1
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
2
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
3
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Donta MS, Srivastava Y, Di Mauro CM, Paulucci-Holthauzen A, Waxham MN, McCrea PD. p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro. Front Cell Neurosci 2023; 17:1151249. [PMID: 37082208 PMCID: PMC10112520 DOI: 10.3389/fncel.2023.1151249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina M. Di Mauro
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Hu Y, Zhu S, Xu R, Wang M, Chen F, Zhang Z, Feng B, Wang J, Chen Z, Wang J. Delta-catenin attenuates medulloblastoma cell invasion by targeting EMT pathway. Front Genet 2022; 13:867872. [PMID: 36303547 PMCID: PMC9595215 DOI: 10.3389/fgene.2022.867872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Medulloblastoma is the most common pediatric malignant tumor in central nervous system. Although its prognosis has been improved enormously by the combination treatments with surgery, radiotherapy, and chemotherapy, it still could progress via invasion and distant dissemination. We aimed to investigate molecular mechanisms of medulloblastoma invasion in the current work. Methods: The gene expression profile of medulloblastoma were analyzed based on the data deposited in Gene Expression Omnibus (GEO) and filtered according to brain specific proteins in the Uniprot. Delta-catenin was identified and further analyzed about its expression and roles in the prognosis of medulloblastoma patient. The function of delta-catenin on cell invasion and migration were investigated by transwell and wound healing assay. Whether delta-catenin participates in the epithelial-mesenchymal transition (EMT) regulated invasion was also studied. Results: Delta-catenin expression was highly upregulated in tumor tissues compared to normal tissues from medulloblastoma patients in five independent, nonoverlapping cohorts. Furthermore, delta-catenin expression level was upregulated in WNT subgroup, and significantly correlated with better prognosis, and associated with metastasis through GEO database analysis. Functional assays indicated that delta-catenin inhibited medulloblastoma cell invasion and migration through regulating the key factors of EMT pathway, such as E-cadherin and vimentin. Conclusion: Delta-catenin might be a positive predictor for prognosis of medulloblastoma patients, through attenuating medulloblastoma cell invasion by inhibiting EMT pathway.
Collapse
Affiliation(s)
- Yuanjun Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rizhen Xu
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manxia Wang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeshun Zhang
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binghong Feng
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Zhongping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| |
Collapse
|
6
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
7
|
Baumert R, Ji H, Paulucci-Holthauzen A, Wolfe A, Sagum C, Hodgson L, Arikkath J, Chen X, Bedford MT, Waxham MN, McCrea PD. Novel phospho-switch function of delta-catenin in dendrite development. J Cell Biol 2021; 219:152151. [PMID: 33007084 PMCID: PMC7534926 DOI: 10.1083/jcb.201909166] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/27/2019] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.
Collapse
Affiliation(s)
- Ryan Baumert
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - Hong Ji
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Aaron Wolfe
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | | | - Xiaojiang Chen
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - M Neal Waxham
- Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX
| | - Pierre D McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| |
Collapse
|
8
|
Cameli C, Viggiano M, Rochat MJ, Maresca A, Caporali L, Fiorini C, Palombo F, Magini P, Duardo RC, Ceroni F, Scaduto MC, Posar A, Seri M, Carelli V, Visconti P, Bacchelli E, Maestrini E. An increased burden of rare exonic variants in NRXN1 microdeletion carriers is likely to enhance the penetrance for autism spectrum disorder. J Cell Mol Med 2021; 25:2459-2470. [PMID: 33476483 PMCID: PMC7933976 DOI: 10.1111/jcmm.16161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%‐30%) presenting a rare large‐effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD‐associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole‐exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion‐transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10−5). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low‐level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large‐effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Pamela Magini
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Renée C Duardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Maria C Scaduto
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Annio Posar
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Paola Visconti
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Adegbola A, Lutz R, Nikkola E, Strom SP, Picker J, Wynshaw-Boris A. Disruption of CTNND2, encoding delta-catenin, causes a penetrant attention deficit disorder and myopia. HGG ADVANCES 2020; 1:100007. [PMID: 33718894 PMCID: PMC7948131 DOI: 10.1016/j.xhgg.2020.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts CTNND2 in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. CTNND2 encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders. Therefore, we propose that the severe and highly penetrant nature of the ADHD phenotype in affected individuals identifies CTNND2 as a potential gateway to ADHD pathophysiology similar to the DISC1 translocation in psychosis or AUTS2 in autism.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lutz
- Department of Genetic Medicine, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Child and Adolescent Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Ligon C, Seong E, Schroeder EJ, DeKorver NW, Yuan L, Chaudoin TR, Cai Y, Buch S, Bonasera SJ, Arikkath J. δ-Catenin engages the autophagy pathway to sculpt the developing dendritic arbor. J Biol Chem 2020; 295:10988-11001. [PMID: 32554807 DOI: 10.1074/jbc.ra120.013058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2020] [Indexed: 01/21/2023] Open
Abstract
The development of the dendritic arbor in pyramidal neurons is critical for neural circuit function. Here, we uncovered a pathway in which δ-catenin, a component of the cadherin-catenin cell adhesion complex, promotes coordination of growth among individual dendrites and engages the autophagy mechanism to sculpt the developing dendritic arbor. Using a rat primary neuron model, time-lapse imaging, immunohistochemistry, and confocal microscopy, we found that apical and basolateral dendrites are coordinately sculpted during development. Loss or knockdown of δ-catenin uncoupled this coordination, leading to retraction of the apical dendrite without altering basolateral dendrite dynamics. Autophagy is a key cellular pathway that allows degradation of cellular components. We observed that the impairment of the dendritic arbor resulting from δ-catenin knockdown could be reversed by knockdown of autophagy-related 7 (ATG7), a component of the autophagy machinery. We propose that δ-catenin regulates the dendritic arbor by coordinating the dynamics of individual dendrites and that the autophagy mechanism may be leveraged by δ-catenin and other effectors to sculpt the developing dendritic arbor. Our findings have implications for the management of neurological disorders, such as autism and intellectual disability, that are characterized by dendritic aberrations.
Collapse
Affiliation(s)
- Cheryl Ligon
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ethan J Schroeder
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicholas W DeKorver
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy R Chaudoin
- Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jyothi Arikkath
- Department of Anatomy, Howard University, Washington, D. C., USA
| |
Collapse
|
11
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Kizner V, Naujock M, Fischer S, Jäger S, Reich S, Schlotthauer I, Zuckschwerdt K, Geiger T, Hildebrandt T, Lawless N, Macartney T, Dorner-Ciossek C, Gillardon F. CRISPR/Cas9-mediated Knockout of the Neuropsychiatric Risk Gene KCTD13 Causes Developmental Deficits in Human Cortical Neurons Derived from Induced Pluripotent Stem Cells. Mol Neurobiol 2019; 57:616-634. [PMID: 31402430 DOI: 10.1007/s12035-019-01727-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.2 deletion carriers. KCTD13 is highly expressed in the fetal human brain and in mouse cortical neurons, but its contribution to the development and function of mammalian neurons is not completely understood. In the present study, we deleted the KCTD13 gene in human-induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 nickase. Following neural differentiation of KCTD13 deficient and isogenic control iPSC lines, we detected a moderate but significant inhibition of DNA synthesis and proliferation in KCTD13 deficient human neural precursor cells. KCTD13 deficient cortical neurons derived from iPSCs showed decreased neurite formation and reduced spontaneous network activity. RNA-sequencing and pathway analysis pointed to a role for ERBB signaling in these phenotypic changes. Consistently, activating and inhibiting ERBB kinases rescued and aggravated, respectively, impaired neurite formation. In contrast to findings in non-neuronal human HeLa cells, we did not detect an accumulation of the putative KCTD13/Cullin-3 substrate RhoA, and treatment with inhibitors of RhoA signaling did not rescue decreased neurite formation in human KCTD13 knockout neurons. Taken together, our data provide insight into the role of KCTD13 in neurodevelopmental disorders, and point to ERBB signaling as a potential target for neuropsychiatric disorders associated with KCTD13 deficiency.
Collapse
Affiliation(s)
- Valeria Kizner
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Maximilian Naujock
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Sandra Fischer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Stefan Jäger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Selina Reich
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Ines Schlotthauer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Geiger
- Cardio-metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Hildebrandt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Nathan Lawless
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Cornelia Dorner-Ciossek
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
13
|
Hu G, Niu F, Liao K, Periyasamy P, Sil S, Liu J, Dravid SM, Buch S. HIV-1 Tat-Induced Astrocytic Extracellular Vesicle miR-7 Impairs Synaptic Architecture. J Neuroimmune Pharmacol 2019; 15:538-553. [PMID: 31401755 PMCID: PMC7008083 DOI: 10.1007/s11481-019-09869-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
Abstract
Although combination antiretroviral therapy (cART) has improved the health of millions of those living with HIV-1 (Human Immunodeficiency Virus, Type 1), the penetration into the central nervous system (CNS) of many such therapies is limited, thereby resulting in residual neurocognitive impairment commonly referred to as NeuroHIV. Additionally, while cART has successfully suppressed peripheral viremia, cytotoxicity associated with the presence of viral Transactivator of transcription (Tat) protein in tissues such as the brain, remains a significant concern. Our previous study has demonstrated that both HIV-1 Tat as well as opiates such as morphine, can directly induce synaptic alterations via independent pathways. Herein, we demonstrate that exposure of astrocytes to HIV-1 protein Tat mediates the induction and release of extracellular vesicle (EV) microRNA-7 (miR-7) that is taken up by neurons, leading in turn, to downregulation of neuronal neuroligin 2 (NLGN2) and ultimately to synaptic alterations. More importantly, we report that these impairments could be reversed by pretreatment of neurons with a neurotrophic factor platelet-derived growth factor-CC (PDGF-CC). Graphical Abstract ![]()
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE, USA
| | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Yuan L, Singh D, Buescher JL, Arikkath J. A role for proteolytic regulation of δ-catenin in remodeling a subpopulation of dendritic spines in the rodent brain. J Biol Chem 2018; 293:11625-11638. [PMID: 29875160 DOI: 10.1074/jbc.ra118.001966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/02/2018] [Indexed: 01/27/2023] Open
Abstract
Neural wiring and activity are essential for proper brain function and behavioral outputs and rely on mechanisms that guide the formation, elimination, and remodeling of synapses. During development, it is therefore vital that synaptic densities and architecture are tightly regulated to allow for appropriate neural circuit formation and function. δ-Catenin, a component of the cadherin-catenin cell adhesion complex, has been demonstrated to be a critical regulator of synaptic density and function in the developing central neurons. In this study, we identified forms of δ-catenin that include only the N-terminal (DcatNT) or the C-terminal (DcatCT) regions. We found that these δ-catenin forms are differentially expressed in different regions of the male mouse brain. Our results also indicated that in rat primary cortical culture, these forms are generated in an activity-dependent manner by Ca2+-dependent and calpain-mediated cleavage of δ-catenin or in an activity-independent but lysosome-dependent manner. Functionally, loss of the domain containing the calpain-cleavage sites allowing for generation of DcatCT and DcatNT perturbed the density of a subpopulation of dendritic protrusions in rat hippocampal neurons. This subpopulation likely included protrusions that are either in transition toward becoming mature mushroom spines or in the process of being eliminated. By influencing this subpopulation of spines, proteolytic processing of δ-catenin can likely regulate the balance between mature and immature dendritic protrusions in coordination with neural activity. We conclude that by undergoing cleavage, δ-catenin differentially regulates the densities of subpopulations of dendritic spines and contributes to proper neural circuit wiring in the developing brain.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Buescher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
15
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Di Gregorio E, Riberi E, Belligni EF, Biamino E, Spielmann M, Ala U, Calcia A, Bagnasco I, Carli D, Gai G, Giordano M, Guala A, Keller R, Mandrile G, Arduino C, Maffè A, Naretto VG, Sirchia F, Sorasio L, Ungari S, Zonta A, Zacchetti G, Talarico F, Pappi P, Cavalieri S, Giorgio E, Mancini C, Ferrero M, Brussino A, Savin E, Gandione M, Pelle A, Giachino DF, De Marchi M, Restagno G, Provero P, Cirillo Silengo M, Grosso E, Buxbaum JD, Pasini B, De Rubeis S, Brusco A, Ferrero GB. Copy number variants analysis in a cohort of isolated and syndromic developmental delay/intellectual disability reveals novel genomic disorders, position effects and candidate disease genes. Clin Genet 2017; 92:415-422. [PMID: 28295210 DOI: 10.1111/cge.13009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Array-comparative genomic hybridization (array-CGH) is a widely used technique to detect copy number variants (CNVs) associated with developmental delay/intellectual disability (DD/ID). AIMS Identification of genomic disorders in DD/ID. MATERIALS AND METHODS We performed a comprehensive array-CGH investigation of 1,015 consecutive cases with DD/ID and combined literature mining, genetic evidence, evolutionary constraint scores, and functional information in order to assess the pathogenicity of the CNVs. RESULTS We identified non-benign CNVs in 29% of patients. Amongst the pathogenic variants (11%), detected with a yield consistent with the literature, we found rare genomic disorders and CNVs spanning known disease genes. We further identified and discussed 51 cases with likely pathogenic CNVs spanning novel candidate genes, including genes encoding synaptic components and/or proteins involved in corticogenesis. Additionally, we identified two deletions spanning potential Topological Associated Domain (TAD) boundaries probably affecting the regulatory landscape. DISCUSSION AND CONCLUSION We show how phenotypic and genetic analyses of array-CGH data allow unraveling complex cases, identifying rare disease genes, and revealing unexpected position effects.
Collapse
Affiliation(s)
- E Di Gregorio
- University of Torino, Department of Medical Sciences, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - E Riberi
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E F Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E Biamino
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - M Spielmann
- Research Group Mundlos, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - U Ala
- Computational Biology Unit, Molecular Biotechnology Center (MBC), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - A Calcia
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - I Bagnasco
- Neuropsichiatria Infantile, Martini Hospital, ASL TO1, Turin, Italy
| | - D Carli
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - G Gai
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - M Giordano
- Department of Health Sciences, Laboratory of Genetics, University of Eastern Piedmont and Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| | - A Guala
- SOC Pediatria, Castelli Hospital, Verbania, Italy
| | - R Keller
- Mental Health Department, ASL TO2, Adult Autism Center, Turin, Italy
| | - G Mandrile
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.,Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - C Arduino
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - A Maffè
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - V G Naretto
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - F Sirchia
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - L Sorasio
- Pediatrics, Santa Croce e Carle Hospital, Cuneo, Italy
| | - S Ungari
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - A Zonta
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - G Zacchetti
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.,Department of Health Sciences, Laboratory of Genetics, University of Eastern Piedmont and Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| | - F Talarico
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - P Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - S Cavalieri
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - E Giorgio
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - C Mancini
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - M Ferrero
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - A Brussino
- University of Torino, Department of Medical Sciences, Turin, Italy
| | - E Savin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - M Gandione
- Department of Neuropsychiatry, University of Torino, Turin, Italy
| | - A Pelle
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - D F Giachino
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - M De Marchi
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy.,Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - G Restagno
- Laboratory of Molecular Genetics, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - P Provero
- Computational Biology Unit, Molecular Biotechnology Center (MBC), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - M Cirillo Silengo
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - E Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - J D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - B Pasini
- Molecular Biology and Genetics Unit, Santa Croce e Carle Hospital, Cuneo, Italy
| | - S De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - A Brusco
- University of Torino, Department of Medical Sciences, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - G B Ferrero
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| |
Collapse
|
17
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
18
|
The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and δ-Catenin Signaling. eNeuro 2016; 3:eN-NWR-0238-16. [PMID: 27822498 PMCID: PMC5083950 DOI: 10.1523/eneuro.0238-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022] Open
Abstract
Our previous work showed that loss of the KIAA2022 gene protein results in intellectual disability with language impairment and autistic behavior (KIDLIA, also referred to as XPN). However, the cellular and molecular alterations resulting from a loss of function of KIDLIA and its role in autism with severe intellectual disability remain unknown. Here, we show that KIDLIA plays a key role in neuron migration and morphogenesis. We found that KIDLIA is distributed exclusively in the nucleus. In the developing rat brain, it is expressed only in the cortical plate and subplate region but not in the intermediate or ventricular zone. Using in utero electroporation, we found that short hairpin RNA (shRNA)-mediated knockdown of KIDLIA leads to altered neuron migration and a reduction in dendritic growth and disorganized apical dendrite projections in layer II/III mouse cortical neurons. Consistent with this, in cultured rat neurons, a loss of KIDLIA expression also leads to suppression of dendritic growth and branching. At the molecular level, we found that KIDLIA suppression leads to an increase in cell-surface N-cadherin and an elevated association of N-cadherin with δ-catenin, resulting in depletion of free δ-catenin in the cytosolic compartment. The reduced availability of cytosolic δ-catenin leads to elevated RhoA activity and reduced actin dynamics at the dendritic growth cone. Furthermore, in neurons with KIDLIA knockdown, overexpression of δ-catenin or inhibition of RhoA rescues actin dynamics, dendritic growth, and branching. These findings provide the first evidence on the role of the novel protein KIDLIA in neurodevelopment and autism with severe intellectual disability.
Collapse
|
19
|
Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, Liu H, Xiong H, Arikkath J, Buch S. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol 2016; 215:245-258. [PMID: 27810915 PMCID: PMC5084649 DOI: 10.1083/jcb.201605065] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/26/2016] [Indexed: 01/16/2023] Open
Abstract
Our findings suggest that morphine dysregulates synaptic balance in the hippocampus, a key center for learning and memory, via a novel signaling pathway involving reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy. We demonstrate in this study that exposure of morphine to hippocampal neurons leads to a reduction in excitatory synapse densities with a concomitant enhancement of inhibitory synapse densities via activation of the μ opioid receptor. Furthermore, these effects of morphine are mediated by up-regulation of intracellular ROS from NADPH oxidase, leading, in turn, to sequential induction of ER stress and autophagy. The detrimental effects of morphine on synaptic densities were shown to be reversed by platelet-derived growth factor (PDGF), a pleiotropic growth factor that has been implicated in neuroprotection. These results identify a novel cellular mechanism involved in morphine-mediated synaptic alterations with implications for therapeutic interventions by PDGF.
Collapse
Affiliation(s)
- Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610051, China
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Xufeng Chen
- Department of Emergence, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Han Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jyothi Arikkath
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
20
|
Stanika RI, Flucher BE, Obermair GJ. Regulation of Postsynaptic Stability by the L-type Calcium Channel CaV1.3 and its Interaction with PDZ Proteins. Curr Mol Pharmacol 2016; 8:95-101. [PMID: 25966696 PMCID: PMC5384370 DOI: 10.2174/1874467208666150507103716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Alterations in dendritic spine morphology and postsynaptic structure are a hallmark of neurological disorders. Particularly spine pruning of striatal medium spiny neurons and aberrant rewiring of corticostriatal synapses have been associated with the pathology of Parkinson’s disease and L-DOPA induced dyskinesia, respectively. Owing to its low activation threshold the neuronal L-type calcium channel CaV1.3 is particularly critical in the control of neuronal excitability and thus in the calcium-dependent regulation of neuronal functions. CaV1.3 channels are located in dendritic spines and contain a C-terminal class 1 PDZ domain-binding sequence. Until today the postsynaptic PDZ domain proteins shank, densin-180, and erbin have been shown to interact with CaV1.3 channels and to modulate their current properties. Interestingly experimental evidence suggests an involvement of all three PDZ proteins as well as CaV1.3 itself in regulating dendritic and postsynaptic morphology. Here we briefly review the importance of CaV1.3 and its proposed interactions with PDZ proteins for the stability of dendritic spines. With a special focus on the pathology associated with Parkinson’s disease, we discuss the hypothesis that CaV1.3 L-type calcium channels may be critical modulators of dendritic spine stability.
Collapse
Affiliation(s)
| | | | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Abstract
Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca(2+)-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function. (1-3) The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development. (4,5) Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.
Collapse
Affiliation(s)
- Eunju Seong
- a Developmental Neuroscience; Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | |
Collapse
|
22
|
Yuan Y, Seong E, Yuan L, Singh D, Arikkath J. Differential regulation of apical-basolateral dendrite outgrowth by activity in hippocampal neurons. Front Cell Neurosci 2015; 9:314. [PMID: 26321915 PMCID: PMC4531327 DOI: 10.3389/fncel.2015.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized by structurally and functionally distinct apical and basolateral dendrites. The ability of the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs received are critically dependent on dendrite architecture. Little is known about the role of neuronal activity in guiding maintenance of dendrite asymmetry. Our data indicate that dendrite asymmetry is established and maintained early during development. Further, our results indicate that cell intrinsic and global alterations of neuronal activity have differential effects on net extension of apical and basolateral dendrites. Thus, apical and basolateral dendrite extension may be independently regulated by cell intrinsic and network neuronal activity during development, suggesting that individual dendrites may have autonomous control over net extension. We propose that regulated individual dendrite extension in response to cell intrinsic and neuronal network activity may allow temporal control of synapse specificity in the developing hippocampus.
Collapse
Affiliation(s)
- Yang Yuan
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA ; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
23
|
Yuan L, Seong E, Beuscher JL, Arikkath J. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions. J Biol Chem 2015; 290:10947-57. [PMID: 25724647 DOI: 10.1074/jbc.m114.632679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome.
Collapse
Affiliation(s)
- Li Yuan
- From the Department of Pharmacology and Experimental Neuroscience
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Beuscher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- From the Department of Pharmacology and Experimental Neuroscience, Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
24
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
25
|
14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci 2014; 34:12168-81. [PMID: 25186760 DOI: 10.1523/jneurosci.2513-13.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.
Collapse
|
26
|
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32. [PMID: 24562000 PMCID: PMC5025286 DOI: 10.1038/nn.3657] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and subsequent changes in synapse morphology and efficacy, remain unanswered. We demonstrate that the intracellular cadherin binding protein, δ-catenin, is transiently palmitoylated by DHHC5 following enhanced synaptic activity, and that palmitoylation increases δ-catenin/cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses, the enlargement of postsynaptic spines, as well as insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in mEPSC amplitude. Importantly, context-dependent fear conditioning in mice results in increased δ-catenin palmitoylation as well as increased δ-catenin/cadherin associations at hippocampal synapses. Together, this suggests a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure, and receptor localization that are involved in memory formation.
Collapse
|
27
|
Quach TT, Wilson SM, Rogemond V, Chounlamountri N, Kolattukudy PE, Martinez S, Khanna M, Belin MF, Khanna R, Honnorat J, Duchemin AM. Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation. J Cell Sci 2013; 126:4262-73. [PMID: 23868973 DOI: 10.1242/jcs.131409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although hippocampal neurons are well-distinguished by the morphological characteristics of their dendrites and their structural plasticity, the mechanisms involved in regulating their neurite initiation, dendrite growth, network formation and remodeling are still largely unknown, in part because the key molecules involved remain elusive. Identifying new dendrite-active cues could uncover unknown molecular mechanisms that would add significant understanding to the field and possibly lead to the development of novel neuroprotective therapy because these neurons are impaired in many neuropsychiatric disorders. In our previous studies, we deleted the gene encoding CRMP3 in mice and identified the protein as a new endogenous signaling molecule that shapes diverse features of the hippocampal pyramidal dendrites without affecting axon morphology. We also found that CRMP3 protects dendrites against dystrophy induced by prion peptide PrP(106-126). Here, we report that CRMP3 has a profound influence on neurite initiation and dendrite growth of hippocampal neurons in vitro. Our deletional mapping revealed that the C-terminus of CRMP3 probably harbors its dendritogenic capacity and supports an active transport mechanism. By contrast, overexpression of the C-terminal truncated CRMP3 phenocopied the effect of CRMP3 gene deletion with inhibition of neurite initiation or decrease in dendrite complexity, depending on the stage of cell development. In addition, this mutant inhibited the activity of CRMP3, in a similar manner to siRNA. Voltage-gated calcium channel inhibitors prevented CRMP3-induced dendritic growth and somatic Ca(2+) influx in CRMP3-overexpressing neurons was augmented largely via L-type channels. These results support a link between CRMP3-mediated Ca(2+) influx and CRMP3-mediated dendritic growth in hippocampal neurons.
Collapse
Affiliation(s)
- Tam T Quach
- Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, F-69372 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scribble controls NGF-mediated neurite outgrowth in PC12 cells. Eur J Cell Biol 2013; 92:213-21. [DOI: 10.1016/j.ejcb.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022] Open
|
29
|
Yuan Y, Singh D, Arikkath J. Mef2 promotes spine elimination in absence of δ-catenin. Neurosci Lett 2013; 536:10-3. [PMID: 23328440 DOI: 10.1016/j.neulet.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/28/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
Abstract
δ-Catenin is a component of the cadherin-catenin cell adhesion complex and its loss has been implicated in the mental retardation associated with the Cri du chat syndrome. We have previously demonstrated that loss of δ-catenin in a murine model during development results in excessive spine and synaptic density and function. In order to examine the role of potential molecules that might cooperate with δ-catenin to regulate spine density, we focused on Mef2. Our data demonstrate that while loss of δ-catenin does not alter the expression levels of endogenous Mef2, expression of Mef2 in neurons that are knocked down for δ-catenin promotes spine elimination. These results establish a molecular mechanism by which excessive spines in the absence of δ-catenin may be eliminated and may point toward pharmacological therapy for the Cri du chat syndrome.
Collapse
Affiliation(s)
- Yang Yuan
- Developmental Neurosciences, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | | | |
Collapse
|
30
|
Arikkath J. Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 2012; 6:61. [PMID: 23293584 PMCID: PMC3531598 DOI: 10.3389/fncel.2012.00061] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/08/2012] [Indexed: 01/28/2023] Open
Abstract
Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
31
|
Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 2012; 7:1741-54. [PMID: 22936216 DOI: 10.1038/nprot.2012.099] [Citation(s) in RCA: 488] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ability to culture and maintain postnatal mouse hippocampal and cortical neurons is highly advantageous, particularly for studies on genetically engineered mouse models. Here we present a protocol to isolate and culture pyramidal neurons from the early postnatal (P0-P1) mouse hippocampus and cortex. These low-density dissociated cultures are grown on poly-L-lysine-coated glass substrates without feeder layers. Cultured neurons survive well, develop extensive axonal and dendritic arbors, express neuronal and synaptic markers, and form functional synaptic connections. Further, they are highly amenable to low- and high-efficiency transfection and time-lapse imaging. This optimized cell culture technique can be used to culture and maintain neurons for a variety of applications including immunocytochemistry, biochemical studies, shRNA-mediated knockdown and live imaging studies. The preparation of the glass substrate must begin 5 d before the culture. The dissection and plating out of neurons takes 3-4 h and neurons can be maintained in culture for up to 4 weeks.
Collapse
|
32
|
Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 2010; 21:922-8. [PMID: 20832498 PMCID: PMC2991617 DOI: 10.1016/j.semcdb.2010.08.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022]
Abstract
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.
Collapse
Affiliation(s)
- Jason Newbern
- Neuroscience Center, University of North Carolina School of Medicine, Chapel, Hill, NC 27599, USA
| | | |
Collapse
|
33
|
Bareiss S, Kim K, Lu Q. Delta-catenin/NPRAP: A new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons. J Neurosci Res 2010; 88:2350-63. [PMID: 20623542 DOI: 10.1002/jnr.22414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Through a multiprotein complex, glycogen synthase kinase-3beta (GSK-3beta) phosphorylates and destabilizes beta-catenin, an important signaling event for neuronal growth and proper synaptic function. delta-Catenin, or NPRAP (CTNND2), is a neural enriched member of the beta-catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that delta-catenin expression is also affected by GSK-3beta signaling and participates in the molecular complex regulating beta-catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of delta-catenin with members of the molecular destruction complex: GSK-3beta, beta-catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK-3beta formed a complex with delta-catenin, and its inhibition resulted in increased delta-catenin and beta-catenin expression levels. LY294002 and amyloid peptide, known activators of GSK-3beta signaling, reduced delta-catenin expression levels. Furthermore, delta-catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of delta-catenin, like that of beta-catenin, is regulated by proteasome-mediated degradation. Coimmunoprecipitation experiments showed that delta-catenin overexpression promoted GSK-3beta and beta-catenin interactions. Primary cortical neurons and PC12 cells expressing delta-catenin treated with proteasome inhibitors showed increased ubiquitinated beta-catenin forms. Consistent with the hypothesis that delta-catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing delta-catenin showed enhanced beta-catenin turnover. These studies identify delta-catenin as a new member of the GSK-3beta signaling pathway and further suggest that delta-catenin is potentially involved in facilitating the interaction, ubiquitination, and subsequent turnover of beta-catenin in neuronal cells.
Collapse
Affiliation(s)
- Sonja Bareiss
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
34
|
Matter C, Pribadi M, Liu X, Trachtenberg JT. Delta-catenin is required for the maintenance of neural structure and function in mature cortex in vivo. Neuron 2009; 64:320-7. [PMID: 19914181 DOI: 10.1016/j.neuron.2009.09.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Delta-catenin is a brain-specific member of the adherens junction complex that localizes to the postsynaptic and dendritic compartments. This protein is likely critical for normal cognitive function; its hemizygous loss is linked to the severe mental retardation syndrome Cri-du-Chat and it directly interacts with presenilin-1 (PS1), the protein most frequently mutated in familial Alzheimer's disease. Here we examine dendritic structure and cortical function in vivo in mice lacking delta-catenin. We find that in cerebral cortex of 5-week-old mice, dendritic complexity, spine density, and cortical responsiveness are similar between mutant and littermate controls; thereafter, mutant mice experience progressive dendritic retraction, a reduction in spine density and stability, and concomitant reductions in cortical responsiveness. Our results indicate that delta-catenin regulates the maintenance of dendrites and dendritic spines in mature cortex but does not appear to be necessary for the initial establishment of these structures during development.
Collapse
Affiliation(s)
- Cheryl Matter
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
35
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rezvani K, Teng Y, Pan Y, Dani JA, Lindstrom J, García Gras EA, McIntosh JM, De Biasi M. UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors. J Neurosci 2009; 29:6883-96. [PMID: 19474315 PMCID: PMC2935801 DOI: 10.1523/jneurosci.4723-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 04/02/2009] [Accepted: 04/13/2009] [Indexed: 01/11/2023] Open
Abstract
Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.
Collapse
Affiliation(s)
| | | | | | - John A. Dani
- Department of Neuroscience and
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104
| | - Eduardo A. García Gras
- Centro de Salud y Medio Ambiente, Escuela de Ciencia y Tecnologia, Universidad de General San Martin, 1650 San Martin, Provincia de Buenos Aires, Argentina, and
| | - J. Michael McIntosh
- Departments of Psychiatry and
- Biology, University of Utah, Salt Lake City, Utah 84112
| | - Mariella De Biasi
- Department of Neuroscience and
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
37
|
Arikkath J. Regulation of dendrite and spine morphogenesis and plasticity by catenins. Mol Neurobiol 2009; 40:46-54. [PMID: 19401831 DOI: 10.1007/s12035-009-8068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin-catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Jyothi Arikkath
- University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Arikkath J, Peng IF, Gie Ng Y, Israely I, Liu X, Ullian EM, Reichardt LF. Delta-catenin regulates spine and synapse morphogenesis and function in hippocampal neurons during development. J Neurosci 2009; 29:5435-42. [PMID: 19403811 PMCID: PMC2763482 DOI: 10.1523/jneurosci.0835-09.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/11/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022] Open
Abstract
The maintenance of spine and synapse number during development is critical for neuronal circuit formation and function. Here we show that delta-catenin, a component of the cadherin-catenin cell adhesion complex, regulates spine and synapse morphogenesis during development. Genetic ablation or acute knockdown of delta-catenin leads to increases in spine and synapse density, accompanied by a decrease in tetrodotoxin induced spine plasticity. Our results indicate that delta-catenin may mediate conversion of activity-dependent signals to morphological spine plasticity. The functional role of delta-catenin in regulating spine density does not require binding to cadherins, but does require interactions with PDZ domain-containing proteins. We propose that the perturbations in spine and synaptic structure and function observed after depletion of delta-catenin during development may contribute to functional alterations in neural circuitry, the cognitive deficits observed in mutant mice, and the mental retardation pathology of Cri-du-chat syndrome.
Collapse
Affiliation(s)
| | - I-Feng Peng
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | | - Inbal Israely
- Departments of Molecular and Medical Pharmacology and
| | - Xin Liu
- Departments of Molecular and Medical Pharmacology and
- Pathology and Laboratory Medicine and
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Erik M. Ullian
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | |
Collapse
|
39
|
Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Sheng M. Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 2008; 8:681-95. [PMID: 19054758 PMCID: PMC2667352 DOI: 10.1074/mcp.m800233-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise a phosphospecific antibody that detected MAPK-mediated phosphorylation. The antibody (termed “5557”) recognized a variety of phosphoproteins in the brain, many of which were enriched in postsynaptic density fractions. The immunoblot pattern changed rapidly in response to altered synaptic activity and with the inhibition of specific MAPKs and protein phosphatases. By immunoaffinity purification with 5557 antibody followed by mass spectrometry, we identified 449 putative MAPK substrates of which many appeared dynamically regulated in neuron cultures. Several of the novel candidate MAPK substrates were validated by in vitro phosphorylation assays. Additionally 82 specific phosphorylation sites were identified in 34 proteins, including Ser-447 in δ-catenin, a component of the cadherin adhesion complex. We further raised another phosphospecific antibody to confirm that δ-catenin Ser-447 is modified in neurons by the MAPK JNK in a synaptic activity-dependent manner. Ser-447 phosphorylation by JNK appears to be correlated with δ-catenin degradation, and a δ-catenin mutant defective in Ser-447 phosphorylation showed enhanced ability to promote dendrite branching in cultured neurons. Thus, phosphomotif-based affinity purification is a powerful approach to identify novel substrates of MAPKs in vivo and to reveal functionally significant phosphorylation events.
Collapse
Affiliation(s)
- Dieter Edbauer
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|