer
- Department of Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sara D. Leonhardt
- Department of Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fabian Schmalz
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin F. Strube-Bloss
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
28
|
Abstract
The olfactory system removes correlations in natural odors using a network of inhibitory neurons in the olfactory bulb. It has been proposed that this network integrates the response from all olfactory receptors and inhibits them equally. However, how such global inhibition influences the neural representations of odors is unclear. Here, we study a simple statistical model of the processing in the olfactory bulb, which leads to concentration-invariant, sparse representations of the odor composition. We show that the inhibition strength can be tuned to obtain sparse representations that are still useful to discriminate odors that vary in relative concentration, size, and composition. The model reveals two generic consequences of global inhibition: (i) odors with many molecular species are more difficult to discriminate and (ii) receptor arrays with heterogeneous sensitivities perform badly. Comparing these predictions to experiments will help us to understand the role of global inhibition in shaping normalized odor representations in the olfactory bulb.
Collapse
Affiliation(s)
- David Zwicker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, United States of America
- * E-mail:
| |
Collapse
|
29
|
Weiss T, Shushan S, Ravia A, Hahamy A, Secundo L, Weissbrod A, Ben-Yakov A, Holtzman Y, Cohen-Atsmoni S, Roth Y, Sobel N. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures. Cereb Cortex 2016; 26:4180-4191. [PMID: 27591145 PMCID: PMC5066827 DOI: 10.1093/cercor/bhw222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.
Collapse
Affiliation(s)
- Tali Weiss
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagit Shushan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Aharon Ravia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avital Hahamy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lavi Secundo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Weissbrod
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aya Ben-Yakov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Holtzman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Smadar Cohen-Atsmoni
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Yehudah Roth
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Bell JS, Wilson RI. Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels. Neuron 2016; 91:425-38. [PMID: 27373835 DOI: 10.1016/j.neuron.2016.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The olfactory system is divided into processing channels (glomeruli), each receiving input from a different type of olfactory receptor neuron (ORN). Here we investigated how glomeruli combine to control behavior in freely walking Drosophila. We found that optogenetically activating single ORN types typically produced attraction, although some ORN types produced repulsion. Attraction consisted largely of a behavioral program with the following rules: at fictive odor onset, flies walked upwind, and at fictive odor offset, they reversed. When certain pairs of attractive ORN types were co-activated, the level of the behavioral response resembled the sum of the component responses. However, other pairs of attractive ORN types produced a response resembling the larger component (max pooling). Although activation of different ORN combinations produced different levels of behavior, the rules of the behavioral program were consistent. Our results illustrate a general method for inferring how groups of neurons work together to modulate behavioral programs.
Collapse
Affiliation(s)
- Joseph S Bell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. The wiring diagram of a glomerular olfactory system. eLife 2016; 5. [PMID: 27177418 PMCID: PMC4930330 DOI: 10.7554/elife.14859] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI:http://dx.doi.org/10.7554/eLife.14859.001 Our sense of smell can tell us about bread being baked faraway in the kitchen, or whether a leftover piece finally went bad. Similarly to the eyes, the nose enables us to make up a mental image of what lies at a distance. In mammals, the surface of the nose hosts a huge number of olfactory sensory cells, each of which is tuned to respond to a small set of scent molecules. The olfactory sensory cells communicate with a region of the brain called the olfactory bulb. Olfactory sensory cells of the same type converge onto the same small pocket of the olfactory bulb, forming a structure called a glomerulus. Similarly to how the retina generates an image, the combined activity of multiple glomeruli defines an odor. A particular smell is the combination of many volatile compounds, the odorants. Therefore the interactions between different olfactory glomeruli are important for defining the nature of the perceived odor. Although the types of neurons involved in these interactions were known in insects, fish and mice, a precise wiring diagram of a complete set of glomeruli had not been described. In particular, the points of contact through which neurons communicate with each other – known as synapses – among all the neurons participating in an olfactory system were not known. Berck, Khandelwal et al. have now taken advantage of the small size of the olfactory system of the larvae of Drosophila fruit flies to fully describe, using high-resolution imaging, all its neurons and their synapses. The results define the complete wiring diagram of the neural circuit that processes the signals sent by olfactory sensory neurons in the larva’s olfactory circuits. In addition to the neurons that read out the activity of a single glomerulus and send it to higher areas of the brain for further processing, there are also numerous neurons that read out activity from multiple glomeruli. These neurons represent a system, encoded in the genome, for quickly extracting valuable olfactory information and then relaying it to other areas of the brain. An essential aspect of sensation is the ability to stop noticing a stimulus if it doesn't change. This allows an animal to, for example, find food by moving in a direction that increases the intensity of an odor. Inhibition mediates some aspects of this capability. The discovery of structure in the inhibitory connections among glomeruli, together with prior findings on the inner workings of the olfactory system, enabled Berck, Khandelwal et al. to hypothesize how the olfactory circuits enable odor gradients to be navigated. Further investigation revealed more about how the circuits could detect slight changes in odor concentration regardless of whether the overall odor intensity is strong or faint. And, crucially, it revealed how the worst odors – which can signal danger – can still be perceived in the presence of very strong pleasant odors. With the wiring diagram, theories about the sense of smell can now be tested using the genetic tools available for Drosophila, leading to an understanding of how neural circuits work. DOI:http://dx.doi.org/10.7554/eLife.14859.002
Collapse
Affiliation(s)
- Matthew E Berck
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Lindsey Claus
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rick D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
32
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
33
|
Kumar R, Kaur R, Auffarth B, Bhondekar AP. Understanding the Odour Spaces: A Step towards Solving Olfactory Stimulus-Percept Problem. PLoS One 2015; 10:e0141263. [PMID: 26484763 PMCID: PMC4615634 DOI: 10.1371/journal.pone.0141263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022] Open
Abstract
Odours are highly complex, relying on hundreds of receptors, and people are known to disagree in their linguistic descriptions of smells. It is partly due to these facts that, it is very hard to map the domain of odour molecules or their structure to that of perceptual representations, a problem that has been referred to as the Structure-Odour-Relationship. We collected a number of diverse open domain databases of odour molecules having unorganised perceptual descriptors, and developed a graphical method to find the similarity between perceptual descriptors; which is intuitive and can be used to identify perceptual classes. We then separately projected the physico-chemical and perceptual features of these molecules in a non-linear dimension and clustered the similar molecules. We found a significant overlap between the spatial positioning of the clustered molecules in the physico-chemical and perceptual spaces. We also developed a statistical method of predicting the perceptual qualities of a novel molecule using its physico-chemical properties with high receiver operating characteristics(ROC).
Collapse
Affiliation(s)
- Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
- * E-mail:
| | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Nagoya University, Nagoya, Japan
| | - Benjamin Auffarth
- Neuroinformatik, Department of Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Amol P. Bhondekar
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
34
|
The muted sense: neurocognitive limitations of olfactory language. Trends Cogn Sci 2015; 19:314-21. [PMID: 25979848 DOI: 10.1016/j.tics.2015.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 02/08/2023]
Abstract
Most people find it profoundly difficult to name familiar smells. This difficulty persists even when perceptual odor processing and visual object naming are unimpaired, implying deficient sensory-specific interactions with the language system. Here we synthesize recent behavioral and neuroimaging data to develop a biologically informed framework for olfactory lexical processing in the human brain. Our central premise is that the difficulty in naming common objects through olfactory (compared with visual) stimulation is the end result of cumulative effects occurring at three successive stages of the olfactory language pathway: object perception, lexical-semantic integration, and verbalization. Understanding the neurocognitive mechanisms by which the language network interacts with olfaction can yield unique insights into the elusive nature of olfactory naming.
Collapse
|
35
|
Gao P, Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol 2015; 32:148-55. [PMID: 25932978 DOI: 10.1016/j.conb.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Technological advances have dramatically expanded our ability to probe multi-neuronal dynamics and connectivity in the brain. However, our ability to extract a simple conceptual understanding from complex data is increasingly hampered by the lack of theoretically principled data analytic procedures, as well as theoretical frameworks for how circuit connectivity and dynamics can conspire to generate emergent behavioral and cognitive functions. We review and outline potential avenues for progress, including new theories of high dimensional data analysis, the need to analyze complex artificial networks, and methods for analyzing entire spaces of circuit models, rather than one model at a time. Such interplay between experiments, data analysis and theory will be indispensable in catalyzing conceptual advances in the age of large-scale neuroscience.
Collapse
Affiliation(s)
- Peiran Gao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States.
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
36
|
Li J, Haddad R, Santos V, Bavan S, Luetje CW. Receptive range analysis of a mouse odorant receptor subfamily. J Neurochem 2015; 134:47-55. [PMID: 25772782 DOI: 10.1111/jnc.13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
Mammals deploy a large array of odorant receptors (ORs) to detect and distinguish a vast number of odorant molecules. ORs vary widely in the type of odorant structures recognized and in the breadth of molecular receptive range (MRR), with some ORs recognizing a small group of closely related molecules and other ORs recognizing a wide range of structures. While closely related ORs have been shown to have similar MRRs, the functional relationships among less closely related ORs are unclear. We screened a small group of ORs with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3). We then extensively screened MOR263-3 and a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis (several other members of the MOR263 subfamily) had MRRs that overlapped with the MRR of MOR263-3, even with amino acid identity as low as 48% (MOR263-2). MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, but with only 39% amino acid identity, had a distinct odorant specificity. Our results support the use of phylogenetic analysis to predict functional relationships among ORs with relatively low amino acid identity. We screened a small group of mouse odorant receptors (MORs) with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3), then extensively screened a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis had odorant specificities that overlapped with that of MOR263-3, but MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, had a distinct odorant specificity.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rafi Haddad
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Vanessa Santos
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Selvan Bavan
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
37
|
Johnson AJ, Heymann H, Ebeler SE. Volatile and sensory profiling of cocktail bitters. Food Chem 2015; 179:343-54. [PMID: 25722175 DOI: 10.1016/j.foodchem.2015.01.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Aromatic cocktail bitters are derived from the alcoholic extraction of a variety of plant materials and are used as additives in mixed drinks to enhance aroma and flavor. In this study sixteen commercial bitters were analyzed using volatile (GC-MS) and sensory profiling and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS). The samples differed significantly in their citrus, celery, and spice characteristics. 148 volatile compounds were tentatively identified and the composition varied significantly with the type of bitters sample evaluated. PLS analysis showed that the volatile data correlated well overall to the sensory data, explaining 60% of the overall variability in the dataset. Primary aldehydes and phenylpropanoids were most closely related to green and spice-related sensory descriptors. However, the sensory impact of terpenoid compounds was difficult to predict in many cases. This may be due to the wide range of aroma qualities associated with terpenes as well as to concentration, synergistic or masking effects.
Collapse
Affiliation(s)
- Arielle J Johnson
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States
| | - Hildegarde Heymann
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States
| | - Susan E Ebeler
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
38
|
Dissociated neural representations induced by complex and simple odorant molecules. Neuroscience 2015; 287:23-31. [DOI: 10.1016/j.neuroscience.2014.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/21/2022]
|
39
|
Simultaneous encoding of odors by channels with diverse sensitivity to inhibition. Neuron 2015; 85:573-89. [PMID: 25619655 DOI: 10.1016/j.neuron.2014.12.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/13/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
Abstract
Odorant receptors in the periphery map precisely onto olfactory glomeruli ("coding channels") in the brain. However, the odor tuning of a glomerulus is not strongly correlated with its spatial position. This raises the question of whether lateral inhibition between glomeruli is specific or nonspecific. Here we show that, in the Drosophila brain, focal activation of even a single glomerulus recruits GABAergic interneurons in all glomeruli. Moreover, the relative level of interneuron activity in different glomeruli is largely odor invariant. Although interneurons are recruited nonspecifically, glomeruli differ dramatically in their sensitivity to interneuron activity, and this is explained by their varying sensitivity to GABA. Interestingly, a stimulus is typically encoded in parallel by channels having high and low sensitivity to inhibition. Because lateral inhibition confers both costs and benefits, the brain might rely preferentially on "high" and "low" channels in different behavioral contexts.
Collapse
|
40
|
|
41
|
Abstract
Qualitative-consciousness arises at the sensory level of olfactory processing and pervades our experience of smells to the extent that qualitative character is maintained whenever we are aware of undergoing an olfactory experience. Building upon the distinction between Access and Phenomenal Consciousness the paper offers a nuanced distinction between Awareness and Qualitative-consciousness that is applicable to olfaction in a manner that is conceptual precise and empirically viable. Mounting empirical research is offered substantiating the applicability of the distinction to olfaction and showing that olfactory qualitative-consciousness can occur without awareness, but any olfactory state that we are aware of being in is always qualitative. Evidence that olfactory sensory states have a qualitatively character in the absence of awareness derives from research on mate selection, the selection of social preference for social interaction and acquaintances, as well as the role of olfactory deficits in causing affective disorders. Furthermore, the conservation of secondary processing measures of olfactory valence during olfactory imagery experiments provides verification that olfactory awareness is always qualitatively conscious-all olfactory consciousness smells phenomenal.
Collapse
Affiliation(s)
- Benjamin D Young
- Department of Cognitive and Brain Science, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
42
|
Castro JB, Seeley WP. Olfaction, valuation, and action: reorienting perception. Front Psychol 2014; 5:299. [PMID: 24782803 PMCID: PMC3986514 DOI: 10.3389/fpsyg.2014.00299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
In the philosophy of perception, olfaction is the perennial problem child, presenting a range of difficulties to those seeking to define its proper referents, and its phenomenological content. Here, we argue that many of these difficulties can be resolved by recognizing the object-like representation of odors in the brain, and by postulating that the basic objects of olfaction are best defined by their biological value to the organism, rather than physicochemical dimensions of stimuli. Building on this organism-centered account, we speculate that the phenomenological space of olfaction is organized into a number of coarse affective dimensions that apply categorically. This organization may be especially useful for coupling sensation to decision making and instrumental action in a sensory modality where the stimulus space is especially complex and high dimensional.
Collapse
Affiliation(s)
- Jason B Castro
- Psychology and Neuroscience, Bates College Lewiston, ME, USA
| | | |
Collapse
|
43
|
Secundo L, Snitz K, Sobel N. The perceptual logic of smell. Curr Opin Neurobiol 2014; 25:107-15. [DOI: 10.1016/j.conb.2013.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/01/2022]
|
44
|
Wnuk E, Majid A. Revisiting the limits of language: The odor lexicon of Maniq. Cognition 2014; 131:125-38. [DOI: 10.1016/j.cognition.2013.12.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
|
45
|
Olofsson JK. Time to smell: a cascade model of human olfactory perception based on response-time (RT) measurement. Front Psychol 2014; 5:33. [PMID: 24550861 PMCID: PMC3912348 DOI: 10.3389/fpsyg.2014.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
The timing of olfactory behavioral decisions may provide an important source of information about how the human olfactory-perceptual system is organized. This review integrates results from olfactory response-time (RT) measurements from a perspective of mental chronometry. Based on these findings, a new cascade model of human olfaction is presented. Results show that main perceptual decisions are executed with high accuracy within about 1~s of sniff onset. The cascade model proposes the existence of distinct processing stages within this brief time-window. According to the cascade model, different perceptual features become accessible to the perceiver at different time-points, and the output of earlier processing stages provides the input for later processing stages. The olfactory cascade starts with detecting the odor, which is followed by establishing an odor object. The odor object, in turn, triggers systems for determining odor valence and edibility. Evidence for the cascade model comes from studies showing that RTs for odor valence and edibility assessment are predicted by the shorter RTs needed to establish the odor object. Challenges for future research include innovative task designs for olfactory RT experiments and the integration of the behavioral processing sequence into the underlying cortical processes using complementary RT measures and neuroimaging methods.
Collapse
Affiliation(s)
- Jonas K Olofsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University Stockholm, Sweden ; Swedish Collegium of Advanced Study Uppsala, Sweden
| |
Collapse
|
46
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
47
|
Cleland TA. Construction of Odor Representations by Olfactory Bulb Microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 208:177-203. [DOI: 10.1016/b978-0-444-63350-7.00007-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Abstract
In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization. PLoS One 2013; 8:e73289. [PMID: 24058466 PMCID: PMC3776812 DOI: 10.1371/journal.pone.0073289] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/18/2013] [Indexed: 12/02/2022] Open
Abstract
In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.
Collapse
|
50
|
Snitz K, Yablonka A, Weiss T, Frumin I, Khan RM, Sobel N. Predicting odor perceptual similarity from odor structure. PLoS Comput Biol 2013; 9:e1003184. [PMID: 24068899 PMCID: PMC3772038 DOI: 10.1371/journal.pcbi.1003184] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/04/2013] [Indexed: 01/19/2023] Open
Abstract
To understand the brain mechanisms of olfaction we must understand the rules that govern the link between odorant structure and odorant perception. Natural odors are in fact mixtures made of many molecules, and there is currently no method to look at the molecular structure of such odorant-mixtures and predict their smell. In three separate experiments, we asked 139 subjects to rate the pairwise perceptual similarity of 64 odorant-mixtures ranging in size from 4 to 43 mono-molecular components. We then tested alternative models to link odorant-mixture structure to odorant-mixture perceptual similarity. Whereas a model that considered each mono-molecular component of a mixture separately provided a poor prediction of mixture similarity, a model that represented the mixture as a single structural vector provided consistent correlations between predicted and actual perceptual similarity (r≥0.49, p<0.001). An optimized version of this model yielded a correlation of r = 0.85 (p<0.001) between predicted and actual mixture similarity. In other words, we developed an algorithm that can look at the molecular structure of two novel odorant-mixtures, and predict their ensuing perceptual similarity. That this goal was attained using a model that considers the mixtures as a single vector is consistent with a synthetic rather than analytical brain processing mechanism in olfaction.
Collapse
Affiliation(s)
- Kobi Snitz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Yablonka
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Frumin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rehan M. Khan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|