1
|
Zapadka TE, Tran NM, Demb JB. Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell. J Physiol 2025. [PMID: 39985791 DOI: 10.1113/jp286414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
Retinal ganglion cells (RGCs) are the sole output neurons of the retina and convey visual information to the brain via their axons in the optic nerve. Following injury to the optic nerve, RGC axons degenerate and many cells die. For example, a model of axon injury, the optic nerve crush (ONC), kills ∼80% of RGCs after 2 weeks. Surviving cells are biased towards 'resilient' types, including several with sustained firing to light stimulation. RGC survival may depend on activity, and there is limited understanding of how or why activity changes following optic nerve injury. Here we quantified the electrophysiological properties of a highly resilient RGC type, the sustained ON-Alpha (AlphaONS) RGC, 7 days after ONC with extracellular and whole-cell patch clamp recording. Both light- and current-driven firing were reduced after ONC, but synaptic inputs were largely intact. Resting membrane potential and input resistance were relatively unchanged, while voltage-gated currents were impaired, including a reduction in voltage-gated sodium channel current and channel density in the axon initial segment. Hyperpolarization or chelation of intracellular calcium partially rescued firing rates. Extracellular recordings at 3 days following ONC showed normal light-evoked firing from AlphaONS RGCs and other Alpha RGCs, including susceptible types. These data suggest that an injured resilient RGC reduces its activity by 1 week after injury as a consequence of reduced voltage-gated current and downregulation of intrinsic excitability via a Ca2+-dependent mechanism. Reduced excitability may be due to degradation of the axon but could also be energetically beneficial, preserving energy for survival and regeneration. KEY POINTS: Retinal ganglion cell (RGC) types show diverse rates of survival after axon injury. A resilient RGC type (sustained ON-Alpha RGC) maintains its synaptic inputs 1 week after injury. The resilient RGC type shows diminished firing and reduced expression of axon initial segment genes 1 week after injury Activity deficits reflect dysfunction of intrinsic properties (Na+ channels, intracellular Ca2+), not changes to synaptic input. Both resilient and susceptible Alpha RGC types show intact firing at 3 days after injury, suggesting that activity at this time point does not predict resilience.
Collapse
Affiliation(s)
- Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan B Demb
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Meraner P, Avetisyan A, Swift K, Cheng YC, Barria R, Freeman MR. Hypoxia-inducible factor 1 protects neurons from Sarm1-mediated neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633664. [PMID: 39868134 PMCID: PMC11761811 DOI: 10.1101/2025.01.17.633664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Sarm1 NAD + hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O 2 -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression. We observed neuroprotection after depletion of VHL or other factors required for HIF-1 degradation, and expression of a non-ubiquitinated HIF-1 variant led to even stronger blockade of axon degeneration in mammals and Drosophila . Neuroprotection required HIF-1 DNA binding, prolonged expression, and resulted in broad gene expression changes. Unexpectedly, stabilized HIF-1 prevented the precipitous NAD + loss driven by Sarm1 activation in neurons, despite NAD + hydrolase activity being intrinsic to the Sarm1 TIR domain. Our work argues hypoxia inhibits Sarm1 activity through HIF-1 driven transcriptional changes, rendering neurons less sensitive to Sarm1-mediated neurodegeneration when in a hypoxic state. Competing interests Marc Freeman is co-founder of Nura Bio, a biotech startup pursuing novel neuroprotective therapies including SARM1 inhibition. The remaining authors declare no competing interests.
Collapse
|
3
|
Feist F, Wagner M, Baumann G, Spirk S, Biegler V, Jiang Q, Nypelö T. A cellulosic fibre foam as a bicycle helmet impact liner for brain injury mitigation in oblique impacts. Heliyon 2025; 11:e40790. [PMID: 39790884 PMCID: PMC11714417 DOI: 10.1016/j.heliyon.2024.e40790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs. Results showed that BRC outperformed EPS in oblique impacts, reducing angular accelerations and velocity changes by approximately 33 %, particularly for z-axis rotations. The average risk of sustaining AIS2 injuries and concussions was lower for BRC (8 % and 34 % respectively) compared to EPS (13 % and 46 %). However, BRC helmets exhibited bottoming out in certain straight impacts, potentially failing certification tests. This limitation was addressed through design modifications. The study demonstrates that cellulosic fibre network structures have the potential to replace fossil-based foams in bicycle helmets while providing adequate protection and improved performance in mitigating rotational forces.
Collapse
Affiliation(s)
- Florian Feist
- Graz University of Technology, Vehicle Safety Institute, Crashworthy Biobased Composites, Inffeldgasse 13, 8010 Graz
| | - Markus Wagner
- Graz University of Technology, Vehicle Safety Institute, Crashworthy Biobased Composites, Inffeldgasse 13, 8010 Graz
| | - Georg Baumann
- Graz University of Technology, Vehicle Safety Institute, Crashworthy Biobased Composites, Inffeldgasse 13, 8010 Graz
| | - Stefan Spirk
- Graz University of Technology, Institute for Bioproducts and Paper Technology, Inffeldgasse 23, 8010 Graz
| | - Veronika Biegler
- University of Vienna, Institute of Materials Chemistry and Research, Währinger Straße 42, 1090 Vienna, Austria
| | - Qixiang Jiang
- University of Vienna, Institute of Materials Chemistry and Research, Währinger Straße 42, 1090 Vienna, Austria
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 41296 Gothenburg
- Aalto University, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo
| |
Collapse
|
4
|
Michalettos G, Clausen F, Rostami E, Marklund N. Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury. Neurotherapeutics 2025; 22:e00472. [PMID: 39428261 PMCID: PMC11742853 DOI: 10.1016/j.neurot.2024.e00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.
Collapse
Affiliation(s)
- Georgios Michalettos
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Lund University Hospital, Lund, Sweden.
| |
Collapse
|
5
|
Harris AC, Sun J, Jacobs KM. Concussive Head Trauma Deranges Axon Initial Segment Function in Axotomized and Intact Layer 5 Pyramidal Neurons. J Neurotrauma 2024; 41:244-270. [PMID: 37650832 PMCID: PMC11074420 DOI: 10.1089/neu.2022.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The axon initial segment (AIS) is a critical locus of control of action potential (AP) generation and neuronal information synthesis. Concussive traumatic brain injury gives rise to diffuse axotomy, and the majority of neocortical axonal injury arises at the AIS. Consequently, concussive traumatic brain injury might profoundly disrupt the functional specialization of this region. To investigate this hypothesis, one and two days after mild central fluid percussion injury in Thy1-YFP-H mice, we recorded high-resolution APs from axotomized and adjacent intact layer 5 pyramidal neurons and applied a second derivative (2o) analysis to measure the AIS- and soma-regional contributions to the AP upstroke. All layer 5 pyramidal neurons recorded from sham animals manifested two stark 2o peaks separated by a negative intervening slope. In contrast, within injured mice, we discovered a subset of axotomized layer 5 pyramidal neurons in which the AIS-regional 2o peak was abolished, a functional perturbation associated with diminished excitability, axonal sprouting and distention of the AIS as assessed by staining for ankyrin-G. Our analysis revealed an additional subpopulation of both axotomized and intact layer 5 pyramidal neurons that manifested a melding together of the AIS- and soma-regional 2o peaks, suggesting a more subtle aberration of sodium channel function and/or translocation of the AIS initiation zone closer to the soma. When these experiments were repeated in animals in which cyclophilin-D was knocked out, these effects were ameliorated, suggesting that trauma-induced AIS functional perturbation is associated with mitochondrial calcium dysregulation.
Collapse
Affiliation(s)
- Alan C. Harris
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, Delaware, USA
| | - Kimberle M. Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Wang LM, Kuhl E. Mechanics of axon growth and damage: A systematic review of computational models. Semin Cell Dev Biol 2023; 140:13-21. [PMID: 35474150 DOI: 10.1016/j.semcdb.2022.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Normal axon development depends on the action of mechanical forces both generated within the cytoskeleton and outside the cell, but forces of large magnitude or rate cause damage instead. Computational models aid scientists in studying the role of mechanical forces in axon growth and damage. These studies use simulations to evaluate how different sources of force generation within the cytoskeleton interact with each other to regulate axon elongation and retraction. Furthermore, mathematical models can help optimize externally applied tension to promote axon growth without causing damage. Finally, scientists also use simulations of axon damage to investigate how forces are distributed among different components of the axon and how the tissue surrounding an axon influences its susceptibility to injury. In this review, we discuss how computational studies complement experimental studies in the areas of axon growth, regeneration, and damage.
Collapse
Affiliation(s)
- Lucy M Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Zheng XS, Yang Q, Vazquez A, Cui XT. Imaging the stability of chronic electrical microstimulation using electrodes coated with PEDOT/CNT and iridium oxide. iScience 2022; 25:104539. [PMID: 35769881 PMCID: PMC9234710 DOI: 10.1016/j.isci.2022.104539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time. We observed dynamic changes in stimulation stability over time and a significant advantage in energy efficiency using PC coated electrodes over IrOx coated electrodes. In a subset of mice, we observed abnormal ictal cortical responses or cortical spreading depression using stimulation parameters commonly used in intracortical stimulation applications, suggesting the need to investigate the potential neuronal damage and redefine the stimulation safety limit. This study not only revealed the dynamic changes in stimulation efficiency after implantation but also reiterates the potential for PC as a high-efficiency material in chronic neuromodulation.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Qianru Yang
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Alberto Vazquez
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- Department of Radiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, PA 15219, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, PA 15219, USA
| |
Collapse
|
8
|
Harris AC, Jin XT, Greer JE, Povlishock JT, Jacobs KM. Somatostatin interneurons exhibit enhanced functional output and resilience to axotomy after mild traumatic brain injury. Neurobiol Dis 2022; 171:105801. [PMID: 35753625 PMCID: PMC9383472 DOI: 10.1016/j.nbd.2022.105801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron. We found that the SOM population is resilient to axotomy, representing only 10% of the global burden of inhibitory interneuron axotomy, a result congruous with past work demonstrating that parvalbumin (PV) interneurons bear most of the burden of interneuron axotomy. However, the intact structure of SOM interneurons after injury did not translate to normal cellular function. One day after mTBI, the SOM population is more intrinsically excitable and demonstrates enhanced synaptic efficacy upon post-synaptic layer 5 pyramidal neurons as measured by optogenetics, yet the global evoked inhibitory tone within layer 5 is stable. Simultaneously, there exists a significant increase in the frequency of miniature inhibitory post-synaptic currents within layer 5 pyramidal neurons. These results are consistent with a scheme in which 1 day after mTBI, SOM interneurons are stimulated to compensate for the release from inhibition of layer 5 pyramidal neurons secondary to the disproportionate axotomy of PV interneurons. The enhancement of SOM interneuron intrinsic excitability and synaptic efficacy may represent the initial phase of a dynamic process of attempted autoregulation of neocortical network homeostasis secondary to mTBI.
Collapse
Affiliation(s)
- Alan C Harris
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Xiao-Tao Jin
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - John E Greer
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - John T Povlishock
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Kimberle M Jacobs
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| |
Collapse
|
9
|
Jacotte-Simancas A, Middleton JW, Stielper ZF, Edwards S, Molina PE, Gilpin NW. Brain Injury Effects on Neuronal Activation and Synaptic Transmission in the Basolateral Amygdala of Adult Male and Female Wistar Rats. J Neurotrauma 2022; 39:544-559. [PMID: 35081744 PMCID: PMC8978566 DOI: 10.1089/neu.2021.0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) is defined as brain damage produced by an external mechanical force that leads to behavioral, cognitive, and psychiatric sequelae. The basolateral amygdala (BLA) is involved in emotional regulation, and its function and morphology are altered following TBI. Little is known about potential sex-specific effects of TBI on BLA neuronal function, but it is critical for the field to identify potential sex differences in TBI effects on brain and behavior. Here, we hypothesized that TBI would produce sex-specific acute (1 h) effects on BLA neuronal activation, excitability, and synaptic transmission in adult male and female rats. Forty-nine Wistar rats (n = 23 males and 26 females) were randomized to TBI (using lateral fluid percussion) or Sham groups in two separate studies. Study 1 used in situ hybridization (i.e., RNAscope) to measure BLA expression of c-fos (a marker of cell activation), vGlut, and vGat (markers of glutamatergic and GABAergic neurons, respectively) messenger RNA (mRNA). Study 2 used slice electrophysiology to measure intrinsic excitability and excitatory/inhibitory synaptic transmission in putative pyramidal neurons in the BLA. Physiological measures of injury severity were collected from all animals. Our results show that females exhibit increased apnea duration and reduced respiratory rate post-TBI relative to males. In male and female rats, TBI increased c-fos expression in BLA glutamatergic cells but not in BLA GABAergic cells, and TBI increased firing rate in BLA pyramidal neurons. Further, TBI increased spontaneous excitatory and inhibitory postsynaptic current (sEPSC and sIPSC) amplitude in BLA neurons of females relative to all other groups. TBI increased sEPSC frequency in BLA neurons of females relative to males but did not alter sIPSC frequency. In summary, lateral fluid percussion produced different physiological responses in male and female rats, as well as sex-specific alterations in BLA neuronal activation, excitability, and synaptic transmission 1 h after injury.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jason W. Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zachary F. Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
SARM1 signaling mechanisms in the injured nervous system. Curr Opin Neurobiol 2021; 69:247-255. [PMID: 34175654 DOI: 10.1016/j.conb.2021.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
Axon degeneration is a prominent feature of the injured nervous system, occurs across neurological diseases, and drives functional loss in neural circuits. We have seen a paradigm shift in the last decade with the realization that injured axons are capable of actively driving their own destruction through the sterile-alpha and TIR motif containing 1 (SARM1) protein. Early studies of Wallerian degeneration highlighted a central role for NAD+ metabolites in axon survival, and this association has grown even stronger in recent years with a deeper understanding of SARM1 biology. Here, we review our current knowledge of SARM1 function in vivo and our evolving understanding of its complex architecture and regulation by injury-dependent changes in the local metabolic environment. The field is converging on a model whereby SARM1 acts as a sensor for metabolic changes that occur after injury and then drives catastrophic NAD+ loss to promote degeneration. However, a number of observations suggest that SARM1 biology is more complicated, and there remains much to learn about how SARM1 governs nervous system responses to injury or disease.
Collapse
|
11
|
High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nat Commun 2021; 12:2613. [PMID: 33972519 PMCID: PMC8110563 DOI: 10.1038/s41467-021-22744-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.
Collapse
|
12
|
Schaeffer J, Belin S. Standing By: How Intact Neurons React to Axon Injury. Neuron 2021; 109:393-395. [PMID: 33539772 DOI: 10.1016/j.neuron.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nerve injury affects the neurophysiology of severed and bystander axons. In this issue of Neuron, Hsu et al. demonstrate that this early effect is cell-autonomous and driven by dSarm, independently of its NADase activity otherwise required for axon degeneration. The authors show that axon injury signal spreads to intact neurons via glial cells.
Collapse
Affiliation(s)
- Julia Schaeffer
- Université Grenoble Alpes, Inserm, U 1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Stephane Belin
- Université Grenoble Alpes, Inserm, U 1216, Grenoble Institut Neurosciences, Grenoble, France.
| |
Collapse
|
13
|
Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 2021; 109:473-487.e5. [PMID: 33296670 PMCID: PMC7864878 DOI: 10.1016/j.neuron.2020.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.
Collapse
Affiliation(s)
- Jiun-Min Hsu
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Megan M Corty
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle Mathieson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen M Peters
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan K. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 2020; 130:6005-6020. [PMID: 33044227 PMCID: PMC7598047 DOI: 10.1172/jci134793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Edema is an important target for clinical intervention after traumatic brain injury (TBI). We used in vivo cellular resolution imaging and electrophysiological recording to examine the ionic mechanisms underlying neuronal edema and their effects on neuronal and network excitability after controlled cortical impact (CCI) in mice. Unexpectedly, we found that neuronal edema 48 hours after CCI was associated with reduced cellular and network excitability, concurrent with an increase in the expression ratio of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2. Treatment with the CCC blocker bumetanide prevented neuronal swelling via a reversal in the NKCC1/KCC2 expression ratio, identifying altered chloride flux as the mechanism of neuronal edema. Importantly, bumetanide treatment was associated with increased neuronal and network excitability after injury, including increased susceptibility to spreading depolarizations (SDs) and seizures, known agents of clinical worsening after TBI. Treatment with mannitol, a first-line edema treatment in clinical practice, was also associated with increased susceptibility to SDs and seizures after CCI, showing that neuronal volume reduction, regardless of mechanism, was associated with an excitability increase. Finally, we observed an increase in excitability when neuronal edema normalized by 1 week after CCI. We conclude that neuronal swelling may exert protective effects against damaging excitability in the aftermath of TBI and that treatment of edema has the potential to reverse these effects.
Collapse
Affiliation(s)
| | | | - Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - K.C. Brennan
- Department of Neurology, School of Medicine, and
| |
Collapse
|
16
|
Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M. Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization-activated cation current (I h ) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 2020; 31:156-169. [PMID: 33107111 DOI: 10.1002/hipo.23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Hajisoltani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Fucich EA, Stielper ZF, Cancienne HL, Edwards S, Gilpin NW, Molina PE, Middleton JW. Endocannabinoid degradation inhibitors ameliorate neuronal and synaptic alterations following traumatic brain injury. J Neurophysiol 2020; 123:707-717. [PMID: 31913777 PMCID: PMC7052644 DOI: 10.1152/jn.00570.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous work showed that lateral fluid percussion injury to the sensorimotor cortex (SMC) of anesthetized rats increased neuronal synaptic hyperexcitability in layer 5 (L5) neurons in ex vivo brain slices 10 days postinjury. Furthermore, endocannabinoid (EC) degradation inhibition via intraperitoneal JZL184 injection 30 min postinjury attenuated synaptic hyperexcitability. This study tested the hypothesis that traumatic brain injury (TBI) induces synaptic and intrinsic neuronal alterations of L5 SMC pyramidal neurons and that these alterations are significantly attenuated by in vivo post-TBI treatment with EC degradation inhibitors. We tested the effects of systemically administered EC degradation enzyme inhibitors (JZL184, MJN110, URB597, or JZL195) with differential selectivity for fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on electrophysiological parameters in SMC neurons of TBI- and sham-treated rats 10 days post-TBI. We recorded intrinsic neuronal properties, including resting membrane voltage, input resistance, spike threshold, spiking responses to current input, voltage "sag" (rebound response to hyperpolarization-activated inward current), and burst firing. We also measured the frequency and amplitude of spontaneous excitatory postsynaptic currents. We then used the aggregate parameter sets (intrinsic + synaptic properties) to apply a machine learning classification algorithm to quantitatively compare neural population responses from each experimental group. Collectively, our electrophysiological and computational results indicate that sham neurons are the most distinguishable from TBI neurons. Administration of EC degradation inhibitors post-TBI exerted varying degrees of rescue, approximating the neuronal phenotype of sham neurons, with neurons from TBI/JZL195 (a dual MAGL/FAAH inhibitor) being most similar to neurons from sham rats.NEW & NOTEWORTHY This study elucidates neuronal properties altered by traumatic brain injury (TBI) in layer 5 of sensorimotor cortex, which may be implicated in post-TBI circuit dysfunction. We compared effects of systemic administration of four different endocannabinoid degradation inhibitors within a clinically relevant window postinjury. Electrophysiological measures and using a machine learning classification algorithm collectively suggest that pharmacological inhibitors targeting both monoacylglycerol lipase and fatty acid amide hydrolase (e.g., JZL195) may be most efficacious in attenuating TBI-induced neuronal dysfunction at site of injury.
Collapse
Affiliation(s)
- Elizabeth A Fucich
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zachary F Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heather L Cancienne
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason W Middleton
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
19
|
Simultaneous electrophysiological and morphological assessment of functional damage to neural networks in vitro after 30-300 g impacts. Sci Rep 2019; 9:14994. [PMID: 31628381 PMCID: PMC6802386 DOI: 10.1038/s41598-019-51541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
An enigma of mild traumatic brain injury are observations of substantial behavior and performance deficits in the absence of bleeding or other observable structural damage. Altered behavior and performance reflect changes in action potential (AP) patterns within neuronal networks, which could result from subtle subcellular responses that affect synaptic efficacy and AP production. The aim of this study was to investigate and quantify network activity changes after simulated concussions in vitro and therewith develop a platform for simultaneous and direct observations of morphological and electrophysiological changes in neural networks. We used spontaneously active networks grown on microelectrode arrays (MEAs) to allow long-term multisite monitoring with simultaneous optical observations before and after impacts delivered by a ballistic pendulum (30 to 300 g accelerations). The monitoring of AP waveshape templates for long periods before and after impact provided an internal control for cell death or loss of cell-electrode coupling in the observed set of neurons. Network activity patterns were linked in real-time to high power phase contrast microscopy. There was no overt loss of glial or neuronal adhesion, even at high-g impacts. All recording experiments showed repeatable spike production responses: a loss of activity with recovery to near reference in 1 hr, followed by a slow activity decay to a stable, level plateau approximately 30–40% below reference. The initial recovery occurred in two steps: a rapid return of activity to an average 24% below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 10% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles revealed changes in firing hierarchy as well as in Phase 1 in spontaneous network oscillations that were reduced by as much as 20% 6–8 min post impact with only a partial recovery at 30 min. We also observed that normally stable nuclei developed irregular rotational motion after impact in 27 out of 30 networks. The evolution of network activity deficits and recovery can be linked with microscopically observable changes in the very cells that are generating the activity. The repeatable electrophysiological impact response profiles and oscillation changes can provide a quantitative basis for systematic evaluations of pharmacological intervention strategies. Future expansion to include fluorescent microscopy should allow detailed investigations of damage mechanisms on the subcellular level.
Collapse
|
20
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
21
|
Montanino A, Deryckere A, Famaey N, Seuntjens E, Kleiven S. Mechanical characterization of squid giant axon membrane sheath and influence of the collagenous endoneurium on its properties. Sci Rep 2019; 9:8969. [PMID: 31222074 PMCID: PMC6586665 DOI: 10.1038/s41598-019-45446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
To understand traumas to the nervous system, the relation between mechanical load and functional impairment needs to be explained. Cellular-level computational models are being used to capture the mechanism behind mechanically-induced injuries and possibly predict these events. However, uncertainties in the material properties used in computational models undermine the validity of their predictions. For this reason, in this study the squid giant axon was used as a model to provide a description of the axonal mechanical behavior in a large strain and high strain rate regime [Formula: see text], which is relevant for injury investigations. More importantly, squid giant axon membrane sheaths were isolated and tested under dynamic uniaxial tension and relaxation. From the lumen outward, the membrane sheath presents: an axolemma, a layer of Schwann cells followed by the basement membrane and a prominent layer of loose connective tissue consisting of fibroblasts and collagen. Our results highlight the load-bearing role of this enwrapping structure and provide a constitutive description that could in turn be used in computational models. Furthermore, tests performed on collagen-depleted membrane sheaths reveal both the substantial contribution of the endoneurium to the total sheath's response and an interesting increase in material nonlinearity when the collagen in this connective layer is digested. All in all, our results provide useful insights for modelling the axonal mechanical response and in turn will lead to a better understanding of the relationship between mechanical insult and electrophysiological outcome.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden.
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics section, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| |
Collapse
|
22
|
Witkowski ED, Gao Y, Gavsyuk AF, Maor I, DeWalt GJ, Eldred WD, Mizrahi A, Davison IG. Rapid Changes in Synaptic Strength After Mild Traumatic Brain Injury. Front Cell Neurosci 2019; 13:166. [PMID: 31105533 PMCID: PMC6498971 DOI: 10.3389/fncel.2019.00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans annually, but effective treatments remain inadequate due to our poor understanding of how injury impacts neural function. Data are particularly limited for mild, closed-skull TBI, which forms the majority of human cases, and for acute injury phases, when trauma effects and compensatory responses appear highly dynamic. Here we use a mouse model of mild TBI to characterize injury-induced synaptic dysfunction, and examine its progression over the hours to days after trauma. Mild injury consistently caused both locomotor deficits and localized neuroinflammation in piriform and entorhinal cortices, along with reduced olfactory discrimination ability. Using whole-cell recordings to characterize synaptic input onto piriform pyramidal neurons, we found moderate effects on excitatory or inhibitory synaptic function at 48 h after TBI and robust increase in excitatory inputs in slices prepared 1 h after injury. Excitatory increases predominated over inhibitory effects, suggesting that loss of excitatory-inhibitory balance is a common feature of both mild and severe TBI. Our data indicate that mild injury drives rapidly evolving alterations in neural function in the hours following injury, highlighting the need to better characterize the interplay between the primary trauma responses and compensatory effects during this early time period.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Ido Maor
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gloria J. DeWalt
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Adi Mizrahi
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian G. Davison
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
23
|
Abstract
Over 1.4 million people in the United States experience traumatic brain injury (TBI) each year and approximately 52,000 people die annually due to complications related to TBI. Traditionally, TBI has been viewed as a static injury with significant consequences for frontal lobe functioning that plateaus after some window of recovery, remaining relatively stable thereafter. However, over the past decade there has been growing consensus that the consequences of TBI are dynamic, with unique characteristics expressed at the individual level and over the life span. This chapter first discusses the pathophysiology of TBI in order to understand its dynamic process and then describes the behavioral changes that are the result of injury with focus on frontal lobe functions. It integrates a historical perspective on structural and functional brain-imaging approaches used to understand how TBI impacts the frontal lobes, as well as more recent approaches to examine large-scale network changes after TBI. The factors most useful for outcome prediction are surveyed, along with how the theoretical frameworks used to predict recovery have developed over time. In this chapter, the authors argue for the need to understand outcome after TBI as a dynamic process with individual trajectories, taking a network theory perspective to understand the consequences of disrupting frontal systems in TBI. Within this framework, understanding frontal lobe dysfunction within a larger coordinated neural network to study TBI may provide a novel perspective in outcome prediction and in developing individualized treatments.
Collapse
Affiliation(s)
- Rachel A Bernier
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States.
| |
Collapse
|
24
|
Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, Kokiko-Cochran ON, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018; 66:2719-2736. [PMID: 30378170 DOI: 10.1002/glia.23523] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Microglia undergo dynamic structural and transcriptional changes during the immune response to traumatic brain injury (TBI). For example, TBI causes microglia to form rod-shaped trains in the cerebral cortex, but their contribution to inflammation and pathophysiology is unclear. The purpose of this study was to determine the origin and alignment of rod microglia and to determine the role of microglia in propagating persistent cortical inflammation. Here, diffuse TBI in mice was modeled by midline fluid percussion injury (FPI). Bone marrow chimerism and BrdU pulse-chase experiments revealed that rod microglia derived from resident microglia with limited proliferation. Novel data also show that TBI-induced rod microglia were proximal to axotomized neurons, spatially overlapped with dense astrogliosis, and aligned with apical pyramidal dendrites. Furthermore, rod microglia formed adjacent to hypertrophied microglia, which clustered among layer V pyramidal neurons. To better understand the contribution of microglia to cortical inflammation and injury, microglia were eliminated prior to TBI by CSF1R antagonism (PLX5622). Microglial elimination did not affect cortical neuron axotomy induced by TBI, but attenuated rod microglial formation and astrogliosis. Analysis of 262 immune genes revealed that TBI caused profound cortical inflammation acutely (8 hr) that progressed in nature and complexity by 7 dpi. For instance, gene expression related to complement, phagocytosis, toll-like receptor signaling, and interferon response were increased 7 dpi. Critically, these acute and chronic inflammatory responses were prevented by microglial elimination. Taken together, TBI-induced neuronal injury causes microglia to structurally associate with neurons, augment astrogliosis, and propagate diverse and persistent inflammatory/immune signaling pathways.
Collapse
Affiliation(s)
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Brooke N Benner
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | | | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Eles JR, Vazquez AL, Kozai TDY, Cui XT. In vivo imaging of neuronal calcium during electrode implantation: Spatial and temporal mapping of damage and recovery. Biomaterials 2018; 174:79-94. [PMID: 29783119 PMCID: PMC5987772 DOI: 10.1016/j.biomaterials.2018.04.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 μm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; Radiology, University of Pittsburgh, United States
| | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States; Center for Neuroscience, University of Pittsburgh, United States
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
26
|
Takahashi DK, Jin S, Prince DA. Gabapentin Prevents Progressive Increases in Excitatory Connectivity and Epileptogenesis Following Neocortical Trauma. Cereb Cortex 2018; 28:2725-2740. [PMID: 28981586 PMCID: PMC6041890 DOI: 10.1093/cercor/bhx152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 11/12/2022] Open
Abstract
Neocortical injury initiates a cascade of events, some of which result in maladaptive epileptogenic reorganization of surviving neural circuits. Research focused on molecular and organizational changes that occur following trauma may reveal processes that underlie human post-traumatic epilepsy (PTE), a common and unfortunate consequence of traumatic brain injury. The latency between injury and development of PTE provides an opportunity for prophylactic intervention, once the key underlying mechanisms are understood. In rodent neocortex, injury to pyramidal neurons promotes axonal sprouting, resulting in increased excitatory circuitry that is one important factor promoting epileptogenesis. We used laser-scanning photostimulation of caged glutamate and whole-cell recordings in in vitro slices from injured neocortex to assess formation of new excitatory synapses, a process known to rely on astrocyte-secreted thrombospondins (TSPs), and to map the distribution of maladaptive circuit reorganization. We show that this reorganization is centered principally in layer V and associated with development of epileptiform activity. Short-term blockade of the synaptogenic effects of astrocyte-secreted TSPs with gabapentin (GBP) after injury suppresses the new excitatory connectivity and epileptogenesis for at least 2 weeks. Results reveal that aberrant circuit rewiring is progressive in vivo and provide further rationale for prophylactic anti-epileptogenic use of gabapentinoids following cortical trauma.
Collapse
Affiliation(s)
- D K Takahashi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sha Jin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - D A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Nolan A, Hennessy E, Krukowski K, Guglielmetti C, Chaumeil MM, Sohal VS, Rosi S. Repeated Mild Head Injury Leads to Wide-Ranging Deficits in Higher-Order Cognitive Functions Associated with the Prefrontal Cortex. J Neurotrauma 2018; 35:2425-2434. [PMID: 29732949 DOI: 10.1089/neu.2018.5731] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has long been identified as a precipitating risk factor for higher-order cognitive deficits associated with the frontal and prefrontal cortices (PFC). In addition, mild repetitive TBI (rTBI), in particular, is being steadily recognized to increase the risk of neurodegenerative disease. Thus, further understanding of how mild rTBI changes the pathophysiology of the brain to lead to cognitive impairment is warranted. The current models of rTBI lack knowledge regarding chronic higher-order cognitive functions and the underlying neuronal physiology, especially functions involving the PFC. Here, we establish that five repeated mild hits, allowing rotational acceleration of the head, lead to chronic deficits in PFC-dependent functions such as social behavior, spatial working memory, and environmental response with concomitant microgliosis and a small decrease in the adaptation rate of layer V pyramidal neurons in the medial PFC (mPFC). However, structural damage is not seen on in vivo T2-weighted magnetic resonance imaging (MRI), and extensive intrinsic excitability changes in layer V pyramidal neurons of the mPFC are not observed. Thus, this rTBI animal model can recapitulate chronic higher-order cognitive impairments without structural damage on MR imaging as observed in humans.
Collapse
Affiliation(s)
- Amber Nolan
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,3 Department of Anatomic Pathology, University of California , San Francisco, San Francisco, California
| | - Edel Hennessy
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California
| | - Karen Krukowski
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- 2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,4 Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California , San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- 2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,4 Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California , San Francisco, San Francisco, California
| | - Vikaas S Sohal
- 5 Department of Psychiatry, University of California , San Francisco, San Francisco, California
| | - Susanna Rosi
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,6 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,7 Weill Institute for Neuroscience, University of California , San Francisco, San Francisco, California.,8 Kavli Institute of Fundamental Neuroscience, University of California , San Francisco, San Francisco, California
| |
Collapse
|
28
|
Michelson NJ, Vazquez AL, Eles JR, Salatino JW, Purcell EK, Williams JJ, Cui XT, Kozai TDY. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. J Neural Eng 2018; 15:033001. [PMID: 29182149 PMCID: PMC5967409 DOI: 10.1088/1741-2552/aa9dae] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. APPROACH In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. MAIN RESULTS Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. SIGNIFICANCE To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.
Collapse
Affiliation(s)
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh
- Department of Radiology, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- Center for Neuroscience, University of Pittsburgh
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | | | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University
| | | | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- Center for Neuroscience, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
- NeuroTech Center, University of Pittsburgh Brain Institute
| |
Collapse
|
29
|
Vascak M, Jin X, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 2018; 28:1625-1644. [PMID: 28334184 PMCID: PMC5907353 DOI: 10.1093/cercor/bhx058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Xiaotao Jin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| |
Collapse
|
30
|
Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling. Nat Commun 2017; 8:625. [PMID: 28931811 PMCID: PMC5607003 DOI: 10.1038/s41467-017-00652-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
Injury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling. Spinal cord injury can induce synaptic reorganization and remodeling in the brain. Here the authors study how severed distal axons signal back to the cell body to induce hyperexcitability, loss of inhibition and enhanced presynaptic release through netrin-1.
Collapse
|
31
|
Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2017; 17:52. [PMID: 28500417 PMCID: PMC5861722 DOI: 10.1007/s11910-017-0762-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.
Collapse
Affiliation(s)
- Rosalia Paterno
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA.
| | - Kaitlin A Folweiler
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| |
Collapse
|
32
|
Ng LJ, Volman V, Gibbons MM, Phohomsiri P, Cui J, Swenson DJ, Stuhmiller JH. A Mechanistic End-to-End Concussion Model That Translates Head Kinematics to Neurologic Injury. Front Neurol 2017; 8:269. [PMID: 28663736 PMCID: PMC5471336 DOI: 10.3389/fneur.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology). A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcomes is the first step toward rationally unraveling the complexity of this multi-scale system, for better guidance of future research. This paper describes the development of the first quantitative end-to-end (E2E) multi-scale model that links gross head motion to neurological injury by integrating fundamental elements of tissue and cellular mechanical response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension) injury in the corpus callosum, with axonal functionality parameterized in terms of axonal signaling. An internal injury correlate is obtained by calculating a neurological injury measure (the average reduction in the axonal signal amplitude) over the corpus callosum. By using a neurologically based quantity rather than externally measured head kinematics, the E2E model is able to unify concussion data across a range of exposure conditions and species with greater sensitivity and specificity than correlates based on external measures. In addition, this model quantitatively links injury of the corpus callosum to observed specific neurobehavioral outcomes that reflect clinical measures of mild traumatic brain injury. This comprehensive modeling framework provides a basis for the systematic improvement and expansion of this mechanistic-based understanding, including widening the range of neurological injury estimation, improving concussion risk correlates, guiding the design of protective equipment, and setting safety standards.
Collapse
Affiliation(s)
- Laurel J Ng
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Vladislav Volman
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Melissa M Gibbons
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Pi Phohomsiri
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Jianxia Cui
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Darrell J Swenson
- Cardiac Rhythm and Heart Failure Numerical Modeling, Medtronic, Mounds View, MN, United States
| | - James H Stuhmiller
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| |
Collapse
|
33
|
Vascak M, Sun J, Baer M, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss. Front Cell Neurosci 2017. [PMID: 28634442 PMCID: PMC5459898 DOI: 10.3389/fncel.2017.00157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Matthew Baer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| |
Collapse
|
34
|
Chen W, Sheng J, Guo J, Peng G, Hong J, Li B, Chen X, Li K, Wang S. Cytokine cascades induced by mechanical trauma injury alter voltage-gated sodium channel activity in intact cortical neurons. J Neuroinflammation 2017; 14:73. [PMID: 28359334 PMCID: PMC5374609 DOI: 10.1186/s12974-017-0847-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) triggers both immediate (primary) and long-term (secondary) tissue damages. Secondary damages can last from hours to days or even a lifetime. Secondary damages implicate several mechanisms, including influence of inflammatory mediators, mainly cytokines, on excitability of ion channels. However, studies should further explore the effects of inflammatory cytokines on voltage-gated sodium channels (VGSCs) and excitability in distal intact neurons. METHODS Mixed cultures of mouse cortical astrocytes and neurons were subjected to mechanical injury (trauma) to mimic TBI in vitro. Expression of various cytokines in these cultures were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. A trauma-conditioned medium with or without brain-derived neurotrophic factor (BDNF) was added to mouse primary cortical neurons for 6 and 24 h to mimic combined effects of multiple inflammatory cytokines on VGSCs. Spike behaviors of distal intact neurons were examined by whole-cell patch-clamp recordings. RESULTS Mechanical injury in mixed cortical neuron-astrocyte cultures significantly increased expression levels of multiple cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, chemokine (C-C motif) ligand-5, IL-10, and transforming growth factor-β1, at 6 and 24 h after injury. Incubation in trauma-conditioned medium increased functional VGSCs in neuronal membranes and Na+ currents. Enhanced VGSCs were almost completely abolished by BDNF, and reinforcement of Na+ currents was also reduced in a dose-dependent manner. BDNF (30 ng/mL) also significantly reversed reduced neuronal cell viability, which was induced by medium conditioned at 6 h. At 6 and 24 h, trauma-conditioned medium significantly increased spike frequency but not spike threshold. CONCLUSIONS In TBI, the combined effect of inflammatory cytokines is directly involved in VGSC, Na+ current, and excitability dysfunction in distal intact neurons. BDNF may partly exert neuroprotective effects by maintaining balance of VGSC function in distal intact neurons.
Collapse
Affiliation(s)
- Weiqiang Chen
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, 156 North Road, West Second Ring, Fuzhou, 350025 Fujian China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515041 Guangdong China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong China
| | - Jingfang Guo
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515041 Guangdong China
| | - Guoyi Peng
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515041 Guangdong China
| | - Jinfang Hong
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, 156 North Road, West Second Ring, Fuzhou, 350025 Fujian China
| | - Bingbing Li
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, 156 North Road, West Second Ring, Fuzhou, 350025 Fujian China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong China
| | - Shousen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, 156 North Road, West Second Ring, Fuzhou, 350025 Fujian China
| |
Collapse
|
35
|
Abstract
Traumatic brain injury (TBI) has become the signature injury of the military conflict in Iraq and Afghanistan and also has a high rate of occurrence in civilian populations in the United States. Although the effects of a moderate to severe brain injury have been investigated for decades, the chronic effects of single and repetitive mild TBI are just beginning to be investigated. Data suggest that the different types and severities of TBI have unique long-term outcomes and thus may represent different types of diseases. Therefore, this review outlines the causes, incidence, symptoms, and pathophysiology of mild, moderate, and severe TBI.
Collapse
|
36
|
Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2016; 76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a common health problem. There is tremendous variability and heterogeneity in human mTBI, including mechanisms of injury, biomechanical forces, injury severity, spatial and temporal pathophysiology, genetic factors, pre-injury vulnerability and resilience factors, and clinical outcomes. Animal models greatly reduce this variability and heterogeneity, and provide a means to study mTBI in a rigorous, controlled, and efficient manner. Rodent models, in particular, are time- and cost-efficient, and they allow researchers to measure morphological, cellular, molecular, and behavioral variables in a single study. However, inter-species differences in anatomy, morphology, metabolism, neurobiology, and lifespan create translational challenges. Although the term "mild" TBI is used often in the pre-clinical literature, clearly defined criteria for mild, moderate, and severe TBI in animal models have not been agreed upon. In this review, we introduce current issues facing the mTBI field, summarize the available research methodologies and previous studies in mTBI animal models, and discuss how a translational research approach may be useful in advancing our understanding and management of mTBI.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Cole Vonder Haar
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Alicia Meconi
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Robert Vink
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Chand Taneja
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, and MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA
| | - Brian R Christie
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| |
Collapse
|
37
|
Sun J, Jacobs KM. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury. Front Syst Neurosci 2016; 10:63. [PMID: 27489538 PMCID: PMC4951523 DOI: 10.3389/fnsys.2016.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the CypDKO likely has a direct effect on membrane properties, rather than producing a selective reduction of the effects of mTBI. These results suggest that inhibiting CypD after TBI is an effective strategy to reduce synaptic hyperexcitation, making it a continued target for potential treatment of network abnormalities.
Collapse
Affiliation(s)
- Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
38
|
Clark KC, Josephson A, Benusa SD, Hartley RK, Baer M, Thummala S, Joslyn M, Sword BA, Elford H, Oh U, Dilsizoglu-Senol A, Lubetzki C, Davenne M, DeVries GH, Dupree JL. Compromised axon initial segment integrity in EAE is preceded by microglial reactivity and contact. Glia 2016; 64:1190-209. [PMID: 27100937 DOI: 10.1002/glia.22991] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/11/2022]
Abstract
Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that axonal pathology is a direct consequence of demyelination, as we and others have shown that the node of Ranvier disassembles following loss of myelin. In contrast to the node of Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible for action potential initiation, remains intact following cuprizone-induced cortical demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that develop experimental autoimmune encephalomyelitis (EAE) independent of local demyelination. EAE-induced mice demonstrate profound compromise of AIS integrity with a progressive disruption that corresponds to EAE clinical disease severity and duration, in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox results in attenuation of AIS pathology concomitantly with microglial reversion to a less reactive state. Together, our findings suggest that inflammation, but not demyelination, disrupts AIS integrity and that therapeutic intervention may protect and reverse this pathology. GLIA 2016;64:1190-1209.
Collapse
Affiliation(s)
- Kareem C Clark
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia.,VCU, Neuroscience Curriculum, Richmond, Virginia
| | - Anna Josephson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia.,VCU, Neuroscience Curriculum, Richmond, Virginia
| | - Rebecca K Hartley
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew Baer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Suneel Thummala
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Martha Joslyn
- Department of Research,, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Brooke A Sword
- Department of Research,, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | | | - Unsong Oh
- Department of Neurology, VCU, Richmond, Virginia
| | - Aysegul Dilsizoglu-Senol
- UPMC/Univ Paris 06 UMR S 1127, Institut Du Cerveau Et De La Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, F-75013, France
| | - Catherine Lubetzki
- UPMC/Univ Paris 06 UMR S 1127, Institut Du Cerveau Et De La Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital De La Pitié Salpêtrière, Paris, F-75013, France
| | - Marc Davenne
- UPMC/Univ Paris 06 UMR S 1127, Institut Du Cerveau Et De La Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, F-75013, France
| | - George H DeVries
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia.,Department of Research,, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia.,Department of Research,, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
39
|
Kador KE, Grogan SP, Dorthé EW, Venugopalan P, Malek MF, Goldberg JL, D'lima DD. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds. Tissue Eng Part A 2016; 22:286-94. [PMID: 26729061 DOI: 10.1089/ten.tea.2015.0373] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.
Collapse
Affiliation(s)
- Karl E Kador
- 1 Shiley Eye Institute and Institute of Engineering in Medicine, University of California San Diego , La Jolla, California
| | - Shawn P Grogan
- 2 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Erik W Dorthé
- 2 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Praseeda Venugopalan
- 1 Shiley Eye Institute and Institute of Engineering in Medicine, University of California San Diego , La Jolla, California
| | - Monisha F Malek
- 1 Shiley Eye Institute and Institute of Engineering in Medicine, University of California San Diego , La Jolla, California
| | - Jeffrey L Goldberg
- 1 Shiley Eye Institute and Institute of Engineering in Medicine, University of California San Diego , La Jolla, California.,3 Byers Eye Institute, Stanford University , Palo Alto, California
| | - Darryl D D'lima
- 2 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| |
Collapse
|
40
|
Pavlides A, Hogan SJ, Bogacz R. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS Comput Biol 2015; 11:e1004609. [PMID: 26683341 PMCID: PMC4684204 DOI: 10.1371/journal.pcbi.1004609] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 01/20/2023] Open
Abstract
In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe). Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.
Collapse
Affiliation(s)
- Alex Pavlides
- MRC Unit for Brain Network Dynamics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - S. John Hogan
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Rafal Bogacz
- MRC Unit for Brain Network Dynamics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
41
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 2015; 273:11-23. [DOI: 10.1016/j.expneurol.2015.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
|
42
|
Lafrenaye AD, Todani M, Walker SA, Povlishock JT. Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig. J Neuroinflammation 2015; 12:186. [PMID: 26438203 PMCID: PMC4595283 DOI: 10.1186/s12974-015-0405-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
Background Mild traumatic brain injury (mTBI) is an all too common occurrence that exacts significant personal and societal costs. The pathophysiology of mTBI is complex, with reports routinely correlating diffuse axonal injury (DAI) with prolonged morbidity. Progressive chronic neuroinflammation has also recently been correlated to morbidity, however, the potential association between neuroinflammatory microglia and DAI is not well understood. The majority of studies exploring neuroinflammatory responses to TBI have focused on more chronic phases of injury involving phagocytosis associated with Wallerian change. Little, however, is known regarding the neuroinflammatory response seen acutely following diffuse mTBI and its potential relationship to early DAI. Additionally, while inflammation is drastically different in rodents compared to humans, pigs and humans share very similar inflammatory profiles and responses. Methods In the current study, we employed a modified central fluid percussion model in micro pigs. Using this model of diffuse mTBI, paired with various immunohistological endpoints, we assessed the potential association between acute thalamic DAI and neuroinflammation 6 h following injury. Results Injured micro pigs displayed substantial axonal damage reflected in the presence of APP+ proximal axonal swellings, which were particularly prominent in the thalamus. In companion, the same thalamic sites displayed extensive neuroinflammation, which was observed using Iba-1 immunohistochemistry. The physical relationship between microglia and DAI, assessed via confocal 3D analysis, revealed a dramatic increase in the number of Iba-1+ microglial processes that contacted APP+ proximal axonal swellings compared to uninjured myelinated thalamic axons in sham animals. Conclusions In aggregate, these studies reveal acute microglial process convergence on proximal axonal swellings undergoing DAI, an interaction not previously recognized in the literature. These findings transform our understanding of acute neuroinflammation following mTBI and may suggest its potential as a diagnostic and/or a therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0405-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, P.O. Box 980709, Richmond, VA, 23298, USA.
| | - Masaki Todani
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, P.O. Box 980709, Richmond, VA, 23298, USA. .,Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan.
| | - Susan A Walker
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, P.O. Box 980709, Richmond, VA, 23298, USA.
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, P.O. Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
43
|
Hånell A, Greer JE, Jacobs KM. Increased Network Excitability Due to Altered Synaptic Inputs to Neocortical Layer V Intact and Axotomized Pyramidal Neurons after Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1590-8. [PMID: 25789412 DOI: 10.1089/neu.2014.3592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can produce long lasting cognitive dysfunction. There is typically no cell death and only diffuse structural injury after mTBI. Thus, functional changes in intact neurons may contribute to symptoms. We have previously shown altered intrinsic properties of axotomized and intact neurons within 2 d after a central fluid percussion injury in mice expressing yellow fluorescent protein (YFP) that allow identification of axonal state prior to recording. Here, whole-cell patch clamp recordings were used to examine synaptic properties of YFP(+) layer V pyramidal neurons. An increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was recorded from axotomized neurons at 1 d and intact neurons at 2 d after injury, likely reflecting an increased number of afferents. This also was reflected in the increased amplitude of the EPSC evoked by local extracellular stimulation for all neurons from injured cortex and increased likelihood of producing an action potential for intact cells. Field potentials recorded in superficial layers after online deep layer stimulation contained a single negative peak in controls but multiple negative peaks in injured tissue. The amplitude of this evoked negativity was significantly larger than controls over a series of stimulus intensities at both the 1 d and 2 d survival times. Interictal-like spikes never occurred in the field potential recordings from controls but were observed in 20-80% of stimulus presentations in injured cortex. Together, these results suggest an overall increase in network excitability and the production of particularly powerful (intact) neurons that have both increased intrinsic and synaptic excitability.
Collapse
Affiliation(s)
- Anders Hånell
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - John E Greer
- 2 Department of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia
| | - Kimberle M Jacobs
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
44
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
45
|
Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab 2014; 34:1628-36. [PMID: 25027309 PMCID: PMC4269720 DOI: 10.1038/jcbfm.2014.122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI)-induced elevated intracranial pressure (ICP) is correlated with ensuing morbidity/mortality in humans. This relationship is assumed to rely mostly on the recognition that extremely elevated ICP either indicates hematoma/contusions capable of precipitating herniation or alters cerebral perfusion pressure (CPP), which precipitates global ischemia. However, whether subischemic levels of elevated ICP without hematoma/contusion contribute to increased morbidity/mortality remains unknown. To address this knowledge gap, we utilized a model of moderate diffuse TBI in rats followed by either intraventricular ICP monitoring or manual ICP elevation to 20 mm Hg, in which CPP was above ischemic levels. The effects of ICP elevation after TBI on acute and chronic histopathology, as well as on behavioral morbidity, were evaluated. ICP elevation after TBI resulted in increased acute neuronal membrane perturbation and was also associated with reduced neuronal density at 4 weeks after injury. Somatosensory hypersensitivity was exacerbated by ICP elevation and was correlated to the observed neuronal loss. In conclusion, this study indicates that morbidity and increased neuronal damage/death associated with elevated ICP can occur without concurrent global ischemia. Therefore, understanding the pathologies associated with subischemic levels of elevated ICP could lead to the development of better therapeutic strategies for the treatment and management of TBI patients.
Collapse
|
46
|
Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, Guo R, Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 2014; 345:48-55. [DOI: 10.1016/j.jns.2014.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/15/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
47
|
Stimulation-induced ectopicity and propagation windows in model damaged axons. J Comput Neurosci 2014; 37:523-31. [PMID: 25110188 PMCID: PMC4224747 DOI: 10.1007/s10827-014-0521-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/04/2022]
Abstract
Neural tissue injuries render voltage-gated Na+ channels (Nav) leaky, thereby altering excitability, disrupting propagation and causing neuropathic pain related ectopic activity. In both recombinant systems and native excitable membranes, membrane damage causes the kinetically-coupled activation and inactivation processes of Nav channels to undergo hyperpolarizing shifts. This damage-intensity dependent change, called coupled left-shift (CLS), yields a persistent or “subthreshold” Nav window conductance. Nodes of Ranvier simulations involving various degrees of mild CLS showed that, as the system’s channel/pump fluxes attempt to re-establish ion homeostasis, the CLS elicits hyperexcitability, subthreshold oscillations and neuropathic type action potential (AP) bursts. CLS-induced intermittent propagation failure was studied in simulations of stimulated axons, but pump contributions were ignored, leaving open an important question: does mild-injury (small CLS values, pumps functioning well) render propagation-competent but still quiescent axons vulnerable to further impairments as the system attempts to cope with its normal excitatory inputs? We probe this incipient diffuse axonal injury scenario using a 10-node myelinated axon model. Fully restabilized nodes with mild damage can, we show, become ectopic signal generators (“ectopic nodes”) because incoming APs stress Na+/K+ gradients, thereby altering spike thresholds. Comparable changes could contribute to acquired sodium channelopathies as diverse as epileptic phenomena and to the neuropathic amplification of normally benign sensory inputs. Input spike patterns, we found, propagate with good fidelity through an ectopically firing site only when their frequencies exceed the ectopic frequency. This “propagation window” is a robust phenomenon, occurring despite Gaussian noise, large jitter and the presence of several consecutive ectopic nodes.
Collapse
|
48
|
Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab 2014; 34:1223-32. [PMID: 24756076 PMCID: PMC4083389 DOI: 10.1038/jcbfm.2014.75] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 11/08/2022]
Abstract
Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration.
Collapse
|
49
|
Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion. Sleep 2014; 37:743-52. [PMID: 24899763 DOI: 10.5665/sleep.3582] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
STUDY OBJECTIVE We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. DESIGN Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either intentional sleep disruption (minimally stressful gentle handling) or no sleep disruption for 6 h following injury. Following disruption, serum corticosterone levels (enzyme-linked immunosorbent assay) and posttraumatic sleep (noninvasive piezoelectric sleep cages) were measured. For 1-7 days postinjury, sensorimotor outcome was assessed by Rotarod and a modified Neurological Severity Score (NSS). Cognitive function was measured using Novel Object Recognition (NOR) and Morris water maze (MWM) in the first week postinjury. SETTING Neurotrauma research laboratory. MEASUREMENTS AND RESULTS Disrupting posttraumatic sleep for 6 h did not affect serum corticosterone levels or functional outcome. In the hour following the first dark onset, sleep-disrupted mice exhibited a significant increase in sleep; however, this increase was not sustained and there was no rebound of lost sleep. Regardless of sleep disruption, mice showed a time-dependent improvement in Rotarod performance, with brain-injured mice having significantly shorter latencies on day 7 compared to sham. Further, brain-injured mice, regardless of sleep disruption, had significantly higher NSS scores postinjury compared with sham. Cognitive behavioral testing showed no group differences among any treatment group measured by MWM and NOR. CONCLUSION Short-duration disruption of posttraumatic sleep did not affect functional outcome, measured by motor and cognitive performance. These data raise uncertainty about posttraumatic sleep as a mechanism of recovery from diffuse brain injury.
Collapse
Affiliation(s)
- Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky College of Medicine, Lexington, KY ; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, KY
| | - Jordan L Harrison
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Interdisciplinary Program in Neuroscience, Arizona State University, Phoenix, AZ
| | - Bruce F O'Hara
- Department of Biology, College of Arts and Sciences, University of Kentucky College of Medicine, Lexington, KY ; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, KY
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ ; Phoenix Veteran Affairs Healthcare System, Phoenix, AZ ; Interdisciplinary Program in Neuroscience, Arizona State University, Phoenix, AZ ; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
50
|
Green REA, Colella B, Maller JJ, Bayley M, Glazer J, Mikulis DJ. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci 2014; 8:67. [PMID: 24744712 PMCID: PMC3978360 DOI: 10.3389/fnhum.2014.00067] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/27/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Moderate-severe traumatic brain injury (TBI) is increasingly being understood as a progressive disorder, with growing evidence of reduced brain volume and white matter (WM) integrity as well as lesion expansion in the chronic phases of injury. The scale of these losses has yet to be investigated, and pattern of change across structures has received limited attention. OBJECTIVES (1) To measure the percentage of patients in our TBI sample showing atrophy from 5 to 20 months post-injury in the whole brain and in structures with known vulnerability to acute TBI, and (2) To examine relative vulnerability and patterns of volume loss across structures. METHODS Fifty-six TBI patients [complicated mild to severe, with mean Glasgow Coma Scale (GCS) in severe range] underwent MRI at, on average, 5 and 20 months post-injury; 12 healthy controls underwent MRI twice, with a mean gap between scans of 25.4 months. Mean monthly percent volume change was computed for whole brain (ventricle-to-brain ratio; VBR), corpus callosum (CC), and right and left hippocampi (HPC). RESULTS (1) Using a threshold of 2 z-scores below controls, 96% of patients showed atrophy across time points in at least one region; 75% showed atrophy in at least 3 of the 4 regions measured. (2) There were no significant differences in the proportion of patients who showed atrophy across structures. For those showing decline in VBR, there was a significant association with both the CC and the right HPC (P < 0.05 for both comparisons). There were also significant associations between those showing decline in (i) right and left HPC (P < 0.05); (ii) all combinations of genu, body and splenium of the CC (P < 0.05), and (iii) head and tail of the right HPC (P < 0.05 all sub-structure comparisons). CONCLUSIONS Atrophy in chronic TBI is robust, and the CC, right HPC and left HPC appear equally vulnerable. Significant associations between the right and left HPC, and within substructures of the CC and right HPC, raise the possibility of common mechanisms for these regions, including transneuronal degeneration. Given the 96% incidence rate of atrophy, a genetic explanation is unlikely to explain all findings. Multiple and possibly synergistic mechanisms may explain findings. Atrophy has been associated with poorer functional outcomes, but recent findings suggest there is potential to offset this. A better, understanding of the underlying mechanisms could permit targeted therapy enabling better long-term outcomes.
Collapse
Affiliation(s)
- Robin E. A. Green
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Brenda Colella
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Jerome J. Maller
- Brain Stimulation and Neuroimaging Laboratory, Monash Alfred Psychiatry Research Centre, Alfred HospitalMelbourne, VIC, Australia
| | - Mark Bayley
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Joanna Glazer
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - David J. Mikulis
- fMRI Laboratory, Division of Applied and Interventional Research, Toronto Western Research InstituteToronto, ON, Canada
- Department of Medical Imaging, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|