1
|
Pozzer D, Indrigo M, Breccia M, Florio E, Franchino CA, De Rocco G, Maltecca F, Fadda A, Rossato M, Aramini A, Allegretti M, Frasca A, De Filippis L, Landsberger N. Clinical-grade intranasal NGF fuels neurological and metabolic functions of Mecp2-deficient mice. Brain 2025; 148:845-860. [PMID: 39300821 PMCID: PMC11884770 DOI: 10.1093/brain/awae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
MECP2 deficiency causes a broad spectrum of neuropsychiatric disorders that can affect both genders. Rett syndrome is the most common and is characterized by an apparently normal growth period followed by a regression phase in which patients lose most of their previously acquired skills. After this dramatic period, various symptoms progressively appear, including severe intellectual disability, epilepsy, apraxia, breathing abnormalities and motor deterioration. MECP2 encodes for an epigenetic transcription factor that is particularly abundant in the brain; consequently, several transcriptional defects characterize the Rett syndrome brain. The well-known deficiency of several neurotrophins and growth factors, together with the positive effects exerted by trofinetide, a synthetic analogue of insulin-like growth factor 1, in Rett patients and in mouse models of Mecp2 deficiency, prompted us to investigate the therapeutic potential of nerve growth factor. Initial in vitro studies demonstrated a healing effect of recombinant human GMP-grade NGF (rhNGF) on neuronal maturation and activity in cultured Mecp2-null neurons. Subsequently, we designed in vivo studies with clear translational potential using intranasally administered rhNGF already used in the clinic. The efficacy of rhNGF in vivo in Mecp2-null hemizygous male mice and heterozygous female mice was assessed. General well-being was evaluated by a conventional phenotypic score and motor performance through the Pole and Beam Walking tests, while cognitive function and interaction with the environment were measured by the Novel Object Recognition test and the Marble Burying test, respectively. At the end of the treatment, mouse cortices were dissected and bulk RNA sequencing was performed to identify the molecular pathways involved in the protective effects of rhNGF. In both male and female mouse models of Rett syndrome, rhNGF exerted positive effects on cognitive and motor functions. In male hemizygous mice, which suffer from significantly more severe and rapidly advancing symptoms, the drug's ability to slow the disease's progression was more pronounced. The unbiased research for the molecular mechanisms triggering the observed benefits revealed a strong positive effect on gene sets related to oxidative phosphorylation, mitochondrial structure and function. These results were validated by demonstrating the drug's ability to improve mitochondrial structure and respiration in Mecp2-null cerebral cortices. Furthermore, Gene Ontology analyses indicated that NGF exerted the expected improvement in neuronal maturation. We conclude that intranasal administration of rhNGF is a non-invasive and effective route of administration for the treatment of Rett syndrome and possibly for other neurometabolic disorders with overt mitochondrial dysfunction.
Collapse
Affiliation(s)
- Diego Pozzer
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Marzia Indrigo
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | - Elena Florio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | | | - Giuseppina De Rocco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | - Francesca Maltecca
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Antonio Fadda
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona 37134, Italy
- Genartis s.r.l., Verona 37126, Italy
| | - Andrea Aramini
- R&D Dompé Farmaceutici SpA, Via Campo di Pile, 67100, L'Aquila, Italy
| | | | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | | | - Nicoletta Landsberger
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| |
Collapse
|
2
|
Gunasekaran S, Moffat JJ, Epstein JD, Phamluong K, Ehinger Y, Ron D. BDNF in Ventrolateral Orbitofrontal Cortex to Dorsolateral Striatum Circuit Moderates Alcohol Consumption and Gates Alcohol Habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632255. [PMID: 39868120 PMCID: PMC11761066 DOI: 10.1101/2025.01.09.632255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use. The major source of BDNF in the striatum is the prefrontal cortex. We identified a small ensemble of BDNF-positive neurons in the ventrolateral orbitofrontal cortex (vlOFC), a region involved in AUD, that extend axonal projections to the DLS. We speculated that BDNF in vlOFC-to-DLS circuit may play a role in limiting alcohol drinking and that heavy alcohol use disrupts this protective pathway. We found that BDNF expression is reduced in the vlOFC of male but not female mice after long-term cycles of binge alcohol drinking and withdrawal. We discovered that overexpression of BDNF in vlOFC-to-DLS but not in vlOFC-to-dorsomedial striatum (DMS) or M2 motor cortex-to-DLS circuit reduces alcohol but not sucrose intake and preference. The DLS plays a major role in habitual behaviors. We hypothesized that BDNF in vlOFC-to-DLS circuitry controls alcohol intake by gating habitual alcohol seeking. We found that BDNF over-expression in vlOFC-to-DLS circuit and systemic administration of BDNF receptor TrkB agonist, LM22A-4, biases habitually trained mice towards goal-directed alcohol seeking. Together, our data suggest that BDNF in a small ensemble of vlOFC-to-DLS neurons gates alcohol intake by attenuating habitual alcohol seeking.
Collapse
|
3
|
Vanderplow AM, Dodis GE, Rhee Y, Cikowski JJ, Gonzalez S, Smith ML, Gogliotti RG. Site-blocking antisense oligonucleotides as a mechanism to fine-tune MeCP2 expression. RNA (NEW YORK, N.Y.) 2024; 30:1554-1571. [PMID: 39379106 PMCID: PMC11571808 DOI: 10.1261/rna.080220.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Despite its severe phenotypes, studies in mouse models suggest that restoring MeCP2 levels can reverse RTT symptomology. Nevertheless, traditional gene therapy approaches are hindered by MeCP2's narrow therapeutic window, complicating the safe delivery of viral constructs without overshooting the threshold for toxicity. The 3' untranslated region (3' UTR) plays a key role in gene regulation, where factors like miRNAs bind to pre-mRNA and fine-tune expression. Given that each miRNA's contribution is modest, blocking miRNA binding may represent a potential therapeutic strategy for diseases with high dosage sensitivity, like RTT. Here, we present a series of site-blocking antisense oligonucleotides (sbASOs) designed to outcompete repressive miRNA binding at the MECP2 3' UTR. This strategy aims to increase MeCP2 levels in patients with missense or late-truncating mutations, where the hypomorphic nature of the protein can be offset by enhanced abundance. Our results demonstrate that sbASOs can elevate MeCP2 levels in a dose-dependent manner in SH-SY5Y and patient fibroblast cell lines, plateauing at levels projected to be safe. Confirming in vivo functionality, sbASO administration in wild-type mice led to significant Mecp2 upregulation and the emergence of phenotypes associated with Mecp2 overexpression. In a T158M neural stem cell model of RTT, sbASO treatment significantly increased MeCP2 expression and levels of the downstream effector protein brain-derived neurotrophic factor (BDNF). These findings highlight the potential of sbASO-based therapies for MeCP2-related disorders and advocate for their continued development.
Collapse
Affiliation(s)
- Amanda M Vanderplow
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Grace E Dodis
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Yewon Rhee
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Jakub J Cikowski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sonia Gonzalez
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Mackenzie L Smith
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| |
Collapse
|
4
|
Camillo L, Pozzi M, Bernardo P, Pisano S, Nobile M. Profile of Trofinetide in the Treatment of Rett Syndrome: Design, Development and Potential Place in Therapy. Drug Des Devel Ther 2024; 18:5023-5040. [PMID: 39525048 PMCID: PMC11550706 DOI: 10.2147/dddt.s383133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Trofinetide is a first-in-class pharmacological treatment proposed for patients with Rett Syndrome. It is a long half-life derivative of glycine-proline-glutamate, the tripeptide normally excided from Insulin-like Growth Factor 1 upon degradation. Due to containing glutamate and glycine in its structure, trofinetide is thought to act through NMDA receptor modulation, thus providing a normalization of neuronal activity and survival. Trofinetide was tested in a series of short and long-term trials, showing good efficacy at improving scores on the Clinical Global Impression-Improvement scale and Rett Syndrome Behavior Questionnaire, with specific effect only on some subscales, ie General Mood subscale and Repetitive Face Movement subscale. No effects were documented on other subscales or on epilepsy, heart and bone -related symptoms. The main adverse effects of trofinetide, severe enough to determine discontinuation, include diarrhea, vomiting, and consequent weight loss. These may be scarcely avoidable, given the need to assume a very large amount of trofinetide per day. Other inherent limitations of use possibly regard the limited duration of drug supplies, as one bottle may last three days only, depending on weight, and the relatively high cost per bottle. Trofinetide has no direct competitors: single symptoms of the Rett Syndrome, for instance, seizures or aggressive behaviors, are currently treated with drugs that have been developed for patients without the Rett Syndrome. This leads to suboptimal efficacy and increased risk of adverse effects. The place in therapy of trofinetide is yet to be determined, based on the results of clinical trials, on its practical usability, and on the windows of opportunity for intervention. Moreover, trofinetide may be curative if given early enough during brain development, or merely symptomatic if given to young adults, and no data exist on this aspect. The place in therapy of trofinetide will require reassessment after competing treatments enter the market.
Collapse
Affiliation(s)
- Laura Camillo
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Pia Bernardo
- Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, NA, Italy
| | - Simone Pisano
- Department of Translational Medical Sciences, University Federico II, Naples, NA, Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| |
Collapse
|
5
|
Fazzari M, Lunghi G, Carsana EV, Valsecchi M, Spiombi E, Breccia M, Casati SR, Pedretti S, Mitro N, Mauri L, Ciampa MG, Sonnino S, Landsberger N, Frasca A, Chiricozzi E. GM1 Oligosaccharide Ameliorates Rett Syndrome Phenotypes In Vitro and In Vivo via Trk Receptor Activation. Int J Mol Sci 2024; 25:11555. [PMID: 39519108 PMCID: PMC11547101 DOI: 10.3390/ijms252111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology. Moreover, altered glycosphingolipid metabolism has been reported in RTT. GM1 ganglioside is a known regulator of the nervous system, and growing evidence indicates its importance in maintaining neuronal homeostasis via its oligosaccharide chain, coded as GM1-OS. GM1-OS directly interacts with the Trk receptors on the cell surface, triggering neurotrophic and neuroprotective pathways in neurons. In this study, we demonstrate that GM1-OS ameliorates RTT deficits in the Mecp2-null model. GM1-OS restored synaptogenesis and reduced mitochondrial oxidative stress of Mecp2-knock-out (ko) cortical neurons. When administered in vivo, GM1-OS mitigated RTT-like symptoms. Our findings indicate that GM1-OS effects were mediated by Trk receptor activation on the neuron's plasma membrane. Overall, our results highlight GM1-OS as a promising candidate for RTT treatment.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| |
Collapse
|
6
|
Medeiros D, Ayala-Baylon K, Egido-Betancourt H, Miller E, Chapleau C, Robinson H, Phillips ML, Yang T, Longo FM, Li W, Pozzo-Miller L. A small-molecule TrkB ligand improves dendritic spine phenotypes and atypical behaviors in female Rett syndrome mice. Dis Model Mech 2024; 17:dmm050612. [PMID: 38785269 PMCID: PMC11139040 DOI: 10.1242/dmm.050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 05/25/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Ayala-Baylon
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Egido-Betancourt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Chapleau
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Robinson
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary L. Phillips
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Antonijevic M, Charou D, Davis A, Curel T, Valcarcel M, Ramos I, Villacé P, Claeysen S, Dallemagne P, Gravanis A, Charalampopoulos I, Rochais C. Development of Pleiotropic TrkB and 5-HT 4 Receptor Ligands as Neuroprotective Agents. Molecules 2024; 29:515. [PMID: 38276593 PMCID: PMC10819171 DOI: 10.3390/molecules29020515] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
One common event that is the most detrimental in neurodegenerative disorders, even though they have a complex pathogenesis, is the increased rate of neuronal death. Endogenous neurotrophins consist of the major neuroprotective factors, while brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine kinase receptor TrkB are described in a number of studies for their important neuronal effects. Normal function of this receptor is crucial for neuronal survival, differentiation, and synaptic function. However, studies have shown that besides direct activation, the TrkB receptor can be transactivated via GPCRs. It has been proven that activation of the 5-HT4 receptor and transactivation of the TrkB receptor have a positive influence on neuronal differentiation (total dendritic length, number of primary dendrites, and branching index). Because of that and based on the main structural characteristics of LM22A-4, a known activator of the TrkB receptor, and RS67333, a partial 5-HT4 receptor agonist, we have designed and synthesized a small data set of novel compounds with potential dual activities in order to not only prevent neuronal death, but also to induce neuronal differentiation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirjana Antonijevic
- Normandie University, Unicaen, Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France; (M.A.); (A.D.); (P.D.)
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 70013 Heraklion, Greece; (D.C.); (A.G.); (I.C.)
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, 70013 Heraklion, Greece
| | - Audrey Davis
- Normandie University, Unicaen, Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France; (M.A.); (A.D.); (P.D.)
| | - Thomas Curel
- IGF, Univ Montpellier, CNRS, INSERM, 34000 Montpellier, France; (T.C.); (S.C.)
| | | | - Isbaal Ramos
- Innoprot S.L, 48160 Derio, Spain; (M.V.); (I.R.); (P.V.)
| | | | - Sylvie Claeysen
- IGF, Univ Montpellier, CNRS, INSERM, 34000 Montpellier, France; (T.C.); (S.C.)
| | - Patrick Dallemagne
- Normandie University, Unicaen, Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France; (M.A.); (A.D.); (P.D.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 70013 Heraklion, Greece; (D.C.); (A.G.); (I.C.)
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, 70013 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 70013 Heraklion, Greece; (D.C.); (A.G.); (I.C.)
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, 70013 Heraklion, Greece
| | - Christophe Rochais
- Normandie University, Unicaen, Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France; (M.A.); (A.D.); (P.D.)
| |
Collapse
|
8
|
Xu FX, Wang XT, Cai XY, Liu JY, Guo JW, Yang F, Chen W, Schonewille M, De Zeeuw C, Zhou L, Shen Y. Purkinje-cell-specific MeCP2 deficiency leads to motor deficits and autistic-like behavior due to aberrations in PTP1B-TrkB-SK signaling. Cell Rep 2023; 42:113559. [PMID: 38100348 DOI: 10.1016/j.celrep.2023.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/05/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with Rett syndrome suffer from a loss-of-function mutation of the Mecp2 gene, which results in various symptoms including autistic traits and motor deficits. Deletion of Mecp2 in the brain mimics part of these symptoms, but the specific function of methyl-CpG-binding protein 2 (MeCP2) in the cerebellum remains to be elucidated. Here, we demonstrate that Mecp2 deletion in Purkinje cells (PCs) reduces their intrinsic excitability through a signaling pathway comprising the small-conductance calcium-activated potassium channel PTP1B and TrkB, the receptor of brain-derived neurotrophic factor. Aberration of this cascade, in turn, leads to autistic-like behaviors as well as reduced vestibulocerebellar motor learning. Interestingly, increasing activity of TrkB in PCs is sufficient to rescue PC dysfunction and abnormal motor and non-motor behaviors caused by Mecp2 deficiency. Our findings highlight how PC dysfunction may contribute to Rett syndrome, providing insight into the underlying mechanism and paving the way for rational therapeutic designs.
Collapse
Affiliation(s)
- Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jia-Yu Liu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jing-Wen Guo
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fan Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Science, 1105 CA Amsterdam, the Netherlands.
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
9
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
10
|
Medeiros D, Ayala-Baylon K, Egido-Betancourt H, Miller E, Chapleau CA, Robinson HA, Phillips ML, Yang T, Longo F, Li W, Pozzo-Miller L. A small-molecule TrkB ligand improves dendritic spine phenotypes and atypical behaviors in female Rett syndrome mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566435. [PMID: 37986936 PMCID: PMC10659425 DOI: 10.1101/2023.11.09.566435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein-2 (MECP2), encoding a transcriptional regulator of many genes, including brain-derived neurotrophic factor (Bdnf). BDNF mRNA and protein levels are lower in RTT autopsy brains and in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of a brain penetrant, small molecule ligand of its TrkB receptors. Applied in vitro, LM22A-4 increased dendritic spine density in pyramidal neurons in cultured hippocampal slices from postnatal day (P) 7 male Mecp2 knockout (KO) mice as much as recombinant BDNF, and both effects were prevented by the TrkB receptor inhibitors K-252a and ANA-12. Consistent with its partial agonist activity, LM22A-4 did not affect spine density in CA1 pyramidal neurons in slice cultures from male wildtype (WT) mice, where typical BDNF levels outcompete its binding to TrkB. To identify neurons of known genotypes in the "mosaic" brain of female Mecp2 heterozygous (HET) mice, we treated 4-6-month-old female MeCP2-GFP WT and HET mice with peripheral injections of LM22A-4 for 4 weeks. Surprisingly, mutant neurons lacking MeCP2-GFP showed dendritic spine volumes comparable to that in WT controls, while MeCP2-GFP-expressing neurons showed larger spines, similar to the phenotype we described in symptomatic male Mecp2 KO mice where all neurons lack MeCP2. Consistent with this non-cell-autonomous mechanism, a 4-week systemic treatment with LM22A-4 had an effect only in MeCP2-GFP-expressing neurons in female Mecp2 HET mice, bringing dendritic spine volumes down to WT control levels, and without affecting spines of MeCP2-GFP-lacking neurons. At the behavioral level, we found that female Mecp2 HET mice engaged in aggressive behaviors significantly more than WT controls, which were reduced to WT levels by a 4-week systemic treatment with LM22A-4. Altogether, these data revealed differences in dendritic spine size and altered behaviors in Mecp2 HET mice, while providing support to the potential usefulness of BDNF-related therapeutic approaches such as the partial TrkB agonist LM22A-4.
Collapse
|
11
|
Miranda-Lourenço C, Rosa J, Rei N, Belo RF, Lopes AL, Silva D, Vieira C, Magalhães-Cardoso T, Viais R, Correia-de-Sá P, Sebastião AM, Diógenes MJ. Adenosinergic System and BDNF Signaling Changes as a Cross-Sectional Feature of RTT: Characterization of Mecp2 Heterozygous Mouse Females. Int J Mol Sci 2023; 24:16249. [PMID: 38003438 PMCID: PMC10671708 DOI: 10.3390/ijms242216249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jéssica Rosa
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F. Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Lopes
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
13
|
Antonijevic M, Charou D, Ramos I, Valcarcel M, Gravanis A, Villace P, Callizot N, Since M, Dallemagne P, Charalampopoulos I, Rochais C. Design, synthesis and biological characterization of novel activators of the TrkB neurotrophin receptor. Eur J Med Chem 2023; 248:115111. [PMID: 36645981 DOI: 10.1016/j.ejmech.2023.115111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Numerous studies have been published about the implication of the neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis and motor neuron disease. BDNF activates the TrkB receptor with high potency and specificity, promoting neuronal survival, differentiation and synaptic plasticity. Based on the main structural characteristics of LM22A-4, a previously published small molecule that acts as activator of the TrkB receptor, we have designed and synthesized a small data set of compounds. The lead idea for the design of the new compounds was to modify the third position of the LM22A-4, by introducing different substitutions in order to obtain compounds which will have not only better physicochemical properties but selective activity as well. ADME and toxicity profiles of molecules have been evaluated as well as their biological properties through the TrkB receptor and affinity to promote neurite differentiation.
Collapse
Affiliation(s)
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Marc Since
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | | | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | |
Collapse
|
14
|
Antonijevic M, Rochais C, Dallemagne P. C3-Symmetric Ligands in Drug Design: When the Target Controls the Aesthetics of the Drug. Molecules 2023; 28:molecules28020679. [PMID: 36677739 PMCID: PMC9862528 DOI: 10.3390/molecules28020679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A number of proteins are able to adopt a homotrimeric spatial conformation. Among these structures, this feature appears as crucial for biologic targets, since it facilitates the design of C3-symmetric ligands that are especially suitable for displaying optimized ligand-target interactions and therapeutic benefits. Additionally, DNA as a therapeutic target, even if its conformation into a superhelix does not correspond to a C3-symmetry, can also take advantage of these C3-symmetric ligands for better interactions and therapeutic effects. For the moment, this opportunity appears to be under-exploited, but should become more frequent with the discovery of new homotrimeric targets such as the SARS-CoV2 spike protein. Besides their potential therapeutic interest, the synthetic access to these C3-symmetric ligands often leads to chemical challenges, although drug candidates with an aesthetic structure are generally obtained.
Collapse
|
15
|
Tolman Z, Chaverra M, George L, Lefcort F. Elp1 is required for development of visceral sensory peripheral and central circuitry. Dis Model Mech 2022; 15:275184. [PMID: 35481599 PMCID: PMC9187870 DOI: 10.1242/dmm.049274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular instability and a blunted respiratory drive in hypoxic conditions are hallmark features of the genetic sensory and autonomic neuropathy, familial dysautonomia (FD). FD results from a mutation in the gene ELP1, the encoded protein of which is a scaffolding subunit of the six-subunit Elongator complex. In mice, we and others have shown that Elp1 is essential for the normal development of neural crest-derived dorsal root ganglia sensory neurons. Whether Elp1 is also required for development of ectodermal placode-derived visceral sensory receptors, which are required for normal baroreception and chemosensory responses, has not been investigated. Using mouse models for FD, we here show that the entire circuitry underlying baroreception and chemoreception is impaired due to a requirement for Elp1 in the visceral sensory neuron ganglia, as well as for normal peripheral target innervation, and in their central nervous system synaptic partners in the medulla. Thus, Elp1 is required in both placode- and neural crest-derived sensory neurons, and its reduction aborts the normal development of neuronal circuitry essential for autonomic homeostasis and interoception. This article has an associated First Person interview with the first author of the paper. Summary: Our data indicate that Elp1 is required in both placode- and neural crest-derived sensory neurons, and that it exerts comparable effects, including survival, axonal morphology and target innervation in both lineages.
Collapse
Affiliation(s)
- Zariah Tolman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Marta Chaverra
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Lynn George
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.,Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
16
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Chronic partial TrkB activation reduces seizures and mortality in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 2022; 119:2022726119. [PMID: 35165147 PMCID: PMC8851461 DOI: 10.1073/pnas.2022726119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/03/2022] Open
Abstract
Dravet syndrome (DS) is a severe childhood epileptic encephalopathy characterized by intractable seizures and comorbidities, including a high rate of premature mortality. DS is mainly caused by loss-of-function mutations of the Scn1a gene encoding sodium channel Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, causing DS phenotypes. Effective pharmacological therapy targeting defective PV interneurons is currently not available. This study demonstrated that early treatment with a partial TrkB receptor agonist, LM22A-4, increased Nav1.1 expression, improved PV interneuron function, and reduced seizure occurrence and mortality rate in DS mice, suggesting a potential therapy for DS. Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.
Collapse
|
18
|
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185:62-76. [PMID: 34963057 PMCID: PMC8741740 DOI: 10.1016/j.cell.2021.12.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
19
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
20
|
Gonzalez S, McHugh TLM, Yang T, Syriani W, Massa SM, Longo FM, Simmons DA. Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiol Dis 2021; 162:105563. [PMID: 34838668 DOI: 10.1016/j.nbd.2021.105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-β exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.
Collapse
Affiliation(s)
- Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen M Massa
- Department of Neurology, Laboratory for Computational Neurochemistry and Drug Discovery, Veterans Affairs Health Care System and Department of Neurology, University of California-San Francisco, San Francisco, CA 94121, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
21
|
Buist M, Fuss D, Rastegar M. Transcriptional Regulation of MECP2E1-E2 Isoforms and BDNF by Metformin and Simvastatin through Analyzing Nascent RNA Synthesis in a Human Brain Cell Line. Biomolecules 2021; 11:biom11081253. [PMID: 34439919 PMCID: PMC8391797 DOI: 10.3390/biom11081253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is the main DNA methyl-binding protein in the brain that binds to 5-methylcytosine and 5-hydroxymethyl cytosine. MECP2 gene mutations are the main origin of Rett Syndrome (RTT), a neurodevelopmental disorder in young females. The disease has no existing cure, however, metabolic drugs such as metformin and statins have recently emerged as potential therapeutic candidates. In addition, induced MECP2-BDNF homeostasis regulation has been suggested as a therapy avenue. Here, we analyzed nascent RNA synthesis versus steady state total cellular RNA to study the transcriptional effects of metformin (an anti-diabetic drug) on MECP2 isoforms (E1 and E2) and BNDF in a human brain cell line. Additionally, we investigated the impact of simvastatin (a cholesterol lowering drug) on transcriptional regulation of MECP2E1/E2-BDNF. Metformin was capable of post-transcriptionally inducing BDNF and/or MECP2E1, while transcriptionally inhibiting MECP2E2. In contrast simvastatin significantly inhibited BDNF transcription without significantly impacting MECP2E2 transcripts. Further analysis of ribosomal RNA transcripts confirmed that the drug neither individually nor in combination affected these fundamentally important transcripts. Experimental analysis was completed in conditions of the presence or absence of serum starvation that showed minimal impact for serum deprival, although significant inhibition of steady state MECP2E1 by simvastatin was only detected in non-serum starved cells. Taken together, our results suggest that metformin controls MECP2E1/E2-BDNF transcriptionally and/or post-transcriptionally, and that simvastatin is a potent transcriptional inhibitor of BDNF. The transcriptional effect of these drugs on MECP2E1/E2-BDNF were not additive under these tested conditions, however, either drug may have potential application for related disorders.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Correspondence: ; Tel.: +1-(204)-272-3108; Fax: +1-(204)-789-3900
| |
Collapse
|
22
|
Huang-Pu-Tong-Qiao Formula Ameliorates the Hippocampus Apoptosis in Diabetic Cognitive Dysfunction Mice by Activating CREB/BDNF/TrkB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5514175. [PMID: 34211563 PMCID: PMC8211510 DOI: 10.1155/2021/5514175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Background Huang-Pu-Tong-Qiao formula (HPTQ), a traditional Chinese medicine (TCM) formula used to improve cognitive impairment. However, the underlying neuroprotective mechanism of HPTQ treated for diabetic cognitive dysfunction (DCD) remains unclear. The purpose of this study was to investigate the neuroprotective mechanism of HPTQ in DCD mice based on molecular docking. Methods To investigate the neuroprotective effect of HPTQ in DCD, the Morris water maze (MWM), novel object recognition (NOR) test was used to detect the learning and memory changes of mice; hematoxylin-eosin (HE) staining was used to investigate the damage of hippocampal neurons; the western blot (WB) was used to examine the level of brain-derived neurotrophic factor (BDNF) of hippocampus. To investigate the neuroprotective mechanism of HPTQ in DCD, molecular docking was used to predict the possible target proteins of different active components in HPTQ and then the WB was used to verify the expression of key target proteins in the hippocampus of mice. Results HPTQ improved the learning and memory ability, hippocampal neuron damage, and the level of BDNF in the hippocampus of the DCD model treated with HFD/STZ for 12 weeks. Besides, the results of molecular docking showed that the main chemical components of HPTQ could be well combined with the targets of Bcl-2-associated X (Bax) and B-cell lymphoma2 (Bcl-2) and caspase-3. The levels of Bax/Bcl-2 protein ratio and caspase-3 increased in the DCD model while the HPTQ inhibited it. In addition, HPTQ restored DCD-induced decline of p-CREB, BDNF, TrkB, and p-Akt in the hippocampus. Conclusions These data indicated that HPTQ ameliorates the hippocampus apoptosis in diabetic cognitive dysfunction mice by activating CREB/BDNF/TrkB signaling pathway.
Collapse
|
23
|
Adams I, Yang T, Longo FM, Katz DM. Restoration of motor learning in a mouse model of Rett syndrome following long-term treatment with a novel small-molecule activator of TrkB. Dis Model Mech 2020; 13:13/11/dmm044685. [PMID: 33361117 PMCID: PMC7710018 DOI: 10.1242/dmm.044685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced expression of brain-derived neurotrophic factor (BDNF) and impaired activation of the BDNF receptor, tropomyosin receptor kinase B (TrkB; also known as Ntrk2), are thought to contribute significantly to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Previous studies from this and other laboratories have shown that enhancing BDNF expression and/or TrkB activation in Mecp2-deficient mouse models of RTT can ameliorate or reverse abnormal neurological phenotypes that mimic human RTT symptoms. The present study reports on the preclinical efficacy of a novel, small-molecule, non-peptide TrkB partial agonist, PTX-BD4-3, in heterozygous female Mecp2 mutant mice, a well-established RTT model that recapitulates the genetic mosaicism of the human disease. PTX-BD4-3 exhibited specificity for TrkB in cell-based assays of neurotrophin receptor activation and neuronal cell survival and in in vitro receptor binding assays. PTX-BD4-3 also activated TrkB following systemic administration to wild-type and Mecp2 mutant mice and was rapidly cleared from the brain and plasma with a half-life of ∼2 h. Chronic intermittent treatment of Mecp2 mutants with a low dose of PTX-BD4-3 (5 mg/kg, intraperitoneally, once every 3 days for 8 weeks) reversed deficits in two core RTT symptom domains – respiration and motor control – and symptom rescue was maintained for at least 24 h after the last dose. Together, these data indicate that significant clinically relevant benefit can be achieved in a mouse model of RTT with a chronic intermittent, low-dose treatment paradigm targeting the neurotrophin receptor TrkB. Editor's choice: Long-term intermittent treatment with a newly developed partial agonist of the TrkB neurotrophin receptor reverses deficits in motor learning and respiration in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| |
Collapse
|
24
|
Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Ferreira CB, Rei N, Ferreira-Manso M, de Almeida-Borlido C, Costa-Coelho T, Freitas CF, Zavalko S, Mouro FM, Sebastião AM, Xapelli S, Rodrigues TM, Diógenes MJ. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res 2020; 162:105281. [PMID: 33161136 DOI: 10.1016/j.phrs.2020.105281] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Céline Felicidade Freitas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Svitlana Zavalko
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Mittlere Strasse 91, 4031 Basel, Switzerland
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
25
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
26
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
27
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
28
|
Xu F, Lv C, Deng Y, Liu Y, Gong Q, Shi J, Gao J. Icariside II, a PDE5 Inhibitor, Suppresses Oxygen-Glucose Deprivation/Reperfusion-Induced Primary Hippocampal Neuronal Death Through Activating the PKG/CREB/BDNF/TrkB Signaling Pathway. Front Pharmacol 2020; 11:523. [PMID: 32390851 PMCID: PMC7194126 DOI: 10.3389/fphar.2020.00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ischemic stroke remains the leading cause of death and adult disability. Cerebral ischemic/reperfusion (I/R) injury is caused by ischemic stroke thereafter aggravates overwhelming neuronal apoptosis and even the death of neurons. Of note, hippocampus is more susceptive to cerebral I/R injury than the other brain region. This study was designed to explore the effects and mechanism of icariside II (ICS II), a pharmacologically active compound exists in herbal Epimedii with previous study-proved as a phosphodiesterase 5 (PDE5) inhibitor, on the oxygen glucose deprivation/reoxygenation (OGD/R)-induced primary hippocampal neurons injury. Methods Effects of ICS II on primary hippocampal neuronal impairment and apoptosis induced by OGD/R were examined by MTT, lactate dehydrogenase (LDH) release, TUNEL staining, and flow cytometry, respectively. Activation of memory-related signaling pathways was measured using Western blot analysis. The direct interaction between ICS II and PDE5 was further evaluated by molecular docking. Results ICS II (12.5, 25, 50 μM) markedly abrogated OGD/R-induced hippocampal neuronal death as suggested by the increase in neurons viability and the decrease in cellular LDH release. Furthermore, ICS II not only effectively decreased the protein expression and activity of PDE5, restored the 3′5′-cyclic guanosine monophosphate (cGMP) level and its downstream target protein kinase G (PKG) activity but also increased the phosphorylation of cAMP response element binding protein (CREB) level, expressions of brain derived neurotrophic factor (BDNF), and tyrosine protein kinase B (TrkB). Mechanistically, the inhibitory effects of ICS II were abrogated by Rp-8-Br-cGMP (a PKG inhibitor) or ANA-12 (a TrkB inhibitor), which further confirmed that the favorable effects of ICS II were attributed to its activation of the PKG/CREB/BDNF signaling pathways. Intriguingly, ICS II might effectively bind and inhibited PDE5 activity as demonstrated by relatively high binding scores (−6.52 kcal/mol). Conclusions ICS II significantly rescues OGD/R-induced hippocampal neuronal injury. The mechanism is, at least partly, due to inhibition of PDE5 and activation of PKG/CREB/BDNF/TrkB signaling pathway. Hence it is thought that ICS II might be a potential naturally PDE5 inhibitor to combat cerebral I/R injury.
Collapse
Affiliation(s)
- Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Chun Lv
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yan Deng
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuangui Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Gudasheva TA, Povarnina P, Tarasiuk AV, Seredenin SB. The Low Molecular Weight Brain-derived Neurotrophic Factor Mimetics with Antidepressant-like Activity. Curr Pharm Des 2020; 25:729-737. [PMID: 30931847 DOI: 10.2174/1381612825666190329122852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
The search for new highly-effective, fast-acting antidepressant drugs is extremely relevant. Brain derived neurotrophic factor (BDNF) and signaling through its tropomyosin-related tyrosine kinase B (TrkB) receptor, represents one of the most promising therapeutic targets for treating depression. BDNF is a key regulator of neuroplasticity in the hippocampus and the prefrontal cortex, the dysfunction of which is considered to be the main pathophysiological hallmark of this disorder. BDNF itself has no favorable drug-like properties due to poor pharmacokinetics and possible adverse effects. The design of small, proteolytically stable BDNF mimetics might provide a useful approach for the development of therapeutic agents. Two small molecule BDNF mimetics with antidepressant-like activity have been reported, 7,8-dihydroxyflavone and the dimeric dipeptide mimetic of BDNF loop 4, GSB-106. The article reflects on the current literature on the role of BDNF as a promising therapeutic target in the treatment of depression and on the current advances in the development of small molecules on the base of this neurotrophin as potential antidepressants.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Polina Povarnina
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Alexey V Tarasiuk
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| |
Collapse
|
30
|
Ehinger Y, Bruyère J, Panayotis N, Abada YS, Borloz E, Matagne V, Scaramuzzino C, Vitet H, Delatour B, Saidi L, Villard L, Saudou F, Roux JC. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med 2020; 12:e10889. [PMID: 31913581 PMCID: PMC7005633 DOI: 10.15252/emmm.201910889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Mutations in the X‐linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain‐derived neurotrophic factor (BDNF) levels, but non‐specific overexpression of BDNF only partially improves the phenotype of Mecp2‐deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF‐containing vesicles, and is under‐expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho‐mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice—even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.
Collapse
Affiliation(s)
- Yann Ehinger
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | | | - Yah-Se Abada
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Valérie Matagne
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Benoit Delatour
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Lydia Saidi
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | | |
Collapse
|
31
|
Smith ES, Smith DR, Eyring C, Braileanu M, Smith-Connor KS, Ei Tan Y, Fowler AY, Hoffman GE, Johnston MV, Kannan S, Blue ME. Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiol Learn Mem 2019; 165:106962. [PMID: 30502397 PMCID: PMC8040058 DOI: 10.1016/j.nlm.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
Rett Syndrome (RTT) is a genetic disorder that is caused by mutations in the x-linked gene coding for methyl-CpG-biding-protein 2 (MECP2) and that mainly affects females. Male and female transgenic mouse models of RTT have been studied extensively, and we have learned a great deal regarding RTT neuropathology and how MeCP2 deficiency may be influencing brain function and maturation. In this manuscript we review what is known concerning structural and coinciding functional and behavioral deficits in RTT and in mouse models of MeCP2 deficiency. We also introduce our own corroborating data regarding behavioral phenotype and morphological alterations in volume of the cortex and striatum and the density of neurons, aberrations in experience-dependent plasticity within the barrel cortex and the impact of MeCP2 loss on glial structure. We conclude that regional structural changes in genetic models of RTT show great similarity to the alterations in brain structure of patients with RTT. These region-specific modifications often coincide with phenotype onset and contribute to larger issues of circuit connectivity, progression, and severity. Although the alterations seen in mouse models of RTT appear to be primarily due to cell-autonomous effects, there are also non-cell autonomous mechanisms including those caused by MeCP2-deficient glia that negatively impact healthy neuronal function. Collectively, this body of work has provided a solid foundation on which to continue to build our understanding of the role of MeCP2 on neuronal and glial structure and function, its greater impact on neural development, and potential new therapeutic avenues.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dani R Smith
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte Eyring
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Maria Braileanu
- Undergraduate Program in Neuroscience, The Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen S Smith-Connor
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Yew Ei Tan
- Perdana University Graduate School of Medicine, Kuala Lumpur, Malaysia
| | - Amanda Y Fowler
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Gloria E Hoffman
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Mary E Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Nguyen HTH, Wood RJ, Prawdiuk AR, Furness SGB, Xiao J, Murray SS, Fletcher JL. TrkB Agonist LM22A-4 Increases Oligodendroglial Populations During Myelin Repair in the Corpus Callosum. Front Mol Neurosci 2019; 12:205. [PMID: 31507374 PMCID: PMC6718610 DOI: 10.3389/fnmol.2019.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
The neurotrophin, brain-derived neurotrophic factor (BDNF) promotes central nervous system (CNS) myelination during development and after injury. This is achieved via activation of oligodendrocyte-expressed tropomyosin-related kinase (Trk) B receptors. However, while administration of BDNF has shown beneficial effects, BDNF itself has a poor pharmacokinetic profile. Here, we compare two TrkB-targeted BDNF-mimetics, the structural-mimetic, tricyclic dimeric peptide-6 (TDP6) and the non-peptide small molecule TrkB agonist LM22A-4 in a cuprizone model of central demyelination in female mice. Both mimetics promoted remyelination, increasing myelin sheath thickness and oligodendrocyte densities after 1-week recovery. Importantly, LM22A-4 exerts these effects in an oligodendroglial TrkB-dependent manner. However, analysis of TrkB signaling by LM22A-4 suggests rather than direct activation of TrkB, LM22A-4 exerts its effects via indirect transactivation of Trk receptors. Overall, these studies support the therapeutic strategy to selectively targeting TrkB activation to promote remyelination in the brain.
Collapse
Affiliation(s)
- Huynh T. H. Nguyen
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Rhiannon J. Wood
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Alexa R. Prawdiuk
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Sebastian G. B. Furness
- Drug Discovery Biology, Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jessica L. Fletcher
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Zamberletti E, Gabaglio M, Piscitelli F, Brodie JS, Woolley-Roberts M, Barbiero I, Tramarin M, Binelli G, Landsberger N, Kilstrup-Nielsen C, Rubino T, Di Marzo V, Parolaro D. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. J Psychopharmacol 2019; 33:894-907. [PMID: 31084246 DOI: 10.1177/0269881119844184] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent evidence suggests that 2-week treatment with the non-psychotomimetic cannabinoid cannabidivarin (CBDV) could be beneficial towards neurological and social deficits in early symptomatic Mecp2 mutant mice, a model of Rett syndrome (RTT). AIM The aim of this study was to provide further insights into the efficacy of CBDV in Mecp2-null mice using a lifelong treatment schedule (from 4 to 9 weeks of age) to evaluate its effect on recognition memory and neurological defects in both early and advanced stages of the phenotype progression. METHODS CBDV 0.2, 2, 20 and 200 mg/kg/day was administered to Mecp2-null mice from 4 to 9 weeks of age. Cognitive and neurological defects were monitored during the whole treatment schedule. Biochemical analyses were carried out in brain lysates from 9-week-old wild-type and knockout mice to evaluate brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) levels as well as components of the endocannabinoid system. RESULTS CBDV rescues recognition memory deficits in Mecp2 mutant mice and delays the appearance of neurological defects. At the biochemical level, it normalizes BDNF/IGF1 levels and the defective PI3K/AKT/mTOR pathway in Mecp2 mutant mice at an advanced stage of the disease. Mecp2 deletion upregulates CB1 and CB2 receptor levels in the brain and these changes are restored after CBDV treatment. CONCLUSIONS CBDV administration exerts an enduring rescue of memory deficits in Mecp2 mutant mice, an effect that is associated with the normalization of BDNF, IGF-1 and rpS6 phosphorylation levels as well as CB1 and CB2 receptor expression. CBDV delays neurological defects but this effect is only transient.
Collapse
Affiliation(s)
- Erica Zamberletti
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marina Gabaglio
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Fabiana Piscitelli
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | | | | | - Isabella Barbiero
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marco Tramarin
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Giorgio Binelli
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Nicoletta Landsberger
- 4 Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Tiziana Rubino
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Vincenzo Di Marzo
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Daniela Parolaro
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.,5 Zardi Gori Foundation, Milan, Italy
| |
Collapse
|
34
|
Han F, Guan X, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for ischemic brain injury. Neurobiol Dis 2019; 127:570-581. [DOI: 10.1016/j.nbd.2019.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
35
|
Lee Y, Han PL. Early-Life Stress in D2 Heterozygous Mice Promotes Autistic-like Behaviors through the Downregulation of the BDNF-TrkB Pathway in the Dorsal Striatum. Exp Neurobiol 2019; 28:337-351. [PMID: 31308794 PMCID: PMC6614072 DOI: 10.5607/en.2019.28.3.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
A number of specific genetic variants including gene mutations and single nucleotide variations have been identified in genomewide association studies of autism spectrum disorder (ASD). ASD phenotypes in individuals carrying specific genetic variations are manifest mostly in a heterozygous state. Furthermore, individuals with most genetic variants show incomplete penetrance and phenotypic variability, suggesting that non-genetic factors are also involved in developing ASD. However, the mechanisms of how genetic and environmental factors interactively promote ASD are not clearly understood. In the present study, we investigated whether early-life stress (ELS) in D2 dopamine receptor heterozygous knockout (D2+/−) mice induces ASD-like symptoms. To address that, we exposed D2 heterozygous pups to maternal separation stress for 3 h daily for 13 days beginning on postnatal day 2. D2+/− adult mice that had experienced ELS exhibited impaired sociability in the three-chamber test and home-cage social interaction test and increased grooming behavior, whereas wildtype littermates exposed to ELS did not show those phenotypes. ELS-exposed D2+/− mice had decreased levels of BDNF, TrkB, phospho-ERK1/2 and phospho-CREB in the dorsal striatum. Administration of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) to ELS-exposed D2+/− mice rescued the sociability deficits and repetitive behavior. In contrast, behavioral rescue by 7,8-DHF in ELS-exposed D2+/− mice was blocked when TrkB expression in the dorsal striatum was locally inhibited by the injection of TrkB-siRNA. Together, our results suggest that the interaction between ELS and defective D2 gene function promotes autistic-like behaviors by downregulating the BDNF-TrkB pathway in the dorsal striatum.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
36
|
From Basic Visual Science to Neurodevelopmental Disorders: The Voyage of Environmental Enrichment-Like Stimulation. Neural Plast 2019; 2019:5653180. [PMID: 31198418 PMCID: PMC6526521 DOI: 10.1155/2019/5653180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Genes and environmental stimuli cooperate in the regulation of brain development and formation of the adult neuronal architecture. Genetic alterations or exposure to perturbing environmental conditions, therefore, can lead to altered neural processes associated with neurodevelopmental disorders and brain disabilities. In this context, environmental enrichment emerged as a promising and noninvasive experimental treatment for favoring recovery of cognitive and sensory functions in different neurodevelopmental disorders. The aim of this review is to depict, mainly through the much explicative examples of amblyopia, Down syndrome, and Rett syndrome, the increasing interest in the potentialities and applications of enriched environment-like protocols in the field of neurodevelopmental disorders and the understanding of the molecular mechanisms underlying the beneficial effects of these protocols, which might lead to development of pharmacological interventions.
Collapse
|
37
|
Mechanisms underlying a critical period of respiratory development in the rat. Respir Physiol Neurobiol 2019; 264:40-50. [PMID: 30999061 DOI: 10.1016/j.resp.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/13/2023]
Abstract
Twenty-five years ago, Filiano and Kinney (1994) proposed that a critical period of postnatal development constitutes one of the three risk factors for sudden infant death syndrome (SIDS). The underlying mechanism was poorly understood. In the last 17 years, much has been uncovered on this period in the rat. Against several expected trends of development, abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory system at P12-13. This results in a transient synaptic imbalance with suppressed excitation and enhanced inhibition, and the response to acute hypoxia is the weakest at this time, both at the cellular and system's levels. The basis for the synaptic imbalance is likely to be contributed by a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors in multiple brain stem respiratory-related nuclei during the critical period. Exogenous BDNF or a TrkB agonist partially reverses the synaptic imbalance, whereas a TrkB antagonist accentuates the imbalance. A transient down-regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) at P12 in respiratory-related nuclei also contributes to the vulnerability of this period. Carotid body denervation during this time or perinatal hyperoxia merely delays and sometimes prolongs, but not eliminate the critical period. The rationale for the necessity of the critical period in postnatal development is discussed.
Collapse
|
38
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
39
|
Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13:38. [PMID: 30804738 PMCID: PMC6370742 DOI: 10.3389/fnins.2019.00038] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Aging Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 2018; 13:64. [PMID: 30541602 PMCID: PMC6291983 DOI: 10.1186/s13024-018-0299-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jing Ping
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Ali Shariati M, Kumar V, Yang T, Chakraborty C, Barres BA, Longo FM, Liao YJ. A Small Molecule TrkB Neurotrophin Receptor Partial Agonist as Possible Treatment for Experimental Nonarteritic Anterior Ischemic Optic Neuropathy. Curr Eye Res 2018; 43:1489-1499. [PMID: 30273053 PMCID: PMC10710940 DOI: 10.1080/02713683.2018.1508726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) and activation of its high affinity receptor tropomyosin kinase (Trk) B promote retinal ganglion cells (RGCs) survival following injury. In this study, we tested the effects of LM22A-4, a small molecule TrkB receptor-specific partial agonist, on RGC survival in vitro and in experimental nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years. METHODS We assessed drug effects on immunopanned, cultured RGCs and calculated RGC survival and assessed TrkB receptor activation by mitogen-activated protein (MAP) kinase translocation. To assess effects in vivo, we induced murine AION and treated the animals with one intravitreal injection and three-week systemic treatment. We measured drug effects using serial spectral-domain optical coherence tomography (OCT) and quantified retinal Brn3A+ RGC density three weeks after ischemia. RESULTS In vitro, LM22A-4 significantly increased the survival of cultured RGCs at day 2 (95% CI control: 8.4-13.6; LM22A-4: 23.7-30.3; BDNF: 24.3-29.9; P ≤ 0.0001), similar to the effect of the endogenous TrkB receptor ligand BDNF. There was also significant nuclear and cytoplasmic translocation of MAP kinase (95% CI control: 0.9-6.8; LM22A-4: 38.8-84.4; BDNF: 64.0-93.0; P = 0.0002), a known downstream event of TrkB receptor activation. Following AION, LM22A-4 treatment led to significant preservation of the ganglion cell complex (95% CI: AION-PBS: 66.8-70.7%; AION-LM22A-4: 70.0-73.1; P = 0.03) and total retinal thickness (95% CI: AION-PBS: 185-196%; AION-LM22A-4: 195-203; P = 0.002) as measured by OCT compared with non-treated eyes. There was also significant rescue of the Brn3A+ RGC density on morphometric analysis of whole mount retinae (95% CI control: 2360-2629; AION-PBS: 1647-2008 cells/mm2; AION-LM22A-4: 1958-2216 cells/mm2; P = 0.02). CONCLUSIONS TrkB receptor partial agonist LM22A-4 promoted survival of cultured RGCs in vitro by TrkB receptor activation, and treatment in vivo led to increased survival of RGCs after optic nerve ischemia, providing support that LM22A-4 may be effective therapy to treat ischemic optic neuropathy. ABBREVIATIONS AION: anterior ischemic optic neuropathy, BDNF: Brain-derived neurotrophic factor, GCC: ganglion cell complex, MAP: mitogen-activated protein, OCT: spectral-domain optical coherence tomography, OD: right eye, ON: optic nerve, ONH: optic nerve head, OS: left eye, RGC: retinal ganglion cell; Trk: tropomyosin kinase.
Collapse
Affiliation(s)
- Mohammad Ali Shariati
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Varun Kumar
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Tao Yang
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Ben Anthony Barres
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Frank Michael Longo
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Yaping Joyce Liao
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
42
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Tarquinio DC, Hou W, Neul JL, Berkmen GK, Drummond J, Aronoff E, Harris J, Lane JB, Kaufmann WE, Motil KJ, Glaze DG, Skinner SA, Percy AK. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 2018; 40:515-529. [PMID: 29657083 PMCID: PMC6026556 DOI: 10.1016/j.braindev.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, is associated with a peculiar breathing disturbance exclusively during wakefulness that is distressing, and can even prompt emergency resuscitation. Through the RTT Natural History Study, we characterized cross sectional and longitudinal characteristics of awake breathing abnormalities in RTT and identified associated clinical features. Participants were recruited from 2006 to 2015, and cumulative lifetime prevalence of breathing dysfunction was determined using the Kaplan-Meier estimator. Risk factors were assessed using logistic regression. Of 1205 participants, 1185 had sufficient data for analysis, including 922 females with classic RTT, 778 of whom were followed longitudinally for up to 9.0 years, for a total of 3944 person-years. Participants with classic or atypical severe RTT were more likely to have breathing dysfunction (nearly 100% over the lifespan) compared to those with atypical mild RTT (60-70%). Remission was common, lasting 1 year on average, with 15% ending the study in terminal remission. Factors associated with higher odds of severe breathing dysfunction included poor gross and fine motor function, frequency of stereotypical hand movements, seizure frequency, prolonged corrected QT interval on EKG, and two quality of life metrics: caregiver concern about physical health and contracting illness. Factors associated with lower prevalence of severe breathing dysfunction included higher body mass index and head circumference Z-scores, advanced age, and severe scoliosis or contractures. Awake breathing dysfunction is common in RTT, more so than seizures, and is associated with function, quality of life and risk for cardiac dysrhythmia.
Collapse
Affiliation(s)
- Daniel C. Tarquinio
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Wei Hou
- Statistical analysis, Stony Brook University Medical Center, Stony Brook, NY
| | | | - Gamze Kilic Berkmen
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Jana Drummond
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Elizabeth Aronoff
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
45
|
Merkouris S, Barde YA, Binley KE, Allen ND, Stepanov AV, Wu NC, Grande G, Lin CW, Li M, Nan X, Chacon-Fernandez P, DiStefano PS, Lindsay RM, Lerner RA, Xie J. Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc Natl Acad Sci U S A 2018; 115:E7023-E7032. [PMID: 29987039 PMCID: PMC6065019 DOI: 10.1073/pnas.1806660115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The diverse physiological roles of the neurotrophin family have long prompted exploration of their potential as therapeutic agents for nerve injury and neurodegenerative diseases. To date, clinical trials of one family member, brain-derived neurotrophic factor (BDNF), have disappointingly failed to meet desired endpoints. Contributing to these failures is the fact that BDNF is pharmaceutically a nonideal biologic drug candidate. It is a highly charged, yet is a net hydrophobic molecule with a low molecular weight that confers a short t1/2 in man. To circumvent these shortcomings of BDNF as a drug candidate, we have employed a function-based cellular screening assay to select activating antibodies of the BDNF receptor TrkB from a combinatorial human short-chain variable fragment antibody library. We report here the successful selection of several potent TrkB agonist antibodies and detailed biochemical and physiological characterization of one such antibody, ZEB85. By using a human TrkB reporter cell line and BDNF-responsive GABAergic neurons derived from human ES cells, we demonstrate that ZEB85 is a full agonist of TrkB, comparable in potency to BDNF toward human neurons in activation of TrkB phosphorylation, canonical signal transduction, and mRNA transcriptional regulation.
Collapse
Affiliation(s)
- Spyros Merkouris
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Kate E Binley
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Nicholas D Allen
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Alexey V Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nicholas C Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Meng Li
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Xinsheng Nan
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | | | | | | | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
46
|
Ohja K, Gozal E, Fahnestock M, Cai L, Cai J, Freedman JH, Switala A, El-Baz A, Barnes GN. Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation. Neuromolecular Med 2018; 20:161-173. [PMID: 29691724 PMCID: PMC5942347 DOI: 10.1007/s12017-018-8488-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASD) are the most prevalent set of pediatric neurobiological disorders. The etiology of ASD has both genetic and environmental components including possible dysfunction of the immune system. The relationship of the immune system to aberrant neural circuitry output in the form of altered behaviors and communication characterized by ASD is unknown. Dysregulation of neurotrophins such as BDNF and their signaling pathways have been implicated in ASD. While abnormal cortical formation and autistic behaviors in mouse models of immune activation have been described, no one theory has been described to link activation of the immune system to specific brain signaling pathways aberrant in ASD. In this paper we explore the relationship between neurotrophin signaling, the immune system and ASD. To this effect we hypothesize that an interplay of dysregulated immune system, synaptogenic growth factors and their signaling pathways contribute to the development of ASD phenotypes.
Collapse
Affiliation(s)
- Kshama Ohja
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lu Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andy Switala
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Gregory Neal Barnes
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Spafford Ackerly Chair in Child and Adolescent Psychiatry, University of Louisville Autism Center, 1405 East Burnett Avenue, Louisville, KY, 40217, USA.
| |
Collapse
|
47
|
Gogliotti RG, Fisher NM, Stansley BJ, Jones CK, Lindsley CW, Conn PJ, Niswender CM. Total RNA Sequencing of Rett Syndrome Autopsy Samples Identifies the M 4 Muscarinic Receptor as a Novel Therapeutic Target. J Pharmacol Exp Ther 2018; 365:291-300. [PMID: 29523700 PMCID: PMC5878667 DOI: 10.1124/jpet.117.246991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 02/04/2023] Open
Abstract
Mutations in the MeCP2 gene are responsible for the neurodevelopmental disorder Rett syndrome (RTT). MeCP2 is a DNA-binding protein whose abundance and ability to complex with histone deacetylase 3 is linked to the regulation of chromatin structure. Consequently, loss-of-function mutations in MeCP2 are predicted to have broad effects on gene expression. However, to date, studies in mouse models of RTT have identified a limited number of gene or pathway-level disruptions, and even fewer genes have been identified that could be considered amenable to classic drug discovery approaches. Here, we performed RNA sequencing (RNA-seq) on nine motor cortex and six cerebellar autopsy samples from RTT patients and controls. This approach identified 1887 significantly affected genes in the motor cortex and 2110 genes in the cerebellum, with a global trend toward increased expression. Pathway-level analysis identified enrichment in genes associated with mitogen-activated protein kinase signaling, long-term potentiation, and axon guidance. A survey of our RNA-seq results also identified a significant decrease in expression of the CHRM4 gene, which encodes a receptor [muscarinic acetylcholine receptor 4 (M4)] that is the subject of multiple large drug discovery efforts for schizophrenia and Alzheimer's disease. We confirmed that CHRM4 expression was decreased in RTT patients, and, excitingly, we demonstrated that M4 potentiation normalizes social and cognitive phenotypes in Mecp2+/- mice. This work provides an experimental paradigm in which translationally relevant targets can be identified using transcriptomics in RTT autopsy samples, back-modeled in Mecp2+/- mice, and assessed for preclinical efficacy using existing pharmacological tool compounds.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Nicole M Fisher
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Branden J Stansley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Carrie K Jones
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Craig W Lindsley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - P Jeffrey Conn
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Colleen M Niswender
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| |
Collapse
|
48
|
Mellios N, Feldman DA, Sheridan SD, Ip JP, Kwok S, Amoah SK, Rosen B, Rodriguez BA, Crawford B, Swaminathan R, Chou S, Li Y, Ziats M, Ernst C, Jaenisch R, Haggarty SJ, Sur M. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry 2018; 23:1051-1065. [PMID: 28439102 PMCID: PMC5815944 DOI: 10.1038/mp.2017.86] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/12/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
Rett syndrome (RTT) is an X-linked, neurodevelopmental disorder caused primarily by mutations in the methyl-CpG-binding protein 2 (MECP2) gene, which encodes a multifunctional epigenetic regulator with known links to a wide spectrum of neuropsychiatric disorders. Although postnatal functions of MeCP2 have been thoroughly investigated, its role in prenatal brain development remains poorly understood. Given the well-established importance of microRNAs (miRNAs) in neurogenesis, we employed isogenic human RTT patient-derived induced pluripotent stem cell (iPSC) and MeCP2 short hairpin RNA knockdown approaches to identify novel MeCP2-regulated miRNAs enriched during early human neuronal development. Focusing on the most dysregulated miRNAs, we found miR-199 and miR-214 to be increased during early brain development and to differentially regulate extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase and protein kinase B (PKB/AKT) signaling. In parallel, we characterized the effects on human neurogenesis and neuronal differentiation brought about by MeCP2 deficiency using both monolayer and three-dimensional (cerebral organoid) patient-derived and MeCP2-deficient neuronal culture models. Inhibiting miR-199 or miR-214 expression in iPSC-derived neural progenitors deficient in MeCP2 restored AKT and ERK activation, respectively, and ameliorated the observed alterations in neuronal differentiation. Moreover, overexpression of miR-199 or miR-214 in the wild-type mouse embryonic brains was sufficient to disturb neurogenesis and neuronal migration in a similar manner to Mecp2 knockdown. Taken together, our data support a novel miRNA-mediated pathway downstream of MeCP2 that influences neurogenesis via interactions with central molecular hubs linked to autism spectrum disorders.
Collapse
Affiliation(s)
- Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131,Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139,Correspondence to and
| | - Danielle A. Feldman
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Steven D. Sheridan
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jacque P.K. Ip
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Showming Kwok
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen K. Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131
| | - Bess Rosen
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brian A. Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131
| | - Benjamin Crawford
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Radha Swaminathan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131
| | - Stephanie Chou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Mark Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Carl Ernst
- Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139,Correspondence to and
| |
Collapse
|
49
|
Li W, Bellot-Saez A, Phillips ML, Yang T, Longo FM, Pozzo-Miller L. A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Dis Model Mech 2018; 10:837-845. [PMID: 28679669 PMCID: PMC5536912 DOI: 10.1242/dmm.029959] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein-2 (MECP2), a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are reduced in RTT autopsy brains and in multiple brain areas of Mecp2-deficient mice. Furthermore, experimental interventions that increase BDNF levels improve RTT-like phenotypes in Mecp2 mutant mice. Here, we characterized the actions of a small-molecule ligand of the BDNF receptor TrkB in hippocampal function in Mecp2 mutant mice. Systemic treatment of female Mecp2 heterozygous (HET) mice with LM22A-4 for 4 weeks improved hippocampal-dependent object location memory and restored hippocampal long-term potentiation (LTP). Mechanistically, LM22A-4 acts to dampen hyperactive hippocampal network activity, reduce the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), and reduce the frequency of spontaneous tetrodotoxin-resistant Ca2+ signals in Mecp2 mutant hippocampal neurons, making them comparable to those features observed in wild-type neurons. Together, these observations indicate that LM22A-4 is a promising therapeutic candidate for the treatment of hippocampal dysfunction in RTT. Editors' choice: The brain-penetrant BDNF loop domain mimetic LM22A-4 improves synaptic plasticity and spatial discrimination memory in Rett syndrome mice, making it a promising therapeutic candidate for the treatment of hippocampal dysfunction.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alba Bellot-Saez
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary L Phillips
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Totoson P, Pedard M, Marie C, Demougeot C. Activation of endothelial TrkB receptors induces relaxation of resistance arteries. Vascul Pharmacol 2018; 106:46-53. [PMID: 29471140 DOI: 10.1016/j.vph.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/18/2022]
Abstract
While brain-derived neurotrophic factor (BDNF) was previously reported to induce relaxation of conduit artery, whether the BDNF/TrkB (tropomyosin-related kinase) pathway is involved in the tone control of resistance arteries is not known. This study investigated TrkB receptors levels/localization and the vasomotor effect of the TrkB receptor agonist LM22A-4 in isolated third-order mesenteric arteries from rats. Immunostaining revealed the presence of both full-length and truncated TrkB receptors, especially at the endothelial level. By using wire myography, LM22A-4 induced vascular relaxation that was significantly decreased by cyclotraxin B as a non-competitive TrkB antagonist and fully prevented by endothelium removal. Inhibitors of NO, EDHF, PGI2 production and the PI3K/Akt pathways separately reduced LM22A-4 induced-relaxation. By contrast, inhibition of Raf/MEK, PLCγ and CaM/CaMKII pathways did not change the relaxant effect of LM22A-4. Interestingly, BDNF also induced an endothelium and TrkB-dependent relaxation. These results indicate that endothelial TrkB activation results in the relaxation of resistance vessels via PI3K/Akt-induced eNOS phosphorylation and production of EDHF and PGI2. These data are consistent with the contribution of the endothelial BDNF/TrkB pathway to the regulation of peripheral vascular tone. They also validate the use of LM22A-4 as a reliable pharmacological agent for studying the vascular effect of BDNF.
Collapse
Affiliation(s)
- P Totoson
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France
| | - M Pedard
- INSERM UMR 1093-CAPS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - C Marie
- INSERM UMR 1093-CAPS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - C Demougeot
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|