1
|
Das De T, Pelletier J, Gupta S, Kona MP, Singh OP, Dixit R, Ignell R, Karmodiya K. Diel modulation of perireceptor activity influences olfactory sensitivity in diurnal and nocturnal mosquitoes. FEBS J 2025; 292:2095-2118. [PMID: 39887616 DOI: 10.1111/febs.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Olfaction and diel-circadian rhythm regulate different behaviors, including host-seeking, feeding, and locomotion, in mosquitoes that are important for their capacity to transmit disease. Diel-rhythmic changes of the odorant-binding proteins (OBPs) in olfactory organs are primarily accountable for olfactory rhythmicity. To better understand the molecular rhythm regulating nocturnal and diurnal behaviors in mosquitoes, we performed a comparative RNA-sequencing study of the peripheral olfactory and brain tissues of female Anopheles culicifacies and Aedes aegypti. Data analysis revealed a significant upregulation of genes encoding: OBPs and xenobiotic-metabolizing enzymes including Cytochrome P450 (CYP450) during photophase in Aedes aegypti and the dusk-transition phase in Anopheles culicifacies, hypothesizing their possible function in the regulation of perireceptor events and olfactory sensitivity. RNA interference studies and application of CYP450 inhibitors, coupled with electroantennographic recordings with Anopheles gambiae and Aedes aegypti, established that CYP450 plays a role in odorant detection and antennal sensitivity. Furthermore, brain tissue transcriptome and RNAi-mediated knockdown revealed that daily temporal modulation of neuronal serine proteases may have a crucial function in olfactory signal transmission, thereby affecting olfactory sensitivity. These findings provide a rationale to further explore the species-specific rhythmic expression pattern of the neuro-olfactory encoded molecular factors, which could pave the way to develop and implement successful mosquito control methods.
Collapse
Affiliation(s)
- Tanwee Das De
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Julien Pelletier
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Satyajeet Gupta
- Agriculture Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Om P Singh
- Vector Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Rajnikant Dixit
- Vector Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
2
|
Rozenfeld E, Parnas M. Neuronal circuit mechanisms of competitive interaction between action-based and coincidence learning. SCIENCE ADVANCES 2024; 10:eadq3016. [PMID: 39642217 PMCID: PMC11623277 DOI: 10.1126/sciadv.adq3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
How information is integrated across different forms of learning is crucial to understanding higher cognitive functions. Animals form classic or operant associations between cues and their outcomes. It is believed that a prerequisite for operant conditioning is the formation of a classical association. Thus, both memories coexist and are additive. However, the two memories can result in opposing behavioral responses, which can be disadvantageous. We show that Drosophila classical and operant olfactory conditioning rely on distinct neuronal pathways leading to different behavioral responses. Plasticity in both pathways cannot be formed simultaneously. If plasticity occurs at both pathways, interference between them occurs and learning is disrupted. Activity of the navigation center is required to prevent plasticity in the classical pathway and enable it in the operant pathway. These findings fundamentally challenge hierarchical views of operant and classical learning and show that active processes prevent coexistence of the two memories.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Lindsey JW, Litwin-Kumar A. Selective consolidation of learning and memory via recall-gated plasticity. eLife 2024; 12:RP90793. [PMID: 39023518 PMCID: PMC11257680 DOI: 10.7554/elife.90793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
In a variety of species and behavioral contexts, learning and memory formation recruits two neural systems, with initial plasticity in one system being consolidated into the other over time. Moreover, consolidation is known to be selective; that is, some experiences are more likely to be consolidated into long-term memory than others. Here, we propose and analyze a model that captures common computational principles underlying such phenomena. The key component of this model is a mechanism by which a long-term learning and memory system prioritizes the storage of synaptic changes that are consistent with prior updates to the short-term system. This mechanism, which we refer to as recall-gated consolidation, has the effect of shielding long-term memory from spurious synaptic changes, enabling it to focus on reliable signals in the environment. We describe neural circuit implementations of this model for different types of learning problems, including supervised learning, reinforcement learning, and autoassociative memory storage. These implementations involve synaptic plasticity rules modulated by factors such as prediction accuracy, decision confidence, or familiarity. We then develop an analytical theory of the learning and memory performance of the model, in comparison to alternatives relying only on synapse-local consolidation mechanisms. We find that recall-gated consolidation provides significant advantages, substantially amplifying the signal-to-noise ratio with which memories can be stored in noisy environments. We show that recall-gated consolidation gives rise to a number of phenomena that are present in behavioral learning paradigms, including spaced learning effects, task-dependent rates of consolidation, and differing neural representations in short- and long-term pathways.
Collapse
Affiliation(s)
- Jack W Lindsey
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
4
|
Wang CM, Wu CY, Lin CE, Hsu MC, Lin JC, Huang CC, Lien TY, Lin HK, Chang TW, Chiang HC. Forgotten memory storage and retrieval in Drosophila. Nat Commun 2023; 14:7153. [PMID: 37935667 PMCID: PMC10630420 DOI: 10.1038/s41467-023-42753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Inaccessibility of stored memory in ensemble cells through the forgetting process causes animals to be unable to respond to natural recalling cues. While accumulating evidence has demonstrated that reactivating memory-stored cells can switch cells from an inaccessible state to an accessible form and lead to recall of previously learned information, the underlying cellular and molecular mechanisms remain elusive. The current study used Drosophila as a model to demonstrate that the memory of one-trial aversive olfactory conditioning, although inaccessible within a few hours after learning, is stored in KCαβ and retrievable after mild retraining. One-trial aversive conditioning triggers protein synthesis to form a long-lasting cellular memory trace, approximately 20 days, via creb in KCαβ, and a transient cellular memory trace, approximately one day, via orb in MBON-α3. PPL1-α3 negatively regulates forgotten one-trial conditioning memory retrieval. The current study demonstrated that KCαβ, PPL1-α3, and MBON-α3 collaboratively regulate the formation of forgotten one-cycle aversive conditioning memory formation and retrieval.
Collapse
Affiliation(s)
- Chih-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chun-Yuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chen-En Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ming-Chi Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Jing-Chun Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Chuan-Chin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ting-Yu Lien
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Hsin-Kai Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ting-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hsueh-Cheng Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
5
|
Wu L, Liu C. Integrated neural circuits of sleep and memory regulation in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101105. [PMID: 37625641 DOI: 10.1016/j.cois.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Sleep and memory are highly intertwined, yet the integrative neural network of these two fundamental physiological behaviors remains poorly understood. Multiple cell types and structures of the Drosophila brain have been shown involved in the regulation of sleep and memory, and recent efforts are focusing on bridging them at molecular and circuit levels. Here, we briefly review 1) identified neurons as key nodes of olfactory-associative memory circuits involved in different memory processes; 2) how neurons of memory circuits participate in sleep regulation; and 3) other cell types and circuits besides the mushroom body in linking sleep and memory. We also attempt to provide the remaining gaps of circuitry integration of sleep and memory, which may spark some new thinking for future efforts.
Collapse
Affiliation(s)
- Litao Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
6
|
Nöbel S, Danchin E, Isabel G. Mate copying requires the coincidence detector Rutabaga in the mushroom bodies of Drosophila melanogaster. iScience 2023; 26:107682. [PMID: 37694137 PMCID: PMC10484988 DOI: 10.1016/j.isci.2023.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Mate choice constitutes a major fitness-affecting decision often involving social learning leading to copying the preference of other individuals (i.e., mate copying). While mate copying exists in many taxa, its underlying neurobiological mechanisms remain virtually unknown. Here, we show in Drosophila melanogaster that the rutabaga gene is necessary to support mate copying. Rutabaga encodes an adenylyl cyclase (AC-Rut+) acting as a coincidence detector in associative learning. Since the brain localization requirements for AC-Rut+ expression differ in classical and operant learning, we determine the functional localization of AC-Rut+ for mate copying by artificially rescuing the expression of AC-Rut+ in neural subsets of a rutabaga mutant. We found that AC-Rut+ has to be expressed in the mushroom bodies' Kenyon cells (KCs), specifically in the γ-KCs subset. Thus, this form of discriminative social learning requires the same KCs as non-social Pavlovian learning, suggesting that pathways of social and asocial learning overlap significantly.
Collapse
Affiliation(s)
- Sabine Nöbel
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Université Toulouse 1 Capitole and Institute for Advanced Study in Toulouse (IAST), Toulouse, France
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, 31062 Toulouse, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
7
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
8
|
Turrel O, Ramesh N, Escher MJF, Pooryasin A, Sigrist SJ. Transient active zone remodeling in the Drosophila mushroom body supports memory. Curr Biol 2022; 32:4900-4913.e4. [PMID: 36327980 DOI: 10.1016/j.cub.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.
Collapse
Affiliation(s)
- Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Atefeh Pooryasin
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Adel M, Chen N, Zhang Y, Reed ML, Quasney C, Griffith LC. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep. J Neurosci 2022; 42:4297-4310. [PMID: 35474278 PMCID: PMC9145224 DOI: 10.1523/jneurosci.0144-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, in vivo functional imaging studies revealed that associative memory formation is coupled to a cascade of neural plasticity events in distinct compartments of the mushroom body (MB). In-depth investigation of the circuit dynamics, however, will require an ex vivo model that faithfully mirrors these events to allow direct manipulations of circuit elements that are inaccessible in the intact fly. The current ex vivo models have been able to reproduce the fundamental plasticity of aversive short-term memory, a potentiation of the MB intrinsic neuron (Kenyon cells [KCs]) responses after artificial learning ex vivo However, this potentiation showed different localization and encoding properties from those reported in vivo and failed to generate the previously reported suppression plasticity in the MB output neurons (MBONs). Here, we develop an ex vivo model using the female Drosophila brain that recapitulates behaviorally evoked plasticity in the KCs and MBONs. We demonstrate that this plasticity accurately localizes to the MB α'3 compartment and is encoded by a coincidence between KC activation and dopaminergic input. The formed plasticity is input-specific, requiring pairing of the conditioned stimulus and unconditioned stimulus pathways; hence, we name it pairing-dependent plasticity. Pairing-dependent plasticity formation requires an intact CaMKII gene and is blocked by previous-night sleep deprivation but is rescued by rebound sleep. In conclusion, we show that our ex vivo preparation recapitulates behavioral and imaging results from intact animals and can provide new insights into mechanisms of memory formation at the level of molecules, circuits, and brain state.SIGNIFICANCE STATEMENT The mammalian ex vivo LTP model enabled in-depth investigation of the hippocampal memory circuit. We develop a parallel model to study the Drosophila mushroom body (MB) memory circuit. Pairing activation of the conditioned stimulus and unconditioned stimulus pathways in dissected brains induces a potentiation pairing-dependent plasticity (PDP) in the axons of α'β' Kenyon cells and a suppression PDP in the dendrites of their postsynaptic MB output neurons, localized in the MB α'3 compartment. This PDP is input-specific and requires the 3' untranslated region of CaMKII Interestingly, ex vivo PDP carries information about the animal's experience before dissection; brains from sleep-deprived animals fail to form PDP, whereas those from animals who recovered 2 h of their lost sleep form PDP.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Nannan Chen
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Yunpeng Zhang
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Christina Quasney
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
10
|
Saitoe M, Naganos S, Miyashita T, Matsuno M, Ueno K. A non-canonical on-demand dopaminergic transmission underlying olfactory aversive learning. Neurosci Res 2021; 178:1-9. [PMID: 34973292 DOI: 10.1016/j.neures.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Dopamine (DA) is involved in various brain functions including associative learning. However, it is unclear how a small number of DA neurons appropriately regulates various brain functions. DA neurons have a large number of release sites and release DA non-specifically to a large number of target neurons in the projection area in response to the activity of DA neurons. In contrast to this "broad transmission", recent studies in Drosophila ex vivo functional imaging studies have identified "on-demand transmission" that occurs independent on activity of DA neurons and releases DA specifically onto the target neurons that have produced carbon monoxide (CO) as a retrograde signal for DA release. Whereas broad transmission modulates the global function of the target area, on-demand transmission is suitable for modulating the function of specific circuits, neurons, or synapses. In Drosophila olfactory aversive conditioning, odor and shock information are associated in the brain region called mushroom body (MB) to form olfactory aversive memory. It has been suggested that DA neurons projecting to the MB mediate the transmission of shock information and reinforcement simultaneously. However, the circuit model based on on-demand transmission proposes that transmission of shock information and reinforcement are mediated by distinct neural mechanisms; while shock transmission is glutamatergic, DA neurons mediates reinforcement. On-demand transmission provides mechanical insights into how DA neurons regulate various brain functions.
Collapse
Affiliation(s)
- Minoru Saitoe
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.
| | - Shintaro Naganos
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tomoyuki Miyashita
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Motomi Matsuno
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Kohei Ueno
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| |
Collapse
|
11
|
Feng KL, Weng JY, Chen CC, Abubaker MB, Lin HW, Charng CC, Lo CC, de Belle JS, Tully T, Lien CC, Chiang AS. Neuropeptide F inhibits dopamine neuron interference of long-term memory consolidation in Drosophila. iScience 2021; 24:103506. [PMID: 34934925 DOI: 10.1016/j.isci.2021.103506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long-term memory (LTM) formation requires consolidation processes to overcome interfering signals that erode memory formation. Olfactory memory in Drosophila involves convergent projection neuron (PN; odor) and dopaminergic neuron (DAN; reinforcement) input to the mushroom body (MB). How post-training DAN activity in the posterior lateral protocerebrum (PPL1) continues to regulate memory consolidation remains unknown. Here we address this question using targeted transgenes in behavior and electrophysiology experiments to show that (1) persistent post-training activity of PPL1-α2α'2 and PPL1-α3 DANs interferes with aversive LTM formation; (2) neuropeptide F (NPF) signaling blocks this interference in PPL1-α2α'2 and PPL1-α3 DANs after spaced training to enable LTM formation; and (3) training-induced NPF release and neurotransmission from two upstream dorsal-anterior-lateral (DAL2) neurons are required to form LTM. Thus, NPF signals from DAL2 neurons to specific PPL1 DANs disinhibit the memory circuit, ensuring that periodic events are remembered as consolidated LTM.
Collapse
Affiliation(s)
- Kuan-Lin Feng
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ju-Yun Weng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Chao Chen
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Hsuan-Wen Lin
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Che Charng
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Chuan Lo
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA.,School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.,MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Tim Tully
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience and Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.,Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,National Health Research Institutes, Zhunan 35053, Taiwan.,China Medical University, Taichung 40402, Taiwan.,Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093-0526, USA
| |
Collapse
|
12
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
13
|
Jiang L, Litwin-Kumar A. Models of heterogeneous dopamine signaling in an insect learning and memory center. PLoS Comput Biol 2021; 17:e1009205. [PMID: 34375329 PMCID: PMC8354444 DOI: 10.1371/journal.pcbi.1009205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that underlies the acquisition of associative memories. Recordings of dopamine neurons in this system have identified signals related to external reinforcement such as reward and punishment. However, other factors including locomotion, novelty, reward expectation, and internal state have also recently been shown to modulate dopamine neurons. This heterogeneity is at odds with typical modeling approaches in which these neurons are assumed to encode a global, scalar error signal. How is dopamine dependent plasticity coordinated in the presence of such heterogeneity? We develop a modeling approach that infers a pattern of dopamine activity sufficient to solve defined behavioral tasks, given architectural constraints informed by knowledge of mushroom body circuitry. Model dopamine neurons exhibit diverse tuning to task parameters while nonetheless producing coherent learned behaviors. Notably, reward prediction error emerges as a mode of population activity distributed across these neurons. Our results provide a mechanistic framework that accounts for the heterogeneity of dopamine activity during learning and behavior. Dopamine neurons across the animal kingdom are involved in the formation of associative memories. While numerous studies have recorded activity in these neurons related to external and predicted rewards, the diversity of these neurons’ activity and their tuning to non-reward-related quantities such as novelty, movement, and internal state have proved challenging to account for in traditional modeling approaches. Using a well-characterized model system for learning and memory, the mushroom body of Drosophila fruit flies, Jiang and Litwin-Kumar provide an account of the diversity of signals across dopamine neurons. They show that models optimized to solve tasks like those encountered by flies exhibit heterogeneous activity across dopamine neurons, but nonetheless this activity is sufficient for the system to solve the tasks. The models will be useful to generate testable hypotheses about dopamine neuron activity across different experimental conditions.
Collapse
Affiliation(s)
- Linnie Jiang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Neurosciences Program, Stanford University, Stanford, California, United States of America
| | - Ashok Litwin-Kumar
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. The Making of Long-Lasting Memories: A Fruit Fly Perspective. Front Behav Neurosci 2021; 15:662129. [PMID: 33859556 PMCID: PMC8042140 DOI: 10.3389/fnbeh.2021.662129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.
Collapse
Affiliation(s)
- Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.,National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Tamara Boto
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
15
|
Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Rep 2021; 34:108871. [PMID: 33730583 DOI: 10.1016/j.celrep.2021.108871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.
Collapse
Affiliation(s)
| | - Luigi Prisco
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Philipp Ranft
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - J Scott Lauritzen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - André Fiala
- Molecular Neurobiology of Behaviour, University of Göttingen, 37077 Göttingen, Germany
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
16
|
Abstract
Active forgetting is an essential component of the brain’s memory management system1. Forgetting can be permanent, in which prior memory is lost completely; or transient, in which memory exists in a temporary state of impaired retrieval. Such temporary blocks on memory seem universal, and can disrupt an individual’s plans, social interactions, and ability to make rapid, flexible and appropriate choices. However, the neurobiological mechanisms that cause transient forgetting are unknown. Here we identify a single dopamine neuron in Drosophila that mediates memory suppression resulting in transient forgetting. Artificially activating this neuron failed to abolish the expression of long-term memory. Rather, it briefly suppressed memory retrieval, with memory becoming accessible with time. The dopamine neuron modulates memory retrieval by stimulating a unique dopamine receptor expressed in a restricted physical compartment of the axons of mushroom body neurons. This mechanism for transient forgetting is triggered by interfering stimuli presented just prior to retrieval.
Collapse
|
17
|
Felsenberg J. Changing memories on the fly: the neural circuits of memory re-evaluation in Drosophila melanogaster. Curr Opin Neurobiol 2020; 67:190-198. [PMID: 33373859 DOI: 10.1016/j.conb.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Associative learning leads to modifications in neural networks to assign valence to sensory cues. These changes not only allow the expression of learned behavior but also modulate subsequent learning events. In the brain of the adult fruit fly, Drosophila melanogaster, olfactory memories are established as dopamine-driven plasticity in the output of a highly recurrent network, the mushroom body. Recent findings have highlighted how these changes in the network can steer the strengthening, weakening and formation of parallel memories when flies are exposed to subsequent training trials, conflicting situations or the reversal of contingencies. Together, these processes provide an initial understanding of how learned information can be used to guide the re-evaluation of memories.
Collapse
|
18
|
Lee WP, Chiang MH, Chang LY, Lee JY, Tsai YL, Chiu TH, Chiang HC, Fu TF, Wu T, Wu CL. Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila. PLoS Genet 2020; 16:e1008963. [PMID: 32780743 PMCID: PMC7418956 DOI: 10.1371/journal.pgen.1008963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Long-term memory (LTM) formation depends on the conversed cAMP response element-binding protein (CREB)-dependent gene transcription followed by de novo protein synthesis. Thirsty fruit flies can be trained to associate an odor with water reward to form water-reward LTM (wLTM), which can last for over 24 hours without a significant decline. The role of de novo protein synthesis and CREB-regulated gene expression changes in neural circuits that contribute to wLTM remains unclear. Here, we show that acute inhibition of protein synthesis in the mushroom body (MB) αβ or γ neurons during memory formation using a cold-sensitive ribosome-inactivating toxin disrupts wLTM. Furthermore, adult stage-specific expression of dCREB2b in αβ or γ neurons also disrupts wLTM. The MB αβ and γ neurons can be further classified into five different neuronal subsets including αβ core, αβ surface, αβ posterior, γ main, and γ dorsal. We observed that the neurotransmission from αβ surface and γ dorsal neuron subsets is required for wLTM retrieval, whereas the αβ core, αβ posterior, and γ main are dispensable. Adult stage-specific expression of dCREB2b in αβ surface and γ dorsal neurons inhibits wLTM formation. In vivo calcium imaging revealed that αβ surface and γ dorsal neurons form wLTM traces with different dynamic properties, and these memory traces are abolished by dCREB2b expression. Our results suggest that a small population of neurons within the MB circuits support long-term storage of water-reward memory in Drosophila.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Li-Yun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Jhen-Yi Lee
- School of Medicine, College of Medicine, Chang Gung University, Taiwan
| | - Ya-Lun Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | | | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Scaplen KM, Talay M, Nunez KM, Salamon S, Waterman AG, Gang S, Song SL, Barnea G, Kaun KR. Circuits that encode and guide alcohol-associated preference. eLife 2020; 9:48730. [PMID: 32497004 PMCID: PMC7272191 DOI: 10.7554/elife.48730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A powerful feature of adaptive memory is its inherent flexibility. Alcohol and other addictive substances can remold neural circuits important for memory to reduce this flexibility. However, the mechanism through which pertinent circuits are selected and shaped remains unclear. We show that circuits required for alcohol-associated preference shift from population level dopaminergic activation to select dopamine neurons that predict behavioral choice in Drosophila melanogaster. During memory expression, subsets of dopamine neurons directly and indirectly modulate the activity of interconnected glutamatergic and cholinergic mushroom body output neurons (MBON). Transsynaptic tracing of neurons important for memory expression revealed a convergent center of memory consolidation within the mushroom body (MB) implicated in arousal, and a structure outside the MB implicated in integration of naïve and learned responses. These findings provide a circuit framework through which dopamine neuronal activation shifts from reward delivery to cue onset, and provide insight into the maladaptive nature of memory.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown University, Providence, United States
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, United States
| | - Kavin M Nunez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, United States
| | - Sarah Salamon
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - Amanda G Waterman
- Department of Neuroscience, Brown University, Providence, United States
| | - Sydney Gang
- Department of Biochemistry, Brown University, Providence, United States
| | - Sophia L Song
- Department of Neuroscience, Brown University, Providence, United States
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, United States
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
20
|
Ras acts as a molecular switch between two forms of consolidated memory in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2133-2139. [PMID: 31932418 DOI: 10.1073/pnas.1819925117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long-lasting, consolidated memories require not only positive biological processes that facilitate long-term memories (LTM) but also the suppression of inhibitory processes that prevent them. The mushroom body neurons (MBn) in Drosophila melanogaster store protein synthesis-dependent LTM (PSD-LTM) as well as protein synthesis-independent, anesthesia-resistant memory (ARM). The formation of ARM inhibits PSD-LTM but the underlying molecular processes that mediate this interaction remain unknown. Here, we demonstrate that the Ras→Raf→rho kinase (ROCK) pathway in MBn suppresses ARM consolidation, allowing the formation of PSD-LTM. Our initial results revealed that the effects of Ras on memory are due to postacquisition processes. Ras knockdown enhanced memory expression but had no effect on acquisition. Additionally, increasing Ras activity optogenetically after, but not before, acquisition impaired memory performance. The elevated memory produced by Ras knockdown is a result of increased ARM. While Ras knockdown enhanced the consolidation of ARM, it eliminated PSD-LTM. We found that these effects are mediated by the downstream kinase Raf. Similar to Ras, knockdown of Raf enhanced ARM consolidation and impaired PSD-LTM. Surprisingly, knockdown of the canonical downstream extracellular signal-regulated kinase did not reproduce the phenotypes observed with Ras and Raf knockdown. Rather, Ras/Raf inhibition of ROCK was found to be responsible for suppressing ARM. Constitutively active ROCK enhanced ARM and impaired PSD-LTM, while decreasing ROCK activity rescued the enhanced ARM produced by Ras knockdown. We conclude that MBn Ras/Raf inhibition of ROCK suppresses the consolidation of ARM, which permits the formation of PSD-LTM.
Collapse
|
21
|
Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 2019; 8:49257. [PMID: 31724947 PMCID: PMC6948953 DOI: 10.7554/elife.49257] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert P Ray
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Teri-Tb Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brandi Sharp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Paul Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
22
|
Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in Drosophila. J Neurosci 2019; 39:9164-9172. [PMID: 31558620 DOI: 10.1523/jneurosci.1420-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022] Open
Abstract
The α'β' subtype of Drosophila mushroom body neurons (MBn) is required for memory acquisition, consolidation and early memory retrieval after aversive olfactory conditioning. However, in vivo functional imaging studies have failed to detect an early forming memory trace in these neurons as reflected by an enhanced G-CaMP signal in response to presentation of the learned odor. Moreover, whether cellular memory traces form early after conditioning in the mushroom body output neurons (MBOn) downstream of the α'β' MBn remains unknown. Here, we show that aversive olfactory conditioning suppresses the calcium responses to the learned odor in both α'3 and α'2 axon segments of α'β' MBn and in the dendrites of α'3 MBOn immediately after conditioning using female flies. Notably, the cellular memory traces in both α'3 MBn and α'3 MBOn are short-lived and persist for <30 min. The suppressed response in α'3 MBn is accompanied by a reduction of acetylcholine (ACh) release, suggesting that the memory trace in postsynaptic α'3 MBOn may simply reflect the suppression in presynaptic α'3 MBn. Furthermore, we show that the α'3 MBn memory trace does not occur from the inhibition of GABAergic neurons via GABAA receptor activation. Because activation of the α'3 MBOn drives approach behavior of adult flies, our results demonstrate that aversive conditioning promotes avoidance behavior through suppression of the α'3 MBn-MBOn circuit.SIGNIFICANCE STATEMENT Drosophila learn to avoid an odor if that odor is repeatedly paired with electric shock. Mushroom body neurons (MBns) are known to be major cell types that mediate this form of aversive conditioning. Here we show that aversive conditioning causes a reduced response to the conditioned odor in an axon branch of one subtype of the MBn for no more than 30 min after conditioning, and in the dendrites of postsynaptic, MB output neurons (MBOns). Because experimenter-induced activation of the MBOn induces approach behavior by the fly, our data support a model that aversive learning promotes avoidance by suppressing the MBn-MBOn synapses that normally promote attraction.
Collapse
|
23
|
Siegenthaler D, Escribano B, Bräuler V, Pielage J. Selective suppression and recall of long-term memories in Drosophila. PLoS Biol 2019; 17:e3000400. [PMID: 31454345 PMCID: PMC6711512 DOI: 10.1371/journal.pbio.3000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Adaptive decision-making depends on the formation of novel memories. In Drosophila, the mushroom body (MB) is the site of associative olfactory long-term memory (LTM) storage. However, due to the sparse and stochastic representation of olfactory information in Kenyon cells (KCs), genetic access to individual LTMs remains elusive. Here, we develop a cAMP response element (CRE)-activity–dependent memory engram label (CAMEL) tool that genetically tags KCs responding to the conditioned stimulus (CS). CAMEL activity depends on protein-synthesis–dependent aversive LTM conditioning and reflects the time course of CRE binding protein 2 (CREB2) activity during natural memory formation. We demonstrate that inhibition of LTM-induced CAMEL neurons reduces memory expression and that artificial optogenetic reactivation is sufficient to evoke aversive behavior phenocopying memory recall. Together, our data are consistent with CAMEL neurons marking a subset of engram KCs encoding individual memories. This study provides new insights into memory circuitry organization and an entry point towards cellular and molecular understanding of LTM storage. A novel genetic approach enables the visualization and manipulation of memory engram cells in Drosophila, providing a key methodological opportunity to characterize associative memory at the cellular and circuit level.
Collapse
Affiliation(s)
- Dominique Siegenthaler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Bräuler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Pielage
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
24
|
Yamazaki D, Hiroi M, Abe T, Shimizu K, Minami-Ohtsubo M, Maeyama Y, Horiuchi J, Tabata T. Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Rep 2019; 22:2346-2358. [PMID: 29490271 DOI: 10.1016/j.celrep.2018.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022] Open
Abstract
During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5β'2a/β'2mp and MBON-γ2α'1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Takashi Abe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Kazumichi Shimizu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Maki Minami-Ohtsubo
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| |
Collapse
|
25
|
Onodera Y, Ichikawa R, Terao K, Tanimoto H, Yamagata N. Courtship behavior induced by appetitive olfactory memory. J Neurogenet 2019; 33:143-151. [PMID: 30955396 DOI: 10.1080/01677063.2019.1593978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.
Collapse
Affiliation(s)
- Yuya Onodera
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Rino Ichikawa
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Kanta Terao
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Nobuhiro Yamagata
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| |
Collapse
|
26
|
Horiuchi J. Recurrent loops: Incorporating prediction error and semantic/episodic theories into Drosophila associative memory models. GENES BRAIN AND BEHAVIOR 2019; 18:e12567. [PMID: 30891930 PMCID: PMC6900151 DOI: 10.1111/gbb.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/16/2019] [Indexed: 12/01/2022]
Abstract
In 2003, Martin Heisenberg et al. presented a model of how associative memories could be encoded and stored in the insect brain. This model was extremely influential in the Drosophila memory field, but did not incorporate several important mammalian concepts, including ideas of separate episodic and semantic types of memory and prediction error hypotheses. In addition, at that time, the concept of memory traces recurrently entering and exiting the mushroom bodies, brain areas where associative memories are formed and stored, was unknown. In this review, I present a simple updated model incorporating these ideas, which may be useful for future studies.
Collapse
Affiliation(s)
- Junjiro Horiuchi
- Department of higher brain functions and dementias, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
27
|
Shih MFM, Davis FP, Henry GL, Dubnau J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 (BETHESDA, MD.) 2019; 9:81-94. [PMID: 30397017 PMCID: PMC6325895 DOI: 10.1534/g3.118.200726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The Drosophila melanogaster MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker Fas2 and the α'/β' class marker trio Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the Drosophila MB provides a valuable resource for the fly neuroscience community.
Collapse
Affiliation(s)
| | - Fred Pejman Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gilbert Lee Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
| |
Collapse
|
28
|
Widmer YF, Fritsch C, Jungo MM, Almeida S, Egger B, Sprecher SG. Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. eLife 2018; 7:39196. [PMID: 30346271 PMCID: PMC6234028 DOI: 10.7554/elife.39196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022] Open
Abstract
Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/β and α’/β’ neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit. Our brains can store different types of memories. You may have forgotten what you had for lunch yesterday, but still be able to remember a song from your childhood. Short-term memories and long-term memories form via different mechanisms. To establish long-term memories, the brain must produce new proteins, many of which are common to all members of the animal kingdom. By studying these proteins in organisms such as fruit flies, we can learn more about their role in our own memories. Widmer et al. used this approach to explore how a protein called CrebB helps fruit flies to remember for several days that a specific odor is associated with a sugary reward. These odor-reward memories form in a brain region called the mushroom body, which has three lobes. Input neurons supply information about the odor and the reward to the region, while output neurons pass on information to other parts of the fly brain. CrebB regulates the production of new proteins required to form these long-term odor-reward memories: but where exactly does CrebB act during this process? Using a gene editing technique called CRISPR, Widmer et al. generated mutant flies. In these insects CrebB could be easily deactivated ‘at will’ in either the entire brain, the whole mushroom body, each of the three lobes or in specific output neurons. The flies were then trained on the odor-reward task, and their memory tested 24 hours later. The results revealed that for the memories to form, CrebB is only required in two of the three lobes of the mushroom body, and in certain output neurons. Future studies can now focus on the cells shown to need CrebB to create long-term memories, and identify the other proteins involved in this process. In humans, defects in CrebB are associated with intellectual disability, addiction and depression. The mutant fly created by Widmer et al. could be a useful model in which to investigate how the protein may play a role in these conditions.
Collapse
Affiliation(s)
- Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Magali M Jungo
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Silvia Almeida
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
König C, Antwi-Adjei E, Ganesan M, Kilonzo K, Viswanathan V, Durairaja A, Voigt A, Yarali A. Aversive olfactory associative memory loses odor specificity over time. ACTA ACUST UNITED AC 2018; 220:1548-1553. [PMID: 28468811 PMCID: PMC5450803 DOI: 10.1242/jeb.155317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/14/2017] [Indexed: 01/11/2023]
Abstract
Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. Highlighted Article: Associative memories of noxious experiences can become detrimental if overly generalized; fruit fly aversive memories lose their specificity over time, mimicking the situation in rodents and humans.
Collapse
Affiliation(s)
- Christian König
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Emmanuel Antwi-Adjei
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Mathangi Ganesan
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Kasyoka Kilonzo
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Vignesh Viswanathan
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Archana Durairaja
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Anne Voigt
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Ayse Yarali
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany .,Center for Behavioral Brain Sciences, 39118 Magdeburg, Germany
| |
Collapse
|
30
|
Wu CL, Chang CC, Wu JK, Chiang MH, Yang CH, Chiang HC. Mushroom body glycolysis is required for olfactory memory in Drosophila. Neurobiol Learn Mem 2018; 150:13-19. [PMID: 29477608 DOI: 10.1016/j.nlm.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 11/15/2022]
Abstract
Glucose catabolism, also known as glycolysis, is important for energy generation and involves a sequence of enzymatic reactions that convert a glucose molecule into two pyruvate molecules. The glycolysis process generates adenosine triphosphate as a byproduct. In this study, we investigated whether glycolysis plays a role in maintaining neuronal functions in the Drosophila mushroom bodies (MBs), which are generally accepted to be an olfactory learning and memory center. Our data showed that individual knockdown of glycolytic enzymes in the MBs, including hexokinase (HexA), phosphofructokinase (Pfk), or pyruvate kinase (PyK), disrupts olfactory memory. Whole-mount brain immunostaining indicated that pyruvate kinase is strongly expressed in the MB αβ, α'β', and γ neuron subsets. We conclude that HexA, Pfk, and PyK are required in each MB neuron subset for olfactory memory formation. Our data therefore indicates that glucose catabolism in the MBs is important for olfactory memory formation in Drosophila.
Collapse
Affiliation(s)
- Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Ching-Ching Chang
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jie-Kai Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Huai Yang
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
31
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
32
|
Abstract
Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit.
Collapse
Affiliation(s)
- Pavel Masek
- a Department of Biology , Binghamton University , Binghamton , NY , USA
| | - Alex C Keene
- b Department of Biological Sciences , Florida Atlantic University , Jupiter , FL , USA
| |
Collapse
|
33
|
Origins of Cell-Type-Specific Olfactory Processing in the Drosophila Mushroom Body Circuit. Neuron 2017; 95:357-367.e4. [PMID: 28728024 DOI: 10.1016/j.neuron.2017.06.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/23/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
Abstract
How cell-type-specific physiological properties shape neuronal functions in a circuit remains poorly understood. We addressed this issue in the Drosophila mushroom body (MB), a higher olfactory circuit, where neurons belonging to distinct glomeruli in the antennal lobe feed excitation to three types of intrinsic neurons, α/β, α'/β', and γ Kenyon cells (KCs). Two-photon optogenetics and intracellular recording revealed that whereas glomerular inputs add similarly in all KCs, spikes were generated most readily in α'/β' KCs. This cell type was also the most competent in recruiting GABAergic inhibition fed back by anterior paired lateral neuron, which responded to odors either locally within a lobe or globally across all lobes depending on the strength of stimuli. Notably, as predicted from these physiological properties, α'/β' KCs had the highest odor detection speed, sensitivity, and discriminability. This enhanced discrimination required proper GABAergic inhibition. These results link cell-type-specific mechanisms and functions in the MB circuit.
Collapse
|
34
|
Shyu WH, Chiu TH, Chiang MH, Cheng YC, Tsai YL, Fu TF, Wu T, Wu CL. Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nat Commun 2017; 8:15230. [PMID: 28504254 PMCID: PMC5440665 DOI: 10.1038/ncomms15230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
The intake of water is important for the survival of all animals and drinking water can be used as a reward in thirsty animals. Here we found that thirsty Drosophila melanogaster can associate drinking water with an odour to form a protein-synthesis-dependent water-reward long-term memory (LTM). Furthermore, we found that the reinforcement of LTM requires water-responsive dopaminergic neurons projecting to the restricted region of mushroom body (MB) β′ lobe, which are different from the neurons required for the reinforcement of learning and short-term memory (STM). Synaptic output from α′β′ neurons is required for consolidation, whereas the output from γ and αβ neurons is required for the retrieval of LTM. Finally, two types of MB efferent neurons retrieve LTM from γ and αβ neurons by releasing glutamate and acetylcholine, respectively. Our results therefore cast light on the cellular and molecular mechanisms responsible for processing water-reward LTM in Drosophila. Distinct subsets of dopaminergic PAM neurons have been shown to be involved in short-term and long-term memory for sugar reward. Here the authors report the neural circuits and the cellular and molecular mechanisms for short-term and long-term memory for water reward in thirsty Drosophila.
Collapse
Affiliation(s)
- Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chin Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Lun Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi-Nan University, Nantou 54561, Taiwan
| | - Tony Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
35
|
Cervantes-Sandoval I, Phan A, Chakraborty M, Davis RL. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. eLife 2017; 6. [PMID: 28489528 PMCID: PMC5425253 DOI: 10.7554/elife.23789] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/30/2017] [Indexed: 11/22/2022] Open
Abstract
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning. DOI:http://dx.doi.org/10.7554/eLife.23789.001
Collapse
Affiliation(s)
| | - Anna Phan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, United States
| | - Molee Chakraborty
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, United States
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, United States
| |
Collapse
|
36
|
Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory. PLoS One 2016; 11:e0164516. [PMID: 27764141 PMCID: PMC5072562 DOI: 10.1371/journal.pone.0164516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
An animal’s ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.
Collapse
|
37
|
Busto GU, Guven-Ozkan T, Chakraborty M, Davis RL. Developmental inhibition of miR-iab8-3p disrupts mushroom body neuron structure and adult learning ability. Dev Biol 2016; 419:237-249. [PMID: 27634569 PMCID: PMC5204246 DOI: 10.1016/j.ydbio.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023]
Abstract
MicroRNAs are small non-coding RNAs that inhibit protein expression post-transcriptionally. They have been implicated in many different physiological processes, but little is known about their individual involvement in learning and memory. We recently identified several miRNAs that either increased or decreased intermediate-term memory when inhibited in the central nervous system, including miR-iab8-3p. We report here a new developmental role for this miRNA. Blocking the expression of miR-iab8-3p during the development of the organism leads to hypertrophy of individual mushroom body neuron soma, a reduction in the field size occupied by axonal projections, and adult intellectual disability. We further identified four potential mRNA targets of miR-iab8-3p whose inhibition modulates intermediate-term memory including ceramide phosphoethanolamine synthase, which may account for the behavioral effects produced by miR-iab8-3p inhibition. Our results offer important new information on a microRNA required for normal neurodevelopment and the capacity to learn and remember normally.
Collapse
Affiliation(s)
- Germain U Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| | - Tugba Guven-Ozkan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Molee Chakraborty
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| |
Collapse
|
38
|
Abstract
Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans.
Collapse
|
39
|
Owald D, Lin S, Waddell S. Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140211. [PMID: 26240426 PMCID: PMC4528823 DOI: 10.1098/rstb.2014.0211] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.
Collapse
Affiliation(s)
- David Owald
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Suewei Lin
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| |
Collapse
|
40
|
Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets. PLoS Genet 2016; 12:e1006061. [PMID: 27195782 PMCID: PMC4873240 DOI: 10.1371/journal.pgen.1006061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/27/2016] [Indexed: 01/15/2023] Open
Abstract
Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α′β′, and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)–αβ neurons and the octopaminergic anterior paired lateral (APL)–α′β′ neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α′β′ neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α′β′ neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α′β′ neuron output is independent of radish. We identified MBON-β2β′2a and MBON-β′2mp as the MB output neurons downstream of αβ and α′β′ neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α′β′ neurons could be functionally subdivided into α′β′m neurons required for ARM retrieval, and α′β′ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval. One of tantalizing questions in neuroscience is how the brain processes memory. Studies in animal models such as fruit fly have brought innovations addressing the general principles underlying memory processing such as acquisition, consolidation, and retrieval. Here, we revealed an additive expression of aversive consolidated memory through fly mushroom body (MB) subsets. By thermogenetic blockade of neurotransmission, we identified the necessity of MB αβ and α′β′ neurons, and their respective downstream neurons, for consolidated memory retrieval. We also showed that MB αβ and α′β′ neurons harbor distinct signaling pathways for memory consolidation by genetic manipulation. Notably, the combinatorial assays of neurotransmission blockade and genetic manipulations confirmed the independency between the two sets of double-layered parallel circuits. Our work, together with previous finding of two respective modulatory neurons upstream of αβ and α′β′ neurons, favor the notion that memory is consolidated in different brain regions/circuits in parallel and later additively retrieved for behavioral outcome.
Collapse
|
41
|
Guven-Ozkan T, Busto GU, Schutte SS, Cervantes-Sandoval I, O'Dowd DK, Davis RL. MiR-980 Is a Memory Suppressor MicroRNA that Regulates the Autism-Susceptibility Gene A2bp1. Cell Rep 2016; 14:1698-1709. [PMID: 26876166 DOI: 10.1016/j.celrep.2016.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/26/2015] [Accepted: 01/09/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs have been associated with many different biological functions, but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement.
Collapse
Affiliation(s)
- Tugba Guven-Ozkan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Germain U Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Soleil S Schutte
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
42
|
Yildizoglu T, Weislogel JM, Mohammad F, Chan ESY, Assam PN, Claridge-Chang A. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics. PLoS Genet 2015; 11:e1005718. [PMID: 26647168 PMCID: PMC4672901 DOI: 10.1371/journal.pgen.1005718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. Genetic analysis of learning in the black-bellied vinegar fly has revealed that a brain structure called the mushroom body is important to insect memory. The mushroom body contains three lobes with strikingly different shapes. A series of studies have concluded that the lobes have markedly different relevance to memory. For short-term memory, some studies have concluded that only a single lobe–the gamma lobe–is required. However, others have concluded that at least one of the other lobes is also involved. These studies used a data analysis method called ‘null hypothesis significance testing’ that may overemphasize differences between data. We examined whether estimation statistics, an alternative data analysis framework, could be used to verify or refute the lobular specialization hypothesis. Estimation statistics review methods were used to analyze published data on this topic. The estimation models indicate no evidence for lobular specialization, but instead show that neurons in all lobes contribute to short-term memory. These results verify a model in which learning is processed in a distributed manner across the mushroom body. These findings also demonstrate that estimation methods can be successfully harnessed for the analysis of complex experimental research data.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Jan-Marek Weislogel
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Farhan Mohammad
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Edwin S.-Y. Chan
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Pryseley N. Assam
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
- Department of Physiology, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H. Reward signal in a recurrent circuit drives appetitive long-term memory formation. eLife 2015; 4:e10719. [PMID: 26573957 PMCID: PMC4643015 DOI: 10.7554/elife.10719] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity. DOI:http://dx.doi.org/10.7554/eLife.10719.001 An animal that finds particularly nutritious and palatable food will often develop a long-lasting memory—even if they experience that event only once. One example of this is the ability of the fruit fly Drosophila to form a long-term association between a sugar reward and a specific odor that was present when they received the reward. The consumption of sugar triggers the release of a chemical called dopamine on specific compartments of a brain structure called the mushroom body. Dopamine then acts to modify the connection between cells called “Kenyon cells”, which encode specific odors, and the neurons that send signals out from the mushroom body (called MBONs). The result is the formation of a memory that links the odor with the reward. However, little is known about how this process differs for long-term vs. short-term memories, and how it can occur when the fly has experienced the odor and reward together on only a single occasion. To find out, Ichinose et al. combined behavioral testing of fruit flies with genetics. The results confirmed that the dopamine neurons and the MBONs that project to a single compartment of the mushroom body, called α1, are both required for the formation of long-term odor-reward memories, but not their short-term equivalents. These neurons are called PAM-α1 and MBON-α1, respectively. Unexpectedly, anatomical data revealed that PAM-α1 dopamine neurons receive input from MBON-α1; that is, long-term memory formation involves a feedback circuit: from PAM-α1 to Kenyon cells, then to MBON-α1 and back to PAM-α1. Blocking feedback from the MBON-α1 onto the PAM-α1 neurons shortly after odor-reward training disrupted long-term memory formation. Conversely, blocking feedback at a later stage did not. This suggests that prolonged activation of PAM-α1 by MBON-α1 helps to strengthen newly established memories, converting them into memories that will last for a long time. The discovery of a specific circuit that supports long-term, but not short-term, memory formation in fruit flies is consistent with evidence of distinct mechanisms underlying these processes in mammals. Further work is now required to determine whether feedback circuits similar to those in fruit flies also contribute to reward-based learning in other animals. DOI:http://dx.doi.org/10.7554/eLife.10719.002
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
44
|
Owald D, Waddell S. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 2015; 35:178-84. [PMID: 26496148 PMCID: PMC4835525 DOI: 10.1016/j.conb.2015.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022]
Abstract
Learning permits animals to attach meaning and context to sensory stimuli. How this information is coded in neural networks in the brain, and appropriately retrieved and utilized to guide behavior, is poorly understood. In the fruit fly olfactory memories of particular value are represented within sparse populations of odor-activated Kenyon cells (KCs) in the mushroom body ensemble. During learning reinforcing dopaminergic neurons skew the mushroom body network by driving zonally restricted plasticity at synaptic junctions between the KCs and subsets of the overall small collection of mushroom body output neurons. Reactivation of this skewed KC-output neuron network retrieves memory of odor valence and guides appropriate approach or avoidance behavior.
Collapse
Affiliation(s)
- David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
45
|
Bouzaiane E, Trannoy S, Scheunemann L, Plaçais PY, Preat T. Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory. Cell Rep 2015; 11:1280-92. [PMID: 25981036 DOI: 10.1016/j.celrep.2015.04.044] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding how the various memory components are encoded and how they interact to guide behavior requires knowledge of the underlying neural circuits. Currently, aversive olfactory memory in Drosophila is behaviorally subdivided into four discrete phases. Among these, short- and long-term memories rely, respectively, on the γ and α/β Kenyon cells (KCs), two distinct subsets of the ∼2,000 neurons in the mushroom body (MB). Whereas V2 efferent neurons retrieve memory from α/β KCs, the neurons that retrieve short-term memory are unknown. We identified a specific pair of MB efferent neurons, named M6, that retrieve memory from γ KCs. Moreover, our network analysis revealed that six discrete memory phases actually exist, three of which have been conflated in the past. At each time point, two distinct memory components separately recruit either V2 or M6 output pathways. Memory retrieval thus features a dramatic convergence from KCs to MB efferent neurons.
Collapse
Affiliation(s)
- Emna Bouzaiane
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Séverine Trannoy
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Lisa Scheunemann
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
46
|
Walters BJ, Zovkic IB. Building up and knocking down: an emerging role for epigenetics and proteasomal degradation in systems consolidation. Neuroscience 2015; 300:39-52. [PMID: 25967264 DOI: 10.1016/j.neuroscience.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/18/2015] [Accepted: 05/03/2015] [Indexed: 01/30/2023]
Abstract
Memory formation is a protracted process in which recently acquired events are consolidated to produce stable and specific associations. Initially, newly acquired information undergoes cellular consolidation in the hippocampus, which transiently supports the storage of recently acquired memories. In contrast, remote, or "old" memories are maintained in the cortex and show almost complete independence from the hippocampus. Memories are transferred from the hippocampus to the cortex through a process termed systems consolidation. Emerging evidence suggests that recurrent activation, or "training" of the cortex by the hippocampus is vital to systems consolidation. This process involves prolonged waves of memory-related gene activity in the hippocampus and cortex long after the learning event has terminated. Indeed, molecular events occurring within hours and days of fear conditioning are essential for stabilizing and eventually transitioning the memory to the cortex. It is increasingly evident that molecular mechanisms that exhibit a capacity for prolonged activation may underlie systems consolidation. Processes that have the capacity to control protein abundance over long time scales, such as epigenetic modifications, are prime candidates for the molecular mechanism of systems consolidation. Indeed, recent work has established two types of epigenetic modifications as integral for systems consolidation. First, localized nucleosomal histone variant exchange and histone modifications are integral for early stages of systems consolidation, whereas DNA methylation appears to be utilized to form stable marks that support memory maintenance. Since systems consolidation also requires discrete and time-sensitive changes in protein abundance, additional mechanisms, such as protein degradation, need also be considered, although their role in systems consolidation has yet to be investigated. Here, we discuss the role of molecular mechanisms in systems consolidation and their implications for understanding how memories persist over time.
Collapse
Affiliation(s)
- B J Walters
- The Hospital for Sick Children, Department of Neuroscience and Mental Health, Toronto, ON, Canada
| | - I B Zovkic
- University of Toronto Mississauga, Department of Psychology, Mississauga, ON, Canada.
| |
Collapse
|
47
|
Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 2015; 86:417-27. [PMID: 25864636 PMCID: PMC4416108 DOI: 10.1016/j.neuron.2015.03.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023]
Abstract
During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-β2β′2a, MBON-β′2mp, and MBON-γ5β′2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the β, β′, and γ lobes. This anatomy and their odor tuning suggests that M4/6 neurons pool odor-driven Kenyon cell synaptic outputs. Like that of mushroom body neurons, M4/6 output is required for expression of appetitive and aversive memory performance. Moreover, appetitive and aversive olfactory conditioning bidirectionally alters the relative odor-drive of M4β′ neurons (MBON-β′2mp). Direct block of M4/6 neurons in naive flies mimics appetitive conditioning, being sufficient to convert odor-driven avoidance into approach, while optogenetically activating these neurons induces avoidance behavior. We therefore propose that drive to the M4/6 neurons reflects odor-directed behavioral choice. Glutamatergic mushroom body output neurons are required for memory expression Training bidirectionally alters relative odor drive to output neurons Blocking glutamatergic mushroom body output neurons mimics appetitive conditioning Optogenetic activation drives avoidance behavior
Collapse
|
48
|
Abstract
Although aging is known to impair intermediate-term memory in Drosophila, its effect on protein-synthesis-dependent long-term memory (LTM) is unknown. We show here that LTM is impaired with age, not due to functional defects in synaptic output of mushroom body (MB) neurons, but due to connectivity defects of dorsal paired medial (DPM) neurons with their postsynaptic MB neurons. GFP reconstitution across synaptic partners (GRASP) experiments revealed structural connectivity defects in aged animals of DPM neurons with MB axons in the α lobe neuropil. As a consequence, a protein-synthesis-dependent LTM trace in the α/β MB neurons fails to form. Aging thus impairs protein-synthesis-dependent LTM along with the α/β MB neuron LTM trace by lessening the connectivity of DPM and α/β MB neurons.
Collapse
|
49
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
50
|
Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci U S A 2014; 112:578-83. [PMID: 25548178 DOI: 10.1073/pnas.1421930112] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.
Collapse
|