1
|
Gupta M, Lewis TR, Stuck MW, Spencer WJ, Klementieva NV, Arshavsky VY, Pazour GJ. Inpp5e is crucial for photoreceptor outer segment maintenance. J Cell Sci 2025; 138:JCS263814. [PMID: 39871753 PMCID: PMC11883294 DOI: 10.1242/jcs.263814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
In humans, inositol polyphosphate-5-phosphatase E (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed. In both cases, the loss of Inpp5e led to severe defects in photoreceptor outer segment morphology and ultimately photoreceptor cell loss. The primary morphological defect consisted of outer segment shortening and reduction in the number of newly forming discs at the outer segment base. This was accompanied by structural abnormalities of the Golgi, mislocalized rhodopsin and an accumulation of extracellular vesicles. In addition, knockout cells showed disruption of the actin network. Together, these data demonstrate that Inpp5e plays a crucial role in maintaining the outer segment and the normal process of outer segment renewal depends on the activity of this enzyme.
Collapse
Affiliation(s)
- Mohona Gupta
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester, MA 01605, USA
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Tylor R. Lewis
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Rd, Durham North Carolina, NC 27710, USA
| | - Michael W. Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester, MA 01605, USA
| | - William J. Spencer
- Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| | - Natalia V. Klementieva
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Rd, Durham North Carolina, NC 27710, USA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Rd, Durham North Carolina, NC 27710, USA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Gupta M, Lewis TR, Stuck MW, Spencer WJ, Klementieva NV, Arshavsky VY, Pazour GJ. Inpp5e Is Critical for Photoreceptor Outer Segment Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609873. [PMID: 39253441 PMCID: PMC11383302 DOI: 10.1101/2024.08.27.609873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed. In both cases, the loss of Inpp5e led to severe defects in photoreceptor outer segment morphology and ultimately photoreceptor cell loss. The primary morphological defect consisted of outer segment shortening and reduction in the number of newly forming discs at the outer segment base. This was accompanied by structural abnormalities of the Golgi apparatus, mislocalized rhodopsin, and an accumulation of extracellular vesicles. In addition, knockout cells showed a reduction in the size and prevalence of the actin network at the site of new disc morphogenesis and the occasional formation of membrane whorls instead of discs in a subset of cells. Together, these data demonstrate that Inpp5e plays a critical role in maintaining the outer segment and the normal process of outer segment renewal depends on the activity of this enzyme.
Collapse
|
3
|
Hanke-Gogokhia C, Zapadka TE, Finkelstein S, Klingeborn M, Maugel TK, Singer JH, Arshavsky VY, Demb JB. The Structural and Functional Integrity of Rod Photoreceptor Ribbon Synapses Depends on Redundant Actions of Dynamins 1 and 3. J Neurosci 2024; 44:e1379232024. [PMID: 38641407 PMCID: PMC11209669 DOI: 10.1523/jneurosci.1379-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
| | - Thomas E Zapadka
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
- Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06511
| | - Stella Finkelstein
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Timothy K Maugel
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27705
| | - Jonathan B Demb
- Departments of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut 06511
- Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06511
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
4
|
Jiang X, Mahroo OA. Human retinal dark adaptation tracked in vivo with the electroretinogram: insights into processes underlying recovery of cone- and rod-mediated vision. J Physiol 2022; 600:4603-4621. [PMID: 35612091 PMCID: PMC9796346 DOI: 10.1113/jp283105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
The substantial time taken for regaining visual sensitivity (dark adaptation) following bleaching exposures has been investigated for over a century. Psychophysical studies yielded the classic biphasic curve representing recovery of cone-driven and rod-driven vision. The electroretinogram (ERG) permits direct assessment of recovery at the level of the retina (photoreceptors, bipolar cells), with the first report over 70 years ago. Over the last two decades, ERG studies of dark adaptation have generated insights into underlying physiological processes. After large bleaches, rod photoreceptor circulating current, estimated from the rod-isolated bright-flash ERG a-wave, takes 30 min to recover, indicating that products of bleaching, thought to be free opsin (unbound to 11-cis-retinal), continue to activate phototransduction, shutting off rod circulating current. In contrast, cone current, assessed with cone-driven bright-flash ERG a-waves, recovers within 100 ms following similar exposures, suggesting that free opsin is less able to shut off cone current. The cone-driven dim-flash a-wave can be used to track recovery of cone photopigment, showing regeneration is 'rate-limited' rather than first order. Recoveries of the dim-flash ERG b-wave are consistent also with rate-limited rod photopigment regeneration (where free opsin, desensitising the visual system as an 'equivalent background', is removed by rate-limited delivery of 11-cis-retinal). These findings agree with psychophysical and retinal densitometry studies, although there are unexplained points of divergence. Post-bleach ERG recovery has been explored in age-related macular degeneration and in trials of visual cycle inhibitors for retinal diseases. ERG tracking of dark adaptation may prove useful in future clinical contexts.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of OphthalmologyUniversity College LondonLondonUK,Retinal and Genetics ServicesMoorfields Eye HospitalLondonUK,Section of OphthalmologyKing's College LondonLondonUK,Department of Twin Research and Genetic EpidemiologyKing's College London, St Thomas’ Hospital CampusLondonUK
| | - Omar A. Mahroo
- Institute of OphthalmologyUniversity College LondonLondonUK,Retinal and Genetics ServicesMoorfields Eye HospitalLondonUK,Section of OphthalmologyKing's College LondonLondonUK,Department of Twin Research and Genetic EpidemiologyKing's College London, St Thomas’ Hospital CampusLondonUK,PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Hanke-Gogokhia C, Lehmann GL, Benedicto I, de la Fuente-Ortega E, Arshavsky VY, Schreiner R, Rodriguez-Boulan E. Apical CLC-2 in retinal pigment epithelium is crucial for survival of the outer retina. FASEB J 2021; 35:e21689. [PMID: 34085737 PMCID: PMC8252757 DOI: 10.1096/fj.202100349r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Knockout of the chloride channel protein 2 (CLC‐2; CLCN2) results in fast progressing blindness in mice. Retinal Pigment Epithelium (RPE) and photoreceptors undergo, in parallel, rapid, and profound morphological changes and degeneration. Immunohistochemistry and electron microscopy of the outer retina and electroretinography of the CLC‐2 KO mouse demonstrated normal morphology at postnatal day 2, followed by drastic changes in RPE and photoreceptor morphology and loss of vision during the first postnatal month. To investigate whether the RPE or the photoreceptors are the primary cause of the degeneration, we injected lentiviruses carrying HA‐tagged CLC‐2 with an RPE‐specific promotor in the subretinal space of CLC‐2‐KO mice at the time of eye opening. As expected, CLC‐2‐HA was expressed exclusively in RPE; strikingly, this procedure rescued the degeneration of both RPE and photoreceptors. Light response in transduced eyes was also recovered. Only a fraction of RPE was transduced with the lentivirus; however, the entire RPE monolayer appears healthy, even the RPE cells not expressing the CLC‐2‐HA. Surprisingly, in contrast with previous physiological observations that postulate that CLC‐2 has a basolateral localization in RPE, our immunofluorescence experiments demonstrated CLC‐2 has an apical distribution, facing the subretinal space and the photoreceptor outer segments. Our findings suggest that CLC‐2 does not play the postulated role in fluid transport at the basolateral membrane. Rather, they suggest that CLC‐2 performs a critical homeostatic role in the subretinal compartment involving a chloride regulatory mechanism that is critical for the survival of both RPE and photoreceptors.
Collapse
Affiliation(s)
| | | | - Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Erwin de la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Skiba NP, Cady MA, Molday L, Han JYS, Lewis TR, Spencer WJ, Thompson WJ, Hiles S, Philp NJ, Molday RS, Arshavsky VY. TMEM67, TMEM237, and Embigin in Complex With Monocarboxylate Transporter MCT1 Are Unique Components of the Photoreceptor Outer Segment Plasma Membrane. Mol Cell Proteomics 2021; 20:100088. [PMID: 33933680 PMCID: PMC8167285 DOI: 10.1016/j.mcpro.2021.100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The outer segment (OS) organelle of vertebrate photoreceptors is a highly specialized cilium evolved to capture light and initiate light response. The plasma membrane which envelopes the OS plays vital and diverse roles in supporting photoreceptor function and health. However, little is known about the identity of its protein constituents, as this membrane cannot be purified to homogeneity. In this study, we used the technique of protein correlation profiling to identify unique OS plasma membrane proteins. To achieve this, we used label-free quantitative MS to compare relative protein abundances in an enriched preparation of the OS plasma membrane with a preparation of total OS membranes. We have found that only five proteins were enriched at the same level as previously validated OS plasma membrane markers. Two of these proteins, TMEM67 and TMEM237, had not been previously assigned to this membrane, and one, embigin, had not been identified in photoreceptors. We further showed that embigin associates with monocarboxylate transporter MCT1 in the OS plasma membrane, facilitating lactate transport through this cellular compartment.
Collapse
Affiliation(s)
- Nikolai P Skiba
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | - Martha A Cady
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Laurie Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Y S Han
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tylor R Lewis
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - William J Spencer
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Will J Thompson
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina, USA
| | - Sarah Hiles
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin. J Neurosci 2021; 41:3320-3330. [PMID: 33593858 DOI: 10.1523/jneurosci.2817-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Rod photoreceptors can be saturated by exposure to bright background light, so that no flash superimposed on the background can elicit a detectable response. This phenomenon, called increment saturation, was first demonstrated psychophysically by Aguilar and Stiles and has since been shown in many studies to occur in single rods. Recent experiments indicate, however, that rods may be able to avoid saturation under some conditions of illumination. We now show in ex vivo electroretinogram and single-cell recordings that in continuous and prolonged exposure even to very bright light, the rods of mice from both sexes recover as much as 15% of their dark current and that responses can persist for hours. In parallel to recovery of outer segment current is an ∼10-fold increase in the sensitivity of rod photoresponses. This recovery is decreased in transgenic mice with reduced light-dependent translocation of the G protein transducin. The reduction in outer-segment transducin together with a novel mechanism of visual-pigment regeneration within the rod itself enable rods to remain responsive over the whole of the physiological range of vision. In this way, rods are able to avoid an extended period of transduction channel closure, which is known to cause photoreceptor degeneration.SIGNIFICANCE STATEMENT Rods are initially saturated in bright light so that no flash superimposed on the background can elicit a detectable response. Frederiksen and colleagues show in whole retina and single-cell recordings that, if the background light is prolonged, rods slowly recover and can continue to produce significant responses over the entire physiological range of vision. Response recovery occurs by translocation of the G protein transducin from the rod outer to the inner segment, together with a novel mechanism of visual-pigment regeneration within the rod itself. Avoidance of saturation in bright light may be one of the principal mechanisms the retina uses to keep rod outer-segment channels from ever closing for too long a time, which is known to produce photoreceptor degeneration.
Collapse
|
9
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
10
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
11
|
Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, Oatis JE, Kono M, Cornwall MC, Yau KW. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes. Curr Biol 2020; 30:4921-4931.e5. [PMID: 33065015 PMCID: PMC8561704 DOI: 10.1016/j.cub.2020.09.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Retinal rod and cone photoreceptors mediate vision in dim and bright light, respectively, by transducing absorbed photons into neural electrical signals. Their phototransduction mechanisms are essentially identical. However, one difference is that, whereas a rod visual pigment remains stable in darkness, a cone pigment has some tendency to dissociate spontaneously into apo-opsin and retinal (the chromophore) without isomerization. This cone-pigment property is long known but has mostly been overlooked. Importantly, because apo-opsin has weak constitutive activity, it triggers transduction to produce electrical noise even in darkness. Currently, the precise dark apo-opsin contents across cone subtypes are mostly unknown, as are their dark activities. We report here a study of goldfish red (L), green (M), and blue (S) cones, finding with microspectrophotometry widely different apo-opsin percentages in darkness, being ∼30% in L cones, ∼3% in M cones, and negligible in S cones. L and M cones also had higher dark apo-opsin noise than holo-pigment thermal isomerization activity. As such, given the most likely low signal amplification at the pigment-to-transducin/phosphodiesterase phototransduction step, especially in L cones, apo-opsin noise may not be easily distinguishable from light responses and thus may affect cone vision near threshold.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rikard Frederiksen
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajan Adhikari
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Li-Hui Cao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John E Oatis
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc Natl Acad Sci U S A 2020; 117:26996-27003. [PMID: 33046651 DOI: 10.1073/pnas.2009164117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Light-induced extrasynaptic dopamine release in the retina reduces adenosine 3',5'-cyclic monophosphate (cAMP) in rod photoreceptor cells, which is thought to mediate light-dependent desensitization. However, the fine time course of the cAMP dynamics in rods remains elusive due to technical difficulty. Here, we visualized the spatiotemporal regulation of cAMP-dependent protein kinase (PKA) in mouse rods by two-photon live imaging of retinal explants of PKAchu mice, which express a fluorescent biosensor for PKA. Unexpectedly, in addition to the light-on-induced suppression, we observed prominent light-off-induced PKA activation. This activation required photopic light intensity and was confined to the illuminated rods. The estimated maximum spectral sensitivity of 489 nm and loss of the light-off-induced PKA activation in rod-transducin-knockout retinas strongly suggest the involvement of rhodopsin. In support of this notion, rhodopsin-deficient retinal explants showed only the light-on-induced PKA suppression. Taken together, these results suggest that, upon photopic light stimulation, rhodopsin and dopamine signals are integrated to shape the light-off-induced cAMP production and following PKA activation. This may support the dark adaptation of rods.
Collapse
|
13
|
Pandiyan VP, Maloney-Bertelli A, Kuchenbecker JA, Boyle KC, Ling T, Chen ZC, Park BH, Roorda A, Palanker D, Sabesan R. The optoretinogram reveals the primary steps of phototransduction in the living human eye. SCIENCE ADVANCES 2020; 6:6/37/eabc1124. [PMID: 32917686 PMCID: PMC9222118 DOI: 10.1126/sciadv.abc1124] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 05/05/2023]
Abstract
Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.
Collapse
Affiliation(s)
| | | | | | - Kevin C Boyle
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tong Ling
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Zhijie Charles Chen
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Austin Roorda
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Finkelstein S, Gospe SM, Schuhmann K, Shevchenko A, Arshavsky VY, Lobanova ES. Phosphoinositide Profile of the Mouse Retina. Cells 2020; 9:cells9061417. [PMID: 32517352 PMCID: PMC7349851 DOI: 10.3390/cells9061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphoinositides are known to play multiple roles in eukaryotic cells. Although dysregulation of phosphoinositide metabolism in the retina has been reported to cause visual dysfunction in animal models and human patients, our understanding of the phosphoinositide composition of the retina is limited. Here, we report a characterization of the phosphoinositide profile of the mouse retina and an analysis of the subcellular localization of major phosphorylated phosphoinositide forms in light-sensitive photoreceptor neurons. Using chromatography of deacylated phosphatidylinositol headgroups, we established PI(4,5)P2 and PI(4)P as two major phosphorylated phosphoinositides in the retina. Using high-resolution mass spectrometry, we revealed 18:0/20:4 and 16:0/20:4 as major fatty-acyl chains of retinal phosphoinositides. Finally, analysis of fluorescent phosphoinositide sensors in rod photoreceptors demonstrated distinct subcellular distribution patterns of major phosphoinositides. The PI(4,5)P2 reporter was enriched in the inner segments and synapses, but was barely detected in the light-sensitive outer segments. The PI(4)P reporter was mostly found in the outer and inner segments and the areas around nuclei, but to a lesser degree in the synaptic region. These findings provide support for future mechanistic studies defining the biological significance of major mono- (PI(4)P) and bisphosphate (PI(4,5)P2) phosphatidylinositols in photoreceptor biology and retinal health.
Collapse
Affiliation(s)
- Stella Finkelstein
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Sidney M. Gospe
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
15
|
Multimodal Coherent Imaging of Retinal Biomarkers of Alzheimer's Disease in a Mouse Model. Sci Rep 2020; 10:7912. [PMID: 32404941 PMCID: PMC7220911 DOI: 10.1038/s41598-020-64827-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
We acquired depth-resolved light scattering measurements from the retinas of triple transgenic Alzheimer’s Disease (3xTg-AD) mice and wild type (WT) age-matched controls using co-registered angle-resolved low-coherence interferometry (a/LCI) and optical coherence tomography (OCT). Angle-resolved light scattering measurements were acquired from the nerve fiber layer, outer plexiform layer, and retinal pigmented epithelium using image guidance and segmented thicknesses provided by co-registered OCT B-scans. Analysis of the OCT images showed a statistically significant thinning of the nerve fiber layer in AD mouse retinas compared to WT controls. The a/LCI scattering measurements provided complementary information that distinguishes AD mice by quantitatively characterizing tissue heterogeneity. The AD mouse retinas demonstrated higher mean and variance in nerve fiber layer light scattering intensity compared to WT controls. Further, the difference in tissue heterogeneity was observed through short-range spatial correlations that show greater slopes at all layers of interest for AD mouse retinas compared to WT controls. A greater slope indicates a faster loss of spatial correlation, suggesting a loss of tissue self-similarity characteristic of heterogeneity consistent with AD pathology. Use of this combined modality introduces unique tissue texture characterization to complement development of future AD biomarker analysis.
Collapse
|
16
|
Lewis TR, Shores CR, Cady MA, Hao Y, Arshavsky VY, Burns ME. The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Sci Rep 2020; 10:7538. [PMID: 32371886 PMCID: PMC7200662 DOI: 10.1038/s41598-020-64437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa is a retinal degenerative disease that leads to blindness through photoreceptor loss. Rhodopsin is the most frequently mutated protein in this disease. While many rhodopsin mutations have well-understood consequences that lead to cell death, the disease association of several rhodopsin mutations identified in retinitis pigmentosa patients, including F220C and F45L, has been disputed. In this study, we generated two knockin mouse lines bearing each of these mutations. We did not observe any photoreceptor degeneration in either heterozygous or homozygous animals of either line. F220C mice exhibited minor disruptions of photoreceptor outer segment dimensions without any mislocalization of outer segment proteins, whereas photoreceptors of F45L mice were normal. Suction electrode recordings from individual photoreceptors of both mutant lines showed normal flash sensitivity and photoresponse kinetics. Taken together, these data suggest that neither the F220C nor F45L mutation has pathological consequences in mice and, therefore, may not be causative of retinitis pigmentosa in humans.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Camilla R Shores
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States. .,Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, CA, 95616, United States.
| |
Collapse
|
17
|
Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol 2020; 106:86-93. [PMID: 32359892 DOI: 10.1016/j.semcdb.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Most vertebrates have duplex retinas, with two classes of photoreceptors, rods and cones. In the group of Snakes, however, distinct patterns of retinal morphology are associated with transitions between diurnal-nocturnal habits and reflect important adaptations of their visual system. Pure-cone, pure-rod and duplex retinas were described in different species, and this variability led Gordon Walls (1934) to formulate the transmutation theory, which suggests that rods and cones are not fixed entities, but can assume transitional states. Three opsin genes are expressed in retinas of most snake species, lws, rh1, and sws1, and recent studies have shown that the rhodopsin gene, rh1, is expressed in pure-cone retinas of diurnal snakes. This expression raised many questions about the nature of transmutation and functional aspects of the rhodopsin in a cone-like photoreceptor. Extreme differences in the retinal architecture of diurnal and nocturnal snakes also highlight the complexity of adaptations of their visual structures, which might have contributed to the adaptive radiation of this group and will be discussed in this review.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - D9. Butantã, São Paulo, CEP. 05508-030, Brazil.
| |
Collapse
|
18
|
Chen NS, Ingram NT, Frederiksen R, Sampath AP, Chen J, Fain GL. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32315379 PMCID: PMC7401474 DOI: 10.1167/iovs.61.4.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Cone photoreceptor function loss 3 (Gnat2cpfl3/cpfl3 or cpfl3) is a mouse model commonly used as a functional cones null from a naturally occurring mutation in the α-subunit of cone transducin (Gnat2). We nevertheless detected robust cone-mediated light responses from cpfl3 animals, which we now explore. Methods Recordings were made from whole retina and from identified cones with whole-cell patch clamp in retinal slices. Relative levels of GNAT2 protein and numbers of cones in isolated retinas were compared between cpfl3, rod transducin knockout (Gnat1-/-), cpfl3/Gnat1-/- double mutants, and control C57Bl/6J age-matched mice at 4, 9, and 14 weeks of age. Results Cones from cpfl3 and cpfl3/Gnat1-/- mice 2 to 3 months of age displayed normal dark currents but greatly reduced sensitivity and amplification constants. Responses decayed more slowly than in control (C57Bl/6J) mice, indicating an altered mechanism of inactivation. At dim light intensities rod responses could be recorded from cpfl3 cones, indicating intact rod/cone gap junctions. The cpfl3 and cpfl3/Gnat1-/- mice express two-fold less GNAT2 protein compared with C57 at 4 weeks, and a four-fold decrease by 14 weeks. This is accompanied by a small decrease in the number of cones. Conclusions Cplf3 cones can respond to light with currents of normal amplitude and cannot be assumed to be a Gnat2 null. The decreased sensitivity and amplification rate of cones is not explained by a reduction in GNAT2 protein level, but instead by abnormal interactions of the mutant transducin with rhodopsin and the effector molecule, cGMP phosphodiesterase.
Collapse
Affiliation(s)
- Natalie S. Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Norianne T. Ingram
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| | - Rikard Frederiksen
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Alapakkam P. Sampath
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gordon L. Fain
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| |
Collapse
|
19
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
20
|
Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proc Natl Acad Sci U S A 2019; 116:27043-27052. [PMID: 31843915 DOI: 10.1073/pnas.1913518117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The light-sensitive outer segment of the vertebrate photoreceptor is a highly modified primary cilium filled with disc-shaped membranes that provide a vast surface for efficient photon capture. The formation of each disc is initiated by a ciliary membrane evagination driven by an unknown molecular mechanism reportedly requiring actin polymerization. Since a distinct F-actin network resides precisely at the site of disc morphogenesis, we employed a unique proteomic approach to identify components of this network potentially driving disc morphogenesis. The only identified actin nucleator was the Arp2/3 complex, which induces the polymerization of branched actin networks. To investigate the potential involvement of Arp2/3 in the formation of new discs, we generated a conditional knockout mouse lacking its essential ArpC3 subunit in rod photoreceptors. This knockout resulted in the complete loss of the F-actin network specifically at the site of disc morphogenesis, with the time course of ArpC3 depletion correlating with the time course of F-actin loss. Without the actin network at this site, the initiation of new disc formation is completely halted, forcing all newly synthesized membrane material to be delivered to the several nascent discs whose morphogenesis had already been in progress. As a result, these discs undergo uncontrolled expansion instead of normal enclosure, which leads to formation of unusual, large membrane whorls. These data suggest a model of photoreceptor disc morphogenesis in which Arp2/3 initiates disc formation in a "lamellipodium-like" mechanism.
Collapse
|
21
|
Schott RK, Bhattacharyya N, Chang BS. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 2019; 73:1958-1971. [DOI: 10.1111/evo.13810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: Department of Vertebrate Zoology, National Museum of Natural HistorySmithsonian Institution 10th and Constitution Ave NW Washington DC 20560‐0162
| | - Nihar Bhattacharyya
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: UCL Institute of Ophthalmology 11–43 Bath Street London EC1V 9EL United Kingdom
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
22
|
Gospe SM, Travis AM, Kolesnikov AV, Klingeborn M, Wang L, Kefalov VJ, Arshavsky VY. Photoreceptors in a mouse model of Leigh syndrome are capable of normal light-evoked signaling. J Biol Chem 2019; 294:12432-12443. [PMID: 31248988 DOI: 10.1074/jbc.ra119.007945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/12/2019] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is an important cause of heritable vision loss. Mutations affecting mitochondrial bioenergetics may lead to isolated vision loss or life-threatening systemic disease, depending on a mutation's severity. Primary optic nerve atrophy resulting from death of retinal ganglion cells is the most prominent ocular manifestation of mitochondrial disease. However, dysfunction of other retinal cell types has also been described, sometimes leading to a loss of photoreceptors and retinal pigment epithelium that manifests clinically as pigmentary retinopathy. A popular mouse model of mitochondrial disease that lacks NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4), a subunit of mitochondrial complex I, phenocopies many traits of the human disease Leigh syndrome, including the development of optic atrophy. It has also been reported that ndufs4 -/- mice display diminished light responses at the level of photoreceptors or bipolar cells. By conducting electroretinography (ERG) recordings in live ndufs4 -/- mice, we now demonstrate that this defect occurs at the level of retinal photoreceptors. We found that this deficit does not arise from retinal developmental anomalies, photoreceptor degeneration, or impaired regeneration of visual pigment. Strikingly, the impairment of ndufs4 -/- photoreceptor function was not observed in ex vivo ERG recordings from isolated retinas, indicating that photoreceptors with complex I deficiency are intrinsically capable of normal signaling. The difference in electrophysiological phenotypes in vivo and ex vivo suggests that the energy deprivation associated with severe mitochondrial impairment in the outer retina renders ndufs4 -/- photoreceptors unable to maintain the homeostatic conditions required to operate at their normal capacity.
Collapse
Affiliation(s)
- Sidney M Gospe
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710.
| | - Amanda M Travis
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710
| | - Luyu Wang
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
23
|
Spencer WJ, Ding JD, Lewis TR, Yu C, Phan S, Pearring JN, Kim KY, Thor A, Mathew R, Kalnitsky J, Hao Y, Travis AM, Biswas SK, Lo WK, Besharse JC, Ellisman MH, Saban DR, Burns ME, Arshavsky VY. PRCD is essential for high-fidelity photoreceptor disc formation. Proc Natl Acad Sci U S A 2019; 116:13087-13096. [PMID: 31189593 PMCID: PMC6601265 DOI: 10.1073/pnas.1906421116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.
Collapse
Affiliation(s)
- William J Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Chen Yu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Amanda M Travis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Joseph C Besharse
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
- Department of Ophthalmology, University of California, Davis, CA 95616
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
24
|
Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:933-943. [PMID: 30840038 DOI: 10.1167/iovs.18-25347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Torre
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Liou JC, Yang SL, Wang PH, Wu JL, Huang YP, Chen BY, Lee MC. Protective effect of crocin against the declining of high spatial frequency-based visual performance in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors. eNeuro 2018; 5:eN-NWR-0144-18. [PMID: 29911170 PMCID: PMC6001135 DOI: 10.1523/eneuro.0144-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is the knockout of its rod-specific γ-subunit (Gγ1). Two studies using independently generated mice documented that this knockout results in a considerable >60-fold reduction in the light sensitivity of affected rods, but provided different interpretations of how the remaining α-subunit (Gαt) mediates phototransduction without its cognate Gβ1γ1-subunit partner. One study found that the light sensitivity reduction matched a corresponding reduction in Gαt content in the light-sensing rod outer segments and proposed that Gαt activation is supported by remaining Gβ1 associating with other Gγ subunits naturally expressed in photoreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approximately sixfold, reduction of Gαt and proposed that the light responses of these rods do not require Gβγ at all. To resolve this controversy and elucidate the mechanism driving visual signaling in Gγ1 knock-out rods, we analyzed both mouse lines side by side. We first determined that the outer segments of both mice have identical Gαt content, which is reduced ∼65-fold from the wild-type (WT) level. We further demonstrated that the remaining Gβ1 is present in a complex with endogenous Gγ2 and Gγ3 subunits and that these complexes exist in wild-type rods as well. Together, these results argue against the idea that Gαt alone supports light responses of Gγ1 knock-out rods and suggest that Gβ1γ1 is not unique in its ability to mediate vertebrate phototransduction.
Collapse
|
27
|
Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 2018; 9:1738. [PMID: 29712894 PMCID: PMC5928105 DOI: 10.1038/s41467-018-04117-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal degenerations, affecting more than 2 million people worldwide, are caused by mutations in over 200 genes. This suggests that the most efficient therapeutic strategies would be mutation independent, i.e., targeting common pathological conditions arising from many disease-causing mutations. Previous studies revealed that one such condition is an insufficiency of the ubiquitin–proteasome system to process misfolded or mistargeted proteins in affected photoreceptor cells. We now report that retinal degeneration in mice can be significantly delayed by increasing photoreceptor proteasomal activity. The largest effect is observed upon overexpression of the 11S proteasome cap subunit, PA28α, which enhanced ubiquitin-independent protein degradation in photoreceptors. Applying this strategy to mice bearing one copy of the P23H rhodopsin mutant, a mutation frequently encountered in human patients, quadruples the number of surviving photoreceptors in the inferior retina of 6-month-old mice. This striking therapeutic effect demonstrates that proteasomes are an attractive target for fighting inherited blindness. Proteasomal overload can be found in a broad spectrum of mouse models of retinal degeneration. Here the authors find that overexpressing the PA28α subunit of the 11S proteasome cap increased the number of surviving functional photoreceptor cells in a mouse model of retinal degeneration bearing the P23H mutation in rhodopsin.
Collapse
|
28
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
29
|
Abstract
Abstract
Vision begins in highly specialized light-sensing neurons, the rod and cone photoreceptors. Their task is to absorb photons, transduce the physical stimulus into neuronal signals, transmit the signals to the parallel signal processing pathways of the subsequent retinal network with the highest possible fidelity and continuously adapt to changes in stimulus intensities. If you imagine a pitch-black night with only a few photons hitting the retina and being absorbed by the photoreceptors and a bright sunny day with the photoreceptors being bombarded by billions of photons, you realize that a photoreceptor faces two fundamental challenges: it has to detect the light signal with the greatest sensitivity, e.g. a single photon leads to a change in the membrane potential of a rod photoreceptor and, at the same time, encode light intensities covering a broad dynamic range of several orders of magnitude. To fulfill these demands, photoreceptors have developed separate, structurally and functionally specialized compartments, which are the topic of this article: the outer segment for signal transduction and the terminal with its highly complex ribbon synapse for signal transmission.
Collapse
|
30
|
Abstract
Retinal photoreceptor cells contain a specialized outer segment (OS) compartment that functions in the capture of light and its conversion into electrical signals in a process known as phototransduction. In rods, photoisomerization of 11-cis to all-trans retinal within rhodopsin triggers a biochemical cascade culminating in the closure of cGMP-gated channels and hyperpolarization of the cell. Biochemical reactions return the cell to its 'dark state' and the visual cycle converts all-trans retinal back to 11-cis retinal for rhodopsin regeneration. OS are continuously renewed, with aged membrane removed at the distal end by phagocytosis and new membrane added at the proximal end through OS disk morphogenesis linked to protein trafficking. The molecular basis for disk morphogenesis remains to be defined in detail although several models have been proposed, and molecular mechanisms underlying protein trafficking are under active investigation. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight our current understanding of photoreceptor structure, phototransduction, the visual cycle, OS renewal, protein trafficking and retinal degenerative diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9
| |
Collapse
|
31
|
Zhou Z, Vinberg F, Schottler F, Doggett TA, Kefalov VJ, Ferguson TA. Autophagy supports color vision. Autophagy 2016; 11:1821-32. [PMID: 26292183 DOI: 10.1080/15548627.2015.1084456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cones comprise only a small portion of the photoreceptors in mammalian retinas. However, cones are vital for color vision and visual perception, and their loss severely diminishes the quality of life for patients with retinal degenerative diseases. Cones function in bright light and have higher demand for energy than rods; yet, the mechanisms that support the energy requirements of cones are poorly understood. One such pathway that potentially could sustain cones under basal and stress conditions is macroautophagy. We addressed the role of macroautophagy in cones by examining how the genetic block of this pathway affects the structural integrity, survival, and function of these neurons. We found that macroautophagy was not detectable in cones under normal conditions but was readily observed following 24 h of fasting. Consistent with this, starvation induced phosphorylation of AMPK specifically in cones indicating cellular starvation. Inhibiting macroautophagy in cones by deleting the essential macroautophagy gene Atg5 led to reduced cone function following starvation suggesting that cones are sensitive to systemic changes in nutrients and activate macroautophagy to maintain their function. ATG5-deficiency rendered cones susceptible to light-induced damage and caused accumulation of damaged mitochondria in the inner segments, shortening of the outer segments, and degeneration of all cone types, revealing the importance of mitophagy in supporting cone metabolic needs. Our results demonstrate that macroautophagy supports the function and long-term survival of cones providing for their unique metabolic requirements and resistance to stress. Targeting macroautophagy has the potential to preserve cone-mediated vision during retinal degenerative diseases.
Collapse
Affiliation(s)
- Zhenqing Zhou
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| | - Frans Vinberg
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| | - Frank Schottler
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| | - Teresa A Doggett
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| | - Vladimir J Kefalov
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| | - Thomas A Ferguson
- a Department of Ophthalmology and Visual Sciences, Washington University in St. Louis; School of Medicine ; St. Louis , MO USA
| |
Collapse
|
32
|
Ingram NT, Sampath AP, Fain GL. Why are rods more sensitive than cones? J Physiol 2016; 594:5415-26. [PMID: 27218707 DOI: 10.1113/jp272556] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
One hundred and fifty years ago Max Schultze first proposed the duplex theory of vision, that vertebrate eyes have two types of photoreceptor cells with differing sensitivity: rods for dim light and cones for bright light and colour detection. We now know that this division is fundamental not only to the photoreceptors themselves but to the whole of retinal and visual processing. But why are rods more sensitive, and how did the duplex retina first evolve? Cells resembling cones are very old, first appearing among cnidarians; the emergence of rods was a key step in the evolution of the vertebrate eye. Many transduction proteins have different isoforms in rods and cones, and others are expressed at different levels. Moreover rods and cones have a different anatomy, with only rods containing membranous discs enclosed by the plasma membrane. These differences must be responsible for the difference in absolute sensitivity, but which are essential? Recent research particularly expressing cone proteins in rods or changing the level of expression seem to show that many of the molecular differences in the activation and decay of the response may have each made a small contribution as evolution proceeded stepwise with incremental increases in sensitivity. Rod outer-segment discs were not essential and developed after single-photon detection. These experiments collectively provide a new understanding of the two kinds of photoreceptors and help to explain how gene duplication and the formation of rod-specific proteins produced the duplex retina, which has remained remarkably constant in physiology from amphibians to man.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA, 90095-7000, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-7239, USA. .,Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA, 90095-7000, USA.
| |
Collapse
|
33
|
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proc Natl Acad Sci U S A 2015; 113:356-61. [PMID: 26715746 DOI: 10.1073/pnas.1513284113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.
Collapse
|
34
|
Falk N, Lösl M, Schröder N, Gießl A. Specialized Cilia in Mammalian Sensory Systems. Cells 2015; 4:500-19. [PMID: 26378583 PMCID: PMC4588048 DOI: 10.3390/cells4030500] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
Collapse
Affiliation(s)
- Nathalie Falk
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Marlene Lösl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Nadja Schröder
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
35
|
Popova EY, Pinzon-Guzman C, Salzberg AC, Zhang SSM, Barnstable CJ. LSD1-Mediated Demethylation of H3K4me2 Is Required for the Transition from Late Progenitor to Differentiated Mouse Rod Photoreceptor. Mol Neurobiol 2015; 53:4563-81. [PMID: 26298666 DOI: 10.1007/s12035-015-9395-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Epigenetic modifiers can work in concert with transcription factors to control the transition of cells from proliferating progenitors into quiescent terminally differentiated cells. This transition involves changes in histone methylation and one of the key regulators of this is the H3K4me2/1 histone demethylase LSD1. Here, we show that the highest expression of LSD1 occurs in postmitotic retinal cells during the peak period of rod photoreceptor differentiation. Pharmacological inhibition of LSD1 in retinal explants cultured from PN1 to PN8 had three major effects. It prevented the normal decrease in expression of genes associated with progenitor function, it blocked rod photoreceptor development, and it increased expression of genes associated with other retinal cell types. The maintained expression of progenitor genes was associated with a maintained level of H3K4me2 over the gene and its promoter. Among the genes whose expression was maintained was Hes1, a repressor known to block rod photoreceptor development. The inhibition of rod photoreceptor gene expression occurred in spite of the normal expression of transcription factors CRX and NRL, and the normal accumulation of H3K4me2 marks over the promoter and gene body. We suggest that LSD1 acts in concert with a series of nuclear receptors to modify chromatin structure and repress progenitor genes as well as to inhibit ectopic patterns of gene expression in the differentiating postmitotic retinal cells.
Collapse
Affiliation(s)
- Evgenya Y Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Carolina Pinzon-Guzman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Samuel Shao-Min Zhang
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Henan Eye Institute, 7 Weiwu Road, Zhengzhou, Henan, 450007, China.
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
36
|
Zhou Z, Doggett TA, Sene A, Apte RS, Ferguson TA. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. Cell Death Differ 2015; 22:488-98. [PMID: 25571975 PMCID: PMC4326583 DOI: 10.1038/cdd.2014.229] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022] Open
Abstract
Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod cell loss is the primary pathologic event.
Collapse
Affiliation(s)
- Z Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - T A Doggett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - A Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - R S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - T A Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
37
|
Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling. PLoS One 2015; 10:e0117129. [PMID: 25659125 PMCID: PMC4319785 DOI: 10.1371/journal.pone.0117129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
G protein β subunits (Gβ) play essential roles in phototransduction as part of G protein βγ (Gβγ) and regulator of G protein signaling 9 (RGS9)-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2) and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.
Collapse
|
38
|
EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 2013; 33:17763-76. [PMID: 24198367 DOI: 10.1523/jneurosci.2659-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca(2+)-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15-20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1.
Collapse
|
39
|
Abstract
Mammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gβ3 and Gγt2 subunits. The function of Gβγ in this cascade has not been examined. Here, we investigate the role of Gβ3 by assessing cone structure and function in Gβ3-null mouse (Gnb3(-/-)). We found that Gβ3 is required for the normal expression of its partners, because in the Gnb3(-/-) cone outer segments, the levels of Gαt2 and Gγt2 are reduced by fourfold to sixfold, whereas other components of the cascade remain unaltered. Surprisingly, Gnb3(-/-) cones produce stable responses with normal kinetics and saturating response amplitudes similar to that of the wild-type, suggesting that cone phototransduction can function efficiently without a Gβ subunit. However, light sensitivity was reduced by approximately fourfold in the knock-out cones. Because the reduction in sensitivity was similar in magnitude to the reduction in Gαt2 level in the cone outer segment, we conclude that activation of Gαt2 in Gnb3(-/-) cones proceeds at a rate approximately proportional to its outer segment concentration, and that activation of phosphodiesterase and downstream cascade components is normal. These results suggest that the main role of Gβ3 in cones is to establish optimal levels of transducin heteromer in the outer segment, thereby indirectly contributing to robust response properties.
Collapse
|
40
|
Skiba NP, Spencer WJ, Salinas RY, Lieu EC, Thompson JW, Arshavsky VY. Proteomic identification of unique photoreceptor disc components reveals the presence of PRCD, a protein linked to retinal degeneration. J Proteome Res 2013; 12:3010-8. [PMID: 23672200 DOI: 10.1021/pr4003678] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visual signal transduction takes place on the surface of flat membrane vesicles called photoreceptor discs, which reside inside the light-sensitive outer segment organelle of vertebrate photoreceptor cells. Although biochemical studies have indicated that discs are built with a handful of highly specialized proteins, proteomic studies have yielded databases consisting of hundreds of entries. We addressed this controversy by employing protein correlation profiling, which allows identification of unique components of organelles that can be fractionated but not purified to absolute homogeneity. We subjected discs to sequential steps of fractionation and identified the relative amounts of proteins in each fraction by label-free quantitative mass spectrometry. This analysis demonstrated that the photoreceptor disc proteome contains only eleven components, which satisfy the hallmark criterion for being unique disc-resident components: the retention of a constant molar ratio among themselves across fractionation steps. Remarkably, one of them is PRCD, a protein whose mutations have been shown to cause blindness, yet cellular localization remained completely unknown. Identification of PRCD as a novel disc-specific protein facilitates understanding its functional role and the pathobiological significance of its mutations. Our study provides a striking example how protein correlation profiling allows a distinction between constitutive components of cellular organelles and their inevitable contaminants.
Collapse
Affiliation(s)
- Nikolai P Skiba
- Albert Eye Research Institute, 2Institute for Genome Sciences & Policy, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | | | | | | | | | | |
Collapse
|
41
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
42
|
Mao W, Miyagishima KJ, Yao Y, Soreghan B, Sampath AP, Chen J. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity. J Biol Chem 2013; 288:5257-67. [PMID: 23288843 DOI: 10.1074/jbc.m112.430058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The signaling cascades mediated by G protein-coupled receptors (GPCRs) exhibit a wide spectrum of spatial and temporal response properties to fulfill diverse physiological demands. However, the mechanisms that shape the signaling response of the GPCR are not well understood. In this study, we replaced cone transducin α (cTα) for rod transducin α (rTα) in rod photoreceptors of transgenic mice, which also express S opsin, to evaluate the role of Gα subtype on signal amplification from different GPCRs in the same cell; such analysis may explain functional differences between retinal rod and cone photoreceptors. We showed that ectopically expressed cTα 1) forms a heterotrimeric complex with rod Gβ(1)γ(1), 2) substitutes equally for rTα in generating photoresponses initiated by either rhodopsin or S-cone opsin, and 3) exhibited similar light-activated translocation as endogenous rTα in rods and endogenous cTα in cones. Thus, rTα and cTα appear functionally interchangeable. Interestingly, light sensitivity appeared to correlate with the concentration of cTα when expression is reduced below 35% of normal. However, quantification of endogenous cTα concentration in cones showed a higher level to rTα in rods. Thus, reduced sensitivity in cones cannot be explained by reduced coupling efficiency between the GPCR and G protein or a lower concentration of G protein in cones versus rods.
Collapse
Affiliation(s)
- Wen Mao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chen J, Sampath AP. Structure and Function of Rod and Cone Photoreceptors. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:398-403. [DOI: 10.1016/j.cbpb.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
|
45
|
Arshavsky VY, Burns ME. Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 2011; 287:1620-6. [PMID: 22074925 DOI: 10.1074/jbc.r111.305243] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For decades, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and biochemistry and for understanding many facets of neuronal cell biology. In recent years, new knowledge of the kinetics of signaling and the large-scale movements of proteins underlying signaling has led to a deeper appreciation of the photoreceptor's unique challenge in mediating the first steps in vision over a wide range of light intensities.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Departments of Ophthalmology and Pharmacology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
46
|
Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA, Bainbridge JWB, Smith AJ, Ali RR. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther 2011; 22:1179-90. [PMID: 21671801 PMCID: PMC3205803 DOI: 10.1089/hum.2011.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/13/2011] [Indexed: 12/19/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a severe retinal dystrophy manifesting from early infancy as poor vision or blindness. Loss-of-function mutations in GUCY2D cause LCA1 and are one of the most common causes of LCA, accounting for 20% of all cases. Human GUCY2D and mouse Gucy2e genes encode guanylate cyclase-1 (GC1), which is responsible for restoring the dark state in photoreceptors after light exposure. The Gucy2e(-/-) mouse shows partially diminished rod function, but an absence of cone function before degeneration. Although the cones appear morphologically normal, they exhibit mislocalization of proteins involved in phototransduction. In this study we tested the efficacy of an rAAV2/8 vector containing the human rhodopsin kinase promoter and the human GUCY2D gene. Following subretinal delivery of the vector in Gucy2e(-/-) mice, GC1 protein was detected in the rod and cone outer segments, and in transduced areas of retina cone transducin was appropriately localized to cone outer segments. Moreover, we observed a dose-dependent restoration of rod and cone function and an improvement in visual behavior of the treated mice. Most importantly, cone preservation was observed in transduced areas up to 6 months post injection. To date, this is the most effective rescue of the Gucy2e(-/-) mouse model of LCA and we propose that a vector, similar to the one used in this study, could be suitable for use in a clinical trial of gene therapy for LCA1.
Collapse
Affiliation(s)
- Marija Mihelec
- Department of Genetics, University College London, Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gopalakrishna KN, Doddapuneni K, Boyd KK, Masuho I, Martemyanov KA, Artemyev NO. Interaction of transducin with uncoordinated 119 protein (UNC119): implications for the model of transducin trafficking in rod photoreceptors. J Biol Chem 2011; 286:28954-28962. [PMID: 21712387 PMCID: PMC3190703 DOI: 10.1074/jbc.m111.268821] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/27/2011] [Indexed: 11/06/2022] Open
Abstract
The key visual G protein, transducin undergoes bi-directional translocations between the outer segment (OS) and inner compartments of rod photoreceptors in a light-dependent manner thereby contributing to adaptation and neuroprotection of rods. A mammalian uncoordinated 119 protein (UNC119), also known as Retina Gene 4 protein (RG4), has been recently implicated in transducin transport to the OS in the dark through its interaction with the N-acylated GTP-bound transducin-α subunit (Gα(t1)). Here, we demonstrate that the interaction of human UNC119 (HRG4) with transducin is dependent on the N-acylation, but does not require the GTP-bound form of Gα(t1). The lipid specificity of UNC119 is unique: UNC119 bound the myristoylated N terminus of Gα(t1) with much higher affinity than a prenylated substrate, whereas the homologous prenyl-binding protein PrBP/δ did not interact with the myristoylated peptide. UNC119 was capable of interacting with Gα(t1)GDP as well as with heterotrimeric transducin (G(t)). This interaction of UNC119 with G(t) led to displacement of Gβ(1)γ(1) from the heterotrimer. Furthermore, UNC119 facilitated solubilization of G(t) from dark-adapted rod OS membranes. Consistent with these observations, UNC119 inhibited rhodopsin-dependent activation of G(t), but had no effect on the GTP-hydrolysis by Gα(t1). A model for the role of UNC119 in the IS→OS translocation of G(t) is proposed based on the UNC119 ability to dissociate G(t) subunits from each other and the membrane. We also found that UNC119 inhibited activation of G(o) by D2 dopamine receptor in cultured cells. Thus, UNC119 may play conserved inhibitory role in regulation of GPCR-G protein signaling in non-visual tissues.
Collapse
Affiliation(s)
- Kota N Gopalakrishna
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Krishnarao Doddapuneni
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Kimberly K Boyd
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Ikuo Masuho
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 and
| | - Kirill A Martemyanov
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 and
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458.
| |
Collapse
|
48
|
Scholten A, Koch KW. Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina. PLoS One 2011; 6:e23117. [PMID: 21829700 PMCID: PMC3149064 DOI: 10.1371/journal.pone.0023117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/10/2011] [Indexed: 11/19/2022] Open
Abstract
Zebrafish express in their retina a higher number of guanylate cyclase-activating proteins (zGCAPs) than mammalians pointing to more complex guanylate cyclase signaling systems. All six zGCAP isoforms show distinct and partial overlapping expression profiles in rods and cones. We determined critical Ca2+-dependent parameters of their functional properties using purified zGCAPs after heterologous expression in E.coli. Isoforms 1–4 were strong, 5 and 7 were weak activators of membrane bound guanylate cyclase. They further displayed different Ca2+-sensitivities of guanylate cyclase activation, which is half maximal either at a free Ca2+ around 30 nM (zGCAP1, 2 and 3) or around 400 nM (zGCAP4, 5 and 7). Zebrafish GCAP isoforms showed also differences in their Ca2+/Mg2+-dependent conformational changes and in the Ca2+-dependent monomer-dimer equilibrium. Direct Ca2+-binding revealed that all zGCAPs bound at least three Ca2+. The corresponding apparent affinity constants reflect binding of Ca2+ with high (≤100 nM), medium (0.1–5 µM) and/or low (≥5 µM) affinity, but were unique for each zGCAP isoform. Our data indicate a Ca2+-sensor system in zebrafish rod and cone cells supporting a Ca2+-relay model of differential zGCAP operation in these cells.
Collapse
Affiliation(s)
- Alexander Scholten
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Interface Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Zhang XJ, Cote RH. Phosphodiesterase 6H, cone-specific inhibitor: Basis Sequence: Mouse. THE AFCS-NATURE MOLECULE PAGES 2011; 2011:A001758. [PMID: 32377172 PMCID: PMC7201304 DOI: 10.1038/mp.a001758.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Xiu-Jun Zhang
- Molecular, Cellular & Biomedical Sciences, University of New Hampshire, NH 03824, US
| | - Rick H Cote
- Molecular, Cellular & Biomedical Sciences, University of New Hampshire, NH 03824, US
| |
Collapse
|
50
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|