1
|
Fujiki S, Kansaku K. Learning performance of cerebellar circuit depends on diversity and chaoticity of spiking patterns in granule cells: A simulation study. Neural Netw 2025; 189:107585. [PMID: 40359736 DOI: 10.1016/j.neunet.2025.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/14/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
The cerebellum, composed of numerous neurons, plays various roles in motor control. Although it is functionally subdivided, the cerebellar cortex has a canonical structural pattern in neuronal circuits including a recurrent circuit pattern formed by granule cells (GrCs) and Golgi cells (GoCs). The canonical circuital pattern suggests the existence of a fundamental computational algorithm, although it remains unclear. Modeling and simulation studies are useful for verifying hypotheses about complex systems. Previous models have shown that they could reproduced the neurophysiological data of the cerebellum; however, the dynamic characteristics of the system have not been fully elucidated. Understanding the dynamic characteristics of the circuital pattern is necessary to reveal the computational algorithm embedded in the circuit. This study conducted numerical simulations using the cerebellar circuit model to investigate dynamic characteristics in a simplified model of cerebellar microcircuits. First, the diversity and chaoticity of the patterns of spike trains generated from GrCs depending on the synaptic strength between the GrCs and GoCs were investigated based on cluster analysis and the Lyapunov exponent, respectively. Then the effect of synaptic strength on learning tasks was investigated based on the convergence properties of the output signals from Purkinje cells. The synaptic strength for high learning performance was almost consistent with that for the high diversity of the generated patterns and the edge of chaos. These results suggest that the learning performance of the cerebellar circuit depends on the diversity and the chaoticity of the spiking patterns from the GrC-GoC recurrent circuit.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
2
|
Gilbert M, Rasmussen A. The cerebellum converts input data into a hyper low-resolution granule cell code with spatial dimensions: a hypothesis. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241665. [PMID: 40144291 PMCID: PMC11937928 DOI: 10.1098/rsos.241665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/31/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
We present a theory of the inner layer of the cerebellar cortex, the granular layer, where the main excitatory input to the cerebellum is received. We ask how input signals are converted into an internal code and what form that has. While there is a computational element, and the ideas are quantified with a computer simulation, the approach is primarily evidence-led and aimed at experimenters rather than the computational community. Network models are often simplified to provide a noiseless medium for sophisticated computations. We propose, with evidence, the reverse: physiology is highly adapted to provide a noiseless medium for straightforward computations. We find that input data are converted to a hyper low-resolution internal code. Information is coded in the joint activity of large cell groups and therefore has minimum spatial dimensions-the dimensions of a code group. The conversion exploits statistical effects of random sampling. Code group dimensions are an effect of topography, cell morphologies and granular layer architecture. The activity of a code group is the smallest unit of information but not the smallest unit of code-the same information is coded in any random sample of signals. Code in this form is unexpectedly wasteful-there is a huge sacrifice of resolution-but may be a solution to fundamental problems involved in the biological representation of information.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Anders Rasmussen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Palacios ER, Houghton C, Chadderton P. GlyT2-Positive Interneurons Regulate Timing and Variability of Information Transfer in a Cerebellar-Behavioral Loop. J Neurosci 2025; 45:e1568242024. [PMID: 39658258 PMCID: PMC11780355 DOI: 10.1523/jneurosci.1568-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
GlyT2-positive interneurons, Golgi and Lugaro cells, reside in the input layer of the cerebellar cortex in a key position to influence information processing. Here, we examine the contribution of GlyT2-positive interneurons to network dynamics in Crus 1 of mouse lateral cerebellar cortex during free whisking. We recorded neuronal population activity using Neuropixels probes before and after chemogenetic downregulation of GlyT2-positive interneurons in male and female mice. Under resting conditions, cerebellar population activity reliably encoded whisker movements. Reductions in the activity of GlyT2-positive cells produced mild increases in neural activity which did not significantly impair these sensorimotor representations. However, reduced Golgi and Lugaro cell inhibition did increase the temporal alignment of local population network activity at the initiation of movement. These network alterations had variable impacts on behavior, producing both increases and decreases in whisking velocity. Our results suggest that inhibition mediated by GlyT2-positive interneurons primarily governs the temporal patterning of population activity, which in turn is required to support downstream cerebellar dynamics and behavioral coordination.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
- School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Conor Houghton
- School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Paul Chadderton
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
4
|
Gilbert M, Rasmussen A. Gap Junctions May Have A Computational Function In The Cerebellum: A Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1903-1915. [PMID: 38499814 PMCID: PMC11489243 DOI: 10.1007/s12311-024-01680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
In the cerebellum, granule cells make parallel fibre contact on (and excite) Golgi cells and Golgi cells inhibit granule cells, forming an open feedback loop. Parallel fibres excite Golgi cells synaptically, each making a single contact. Golgi cells inhibit granule cells in a structure called a glomerulus almost exclusively by GABA spillover acting through extrasynaptic GABAA receptors. Golgi cells are connected dendritically by gap junctions. It has long been suspected that feedback contributes to homeostatic regulation of parallel fibre signals activity, causing the fraction of the population that are active to be maintained at a low level. We present a detailed neurophysiological and computationally-rendered model of functionally grouped Golgi cells which can infer the density of parallel fibre signals activity and convert it into proportional modulation of inhibition of granule cells. The conversion is unlearned and not actively computed; rather, output is simply the computational effect of cell morphology and network architecture. Unexpectedly, the conversion becomes more precise at low density, suggesting that self-regulation is attracted to sparse code, because it is stable. A computational function of gap junctions may not be confined to the cerebellum.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Anders Rasmussen
- Department of Experimental Medical Science, Lund University, BMC F10, 22184, Lund, Sweden
| |
Collapse
|
5
|
Mackey CA, O’Connell MN, Hackett TA, Schroeder CE, Kajikawa Y. Laminar organization of visual responses in core and parabelt auditory cortex. Cereb Cortex 2024; 34:bhae373. [PMID: 39300609 PMCID: PMC11412770 DOI: 10.1093/cercor/bhae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Audiovisual (AV) interaction has been shown in many studies of auditory cortex. However, the underlying processes and circuits are unclear because few studies have used methods that delineate the timing and laminar distribution of net excitatory and inhibitory processes within areas, much less across cortical levels. This study examined laminar profiles of neuronal activity in auditory core (AC) and parabelt (PB) cortices recorded from macaques during active discrimination of conspecific faces and vocalizations. We found modulation of multi-unit activity (MUA) in response to isolated visual stimulation, characterized by a brief deep MUA spike, putatively in white matter, followed by mid-layer MUA suppression in core auditory cortex; the later suppressive event had clear current source density concomitants, while the earlier MUA spike did not. We observed a similar facilitation-suppression sequence in the PB, with later onset latency. In combined AV stimulation, there was moderate reduction of responses to sound during the visual-evoked MUA suppression interval in both AC and PB. These data suggest a common sequence of afferent spikes, followed by synaptic inhibition; however, differences in timing and laminar location may reflect distinct visual projections to AC and PB.
Collapse
Affiliation(s)
- Chase A Mackey
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
| | - Monica N O’Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37212, United States
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Departments of Psychiatry and Neurology, Columbia University College of Physicians, 630 W 168th St, New York, NY 10032, United States
| | - Yoshinao Kajikawa
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| |
Collapse
|
6
|
Stempel AV, Evans DA, Arocas OP, Claudi F, Lenzi SC, Kutsarova E, Margrie TW, Branco T. Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice. Curr Biol 2024; 34:3031-3039.e7. [PMID: 38936364 DOI: 10.1016/j.cub.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.
Collapse
Affiliation(s)
- A Vanessa Stempel
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| | - Dominic A Evans
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Oriol Pavón Arocas
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Stephen C Lenzi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Elena Kutsarova
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Troy W Margrie
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK.
| |
Collapse
|
7
|
Shields BC, Yan H, Lim SSX, Burwell SCV, Cammarata CM, Fleming EA, Yousefzadeh SA, Goldenshtein VZ, Kahuno EW, Vagadia PP, Loughran MH, Zhiquan L, McDonnell ME, Scalabrino ML, Thapa M, Hawley TM, Field GD, Hull C, Schiltz GE, Glickfeld LL, Reitz AB, Tadross MR. DART.2: bidirectional synaptic pharmacology with thousandfold cellular specificity. Nat Methods 2024; 21:1288-1297. [PMID: 38877316 PMCID: PMC11569460 DOI: 10.1038/s41592-024-02292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Precision pharmacology aims to manipulate specific cellular interactions within complex tissues. In this pursuit, we introduce DART.2 (drug acutely restricted by tethering), a second-generation cell-specific pharmacology technology. The core advance is optimized cellular specificity-up to 3,000-fold in 15 min-enabling the targeted delivery of even epileptogenic drugs without off-target effects. Additionally, we introduce brain-wide dosing methods as an alternative to local cannulation and tracer reagents for brain-wide dose quantification. We describe four pharmaceuticals-two that antagonize excitatory and inhibitory postsynaptic receptors, and two that allosterically potentiate these receptors. Their versatility is showcased across multiple mouse-brain regions, including cerebellum, striatum, visual cortex and retina. Finally, in the ventral tegmental area, we find that blocking inhibitory inputs to dopamine neurons accelerates locomotion, contrasting with previous optogenetic and pharmacological findings. Beyond enabling the bidirectional perturbation of chemical synapses, these reagents offer intersectional precision-between genetically defined postsynaptic cells and neurotransmitter-defined presynaptic partners.
Collapse
Affiliation(s)
- Brenda C Shields
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Haidun Yan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Shaun S X Lim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | - Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Lei Zhiquan
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | | | - Mishek Thapa
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Tammy M Hawley
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Greg D Field
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Court Hull
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Allen B Reitz
- Fox Chase Therapeutics Discovery, Inc., Doylestown, PA, USA
| | - Michael R Tadross
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Brown ST, Medina-Pizarro M, Holla M, Vaaga CE, Raman IM. Simple spike patterns and synaptic mechanisms encoding sensory and motor signals in Purkinje cells and the cerebellar nuclei. Neuron 2024; 112:1848-1861.e4. [PMID: 38492575 PMCID: PMC11156563 DOI: 10.1016/j.neuron.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
Whisker stimulation in awake mice evokes transient suppression of simple spike probability in crus I/II Purkinje cells. Here, we investigated how simple spike suppression arises synaptically, what it encodes, and how it affects cerebellar output. In vitro, monosynaptic parallel fiber (PF)-excitatory postsynaptic currents (EPSCs) facilitated strongly, whereas disynaptic inhibitory postsynaptic currents (IPSCs) remained stable, maximizing relative inhibitory strength at the onset of PF activity. Short-term plasticity thus favors the inhibition of Purkinje spikes before PFs facilitate. In vivo, whisker stimulation evoked a 2-6 ms synchronous spike suppression, just 6-8 ms (∼4 synaptic delays) after sensory onset, whereas active whisker movements elicited broadly timed spike rate increases that did not modulate sensory-evoked suppression. Firing in the cerebellar nuclei (CbN) inversely correlated with disinhibition from sensory-evoked simple spike suppressions but was decoupled from slow, non-synchronous movement-associated elevations of Purkinje firing rates. Synchrony thus allows the CbN to high-pass filter Purkinje inputs, facilitating sensory-evoked cerebellar outputs that can drive movements.
Collapse
Affiliation(s)
- Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Mauricio Medina-Pizarro
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Meghana Holla
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Fleming EA, Field GD, Tadross MR, Hull C. Local synaptic inhibition mediates cerebellar granule cell pattern separation and enables learned sensorimotor associations. Nat Neurosci 2024; 27:689-701. [PMID: 38321293 PMCID: PMC11288180 DOI: 10.1038/s41593-023-01565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
The cerebellar cortex has a key role in generating predictive sensorimotor associations. To do so, the granule cell layer is thought to establish unique sensorimotor representations for learning. However, how this is achieved and how granule cell population responses contribute to behavior have remained unclear. To address these questions, we have used in vivo calcium imaging and granule cell-specific pharmacological manipulation of synaptic inhibition in awake, behaving mice. These experiments indicate that inhibition sparsens and thresholds sensory responses, limiting overlap between sensory ensembles and preventing spiking in many granule cells that receive excitatory input. Moreover, inhibition can be recruited in a stimulus-specific manner to powerfully decorrelate multisensory ensembles. Consistent with these results, granule cell inhibition is required for accurate cerebellum-dependent sensorimotor behavior. These data thus reveal key mechanisms for granule cell layer pattern separation beyond those envisioned by classical models.
Collapse
Affiliation(s)
| | - Greg D Field
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Michael R Tadross
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Court Hull
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
10
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
11
|
Harris JJ, Burdakov D. A role for MCH neuron firing in modulating hippocampal plasticity threshold. Peptides 2024; 172:171128. [PMID: 38070684 DOI: 10.1016/j.peptides.2023.171128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
It has been revealed that hypothalamic neurons containing the peptide, melanin-concentrating hormone (MCH) can influence learning [1] and memory formation [2], but the cellular mechanisms by which they perform this function are not well understood. Here, we examine the role of MCH neural input to the hippocampus, and show in vitro that optogenetically increasing MCH axon activity facilitates hippocampal plasticity by lowering the threshold for synaptic potentiation. These results align with increasing evidence that MCH neurons play a regulatory role in learning, and reveal that this could be achieved by modulating plasticity thresholds in the hippocampus.
Collapse
Affiliation(s)
- Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, UK; Department of Life Sciences, Imperial College London, London, UK; System Neuroscience and Energy Control Laboratory, Francis Crick Institute, London, UK.
| | - Denis Burdakov
- System Neuroscience and Energy Control Laboratory, Francis Crick Institute, London, UK; Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Neuroscience Center Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Lee J, Kim SH, Jang DC, Jang M, Bak MS, Shim HG, Lee YS, Kim SJ. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory. Mol Psychiatry 2024; 29:247-256. [PMID: 38017229 DOI: 10.1038/s41380-023-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.
Collapse
Affiliation(s)
- Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
13
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
14
|
Wertz J, Rüttiger L, Bender B, Klose U, Stark RS, Dapper K, Saemisch J, Braun C, Singer W, Dalhoff E, Bader K, Wolpert SM, Knipper M, Munk MHJ. Differential cortical activation patterns: pioneering sub-classification of tinnitus with and without hyperacusis by combining audiometry, gamma oscillations, and hemodynamics. Front Neurosci 2024; 17:1232446. [PMID: 38239827 PMCID: PMC10794389 DOI: 10.3389/fnins.2023.1232446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.
Collapse
Affiliation(s)
- Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Robert S. Stark
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katharina Bader
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan M. Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
15
|
Shao M, Zhang W, Li Y, Tang L, Hao ZZ, Liu S. Patch-seq: Advances and Biological Applications. Cell Mol Neurobiol 2023; 44:8. [PMID: 38123823 PMCID: PMC11397821 DOI: 10.1007/s10571-023-01436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.
Collapse
Affiliation(s)
- Mingting Shao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
17
|
Gilmer JI, Farries MA, Kilpatrick Z, Delis I, Cohen JD, Person AL. An emergent temporal basis set robustly supports cerebellar time-series learning. J Neurophysiol 2023; 129:159-176. [PMID: 36416445 PMCID: PMC9990911 DOI: 10.1152/jn.00312.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is considered a "learning machine" essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellum's input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from time-varying inputs, typical during movements. The model robustly produced temporal basis sets from these inputs, and the resultant GCL output supported better learning of temporally complex target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels, supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense population activity optimizes learning.NEW & NOTEWORTHY During movement, mossy fiber inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model, we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which retained intrinsic input variance while also performing pattern separation.
Collapse
Affiliation(s)
- Jesse I Gilmer
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, Colorado
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael A Farries
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jeremy D Cohen
- University of North Carolina Neuroscience Center, Chapel Hill, North Carolina
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
19
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
20
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
21
|
Knipper M, Mazurek B, van Dijk P, Schulze H. Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. J Assoc Res Otolaryngol 2021; 22:609-621. [PMID: 34686939 PMCID: PMC8599745 DOI: 10.1007/s10162-021-00815-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
A curative therapy for tinnitus currently does not exist. One may actually exist but cannot currently be causally linked to tinnitus due to the lack of consistency of concepts about the neural correlate of tinnitus. Depending on predictions, these concepts would require either a suppression or enhancement of brain activity or an increase in inhibition or disinhibition. Although procedures with a potential to silence tinnitus may exist, the lack of rationale for their curative success hampers an optimization of therapeutic protocols. We discuss here six candidate contributors to tinnitus that have been suggested by a variety of scientific experts in the field and that were addressed in a virtual panel discussion at the ARO round table in February 2021. In this discussion, several potential tinnitus contributors were considered: (i) inhibitory circuits, (ii) attention, (iii) stress, (iv) unidentified sub-entities, (v) maladaptive information transmission, and (vi) minor cochlear deafferentation. Finally, (vii) some potential therapeutic approaches were discussed. The results of this discussion is reflected here in view of potential blind spots that may still remain and that have been ignored in most tinnitus literature. We strongly suggest to consider the high impact of connecting the controversial findings to unravel the whole complexity of the tinnitus phenomenon; an essential prerequisite for establishing suitable therapeutic approaches.
Collapse
Affiliation(s)
- Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre (THRC), Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Germany.
| | - Birgit Mazurek
- Tinnitus Center Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| |
Collapse
|
22
|
Li BX, Dong GH, Li HL, Zhang JS, Bing YH, Chu CP, Cui SB, Qiu DL. Chronic Ethanol Exposure Enhances Facial Stimulation-Evoked Mossy Fiber-Granule Cell Synaptic Transmission via GluN2A Receptors in the Mouse Cerebellar Cortex. Front Syst Neurosci 2021; 15:657884. [PMID: 34408633 PMCID: PMC8365521 DOI: 10.3389/fnsys.2021.657884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory information is transferred to the cerebellar cortex via the mossy fiber–granule cell (MF–GC) pathway, which participates in motor coordination and motor learning. We previously reported that chronic ethanol exposure from adolescence facilitated the sensory-evoked molecular layer interneuron–Purkinje cell synaptic transmission in adult mice in vivo. Herein, we investigated the effect of chronic ethanol exposure from adolescence on facial stimulation-evoked MF–GC synaptic transmission in the adult mouse cerebellar cortex using electrophysiological recording techniques and pharmacological methods. Chronic ethanol exposure from adolescence induced an enhancement of facial stimulation-evoked MF–GC synaptic transmission in the cerebellar cortex of adult mice. The application of an N-methyl-D-aspartate receptor (NMDAR) antagonist, D-APV (250 μM), induced stronger depression of facial stimulation-evoked MF–GC synaptic transmission in chronic ethanol-exposed mice compared with that in control mice. Chronic ethanol exposure-induced facilitation of facial stimulation evoked by MF–GC synaptic transmission was abolished by a selective GluN2A antagonist, PEAQX (10 μM), but was unaffected by the application of a selective GluN2B antagonist, TCN-237 (10 μM), or a type 1 metabotropic glutamate receptor blocker, JNJ16259685 (10 μM). These results indicate that chronic ethanol exposure from adolescence enhances facial stimulation-evoked MF–GC synaptic transmission via GluN2A, which suggests that chronic ethanol exposure from adolescence impairs the high-fidelity transmission capability of sensory information in the cerebellar cortex by enhancing the NMDAR-mediated components of MF–GC synaptic transmission in adult mice in vivo.
Collapse
Affiliation(s)
- Bing-Xue Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hao-Long Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jia-Song Zhang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Brain Science Research Center, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
23
|
Roy A, Narayanan R. Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing, and biophysical heterogeneities. Neural Netw 2021; 142:636-660. [PMID: 34399375 PMCID: PMC7611579 DOI: 10.1016/j.neunet.2021.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The relationship between the feature-tuning curve and information transfer profile of individual neurons provides vital insights about neural encoding. However, the relationship between the spatial tuning curve and spatial information transfer of hippocampal place cells remains unexplored. Here, employing a stochastic search procedure spanning thousands of models, we arrived at 127 conductance-based place-cell models that exhibited signature electrophysiological characteristics and sharp spatial tuning, with parametric values that exhibited neither clustering nor strong pairwise correlations. We introduced trial-to-trial variability in responses and computed model tuning curves and information transfer profiles, using stimulus-specific (SSI) and mutual (MI) information metrics, across locations within the place field. We found spatial information transfer to be heterogeneous across models, but to reduce consistently with increasing levels of variability. Importantly, whereas reliable low-variability responses implied that maximal information transfer occurred at high-slope regions of the tuning curve, increase in variability resulted in maximal transfer occurring at the peak-firing location in a subset of models. Moreover, experience-dependent asymmetry in place-field firing introduced asymmetries in the information transfer computed through MI, but not SSI, and the impact of activity-dependent variability on information transfer was minimal compared to activity-independent variability. We unveiled ion-channel degeneracy in the regulation of spatial information transfer, and demonstrated critical roles for N-methyl-d-aspartate receptors, transient potassium and dendritic sodium channels in regulating information transfer. Our results demonstrate that trial-to-trial variability, tuning-curve shape and biological heterogeneities critically regulate the relationship between the spatial tuning curve and spatial information transfer in hippocampal place cells.
Collapse
Affiliation(s)
- Ankit Roy
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Undergraduate program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
24
|
Kita K, Albergaria C, Machado AS, Carey MR, Müller M, Delvendahl I. GluA4 facilitates cerebellar expansion coding and enables associative memory formation. eLife 2021; 10:65152. [PMID: 34219651 PMCID: PMC8291978 DOI: 10.7554/elife.65152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
AMPA receptors (AMPARs) mediate excitatory neurotransmission in the central nervous system (CNS) and their subunit composition determines synaptic efficacy. Whereas AMPAR subunits GluA1–GluA3 have been linked to particular forms of synaptic plasticity and learning, the functional role of GluA4 remains elusive. Here, we demonstrate a crucial function of GluA4 for synaptic excitation and associative memory formation in the cerebellum. Notably, GluA4-knockout mice had ~80% reduced mossy fiber to granule cell synaptic transmission. The fidelity of granule cell spike output was markedly decreased despite attenuated tonic inhibition and increased NMDA receptor-mediated transmission. Computational network modeling incorporating these changes revealed that deletion of GluA4 impairs granule cell expansion coding, which is important for pattern separation and associative learning. On a behavioral level, while locomotor coordination was generally spared, GluA4-knockout mice failed to form associative memories during delay eyeblink conditioning. These results demonstrate an essential role for GluA4-containing AMPARs in cerebellar information processing and associative learning.
Collapse
Affiliation(s)
- Katarzyna Kita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Catarina Albergaria
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana S Machado
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Gurnani H, Silver RA. Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex. Neuron 2021; 109:1739-1753.e8. [PMID: 33848473 PMCID: PMC8153252 DOI: 10.1016/j.neuron.2021.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023]
Abstract
Inhibitory neurons orchestrate the activity of excitatory neurons and play key roles in circuit function. Although individual interneurons have been studied extensively, little is known about their properties at the population level. Using random-access 3D two-photon microscopy, we imaged local populations of cerebellar Golgi cells (GoCs), which deliver inhibition to granule cells. We show that population activity is organized into multiple modes during spontaneous behaviors. A slow, network-wide common modulation of GoC activity correlates with the level of whisking and locomotion, while faster (<1 s) differential population activity, arising from spatially mixed heterogeneous GoC responses, encodes more precise information. A biologically detailed GoC circuit model reproduced the common population mode and the dimensionality observed experimentally, but these properties disappeared when electrical coupling was removed. Our results establish that local GoC circuits exhibit multidimensional activity patterns that could be used for inhibition-mediated adaptive gain control and spatiotemporal patterning of downstream granule cells.
Collapse
Affiliation(s)
- Harsha Gurnani
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Palacios ER, Houghton C, Chadderton P. Accounting for uncertainty: inhibition for neural inference in the cerebellum. Proc Biol Sci 2021; 288:20210276. [PMID: 33757352 PMCID: PMC8059656 DOI: 10.1098/rspb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sensorimotor coordination is thought to rely on cerebellar-based internal models for state estimation, but the underlying neural mechanisms and specific contribution of the cerebellar components is unknown. A central aspect of any inferential process is the representation of uncertainty or conversely precision characterizing the ensuing estimates. Here, we discuss the possible contribution of inhibition to the encoding of precision of neural representations in the granular layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory granule cells, and their action is critical in shaping information transmission downstream to Purkinje cells. In this review, we equate the ensuing excitation-inhibition balance in the granular layer with the outcome of a precision-weighted inferential process, and highlight the physiological characteristics of Golgi cell inhibition that are consistent with such computations.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| | - Conor Houghton
- School of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Paul Chadderton
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
28
|
Wu K, Han W, Tian Q, Li Y, Lu W. Activity- and sleep-dependent regulation of tonic inhibition by Shisa7. Cell Rep 2021; 34:108899. [PMID: 33761345 PMCID: PMC8025742 DOI: 10.1016/j.celrep.2021.108899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tonic inhibition mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABAARs) critically regulates neuronal excitability and brain function. However, the mechanisms regulating tonic inhibition remain poorly understood. Here, we report that Shisa7 is critical for tonic inhibition regulation in hippocampal neurons. In juvenile Shisa7 knockout (KO) mice, α5-GABAAR-mediated tonic currents are significantly reduced. Mechanistically, Shisa7 is crucial for α5-GABAAR exocytosis. Additionally, Shisa7 regulation of tonic inhibition requires protein kinase A (PKA) that phosphorylates Shisa7 serine 405 (S405). Importantly, tonic inhibition undergoes activity-dependent regulation, and Shisa7 is required for homeostatic potentiation of tonic inhibition. Interestingly, in young adult Shisa7 KOs, basal tonic inhibition in hippocampal neurons is unaltered, largely due to the diminished α5-GABAAR component of tonic inhibition. However, at this stage, tonic inhibition oscillates during the daily sleep/wake cycle, a process requiring Shisa7. Together, these data demonstrate that intricate signaling mechanisms regulate tonic inhibition at different developmental stages and reveal a molecular link between sleep and tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Brennan EKW, Sudhakar SK, Jedrasiak-Cape I, John TT, Ahmed OJ. Hyperexcitable Neurons Enable Precise and Persistent Information Encoding in the Superficial Retrosplenial Cortex. Cell Rep 2021; 30:1598-1612.e8. [PMID: 32023472 DOI: 10.1016/j.celrep.2019.12.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 11/29/2022] Open
Abstract
The retrosplenial cortex (RSC) is essential for memory and navigation, but the neural codes underlying these functions remain largely unknown. Here, we show that the most prominent cell type in layers 2/3 (L2/3) of the mouse granular RSC is a hyperexcitable, small pyramidal cell. These cells have a low rheobase (LR), high input resistance, lack of spike frequency adaptation, and spike widths intermediate to those of neighboring fast-spiking (FS) inhibitory neurons and regular-spiking (RS) excitatory neurons. LR cells are excitatory but rarely synapse onto neighboring neurons. Instead, L2/3 is a feedforward, not feedback, inhibition-dominated network with dense connectivity between FS cells and from FS to LR neurons. Biophysical models of LR but not RS cells precisely and continuously encode sustained input from afferent postsubicular head-direction cells. Thus, the distinct intrinsic properties of LR neurons can support both the precision and persistence necessary to encode information over multiple timescales in the RSC.
Collapse
Affiliation(s)
- Ellen K W Brennan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Tibin T John
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
31
|
Gilbert M, Chris Miall R. How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. Neuroscientist 2021; 28:206-221. [PMID: 33559532 PMCID: PMC9136479 DOI: 10.1177/1073858420986795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mossy fiber input to the cerebellum is received by granule cells where it is thought to be recoded into internal signals received by Purkinje cells, which alone carry the output of the cerebellar cortex. In any neural network, variables are contained in groups of signals as well as signals themselves—which cells are active and how many, for example, and statistical variables coded in rates, such as the mean and range, and which rates are strongly represented, in a defined population. We argue that the primary function of recoding is to confine translation to an effect of some variables and not others—both where input is recoded into internal signals and the translation downstream of internal signals into an effect on Purkinje cells. The cull of variables is harsh. Internal signaling is group coded. This allows coding to exploit statistics for a reliable and precise effect despite needing to work with high-dimensional input which is a highly unpredictably variable. An important effect is to normalize eclectic input signals, so that the basic, repeating cerebellar circuit, preserved across taxa, does not need to specialize (within regional variations). With this model, there is no need to slavishly conserve or compute data coded in single signals. If we are correct, a learning algorithm—for years, a mainstay of cerebellar modeling—would be redundant.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Pléau C, Peret A, Pearlstein E, Scalfati T, Vigier A, Marti G, Michel FJ, Marissal T, Crépel V. Dentate Granule Cells Recruited in the Home Environment Display Distinctive Properties. Front Cell Neurosci 2021; 14:609123. [PMID: 33519383 PMCID: PMC7843370 DOI: 10.3389/fncel.2020.609123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The dentate granule cells (DGCs) play a crucial role in learning and memory. Many studies have described the role and physiological properties of these sparsely active neurons using different behavioral contexts. However, the morpho-functional features of DGCs recruited in mice maintained in their home cage (without training), considered as a baseline condition, have not yet been established. Using fosGFP transgenic mice, we observed ex vivo that DGCs recruited in animals maintained in the home cage condition are mature neurons that display a longer dendritic tree and lower excitability compared with non-activated cells. The higher GABAA receptor-mediated shunting inhibition contributes to the lower excitability of DGCs activated in the home environment by shifting the input resistance towards lower values. Remarkably, that shunting inhibition is neither observed in non-activated DGCs nor in DGCs activated during training in virtual reality. In short, our results suggest that strong shunting inhibition and reduced excitability could constitute a distinctive neural signature of mature DGCs recruited in the context of the home environment.
Collapse
Affiliation(s)
- Claire Pléau
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Angélique Peret
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | - Thomas Scalfati
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Alexandre Vigier
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | | | - Thomas Marissal
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
33
|
The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J Neurosci 2021; 40:7190-7202. [PMID: 32938634 DOI: 10.1523/jneurosci.1314-19.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Collapse
|
34
|
Piras F, Vecchio D, Assogna F, Pellicano C, Ciullo V, Banaj N, Edden RAE, Pontieri FE, Piras F, Spalletta G. Cerebellar GABA Levels and Cognitive Interference in Parkinson's disease and Healthy Comparators. J Pers Med 2020; 11:jpm11010016. [PMID: 33379134 PMCID: PMC7823866 DOI: 10.3390/jpm11010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023] Open
Abstract
The neuroanatomical and molecular substrates for cognitive impairment in Parkinson Disease (PD) are far from clear. Evidence suggests a non-dopaminergic basis, and a crucial role for cerebellum in cognitive control in PD. We investigated whether a PD cognitive marker (response inhibition) was differently controlled by g-amino butyric acid (GABA) and/or by glutamate-glutamine (Glx) levels in the cerebellum of idiopathic PD patients, and healthy comparators (HC). Magnetic resonance spectroscopy of GABA/Glx (MEGA-PRESS acquisition sequence) was performed at 3 Tesla, and response inhibition assessed by the Stroop Word-Color Test (SWCT) and the Wisconsin Card Sorting Test (WCST). Linear correlations between cerebellar GABA/Glx levels, SWCT time/error interference effects and WCST perseverative errors were performed to test differences between correlation coefficients in PD and HC. Results showed that higher levels of mean cerebellar GABA were associated to SWCT increased time and error interference effects in PD, and the contrary in HC. Such effect dissociated by hemisphere, while correlation coefficients differences were significant in both right and left cerebellum. We conclude that MRS measured levels of cerebellar GABA are related in PD patients with decreased efficiency in filtering task-irrelevant information. This is crucial for developing pharmacological treatments for PD to potentially preserve cognitive functioning.
Collapse
Affiliation(s)
- Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Francesca Assogna
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Clelia Pellicano
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Richard A. E. Edden
- Department of Radiology, Kennedy Krieger Institute 707 North Broadway, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Francesco E. Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), “Sant’Andrea” University Hospital, via di Grottarossa 1035-1037, 00189 Rome, Italy;
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00179 Rome, Italy; (F.P.); (D.V.); (F.A.); (C.P.); (V.C.); (N.B.); (F.P.)
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Blvd., Houston, TX 77030, USA
- Correspondence: ; Tel.: +39-06-51501575
| |
Collapse
|
35
|
Interhemispheric Callosal Projections Sharpen Frequency Tuning and Enforce Response Fidelity in Primary Auditory Cortex. eNeuro 2020; 7:ENEURO.0256-20.2020. [PMID: 32769158 PMCID: PMC7438056 DOI: 10.1523/eneuro.0256-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
Sensory cortical areas receive glutamatergic callosal projections that link information processing between brain hemispheres. In primary auditory cortex (A1), ipsilateral principal cells from a particular tonotopic region project to neurons in matching frequency space of the contralateral cortex. However, the role of interhemispheric projections in shaping cortical responses to sound and frequency tuning in awake animals is unclear. Here, we use translaminar single-unit recordings and optogenetic approaches to probe how callosal inputs modulate spontaneous and tone-evoked activity in A1 of awake mice. Brief activation of callosal inputs drove either short-latency increases or decreases in firing of individual neurons. Across all cortical layers, the majority of responsive regular spiking (RS) cells received short-latency inhibition, whereas fast spiking (FS) cells were almost exclusively excited. Consistent with the callosal-evoked increases in FS cell activity in vivo, brain slice recordings confirmed that parvalbumin (PV)-expressing cells received stronger callosal input than pyramidal cells or other interneuron subtypes. Acute in vivo silencing of the contralateral cortex generally increased spontaneous firing across cortical layers and linearly transformed responses to pure tones via both divisive and additive operations. The net effect was a decrease in signal-to-noise ratio for evoked responses and a broadening of frequency tuning curves. Together, these results suggest that callosal input regulates both the salience and tuning sharpness of tone responses in A1 via PV cell-mediated feedforward inhibition.
Collapse
|
36
|
Deng D, Masri S, Yao L, Ma X, Cao X, Yang S, Bao S, Zhou Q. Increasing endogenous activity of NMDARs on GABAergic neurons increases inhibition, alters sensory processing and prevents noise-induced tinnitus. Sci Rep 2020; 10:11969. [PMID: 32686710 PMCID: PMC7371882 DOI: 10.1038/s41598-020-68652-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Selective enhancement of GABAergic inhibition is thought to impact many vital brain functions and interferes with the genesis and/or progression of numerous brain disorders. Here, we show that selectively increasing NMDA receptor activity in inhibitory neurons using an NMDAR positive allosteric modulator (PAM) elevates spiking activity of inhibitory neurons in vitro and in vivo. In vivo infusion of PAM increases spontaneous and sound-evoked spiking in inhibitory and decreases spiking in excitatory neurons, and increases signal-to-noise ratio in the primary auditory cortex. In addition, PAM infusion prior to noise trauma prevents the occurrence of tinnitus and reduction in GABAergic inhibition. These results reveal that selectively enhancing endogenous NMDAR activity on the GABAergic neurons can effectively enhance inhibitory activity and alter excitatory-inhibitory balance, and may be useful for preventing diseases that involve reduced inhibition as the major cause.
Collapse
Affiliation(s)
- Di Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Lulu Yao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xuebing Cao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
37
|
Multiple signals evoked by unisensory stimulation converge onto cerebellar granule and Purkinje cells in mice. Commun Biol 2020; 3:381. [PMID: 32669638 PMCID: PMC7363865 DOI: 10.1038/s42003-020-1110-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
The cerebellum receives signals directly from peripheral sensory systems and indirectly from the neocortex. Even a single tactile stimulus can activate both of these pathways. Here we report how these different types of signals are integrated in the cerebellar cortex. We used in vivo whole-cell recordings from granule cells and unit recordings from Purkinje cells in mice in which primary somatosensory cortex (S1) could be optogenetically inhibited. Tactile stimulation of the upper lip produced two-phase granule cell responses (with latencies of ~8 ms and 29 ms), for which only the late phase was S1 dependent. In Purkinje cells, complex spikes and the late phase of simple spikes were S1 dependent. These results indicate that individual granule cells combine convergent inputs from the periphery and neocortex and send their outputs to Purkinje cells, which then integrate those signals with climbing fiber signals from the neocortex.
Collapse
|
38
|
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 2020; 9:54073. [PMID: 32223891 PMCID: PMC7105376 DOI: 10.7554/elife.54073] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
While classical views of cerebellar learning have suggested that this structure predominantly operates according to an error-based supervised learning rule to refine movements, emerging evidence suggests that the cerebellum may also harness a wider range of learning rules to contribute to a variety of behaviors, including cognitive processes. Together, such evidence points to a broad role for cerebellar circuits in generating and testing predictions about movement, reward, and other non-motor operations. However, this expanded view of cerebellar processing also raises many new questions about how such apparent diversity of function arises from a structure with striking homogeneity. Hence, this review will highlight both current evidence for predictive cerebellar circuit function that extends beyond the classical view of error-driven supervised learning, as well as open questions that must be addressed to unify our understanding cerebellar circuit function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
39
|
Acetylcholine Modulates Cerebellar Granule Cell Spiking by Regulating the Balance of Synaptic Excitation and Inhibition. J Neurosci 2020; 40:2882-2894. [PMID: 32111698 DOI: 10.1523/jneurosci.2148-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit mechanisms that could mediate such modulation remain largely unknown. Here we investigate the role of ACh in regulating granule cell layer synaptic integration in male rats and mice of both sexes. We find that Golgi cells, interneurons that provide the sole source of inhibition to the granule cell layer, express both nicotinic and muscarinic cholinergic receptors. While acute ACh application can modestly depolarize some Golgi cells, the net effect of longer, optogenetically induced ACh release is to strongly hyperpolarize Golgi cells. Golgi cell hyperpolarization by ACh leads to a significant reduction in both tonic and evoked granule cell synaptic inhibition. ACh also reduces glutamate release from mossy fibers by acting on presynaptic muscarinic receptors. Surprisingly, despite these consistent effects on Golgi cells and mossy fibers, ACh can either increase or decrease the spike probability of granule cells as measured by noninvasive cell-attached recordings. By constructing an integrate-and-fire model of granule cell layer population activity, we find that the direction of spike rate modulation can be accounted for predominately by the initial balance of excitation and inhibition onto individual granule cells. Together, these experiments demonstrate that ACh can modulate population-level granule cell responses by altering the ratios of excitation and inhibition at the first stage of cerebellar processing.SIGNIFICANCE STATEMENT The cerebellum plays a key role in motor control and motor learning. While it is known that behavioral context can modify motor learning, the circuit basis of such modulation has remained unclear. Here we find that a key neuromodulator, ACh, can alter the balance of excitation and inhibition at the first stage of cerebellar processing. These results suggest that ACh could play a key role in altering cerebellar learning by modifying how sensorimotor input is represented at the input layer of the cerebellum.
Collapse
|
40
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
41
|
Prestori F, Mapelli L, D'Angelo E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019; 12:267. [PMID: 31787879 PMCID: PMC6854908 DOI: 10.3389/fnmol.2019.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local microcircuit activity. The importance of inhibition relies in its fundamental role in shaping signal processing in single neurons and neuronal circuits. In this context, the activity of inhibitory interneurons proved the key to endow networks with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through Purkinje cells (PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of restricting or blocking excitation. This assumption has been challenged, in particular in the cerebellar cortex where all neurons except granule cells (and unipolar brush cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics and computational modeling, has revealed that inhibitory interneurons play a much more complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal response dynamics in the whole circuit and eventually regulate the PC output. This review elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and moving up to their morphological, physiological and plastic properties, and integrates this knowledge with that on the more renown granule cells and PCs. We will focus on the circuit loops in which these interneurons are involved and on the way they generate feed-forward, feedback and lateral inhibition along with complex spatio-temporal response dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of cerebellar functioning.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
42
|
Frank T, Mönig NR, Satou C, Higashijima SI, Friedrich RW. Associative conditioning remaps odor representations and modifies inhibition in a higher olfactory brain area. Nat Neurosci 2019; 22:1844-1856. [PMID: 31591559 PMCID: PMC6858881 DOI: 10.1038/s41593-019-0495-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
Intelligent behavior involves associations between high-dimensional sensory representations and behaviorally relevant qualities such as valence. Learning of associations involves plasticity of excitatory connectivity but it remains poorly understood how information flow is reorganized in networks and how inhibition contributes to this process. We trained adult zebrafish in an appetitive odor discrimination task and analyzed odor representations in a specific compartment of telencephalic area Dp, the homolog of olfactory cortex. Associative conditioning enhanced responses with a preference for the positively conditioned odor (CS+). Moreover, conditioning systematically remapped odor representations along an axis in coding space that represented attractiveness (valence). Inter-individual variations in this mapping predicted variations in behavioral odor preference. Photoinhibition of interneurons resulted in specific modifications of odor representations that mirrored effects of conditioning and reduced experience-dependent, inter-individual variations in odor-valence mapping. These results reveal an individualized odor-to-valence map that is shaped by inhibition and reorganized during learning.
Collapse
Affiliation(s)
- Thomas Frank
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Nila R Mönig
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chie Satou
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Ujfalussy BB, Makara JK, Lengyel M, Branco T. Global and Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron 2019; 100:579-592.e5. [PMID: 30408443 PMCID: PMC6226578 DOI: 10.1016/j.neuron.2018.08.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 10/27/2022]
Abstract
Dendrites integrate inputs nonlinearly, but it is unclear how these nonlinearities contribute to the overall input-output transformation of single neurons. We developed statistically principled methods using a hierarchical cascade of linear-nonlinear subunits (hLN) to model the dynamically evolving somatic response of neurons receiving complex, in vivo-like spatiotemporal synaptic input patterns. We used the hLN to predict the somatic membrane potential of an in vivo-validated detailed biophysical model of a L2/3 pyramidal cell. Linear input integration with a single global dendritic nonlinearity achieved above 90% prediction accuracy. A novel hLN motif, input multiplexing into parallel processing channels, could improve predictions as much as conventionally used additional layers of local nonlinearities. We obtained similar results in two other cell types. This approach provides a data-driven characterization of a key component of cortical circuit computations: the input-output transformation of neurons during in vivo-like conditions.
Collapse
Affiliation(s)
- Balázs B Ujfalussy
- MRC Laboratory of Molecular Biology, Cambridge, UK; Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary; Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; MTA Wigner Research Center for Physics, Budapest, Hungary.
| | - Judit K Makara
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Department of Cognitive Science, Central European University, Budapest, Hungary
| | - Tiago Branco
- MRC Laboratory of Molecular Biology, Cambridge, UK; Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
44
|
Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol Normalizes Behavioral Abnormalities in a Mouse Model of Fragile X Syndrome. Front Behav Neurosci 2019; 13:141. [PMID: 31293404 PMCID: PMC6603241 DOI: 10.3389/fnbeh.2019.00141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.
Collapse
Affiliation(s)
- Patricia Cogram
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Robert M J Deacon
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | | | | | - Brett S Abrahams
- Ovid Therapeutics, New York, NY, United States.,Department of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matthew J During
- Ovid Therapeutics, New York, NY, United States.,Department of Neurological Surgery and Molecular Virology, Immunology and Medical Genetics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
45
|
Möhrle D, Hofmeier B, Amend M, Wolpert S, Ni K, Bing D, Klose U, Pichler B, Knipper M, Rüttiger L. Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience 2018; 407:146-169. [PMID: 30599268 DOI: 10.1016/j.neuroscience.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
For successful future therapeutic strategies for tinnitus and hyperacusis, a subcategorization of both conditions on the basis of differentiated neural correlates would be of invaluable advantage. In the present study, we used our refined operant conditioning animal model to divide equally noise-exposed rats into groups with either tinnitus or hyperacusis, with neither condition, or with both conditions co-occurring simultaneously. Using click stimulus and noise burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions, no hearing threshold difference was observed between any of the groups. However, animals with neither tinnitus nor hyperacusis responded to noise trauma with shortened ABR wave I and IV latencies and elevated central neuronal gain (increased ABR wave IV/I amplitude ratio), which was previously assumed in most of the literature to be a neural correlate for tinnitus. In contrast, animals with tinnitus had reduced neural response gain and delayed ABR wave I and IV latencies, while animals with hyperacusis showed none of these changes. Preliminary studies, aimed at establishing comparable non-invasive objective tools for identifying tinnitus in humans and animals, confirmed reduced central gain and delayed response latency in human and animals. Moreover, the first ever resting state functional Magnetic Resonance Imaging (rs-fMRI) analyses comparing humans and rats with and without tinnitus showed reduced rs-fMRI activities in the auditory cortex in both patients and animals with tinnitus. These findings encourage further efforts to establish non-invasive diagnostic tools that can be used in humans and animals alike and give hope for differentiated classification of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Dorit Möhrle
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Benedikt Hofmeier
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Mario Amend
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Stephan Wolpert
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Kun Ni
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; Shanghai Jiao Tong University, Department of Otolaryngology, Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Luding Road, NO. 355. Putuo District, 200062 Shanghai, China.
| | - Dan Bing
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Uwe Klose
- University Hospital Tübingen, Department of Diagnostic and Interventional Neuroradiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Bernd Pichler
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| |
Collapse
|
46
|
Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition. J Neurosci 2018; 39:1169-1181. [PMID: 30587539 DOI: 10.1523/jneurosci.1448-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Cerebellar granule cells (GrCs) constitute over half of all neurons in the vertebrate brain and are proposed to decorrelate convergent mossy fiber (MF) inputs in service of learning. Interneurons within the GrC layer, Golgi cells (GoCs), are the primary inhibitors of this vast population and therefore play a major role in influencing the computations performed within the layer. Despite this central function for GoCs, few studies have directly examined how GoCs integrate inputs from specific afferents, which vary in density to regulate GrC population activity. We used a variety of methods in mice of either sex to study feedforward inhibition recruited by identified MFs, focusing on features that would influence integration by GrCs. Comprehensive 3D reconstruction and quantification of GoC axonal boutons revealed tightly clustered boutons that focus feedforward inhibition in the neighborhood of GoC somata. Acute whole-cell patch-clamp recordings from GrCs in brain slices showed that, despite high GoC bouton density, fast phasic inhibition was very sparse relative to slow spillover mediated inhibition. Dynamic-clamp simulating inhibition combined with optogenetic MF activation at moderate rates supported a predominant role of slow spillover mediated inhibition in reducing GrC activity. Whole-cell recordings from GoCs revealed a role for the density of active MFs in preferentially driving them. Thus, our data provide empirical confirmation of predicted rules by which MFs activate GoCs to regulate GrC activity levels.SIGNIFICANCE STATEMENT A unifying framework in neural circuit analysis is identifying circuit motifs that subserve common computations. Wide-field inhibitory interneurons globally inhibit neighbors and have been studied extensively in the insect olfactory system and proposed to serve pattern separation functions. Cerebellar Golgi cells (GoCs), a type of mammalian wide-field inhibitory interneuron observed in the granule cell layer, are well suited to perform normalization or pattern separation functions, but the relationship between spatial characteristics of input patterns to GoC-mediated inhibition has received limited attention. This study provides unprecedented quantitative structural details of GoCs and identifies a role for population input activity levels in recruiting inhibition using in vitro electrophysiology and optogenetics.
Collapse
|
47
|
Fleming E, Hull C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J Neurophysiol 2018; 121:105-114. [PMID: 30281395 DOI: 10.1152/jn.00492.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how afferent information is integrated by cortical structures requires identifying the factors shaping excitation and inhibition within their input layers. The input layer of the cerebellar cortex integrates diverse sensorimotor information to enable learned associations that refine the dynamics of movement. Specifically, mossy fiber afferents relay sensorimotor input into the cerebellum to excite granule cells, whose activity is regulated by inhibitory Golgi cells. To test how this integration can be modulated, we have used an acute brain slice preparation from young adult rats and found that encoding of mossy fiber input in the cerebellar granule cell layer can be regulated by serotonin (5-hydroxytryptamine, 5-HT) via a specific action on Golgi cells. We find that 5-HT depolarizes Golgi cells, likely by activating 5-HT2A receptors, but does not directly act on either granule cells or mossy fibers. As a result of Golgi cell depolarization, 5-HT significantly increases tonic inhibition onto both granule cells and Golgi cells. 5-HT-mediated Golgi cell depolarization is not sufficient, however, to alter the probability or timing of mossy fiber-evoked feed-forward inhibition onto granule cells. Together, increased granule cell tonic inhibition paired with normal feed-forward inhibition acts to reduce granule cell spike probability without altering spike timing. Hence, these data provide a circuit mechanism by which 5-HT can reduce granule cell activity without altering temporal representations of mossy fiber input. Such changes in network integration could enable flexible, state-specific suppression of cerebellar sensorimotor input that should not be learned or enable reversal learning for unwanted associations. NEW & NOTEWORTHY Serotonin (5-hydroxytryptamine, 5-HT) regulates synaptic integration at the input stage of cerebellar processing by increasing tonic inhibition of granule cells. This circuit mechanism reduces the probability of granule cell spiking without altering spike timing, thus suppressing cerebellar input without altering its temporal representation in the granule cell layer.
Collapse
Affiliation(s)
- Elizabeth Fleming
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| | - Court Hull
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| |
Collapse
|
48
|
Matt L, Eckert P, Panford-Walsh R, Geisler HS, Bausch AE, Manthey M, Müller NIC, Harasztosi C, Rohbock K, Ruth P, Friauf E, Ott T, Zimmermann U, Rüttiger L, Schimmang T, Knipper M, Singer W. Visualizing BDNF Transcript Usage During Sound-Induced Memory Linked Plasticity. Front Mol Neurosci 2018; 11:260. [PMID: 30127717 PMCID: PMC6089339 DOI: 10.3389/fnmol.2018.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV (BDNF-live-exon-visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Tübingen Hearing Research Center, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Control of motor coordination by astrocytic tonic GABA release through modulation of excitation/inhibition balance in cerebellum. Proc Natl Acad Sci U S A 2018; 115:5004-5009. [PMID: 29691318 DOI: 10.1073/pnas.1721187115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.
Collapse
|
50
|
Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018; 12:4. [PMID: 29434539 PMCID: PMC5790777 DOI: 10.3389/fncir.2018.00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|