1
|
Tran TP, Budnik B, Froberg JE, Macklis JD. Cortical projection neurons with distinct axonal connectivity employ ribosomal complexes with distinct protein compositions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629968. [PMID: 39763931 PMCID: PMC11703261 DOI: 10.1101/2024.12.22.629968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Diverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control. Here, we directly compare the protein compositions of RCs in vivo from two closely related cortical neuron subtypes-cortical output "subcerebral PN" (SCPN) and interhemispheric "callosal PN" (CPN)- during establishment of their distinct axonal connectivity. Using retrograde labeling of subtype-specific somata, purification by fluorescence-activated cell sorting, ribosome immunoprecipitation, and ultra-low-input mass spectrometry, we identify distinct protein compositions of RCs from these two subtypes. Strikingly, we identify 16 associated proteins reliably and exclusively detected only in RCs of SCPN. 10 of these proteins have known interaction with components of ribosomes; we further validated ribosome interaction with protein kinase C epsilon (PRKCE), a candidate with roles in synaptogenesis. PRKCE and a subset of SCPN-specific candidate ribosome-associated proteins also exhibit enriched gene expression by SCPN. Together, these results indicate that ribosomal complexes exhibit subtype-specific protein composition in distinct subtypes of cortical projection neurons during development, and identify potential candidates for further investigation of function in translational regulation involved in subtype-specific circuit formation.
Collapse
Affiliation(s)
- Tien Phuoc Tran
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John E. Froberg
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Kopić J, Haldipur P, Millen KJ, Kostović I, Krasić J, Krsnik Ž. Initial regional cytoarchitectonic differences in dorsal and orbitobasal human developing frontal cortex revealed by spatial transcriptomics. Brain Struct Funct 2024; 230:13. [PMID: 39692769 DOI: 10.1007/s00429-024-02865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Early development of the human fetal cerebral cortex involves a set of precisely coordinated molecular processes that remains rather underexplored. Previous studies indicate that the laminar identity and the molecular specification of cortical neurons driven by genetic programming, as well as associated histogenetic events begin during early fetal development. Our recent study discovered unique regional cytoarchitectonic features in the developing human frontal lobe, including migratory waves of postmitotic neurons in the dorsal frontal cortex and the "double plate" feature in orbitobasal cortex (Kopić et al. in Cells 12:231, 2023). Notably, neurons of these two cytoarchitectonic features typically express deep projection neuron (DPN) markers (TBR1, TLE4, SOX5). This paper aims to conduct an in-depth investigation of these cytoarchitectonic features at the transcriptomic level, whilst preserving spatial information. Here, we employed NanoString GeoMx™ Digital Spatial Profiler (DSP) technology to examine gene expression differences in the transient cortical compartments of the dorsal and ventral regions of the developing frontal lobe, focusing specifically on 15 post-conceptional weeks (PCW), that is a critical period for subplate formation. We identified multiple differentially expressed genes between the transient cellular compartments of the dorsal and orbitobasal regions of the developing human frontal cortex. These new findings additionally confirm that regional patterning and specification of the prospective higher-order association prefrontal cortex emerges early in fetal development, contributing to the highly organized cortical architecture of the human brain.
Collapse
Affiliation(s)
- Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Salamon I, Park Y, Miškić T, Kopić J, Matteson P, Page NF, Roque A, McAuliffe GW, Favate J, Garcia-Forn M, Shah P, Judaš M, Millonig JH, Kostović I, De Rubeis S, Hart RP, Krsnik Ž, Rasin MR. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun 2023; 14:6025. [PMID: 37758766 PMCID: PMC10533865 DOI: 10.1038/s41467-023-41730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers University, School of Graduate Studies, New Brunswick, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Terezija Miškić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Geoffrey W McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Miloš Judaš
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia.
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Froberg JE, Durak O, Macklis JD. Development of nanoRibo-seq enables study of regulated translation by cortical neuron subtypes, showing uORF translation in synaptic-axonal genes. Cell Rep 2023; 42:112995. [PMID: 37624698 PMCID: PMC10591829 DOI: 10.1016/j.celrep.2023.112995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Investigation of translation in rare cell types or subcellular contexts is challenging due to large input requirements for standard approaches. Here, we present "nanoRibo-seq" an optimized approach using 102- to 103-fold less input material than bulk approaches. nanoRibo-seq exhibits rigorous quality control features consistent with quantification of ribosome protected fragments with as few as 1,000 cells. We compare translatomes of two closely related cortical neuron subtypes, callosal projection neurons (CPN) and subcerebral projection neurons (SCPN), during their early postnatal development. We find that, while translational efficiency is highly correlated between CPN and SCPN, several dozen mRNAs are differentially translated. We further examine upstream open reading frame (uORF) translation and identify that mRNAs involved in synapse organization and axon development are highly enriched for uORF translation in both subtypes. nanoRibo-seq enables investigation of translational regulation of rare cell types in vivo and offers a flexible approach for globally quantifying translation from limited input material.
Collapse
Affiliation(s)
- John E Froberg
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Omer Durak
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, Fontenas M, Sørensen DM, Gay DM, Arendrup FS, Tehler D, Krogh N, Nielsen H, Kraushar ML, Kirkeby A, Lund AH. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell 2023; 58:1593-1609.e9. [PMID: 37473757 DOI: 10.1016/j.devcel.2023.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Fontenas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel M Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|
7
|
Kopić J, Junaković A, Salamon I, Rasin MR, Kostović I, Krsnik Ž. Early Regional Patterning in the Human Prefrontal Cortex Revealed by Laminar Dynamics of Deep Projection Neuron Markers. Cells 2023; 12:231. [PMID: 36672166 PMCID: PMC9856843 DOI: 10.3390/cells12020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Early regional patterning and laminar position of cortical projection neurons is determined by activation and deactivation of transcriptional factors (TFs) and RNA binding proteins (RBPs) that regulate spatiotemporal framework of neurogenetic processes (proliferation, migration, aggregation, postmigratory differentiation, molecular identity acquisition, axonal growth, dendritic development, and synaptogenesis) within transient cellular compartments. Deep-layer projection neurons (DPN), subplate (SPN), and Cajal-Retzius neurons (CRN) are early-born cells involved in the establishment of basic laminar and regional cortical architecture; nonetheless, laminar dynamics of their molecular transcriptional markers remain underexplored. Here we aimed to analyze laminar dynamics of DPN markers, i.e., transcription factors TBR1, CTIP2, TLE4, SOX5, and RBP CELF1 on histological serial sections of the human frontal cortex between 7.5-15 postconceptional weeks (PCW) in reference to transient proliferative, migratory, and postmigratory compartments. The subtle signs of regional patterning were seen during the late preplate phase in the pattern of sublaminar organization of TBR1+/Reelin+ CRN and TBR1+ pioneering SPN. During the cortical plate (CP)-formation phase, TBR1+ neurons became radially aligned, forming continuity from a well-developed subventricular zone to CP showing clear lateral to medial regional gradients. The most prominent regional patterning was seen during the subplate formation phase (around 13 PCW) when a unique feature of the orbitobasal frontal cortex displays a "double plate" pattern. In other portions of the frontal cortex (lateral, dorsal, medial) deep portion of CP becomes loose and composed of TBR1+, CTIP2+, TLE4+, and CELF1+ neurons of layer six and later-born SPN, which later become constituents of the expanded SP (around 15 PCW). Overall, TFs and RBPs mark characteristic regional laminar dynamics of DPN, SPN, and CRN subpopulations during remarkably early fetal phases of the highly ordered association cortex development.
Collapse
Affiliation(s)
- Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- School of Graduate Studies, Rutgers University, New Brunswick, NJ 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Kedia S, Aghanoori MR, Burns KML, Subha M, Williams L, Wen P, Kopp D, Erickson SL, Harvey EM, Chen X, Hua M, Perez JU, Ishraque F, Yang G. Ubiquitination and deubiquitination of 4E-T regulate neural progenitor cell maintenance and neurogenesis by controlling P-body formation. Cell Rep 2022; 40:111070. [PMID: 35830814 DOI: 10.1016/j.celrep.2022.111070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.
Collapse
Affiliation(s)
- Shreeya Kedia
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Mohamad-Reza Aghanoori
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kaylan M L Burns
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Maneesha Subha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Laura Williams
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pengqiang Wen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Drayden Kopp
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Sarah L Erickson
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Emily M Harvey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Xin Chen
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michelle Hua
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jose Uriel Perez
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Fatin Ishraque
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Guang Yang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Owerko Centre, ACHRI, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
9
|
Sato H, Hatakeyama J, Iwasato T, Araki K, Yamamoto N, Shimamura K. Thalamocortical axons control the cytoarchitecture of neocortical layers by area-specific supply of VGF. eLife 2022; 11:67549. [PMID: 35289744 PMCID: PMC8959604 DOI: 10.7554/elife.67549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/12/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal abundance and thickness of each cortical layer are specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here, we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.
Collapse
Affiliation(s)
- Haruka Sato
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
| | - Kimi Araki
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, Henis M, Hermanns-Borgmeyer I, Calderon de Anda F, Duncan K. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. eLife 2022; 11:55199. [PMID: 35262486 PMCID: PMC8906809 DOI: 10.7554/elife.55199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Collapse
Affiliation(s)
- Kawssar Harb
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melanie Richter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Elia Magrinelli
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Hend Harfoush
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katrin Kuechler
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Irm Hermanns-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kent Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
11
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
12
|
A critical period of translational control during brain development at codon resolution. Nat Struct Mol Biol 2022; 29:1277-1290. [PMID: 36482253 PMCID: PMC9758057 DOI: 10.1038/s41594-022-00882-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/19/2022] [Indexed: 12/13/2022]
Abstract
Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics .
Collapse
|
13
|
Boitnott A, Garcia-Forn M, Ung DC, Niblo K, Mendonca D, Park Y, Flores M, Maxwell S, Ellegood J, Qiu LR, Grice DE, Lerch JP, Rasin MR, Buxbaum JD, Drapeau E, De Rubeis S. Developmental and Behavioral Phenotypes in a Mouse Model of DDX3X Syndrome. Biol Psychiatry 2021; 90:742-755. [PMID: 34344536 PMCID: PMC8571043 DOI: 10.1016/j.biopsych.2021.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mutations in the X-linked gene DDX3X account for approximately 2% of intellectual disability in females, often comorbid with behavioral problems, motor deficits, and brain malformations. DDX3X encodes an RNA helicase with emerging functions in corticogenesis and synaptogenesis. METHODS We generated a Ddx3x haploinsufficient mouse (Ddx3x+/- females) with construct validity for DDX3X loss-of-function mutations. We used standardized batteries to assess developmental milestones and adult behaviors, as well as magnetic resonance imaging and immunostaining of cortical projection neurons to capture early postnatal changes in brain development. RESULTS Ddx3x+/- females showed physical, sensory, and motor delays that evolved into behavioral anomalies in adulthood, including hyperactivity, anxiety-like behaviors, cognitive impairments in specific tasks (e.g., contextual fear memory but not novel object recognition memory), and motor deficits. Motor function declined with age but not if mice were previously exposed to behavioral training. Developmental and behavioral changes were associated with a reduction in brain volume, with some regions (e.g., cortex and amygdala) disproportionally affected. Cortical thinning was accompanied by defective cortical lamination, indicating that Ddx3x regulates the balance of glutamatergic neurons in the developing cortex. CONCLUSIONS These data shed new light on the developmental mechanisms driving DDX3X syndrome and support construct and face validity of this novel preclinical mouse model.
Collapse
Affiliation(s)
- Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dévina C Ung
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristi Niblo
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Mendonca
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yeaji Park
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Flores
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Biology, New York University, College of Arts and Science, New York, NY 10003, USA
| | - Sylvia Maxwell
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Bronx High School of Science, NY 10468, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, ON M5T 3H7, Canada
| | - Lily R Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
| | - Dorothy E Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, ON M5T 3H7, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, ON M5T 3H7, Canada
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
14
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
15
|
Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post-transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post-transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non-coding RNAs, and/or microRNA. Remarkably, mutations in these post-transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co-morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett-syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yongkyu Park
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Nicholas Page
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Iva Salamon
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Mladen-Roko Rasin
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
16
|
Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs. Cells 2021; 10:cells10020253. [PMID: 33525513 PMCID: PMC7911671 DOI: 10.3390/cells10020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neocortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also disrupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. In particular, the Wnt3-Fzd7 signaling axis determines the deep layer Foxp2-expressing neurons of developing neocortices. Our findings also suggest that Fzd7 controls the balance of the expression for Foxp transcription factors in developing neocortical neurons. These discoveries are presented in our manuscript within a larger framework of this review on the role of extrinsic factors in regulating mRNA translation.
Collapse
|
17
|
Protein Synthesis in the Developing Neocortex at Near-Atomic Resolution Reveals Ebp1-Mediated Neuronal Proteostasis at the 60S Tunnel Exit. Mol Cell 2020; 81:304-322.e16. [PMID: 33357414 DOI: 10.1016/j.molcel.2020.11.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Protein synthesis must be finely tuned in the developing nervous system as the final essential step of gene expression. This study investigates the architecture of ribosomes from the neocortex during neurogenesis, revealing Ebp1 as a high-occupancy 60S peptide tunnel exit (TE) factor during protein synthesis at near-atomic resolution by cryoelectron microscopy (cryo-EM). Ribosome profiling demonstrated Ebp1-60S binding is highest during start codon initiation and N-terminal peptide elongation, regulating ribosome occupancy of these codons. Membrane-targeting domains emerging from the 60S tunnel, which recruit SRP/Sec61 to the shared binding site, displace Ebp1. Ebp1 is particularly abundant in the early-born neural stem cell (NSC) lineage and regulates neuronal morphology. Ebp1 especially impacts the synthesis of membrane-targeted cell adhesion molecules (CAMs), measured by pulsed stable isotope labeling by amino acids in cell culture (pSILAC)/bioorthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry (MS). Therefore, Ebp1 is a central component of protein synthesis, and the ribosome TE is a focal point of gene expression control in the molecular specification of neuronal morphology during development.
Collapse
|
18
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
19
|
Compensation between Wnt-driven tumorigenesis and cellular responses to ribosome biogenesis inhibition in the murine intestinal epithelium. Cell Death Differ 2020; 27:2872-2887. [PMID: 32355182 DOI: 10.1038/s41418-020-0548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ribosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function. We show that ribosome biogenesis dysfunction strongly alleviates Wnt-driven tumor initiation by restoring cell cycle exit and differentiation in Apc-deficient progenitors. Conversely Wnt hyperactivation attenuates the cellular responses to surveillance pathways activation induced by ribosome biogenesis dysfunction, as proliferation was maintained at control-like levels in the stem cells and progenitors of double mutants. Thus, our data indicate that, while ribosome biogenesis inhibition efficiently reduces cancer cell proliferation in the intestinal epithelium, enhanced resistance of Apc-deficient stem and progenitor cells to ribosome biogenesis defects may be an important concern when using a therapeutic strategy targeting ribosome production for the treatment of Wnt-dependent tumorigenesis.
Collapse
|
20
|
Popovitchenko T, Park Y, Page NF, Luo X, Krsnik Z, Liu Y, Salamon I, Stephenson JD, Kraushar ML, Volk NL, Patel SM, Wijeratne HRS, Li D, Suthar KS, Wach A, Sun M, Arnold SJ, Akamatsu W, Okano H, Paillard L, Zhang H, Buyske S, Kostovic I, De Rubeis S, Hart RP, Rasin MR. Translational derepression of Elavl4 isoforms at their alternative 5' UTRs determines neuronal development. Nat Commun 2020; 11:1674. [PMID: 32245946 PMCID: PMC7125149 DOI: 10.1038/s41467-020-15412-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopment requires precise regulation of gene expression, including post-transcriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5' UTRs. Furthermore, 5' UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5' UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaobing Luo
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Yuan Liu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Jessica D Stephenson
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Matthew L Kraushar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nicole L Volk
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sejal M Patel
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - H R Sagara Wijeratne
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Diana Li
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kandarp S Suthar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Aaron Wach
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, D-79104, Germany
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
21
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
22
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
23
|
Puf6 and Loc1 Are the Dedicated Chaperones of Ribosomal Protein Rpl43 in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20235941. [PMID: 31779129 PMCID: PMC6928942 DOI: 10.3390/ijms20235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomal proteins are highly expressed, and the quality of ribosomal proteins must be rigorously controlled to build up a functional ribosome. Rpl43, ribosomal protein large subunit 43, is located nearby the E-site of ribosomes. In our previous study, we found that Puf6, Loc1, and Rpl43 form a trimeric complex in Saccharomyces cerevisiae. Rpl43 protein levels are under-accumulated in the absence of PUF6 or LOC1. However, why the loss of Puf6 or Loc1 decreased the protein levels of Rpl43 remained unclear. In the present study, we further dissected the connections among these three proteins and found that the processing defects of pre-ribosomal RNA in puf6Δ and loc1Δ are similar to those of the mutant with depletion of Rpl43. The stability of newly synthesized Rpl43 protein decreased slightly in puf6Δ and significantly in loc1Δ. We also found that Puf6 and Loc1 could interact with nascent Rpl43 co-translationally via the N-terminus of Rpl43. While the association and dissociation of Rpl43 with karyopherins did not depend on Puf6 and Loc1, Puf6 and Loc1 interacted with nascent Rpl43 in collaboration. While the N-terminus of Puf6 contained nuclear localization signals for transport, the PUF (Pumilio) domain was essential to interaction with Loc1, Rpl43, and 60S subunits. The C-terminus of Loc1 is more important for interaction with Puf6 and Rpl43. In this study, we found that Puf6 and Loc1 are the dedicated chaperones of ribosomal protein Rpl43 and also analyzed the potential interaction domains among the three proteins. Correct formation of the Puf6, Loc1, and Rpl43 ternary complex is required to properly proceed to the next step in 60S biogenesis.
Collapse
|
24
|
rDNA Clusters Make Contact with Genes that Are Involved in Differentiation and Cancer and Change Contacts after Heat Shock Treatment. Cells 2019; 8:cells8111393. [PMID: 31694324 PMCID: PMC6912461 DOI: 10.3390/cells8111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022] Open
Abstract
Human rDNA clusters form numerous contacts with different chromosomal regions as evidenced by chromosome conformation capture data. Heterochromatization of rDNA genes leads to heterochromatization in different chromosomal regions coupled with the activation of the transcription of genes related to differentiation. These data suggest a role for rDNA clusters in the regulation of many human genes. However, the genes that reside within the rDNA-contacting regions have not been identified. The purpose of this study was to detect and characterize the regions where rDNA clusters make frequent contacts and to identify and categorize genes located in these regions. We analyzed the regions that contact rDNA using 4C data and show that these regions are enriched with genes specifying transcription factors and non-coding RNAs involved in differentiation and development. The rDNA-contacting genes are involved in neuronal development and are associated with different cancers. Heat shock treatment led to dramatic changes in the pattern of rDNA-contacting sites, especially in the regions possessing long stretches of H3K27ac marks. Whole-genome analysis of rDNA-contacting sites revealed specific epigenetic marks and the transcription sites of 20–100 nt non-coding RNAs in these regions. The rDNA-contacting genes jointly regulate many genes that are involved in the control of transcription by RNA polymerase II and the development of neurons. Our data suggest a role for rDNA clusters in the differentiation of human cells and carcinogenesis.
Collapse
|
25
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
27
|
Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. J Clin Invest 2018; 128:5620-5633. [PMID: 30300142 DOI: 10.1172/jci122383] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/β-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/β-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.
Collapse
Affiliation(s)
- Babita Madan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Gahyathiri Nallan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Peter Faull
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Enrico Petretto
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
28
|
Chau KF, Shannon ML, Fame RM, Fonseca E, Mullan H, Johnson MB, Sendamarai AK, Springel MW, Laurent B, Lehtinen MK. Downregulation of ribosome biogenesis during early forebrain development. eLife 2018; 7:36998. [PMID: 29745900 PMCID: PMC5984036 DOI: 10.7554/elife.36998] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development.
Collapse
Affiliation(s)
- Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Erin Fonseca
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Hillary Mullan
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Matthew B Johnson
- Division of Genetics, Boston Children's Hospital, Boston, United States
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Mark W Springel
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Benoit Laurent
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
| |
Collapse
|
29
|
Liao Y, Zhuang X, Huang X, Peng Y, Ma X, Huang ZX, Liu F, Xu J, Wang Y, Chen WM, Ye WC, Shi L. A Bivalent Securinine Compound SN3-L6 Induces Neuronal Differentiation via Translational Upregulation of Neurogenic Transcription Factors. Front Pharmacol 2018; 9:290. [PMID: 29674963 PMCID: PMC5895701 DOI: 10.3389/fphar.2018.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Developing therapeutic approaches that target neuronal differentiation will be greatly beneficial for the regeneration of neurons and synaptic networks in neurological diseases. Protein synthesis (mRNA translation) has recently been shown to regulate neurogenesis of neural stem/progenitor cells (NSPCs). However, it has remained unknown whether engineering translational machinery is a valid approach for manipulating neuronal differentiation. The present study identifies that a bivalent securinine compound SN3-L6, previously designed and synthesized by our group, induces potent neuronal differentiation through a novel translation-dependent mechanism. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis in Neuro-2a progenitor cells revealed that SN3-L6 upregulated a group of neurogenic transcription regulators, and also upregulated proteins involved in RNA processing, translation, and protein metabolism. Notably, puromycylation and metabolic labeling of newly synthesized proteins demonstrated that SN3-L6 induced rapid and robust activation of general mRNA translation. Importantly, mRNAs of the proneural transcription factors Foxp1, Foxp4, Hsf1, and Erf were among the targets that were translationally upregulated by SN3-L6. Either inhibition of translation or knockdown of these transcription factors blocked SN3-L6 activity. We finally confirmed that protein synthesis of a same set of transcription factors was upregulated in primary cortical NPCs. These findings together identify a new compound for translational activation and neuronal differentiation, and provide compelling evidence that reprogramming transcriptional regulation network at translational levels is a promising strategy for engineering NSPCs.
Collapse
Affiliation(s)
- Yumei Liao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoji Zhuang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojie Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuanyue Ma
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Feng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wen-Cai Ye
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Duan RS, Liu PP, Xi F, Wang WH, Tang GB, Wang RY, Saijilafu, Liu CM. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons. Biochem Biophys Res Commun 2018; 499:246-252. [PMID: 29567480 DOI: 10.1016/j.bbrc.2018.03.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022]
Abstract
Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system.
Collapse
Affiliation(s)
- Run-Shan Duan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Pei Liu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Xi
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, 215007 China
| | - Wei-Hua Wang
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, 215007 China
| | - Gang-Bin Tang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ying Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, 215007 China.
| | - Chang-Mei Liu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Pfister AS, Kühl M. Of Wnts and Ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:131-155. [PMID: 29389514 DOI: 10.1016/bs.pmbts.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt proteins are secreted glycoproteins that activate different intracellular signal transduction pathways. They regulate cell proliferation and are required for proper embryonic development. Misregulation of Wnt signaling can result in various diseases including cancer. In most circumstances, cell growth is essential for cell division and thus cell proliferation. Therefore, several reports have highlighted the key role of Wnt proteins for cell growth. Ribosomes represent the cellular protein synthesis machinery and cells need to be equipped with an appropriate number of ribosomes to allow cell growth. Recent findings suggest a role for Wnt proteins in regulating ribosome biogenesis and we here summarize these findings representing a previously unknown function of Wnt proteins. Understanding this role of Wnt signaling might open new avenues to slow down proliferation by drugs for instance in cancer therapy.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
32
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
33
|
Lennox AL, Mao H, Silver DL. RNA on the brain: emerging layers of post-transcriptional regulation in cerebral cortex development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28837264 DOI: 10.1002/wdev.290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Embryonic development is a critical period during which neurons of the brain are generated and organized. In the developing cerebral cortex, this requires complex processes of neural progenitor proliferation, neuronal differentiation, and migration. Each step relies upon highly regulated control of gene expression. In particular, RNA splicing, stability, localization, and translation have emerged as key post-transcriptional regulatory nodes of mouse corticogenesis. Trans-regulators of RNA metabolism, including microRNAs (miRs) and RNA-binding proteins (RBPs), orchestrate diverse steps of cortical development. These trans-factors function either individually or cooperatively to influence RNAs, often of similar classes, termed RNA regulons. New technological advances raise the potential for an increasingly sophisticated understanding of post-transcriptional control in the developing neocortex. Many RNA-binding factors are also implicated in neurodevelopmental diseases of the cortex. Therefore, elucidating how RBPs and miRs converge to influence mRNA expression in progenitors and neurons will give valuable insights into mechanisms of cortical development and disease. WIREs Dev Biol 2018, 7:e290. doi: 10.1002/wdev.290 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory RNA Nervous System Development > Vertebrates: Regional Development Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hanqian Mao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Kraushar ML, Popovitchenko T, Volk NL, Rasin MR. The frontier of RNA metamorphosis and ribosome signature in neocortical development. Int J Dev Neurosci 2016; 55:131-139. [PMID: 27241046 PMCID: PMC5124555 DOI: 10.1016/j.ijdevneu.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
More than a passive effector of gene expression, mRNA translation (protein synthesis) by the ribosome is a rapidly tunable and dynamic molecular mechanism. Neurodevelopmental disorders are associated with abnormalities in mRNA translation, protein synthesis, and neocortical development; yet, we know little about the molecular mechanisms underlying these abnormalities. Furthermore, our understanding of regulation of the ribosome and mRNA translation during normal brain development is only in its early stages. mRNA translation is emerging as a key driver of the rapid and timed regulation of spatiotemporal gene expression in the developing nervous system, including the neocortex. In this review, we focus on the regulatory role of the ribosome in neocortical development, and construct a current understanding of how ribosomal complex specificity may contribute to the development of the neocortex. We also present a microarray analysis of ribosomal protein-coding mRNAs across the neurogenic phase of neocortical development, in addition to the dynamic enrichment of these mRNAs in actively translating neocortical polysomal ribosomes. Understanding the multivariate control of mRNA translation by ribosomal complex specificity will be critical to reveal the intricate mechanisms of normal brain development and pathologies of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthew L Kraushar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Tatiana Popovitchenko
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nicole L Volk
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Mao H, McMahon JJ, Tsai YH, Wang Z, Silver DL. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly. PLoS Genet 2016; 12:e1006282. [PMID: 27618312 PMCID: PMC5019403 DOI: 10.1371/journal.pgen.1006282] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.
Collapse
Affiliation(s)
- Hanqian Mao
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John J. McMahon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Yi-Hsuan Tsai
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex. Sci Rep 2016; 6:28998. [PMID: 27383233 PMCID: PMC4935837 DOI: 10.1038/srep28998] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Forkhead-box domain (Fox) containing family members are known to play a role in neocorticogenesis and have also been associated with disorders on the autism spectrum. Here we show that a single RNA-binding protein, Hu antigen R (HuR), dictates translation specificity of bound mRNAs and is sufficient to define distinct Foxp-characterized subpopulations of neocortical projection neurons. Furthermore, distinct phosphorylation states of HuR differentially regulate translation of Foxp mRNAs in vitro. This demonstrates the importance of RNA binding proteins within the framework of the developing brain and further confirms the role of mRNA translation in autism pathogenesis.
Collapse
|
37
|
Hart RP, Goff LA. Long noncoding RNAs: Central to nervous system development. Int J Dev Neurosci 2016; 55:109-116. [PMID: 27296516 DOI: 10.1016/j.ijdevneu.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022] Open
Abstract
The development of the central nervous system (CNS) is a complex orchestration of stem cells, transcription factors, growth/differentiation factors, and epigenetic control. Noncoding RNAs have been identified, classified, and studied for their functional roles in many systems including the CNS. In particular, the class of long noncoding RNAs (lncRNAs) has generated both enthusiasm and skepticism due to the unexpected discovery, the diversity of mechanisms, and the lower level of expression than found in protein-coding RNAs. Here we describe evidence supporting the role of lncRNAs in driving CNS-specific differentiation. It is clear that lncRNAs exhibit a functional diversity that makes their study and compartmentalization more challenging than other classes of noncoding RNAs. We predict, however, that lncRNAs will be essential for the characterization of discrete neuronal cell types in the age of single-cell transcriptomics and that these regulatory RNAs contribute to the multitude of functional mechanisms during CNS differentiation that will rival the diversities of protein-based mechanisms.
Collapse
Affiliation(s)
- Ronald P Hart
- Department of Cell Biology & Neuroscience, and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Loyal A Goff
- McKusick-Nathans Institute for Genetic Medicine & Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21025, USA
| |
Collapse
|
38
|
Grudzien-Nogalska E, Jiao X, Song MG, Hart RP, Kiledjian M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA (NEW YORK, N.Y.) 2016; 22:773-781. [PMID: 26932476 PMCID: PMC4836651 DOI: 10.1261/rna.055699.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Removal of the 5'-end 7-methylguanosine cap structure is a critical step in the highly regulated process of mRNA decay. The Nudix hydrolase, Dcp2, was identified as a first decapping enzyme and subsequently shown to preferentially modulate stability of only a subset of mRNAs. This observation led to the hypothesis that mammalian cells possess multiple decapping enzymes that may function in distinct pathways. Here we report Nudt3 is a Nudix protein that possesses mRNA decapping activity in cells and is a modulator of MCF-7 breast cancer cell migration. Reduction of Nudt3 protein levels in MCF-7 cells promotes increased cell migration and corresponding enhanced filopodia extensions. Importantly, this phenotype was reversed by complementation with wild type, but not catalytically inactive Nudt3 protein indicating Nudt3 decapping activity normally functions to control cell migration. Genome-wide analysis of Nudt3 compromised cells identified elevated levels of transcripts involved in cell motility including integrin β6, lipocalin-2, and fibronectin. The observed increase in mRNA abundance was dependent on Nudt3 decapping activity where integrin β6 and lipocalin-2 were modulated directly through mRNA stability, while fibronectin was indirectly controlled. Moreover, increased cell migration observed in Nudt3 knockdown cells was mediated through the extracellular integrin β6 and fibronectin protein nexus. We conclude that Nudt3 is an mRNA decapping enzyme that orchestrates expression of a subset of mRNAs to modulate cell migration and further substantiates the existence of multiple decapping enzymes functioning in distinct cellular pathways in mammals.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Man-Gen Song
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|