1
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. iScience 2025; 28:112210. [PMID: 40230530 PMCID: PMC11995121 DOI: 10.1016/j.isci.2025.112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found that Irx1, Irx2, Irx3, Irx5, and Irx6 are expressed in specific groups of motor neurons (MNs). Further, we employed CRISPR-Cas9 gene editing to uncover essential but distinct roles for Irx2 and Irx6 in MN development. We also found that HOX proteins, which are conserved regulators of MN development across species, control Irx gene expression both in mouse and Caenorhabditis elegans MNs. Altogether, our study provides insights into Iro/Irx expression and function in the developing spinal cord and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Vidyawan V, Puspita L, Juwono VB, Deline M, Pieknell K, Chang MY, Lee SH, Shim JW. Autophagy controls neuronal differentiation by regulating the WNT-DVL signaling pathway. Autophagy 2025; 21:719-736. [PMID: 39385328 DOI: 10.1080/15548627.2024.2407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Macroautophagy/autophagy dysregulation is associated with various neurological diseases, including Vici syndrome. We aimed to determine the role of autophagy in early brain development. We generated neurons from human embryonic stem cells and developed a Vici syndrome model by introducing a loss-of-function mutation in the EPG5 gene. Autophagy-related genes were upregulated at the neuronal progenitor cell stage. Inhibition of autolysosome formation with bafilomycin A1 treatment at the neuronal progenitor cell stage delayed neuronal differentiation. Notably, WNT (Wnt family member) signaling may be part of the underlying mechanism, which is negatively regulated by autophagy-mediated DVL2 (disheveled segment polarity protein 2) degradation. Disruption of autolysosome formation may lead to failure in the downregulation of WNT signaling, delaying neuronal differentiation. EPG5 mutations disturbed autolysosome formation, subsequently inducing defects in progenitor cell differentiation and cortical layer generation in organoids. Disrupted autophagy leads to smaller organoids, recapitulating Vici syndrome-associated microcephaly, and validating the disease relevance of our study.Abbreviations: BafA1: bafilomycin A1; co-IP: co-immunoprecipitation; DVL2: dishevelled segment polarity protein 2; EPG5: ectopic P-granules 5 autophagy tethering factor; gRNA, guide RNA; hESC: human embryonic stem cells; KO: knockout; mDA, midbrain dopamine; NIM: neural induction media; NPC: neuronal progenitor cell; qPCR: quantitative polymerase chain reaction; UPS: ubiquitin-proteasome system; WNT: Wnt family member; WT: wild type.
Collapse
Affiliation(s)
- Vincencius Vidyawan
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Magdalena Deline
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| | - Kelvin Pieknell
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Biomedical Research Institute, Hanyang University, Seoul, Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Korea
| |
Collapse
|
3
|
Jang S, Gumnit E, Wichterle H. A human-specific progenitor sub-domain extends neurogenesis and increases motor neuron production. Nat Neurosci 2024; 27:1945-1953. [PMID: 39210067 DOI: 10.1038/s41593-024-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Neurogenesis lasts ~10 times longer in developing humans compared to mice, resulting in a >1,000-fold increase in the number of neurons in the CNS. To identify molecular and cellular mechanisms contributing to this difference, we studied human and mouse motor neurogenesis using a stem cell differentiation system that recapitulates species-specific scales of development. Comparison of human and mouse single-cell gene expression data identified human-specific progenitors characterized by coexpression of NKX2-2 and OLIG2 that give rise to spinal motor neurons. Unlike classical OLIG2+ motor neuron progenitors that give rise to two motor neurons each, OLIG2+/NKX2-2+ ventral motor neuron progenitors remain cycling longer, yielding ~5 times more motor neurons that are biased toward later-born, FOXP1-expressing subtypes. Knockout of NKX2-2 converts ventral motor neuron progenitors into classical motor neuron progenitors. Such new progenitors may contribute to the increased production of human motor neurons required for the generation of larger, more complex nervous systems.
Collapse
Affiliation(s)
- Sumin Jang
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elias Gumnit
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Vieira de Sá R, Sudria-Lopez E, Cañizares Luna M, Harschnitz O, van den Heuvel DMA, Kling S, Vonk D, Westeneng HJ, Karst H, Bloemenkamp L, Varderidou-Minasian S, Schlegel DK, Mars M, Broekhoven MH, van Kronenburg NCH, Adolfs Y, Vangoor VR, de Jongh R, Ljubikj T, Peeters L, Seeler S, Mocholi E, Basak O, Gordon D, Giuliani F, Verhoeff T, Korsten G, Calafat Pla T, Venø MT, Kjems J, Talbot K, van Es MA, Veldink JH, van den Berg LH, Zelina P, Pasterkamp RJ. ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes. Nat Commun 2024; 15:7484. [PMID: 39209824 PMCID: PMC11362472 DOI: 10.1038/s41467-024-51676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43Tg-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy.
Collapse
Affiliation(s)
- Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Oliver Harschnitz
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Human Technopole, Viale Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Dianne M A van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Sandra Kling
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Danielle Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Henk Karst
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lauri Bloemenkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Mayte Mars
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Rianne de Jongh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lianne Peeters
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Sabine Seeler
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Enric Mocholi
- Center for Molecuar Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Fabrizio Giuliani
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tessa Verhoeff
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giel Korsten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Teresa Calafat Pla
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Michael A van Es
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Bazarek SF, Krenn MJ, Shah SB, Mandeville RM, Brown JM. Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury. Cells 2024; 13:1231. [PMID: 39056812 PMCID: PMC11274462 DOI: 10.3390/cells13141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthias J. Krenn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216, USA
- Spinal Cord Injury Medicine and Research Services, VA Medical Center, Jackson, MS 39216, USA
| | - Sameer B. Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA;
- Research Division, VA San Diego Medical Center, San Diego, CA 92161, USA
| | - Ross M. Mandeville
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| |
Collapse
|
6
|
Akter M, Sepehrimanesh M, Xu W, Ding B. Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages. eNeuro 2024; 11:ENEURO.0165-24.2024. [PMID: 39009447 PMCID: PMC11289586 DOI: 10.1523/eneuro.0165-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Masood Sepehrimanesh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette Louisiana 70504
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| |
Collapse
|
7
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
8
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596714. [PMID: 38853975 PMCID: PMC11160718 DOI: 10.1101/2024.05.30.596714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found five Irx genes (Irx1, Irx2, Irx3, Irx5, and Irx6) to be confined mostly to ventral spinal domains, offering new molecular markers for specific groups of post-mitotic motor neurons (MNs). Further, we engineered Irx2, Irx5, and Irx6 mouse mutants and uncovered essential but distinct roles for Irx2 and Irx6 in MN development. Last, we found that the highly conserved regulators of MN development across species, the HOX proteins, directly control Irx gene expression both in mouse and C. elegans MNs, critically expanding the repertoire of HOX target genes in the developing nervous system. Altogether, our study provides important insights into Iro/Irx expression and function in the developing spinal cord, and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Lépine S, Nauleau-Javaudin A, Deneault E, Chen CXQ, Abdian N, Franco-Flores AK, Haghi G, Castellanos-Montiel MJ, Maussion G, Chaineau M, Durcan TM. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons. iScience 2024; 27:109166. [PMID: 38433895 PMCID: PMC10905001 DOI: 10.1016/j.isci.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.
Collapse
Affiliation(s)
- Sarah Lépine
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Angela Nauleau-Javaudin
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Deneault
- Centre for Oncology, Radiopharmaceuticals and Research; Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carol X.-Q. Chen
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Anna Krystina Franco-Flores
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ghazal Haghi
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - María José Castellanos-Montiel
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gilles Maussion
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Thomas Martin Durcan
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
10
|
Thiry L, Sirois J, Durcan TM, Stifani S. Generation of human iPSC-derived phrenic-like motor neurons to model respiratory motor neuron degeneration in ALS. Commun Biol 2024; 7:238. [PMID: 38418587 PMCID: PMC10901792 DOI: 10.1038/s42003-024-05925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
The fatal motor neuron (MN) disease Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive MN degeneration. Phrenic MNs (phMNs) controlling the activity of the diaphragm are prone to degeneration in ALS, leading to death by respiratory failure. Understanding of the mechanisms of phMN degeneration in ALS is limited, mainly because human experimental models to study phMNs are lacking. Here we describe a method enabling the derivation of phrenic-like MNs from human iPSCs (hiPSC-phMNs) within 30 days. This protocol uses an optimized combination of small molecules followed by cell-sorting based on a cell-surface protein enriched in hiPSC-phMNs, and is highly reproducible using several hiPSC lines. We show further that hiPSC-phMNs harbouring ALS-associated amplification of the C9orf72 gene progressively lose their electrophysiological activity and undergo increased death compared to isogenic controls. These studies establish a previously unavailable protocol to generate human phMNs offering a disease-relevant system to study mechanisms of respiratory MN dysfunction.
Collapse
Affiliation(s)
- Louise Thiry
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
11
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Urzi A, Lahmann I, Nguyen LVN, Rost BR, García-Pérez A, Lelievre N, Merritt-Garza ME, Phan HC, Bassell GJ, Rossoll W, Diecke S, Kunz S, Schmitz D, Gouti M. Efficient generation of a self-organizing neuromuscular junction model from human pluripotent stem cells. Nat Commun 2023; 14:8043. [PMID: 38114482 PMCID: PMC10730704 DOI: 10.1038/s41467-023-43781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.
Collapse
Affiliation(s)
- Alessia Urzi
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Ines Lahmann
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Lan Vi N Nguyen
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Angélica García-Pérez
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Noemie Lelievre
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Megan E Merritt-Garza
- Department of Cell Biology, Laboratory for Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Han C Phan
- Department of Pediatrics, University of Alabama, Birmingham, AL, 35294, USA
| | - Gary J Bassell
- Department of Cell Biology, Laboratory for Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125, Berlin, Germany
| | - Severine Kunz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, 13125, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Berlin Institute of Health, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mina Gouti
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
13
|
Koshy AM, Mendoza-Parra MA. Retinoids: Mechanisms of Action in Neuronal Cell Fate Acquisition. Life (Basel) 2023; 13:2279. [PMID: 38137880 PMCID: PMC10744663 DOI: 10.3390/life13122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Neuronal differentiation has been shown to be directed by retinoid action during embryo development and has been exploited in various in vitro cell differentiation systems. In this review, we summarize the role of retinoids through the activation of their specific retinoic acid nuclear receptors during embryo development and also in a variety of in vitro strategies for neuronal differentiation, including recent efforts in driving cell specialization towards a range of neuronal subtypes and glial cells. Finally, we highlight the role of retinoic acid in recent protocols recapitulating nervous tissue complexity (cerebral organoids). Overall, we expect that this effort might pave the way for exploring the usage of specific synthetic retinoids for directing complex nervous tissue differentiation.
Collapse
Affiliation(s)
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d’Essonne, University Paris-Saclay, 91057 Évry, France;
| |
Collapse
|
14
|
Lee DM, Kang M, Hyun I, Park BJ, Kim HJ, Nam SH, Yoon HJ, Ryu H, Park HM, Choi BO, Kim SW. An on-demand bioresorbable neurostimulator. Nat Commun 2023; 14:7315. [PMID: 37951985 PMCID: PMC10640647 DOI: 10.1038/s41467-023-42791-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Bioresorbable bioelectronics, with their natural degradation properties, hold significant potential to eliminate the need for surgical removal. Despite notable achievements, two major challenges hinder their practical application in medical settings. First, they necessitate sustainable energy solutions with biodegradable components via biosafe powering mechanisms. More importantly, reliability in their function is undermined by unpredictable device lifetimes due to the complex polymer degradation kinetics. Here, we propose an on-demand bioresorbable neurostimulator to address these issues, thus allowing for clinical operations to be manipulated using biosafe ultrasound sources. Our ultrasound-mediated transient mechanism enables (1) electrical stimulation through transcutaneous ultrasound-driven triboelectricity and (2) rapid device elimination using high-intensity ultrasound without adverse health effects. Furthermore, we perform neurophysiological analyses to show that our neurostimulator provides therapeutic benefits for both compression peripheral nerve injury and hereditary peripheral neuropathy. We anticipate that the on-demand bioresorbable neurostimulator will prove useful in the development of medical implants to treat peripheral neuropathy.
Collapse
Affiliation(s)
- Dong-Min Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minki Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Inah Hyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byung-Joon Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hong-Joon Yoon
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hanjun Ryu
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun-Moon Park
- Research and Development Center, Energy-Mining Co., LTD., Suwon, 16226, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, 06351, Republic of Korea.
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
17
|
Lefebvre-Omar C, Liu E, Dalle C, d'Incamps BL, Bigou S, Daube C, Karpf L, Davenne M, Robil N, Jost Mousseau C, Blanchard S, Tournaire G, Nicaise C, Salachas F, Lacomblez L, Seilhean D, Lobsiger CS, Millecamps S, Boillée S, Bohl D. Neurofilament accumulations in amyotrophic lateral sclerosis patients' motor neurons impair axonal initial segment integrity. Cell Mol Life Sci 2023; 80:150. [PMID: 37184603 DOI: 10.1007/s00018-023-04797-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.
Collapse
Affiliation(s)
- Cynthia Lefebvre-Omar
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Carine Dalle
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Boris Lamotte d'Incamps
- Université Paris-Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Stéphanie Bigou
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Clément Daube
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Davenne
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Coline Jost Mousseau
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Blanchard
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | - Guillaume Tournaire
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | | | - François Salachas
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
18
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
19
|
Castellanos-Montiel MJ, Chaineau M, Franco-Flores AK, Haghi G, Carrillo-Valenzuela D, Reintsch WE, Chen CXQ, Durcan TM. An Optimized Workflow to Generate and Characterize iPSC-Derived Motor Neuron (MN) Spheroids. Cells 2023; 12:cells12040545. [PMID: 36831212 PMCID: PMC9954647 DOI: 10.3390/cells12040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A multitude of in vitro models based on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) have been developed to investigate the underlying causes of selective MN degeneration in motor neuron diseases (MNDs). For instance, spheroids are simple 3D models that have the potential to be generated in large numbers that can be used across different assays. In this study, we generated MN spheroids and developed a workflow to analyze them. To start, the morphological profiling of the spheroids was achieved by developing a pipeline to obtain measurements of their size and shape. Next, we confirmed the expression of different MN markers at the transcript and protein levels by qPCR and immunocytochemistry of tissue-cleared samples, respectively. Finally, we assessed the capacity of the MN spheroids to display functional activity in the form of action potentials and bursts using a microelectrode array approach. Although most of the cells displayed an MN identity, we also characterized the presence of other cell types, namely interneurons and oligodendrocytes, which share the same neural progenitor pool with MNs. In summary, we successfully developed an MN 3D model, and we optimized a workflow that can be applied to perform its morphological, gene expression, protein, and functional profiling over time.
Collapse
|
20
|
Limone F, Guerra San Juan I, Mitchell JM, Smith JLM, Raghunathan K, Meyer D, Ghosh SD, Couto A, Klim JR, Joseph BJ, Gold J, Mello CJ, Nemesh J, Smith BM, Verhage M, McCarroll SA, Pietiläinen O, Nehme R, Eggan K. Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Rep 2023; 42:111896. [PMID: 36596304 PMCID: PMC10117176 DOI: 10.1016/j.celrep.2022.111896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Leiden University Medical Center, LUMC, 2333 ZA Leiden, the Netherlands.
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jana M Mitchell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Janell L M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Meyer
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Dia Ghosh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Departments of Pathology and Cell Biology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - John Gold
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Curtis J Mello
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Steven A McCarroll
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietiläinen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ralda Nehme
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
21
|
Castillo Bautista CM, Sterneckert J. Progress and challenges in directing the differentiation of human iPSCs into spinal motor neurons. Front Cell Dev Biol 2023; 10:1089970. [PMID: 36684437 PMCID: PMC9849822 DOI: 10.3389/fcell.2022.1089970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Motor neuron (MN) diseases, including amyotrophic lateral sclerosis, progressive bulbar palsy, primary lateral sclerosis and spinal muscular atrophy, cause progressive paralysis and, in many cases, death. A better understanding of the molecular mechanisms of pathogenesis is urgently needed to identify more effective therapies. However, studying MNs has been extremely difficult because they are inaccessible in the spinal cord. Induced pluripotent stem cells (iPSCs) can generate a theoretically limitless number of MNs from a specific patient, making them powerful tools for studying MN diseases. However, to reach their potential, iPSCs need to be directed to efficiently differentiate into functional MNs. Here, we review the reported differentiation protocols for spinal MNs, including induction with small molecules, expression of lineage-specific transcription factors, 2-dimensional and 3-dimensional cultures, as well as the implementation of microfluidics devices and co-cultures with other cell types, including skeletal muscle. We will summarize the advantages and disadvantages of each strategy. In addition, we will provide insights into how to address some of the remaining challenges, including reproducibly obtaining mature and aged MNs.
Collapse
Affiliation(s)
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany,Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany,*Correspondence: Jared Sterneckert,
| |
Collapse
|
22
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
23
|
Kook MG, Byun MR, Lee SM, Lee MH, Lee DH, Lee HB, Lee EJ, Baek K, Kim S, Kang KS, Choi JW. Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death. Mol Neurobiol 2023; 60:145-159. [PMID: 36242734 DOI: 10.1007/s12035-022-03073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.
Collapse
Affiliation(s)
- Myung Geun Kook
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Min Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Min Hak Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Hyung Been Lee
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Eui-Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Kyunghwa Baek
- Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.,Generoath Ltd, Seoul, 04168, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyung-Sun Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
24
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
25
|
Luo HM, Xu J, Huang DX, Chen YQ, Liu YZ, Li YJ, Chen H. Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy. Front Cell Dev Biol 2022; 10:1030390. [DOI: 10.3389/fcell.2022.1030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders in which neurons are lost owing to various factors, resulting in a series of dysfunctions. Their rising prevalence and irreversibility have brought physical pain to patients and economic pressure to both individuals and society. However, the pathogenesis of NDDs has not yet been fully elucidated, hampering the use of precise medication. Induced pluripotent stem cell (IPSC) modeling provides a new method for drug discovery, and exploring the early pathological mechanisms including mitochondrial dysfunction, which is not only an early but a prominent pathological feature of NDDs. In this review, we summarize the iPSC modeling approach of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis, as well as outline typical mitochondrial dysfunction and recapitulate corresponding therapeutic strategies.
Collapse
|
26
|
Transcription Factor Hb9 Is Expressed in Glial Cell Lineages in the Developing Mouse Spinal Cord. eNeuro 2022; 9:ENEURO.0214-22.2022. [PMID: 36265906 PMCID: PMC9636997 DOI: 10.1523/eneuro.0214-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Hb9 (Mnx1) is a transcription factor described as a spinal cord motor neuron (MN)-specific marker and critical factor for the postmitotic specification of these cells. To date, expression of Hb9 in other cell types has not been reported. We performed a fate-mapping approach to examine distributions of Hb9-expressing cells and their progeny ("Hb9-lineage cells") within the embryonic and adult spinal cord of Hb9cre;Ai14 mice. We found that Hb9-lineage cells are distributed in a gradient of increasing abundance throughout the rostrocaudal spinal cord axis during embryonic and postnatal stages. Furthermore, although the majority of Hb9-lineage cells at cervical spinal cord levels are MNs, at more caudal levels, Hb9-lineage cells include small-diameter dorsal horn neurons, astrocytes, and oligodendrocytes. In the peripheral nervous system, we observed a similar phenomenon with more abundant Hb9-lineage Schwann cells in muscles of the lower body versus upper body muscles. We cultured spinal cord progenitors in vitro and found that gliogenesis was increased by treatment with the caudalizing factor FGF-8B, while glial tdTomato expression was increased by treatment with both FGF-8B and GDF-11. Together, these observations suggest that early and transient expression of Hb9 in spinal cord neural progenitors may be induced by caudalizing factors such as FGF and GDF signaling. Furthermore, our work raises the possibility that early Hb9 expression may influence the development of spinal cord macroglia and Schwann cells, especially at caudal regions. Together, these findings highlight the importance of using caution when designing experiments using Hb9cre mice to perform spinal cord MN-specific manipulations.
Collapse
|
27
|
Limone F, Klim JR, Mordes DA. Pluripotent stem cell strategies for rebuilding the human brain. Front Aging Neurosci 2022; 14:1017299. [PMID: 36408113 PMCID: PMC9667068 DOI: 10.3389/fnagi.2022.1017299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative disorders have been extremely challenging to treat with traditional drug-based approaches and curative therapies are lacking. Given continued progress in stem cell technologies, cell replacement strategies have emerged as concrete and potentially viable therapeutic options. In this review, we cover advances in methods used to differentiate human pluripotent stem cells into several highly specialized types of neurons, including cholinergic, dopaminergic, and motor neurons, and the potential clinical applications of stem cell-derived neurons for common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we summarize cellular differentiation techniques for generating glial cell populations, including oligodendrocytes and microglia, and their conceivable translational roles in supporting neural function. Clinical trials of specific cell replacement therapies in the nervous system are already underway, and several attractive avenues in regenerative medicine warrant further investigation.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Costamagna D, Casters V, Beltrà M, Sampaolesi M, Van Campenhout A, Ortibus E, Desloovere K, Duelen R. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia. Cells 2022; 11:3351. [PMID: 36359747 PMCID: PMC9655384 DOI: 10.3390/cells11213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valérie Casters
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Els Ortibus
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Whye D, Wood D, Kim K, Chen C, Makhortova N, Sahin M, Buttermore ED. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities. Curr Protoc 2022; 2:e568. [PMID: 36264199 PMCID: PMC9589923 DOI: 10.1002/cpz1.568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuromesodermal progenitors represent a unique, bipotent population of progenitors residing in the tail bud of the developing embryo, which give rise to the caudal spinal cord cell types of neuroectodermal lineage as well as the adjacent paraxial somite cell types of mesodermal origin. With the advent of stem cell technologies, including induced pluripotent stem cells (iPSCs), the modeling of rare genetic disorders can be accomplished in vitro to interrogate cell-type specific pathological mechanisms in human patient conditions. Stem cell-derived models of neuromesodermal progenitors have been accomplished by several developmental biology groups; however, most employ a 2D monolayer format that does not fully reflect the complexity of cellular differentiation in the developing embryo. This article presents a dynamic 3D combinatorial method to generate robust populations of human pluripotent stem cell-derived neuromesodermal organoids with multi-cellular fates and regional identities. By utilizing a dynamic 3D suspension format for the differentiation process, the organoids differentiated by following this protocol display a hallmark of embryonic development that involves a morphological elongation known as axial extension. Furthermore, by employing a combinatorial screening assay, we dissect essential pathways for optimally directing the patterning of pluripotent stem cells into neuromesodermal organoids. This protocol highlights the influence of timing, duration, and concentration of WNT and fibroblast growth factor (FGF) signaling pathways on enhancing early neuromesodermal identity, and later, downstream cell fate specification through combined synergies of retinoid signaling and sonic hedgehog activation. Finally, through robust inhibition of the Notch signaling pathway, this protocol accelerates the acquisition of terminal cell identities. This enhanced organoid model can serve as a powerful tool for studying normal developmental processes as well as investigating complex neurodevelopmental disorders, such as neural tube defects. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Robust generation of 3D hPSC-derived spheroid populations in dynamic motion settings Support Protocol 1: Pluronic F-127 reagent preparation and coating to generate low-attachment suspension culture dishes Basic Protocol 2: Enhanced specification of hPSCs into NMP organoids Support Protocol 2: Combinatorial pathway assay for NMP organoid protocol optimization Basic Protocol 3: Differentiation of NMP organoids along diverse cellular trajectories and accelerated terminal fate specification into neurons, neural crest, and sclerotome derivatives.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
| | - Kristina Kim
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
| | - Cidi Chen
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
| | - Nina Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Elizabeth D. Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA
- F.M. Kirby Neurobiology Department, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
30
|
Iyer NR, Shin J, Cuskey S, Tian Y, Nicol NR, Doersch TE, Seipel F, McCalla SG, Roy S, Ashton RS. Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns. SCIENCE ADVANCES 2022; 8:eabn7430. [PMID: 36179024 PMCID: PMC9524835 DOI: 10.1126/sciadv.abn7430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie Cuskey
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yucheng Tian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah R. Nicol
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tessa E. Doersch
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank Seipel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Iyer NR, Ashton RS. Bioengineering the human spinal cord. Front Cell Dev Biol 2022; 10:942742. [PMID: 36092702 PMCID: PMC9458954 DOI: 10.3389/fcell.2022.942742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Three dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes. Here, we review how recent insights into neurodevelopmental biology have driven advancements in spinal organoid research, generating experimental models that have the potential to deepen our understanding of neural circuit development, central pattern generation (CPG), and neurodegenerative disease along the body axis. In addition, we discuss the application of bioengineering strategies to drive spinal tissue morphogenesis in vitro, current limitations, and future perspectives on these emerging model systems.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
32
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
33
|
Bauer US, Fiskum V, Nair RR, van de Wijdeven R, Kentros C, Sandvig I, Sandvig A. Validation of Functional Connectivity of Engineered Neuromuscular Junction With Recombinant Monosynaptic Pseudotyped ΔG-Rabies Virus Tracing. Front Integr Neurosci 2022; 16:855071. [PMID: 35669734 PMCID: PMC9163662 DOI: 10.3389/fnint.2022.855071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Current preclinical models of neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can significantly benefit from in vitro neuroengineering approaches that enable the selective study and manipulation of neurons, networks, and functional units of interest. Custom-designed compartmentalized microfluidic culture systems enable the co-culture of different relevant cell types in interconnected but fluidically isolated microenvironments. Such systems can thus be applied for ALS disease modeling, as they enable the recapitulation and study of neuromuscular junctions (NMJ) through co-culturing of motor neurons and muscle cells in separate, but interconnected compartments. These in vitro systems are particularly relevant for investigations of mechanistic aspects of the ALS pathological cascade in engineered NMJ, as progressive loss of NMJ functionality may constitute one of the hallmarks of disease related pathology at early onset, in line with the dying back hypothesis. In such models, ability to test whether motor neuron degeneration in ALS starts at the nerve terminal or at the NMJ and retrogradely progresses to the motor neuron cell body largely relies on robust methods for verification of engineered NMJ functionality. In this study, we demonstrate the functionality of engineered NMJs within a microfluidic chip with a differentially perturbable microenvironment using a designer pseudotyped ΔG-rabies virus for retrograde monosynaptic tracing.
Collapse
Affiliation(s)
- Ulrich Stefan Bauer
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- *Correspondence: Axel Sandvig,
| |
Collapse
|
34
|
Bazarek S, Johnston BR, Sten M, Mandeville R, Eggan K, Wainger BJ, Brown JM. Spinal motor neuron transplantation to enhance nerve reconstruction strategies: Towards a cell therapy. Exp Neurol 2022; 353:114054. [PMID: 35341748 DOI: 10.1016/j.expneurol.2022.114054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Nerve transfers have become a powerful intervention to restore function following devastating paralyzing injuries. A major limitation to peripheral nerve repair and reconstructive strategies is the progressive, fibrotic degeneration of the distal nerve and denervated muscle, eventually precluding recovery of these targets and thus defining a time window within which reinnervation must occur. One proven strategy in the clinic has been the sacrifice and transfer of an adjacent distal motor nerve to provide axons to occupy, and thus preserve (or "babysit"), the target muscle. However, available nearby nerves are limited in severe brachial plexus or spinal cord injury. An alternative and novel proposition is the transplantation of spinal motor neurons (SMNs) derived from human induced pluripotent stem cells (iPSCs) into the target nerve to extend their axons to occupy and preserve the targets. These cells could potentially be delivered through minimally invasive or percutaneous techniques. Several reports have demonstrated survival, functional innervation, and muscular preservation following transplantation of SMNs into rodent nerves. Advances in the generation, culture, and differentiation of human iPSCs now offer the possibility for an unlimited supply of clinical grade SMNs. This review will discuss the previous reports of peripheral SMN transplantation, outline key considerations, and propose next steps towards advancing this approach to clinic. Stem cells have garnered great enthusiasm for their potential to revolutionize medicine. However, this excitement has often led to premature clinical studies with ill-defined cell products and mechanisms of action, particularly in spinal cord injury. We believe the peripheral transplantation of a defined SMN population to address neuromuscular degeneration will be transformative in augmenting current reconstructive strategies. By thus removing the current barriers of time and distance, this strategy would dramatically enhance the potential for reconstruction and functional recovery in otherwise hopeless paralyzing injuries. Furthermore, this strategy may be used as a permanent axon replacement following destruction of lower motor neurons and would enable exogenous stimulation options, such as pacing of transplanted SMN axons in the phrenic nerve to avoid mechanical ventilation in high cervical cord injury or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Stanley Bazarek
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Margaret Sten
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kevin Eggan
- BioMarin Pharmaceutical Inc., San Rafael, CA, United States of America
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
35
|
Johns AE, Maragakis NJ. Exploring Motor Neuron Diseases Using iPSC Platforms. Stem Cells 2022; 40:2-13. [PMID: 35511862 PMCID: PMC9199844 DOI: 10.1093/stmcls/sxab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
36
|
Smith AS, Kim JH, Chun C, Gharai A, Moon HW, Kim EY, Nam SH, Ha N, Song JY, Chung KW, Doo HM, Hesson J, Mathieu J, Bothwell M, Choi BO, Kim DH. HDAC6 Inhibition Corrects Electrophysiological and Axonal Transport Deficits in a Human Stem Cell-Based Model of Charcot-Marie-Tooth Disease (Type 2D). Adv Biol (Weinh) 2022; 6:e2101308. [PMID: 34958183 PMCID: PMC8849597 DOI: 10.1002/adbi.202101308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl-tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)-based models of CMT2D bearing mutations in GARS1 and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing a GARS1P724H mutation and is coupled with significant decreases in acetylated α-tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α-tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population-level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.
Collapse
Affiliation(s)
| | | | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ava Gharai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hyo Won Moon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nina Ha
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ju Yong Song
- CKD Research Institute, Yongin, 16995, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Byung-Ok Choi
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| | - Deok-Ho Kim
- Authors share corresponding authorship: To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University, Ross Research Building, 724B, 720 Rutland Avenue, Baltimore, MD 21205, , Dr. Byung-Ok Choi, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea,
| |
Collapse
|
37
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
38
|
Olmsted ZT, Stigliano C, Marzullo B, Cibelli J, Horner PJ, Paluh JL. Fully Characterized Mature Human iPS- and NMP-Derived Motor Neurons Thrive Without Neuroprotection in the Spinal Contusion Cavity. Front Cell Neurosci 2022; 15:725195. [PMID: 35046774 PMCID: PMC8762343 DOI: 10.3389/fncel.2021.725195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.
Collapse
Affiliation(s)
- Zachary T. Olmsted
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
| | - Cinzia Stigliano
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Brandon Marzullo
- SUNY Buffalo Genomics and Bioinformatics Core, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
| | - Jose Cibelli
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Philip J. Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Janet L. Paluh
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- *Correspondence: Janet L. Paluh
| |
Collapse
|
39
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
40
|
Thiry L, Clément JP, Haag R, Kennedy TE, Stifani S. Optimization of Long-Term Human iPSC-Derived Spinal Motor Neuron Culture Using a Dendritic Polyglycerol Amine-Based Substrate. ASN Neuro 2022; 14:17590914211073381. [PMID: 35023784 PMCID: PMC8784909 DOI: 10.1177/17590914211073381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) derived from healthy and diseased individuals can give rise to many cell types, facilitating the study of mechanisms of development, human disease modeling, and early drug target validation. In this context, experimental model systems based on hiPSC-derived motor neurons (MNs) have been used to study MN diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis. Modeling MN disease using hiPSC-based approaches requires culture conditions that can recapitulate in a dish the events underlying differentiation, maturation, aging, and death of MNs. Current hiPSC-derived MN-based applications are often hampered by limitations in our ability to monitor MN morphology, survival, and other functional properties over a prolonged timeframe, underscoring the need for improved long-term culture conditions. Here we describe a cytocompatible dendritic polyglycerol amine (dPGA) substrate-based method for prolonged culture of hiPSC-derived MNs. We provide evidence that MNs cultured on dPGA-coated dishes are more amenable to long-term study of cell viability, molecular identity, and spontaneous network electrophysiological activity. The present study has the potential to improve hiPSC-based studies of human MN biology and disease.We describe the use of a new coating substrate providing improved conditions for long-term cultures of human iPSC-derived motor neurons, thus allowing evaluation of cell viability, molecular identity, spontaneous network electrophysiological activity, and single-cell RNA sequencing of mature motor neurons.
Collapse
Affiliation(s)
- Louise Thiry
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Jean-Pierre Clément
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
42
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
43
|
Budding K, Johansen LE, Van de Walle I, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Bos JW, Jansen MD, Curial CAD, Silence K, de Haard H, Blanchetot C, Van de Ven L, Leusen JHW, Pasterkamp RJ, van den Berg LH, Hack CE, Boross P, van der Pol WL. Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 9:9/1/e1107. [PMID: 34759020 PMCID: PMC8587732 DOI: 10.1212/nxi.0000000000001107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Background and Objectives To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. Methods iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. Results iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. Discussion Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.
Collapse
Affiliation(s)
- Kevin Budding
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lill Eva Johansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Inge Van de Walle
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Kim Dijkxhoorn
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Elisabeth de Zeeuw
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lauri M Bloemenkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeroen W Bos
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Marc D Jansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Chantall A D Curial
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Karen Silence
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Hans de Haard
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Christophe Blanchetot
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Liesbeth Van de Ven
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeanette H W Leusen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - R Jeroen Pasterkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Leonard H van den Berg
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - C Erik Hack
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Peter Boross
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - W Ludo van der Pol
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands.
| |
Collapse
|
44
|
Establishment of a 13 genes-based molecular prediction score model to discriminate the neurotoxic potential of food relevant-chemicals. Toxicol Lett 2021; 355:1-18. [PMID: 34748853 DOI: 10.1016/j.toxlet.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Although many neurotoxicity prediction studies of food additives have been developed, they are applicable in a qualitative way. We aimed to develop a novel prediction score that is described quantitatively and precisely. We examined cell viability, reactive oxygen species activity, intracellular calcium and RNA transcription level of potential prediction related genes to develop a high-throughput neurotoxicity test method in vitro to screen the neurotoxicity of hazardous factors in food using AI-based machine learning. We trained artificial intelligence models (random forest and neural network) to predict neurotoxicity precisely, establishing a universal classification assessment score (CA-Score) that relies on the expression status of only 13 of prediction related genes. The CA-Score system is almost universally applicable to food risk factors (p<0.05) in a manner independent of platform (microarray or RNA sequencing) by being compared with cut-off value 23.487 to judge whether it's neurotoxic or not. We finally validated our prediction with the external validation of CA-Score on neural precursor cells derived from embryonic stem cells. Therefore, we draw a conclusion that the AI-based machine learning including neural network and random forest is likely to provide a useful tool for large-scale screening of neurotoxicity in food risk factors.
Collapse
|
45
|
Gala D, Gurusamy V, Patel K, Damodar S, Swaminath G, Ullal G. Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel Therapeutic Approach. Diseases 2021; 9:diseases9040077. [PMID: 34842629 PMCID: PMC8628773 DOI: 10.3390/diseases9040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for the management of various central nervous system disorders. The ability to self-renew, differentiate into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the treatment of PTSD.
Collapse
|
46
|
Smith AST, Chun C, Hesson J, Mathieu J, Valdmanis PN, Mack DL, Choi BO, Kim DH, Bothwell M. Human Induced Pluripotent Stem Cell-Derived TDP-43 Mutant Neurons Exhibit Consistent Functional Phenotypes Across Multiple Gene Edited Lines Despite Transcriptomic and Splicing Discrepancies. Front Cell Dev Biol 2021; 9:728707. [PMID: 34660586 PMCID: PMC8511491 DOI: 10.3389/fcell.2021.728707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington, Seattle, WA, United States
| | - David L Mack
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Wind M, Tsakiridis A. In Vitro Generation of Posterior Motor Neurons from Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e244. [PMID: 34547185 DOI: 10.1002/cpz1.244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to generate spinal cord motor neurons from human pluripotent stem cells (hPSCs) is of great use for modelling motor neuron-based diseases and cell-replacement therapies. A key step in the design of hPSC differentiation strategies aiming to produce motor neurons involves induction of the appropriate anteroposterior (A-P) axial identity, an important factor influencing motor neuron subtype specification, functionality, and disease vulnerability. Most current protocols for induction of motor neurons from hPSCs produce predominantly cells of a mixed hindbrain/cervical axial identity marked by expression of Hox paralogous group (PG) members 1-5, but are inefficient in generating high numbers of more posterior thoracic/lumbosacral Hox PG(8-13)+ spinal cord motor neurons. Here, we describe a protocol for efficient generation of thoracic spinal cord cells and motor neurons from hPSCs. This step-wise protocol relies on the initial generation of a neuromesodermal-potent axial progenitor population, which is differentiated first to produce posterior ventral spinal cord progenitors and subsequently to produce posterior motor neurons exhibiting a predominantly thoracic axial identity. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of neuromesodermal progenitors Basic Protocol 2: Posterior ventral spinal cord progenitor differentiation Basic Protocol 3: Posterior motor neuron differentiation.
Collapse
Affiliation(s)
- Matt Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
48
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
49
|
Pardieck J, Harb M, Sakiyama-Elbert S. Induction of Ventral Spinal V0 Interneurons from Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:816-829. [PMID: 34139881 DOI: 10.1089/scd.2021.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ventral spinal population of V0 interneurons (INs) contributes to the coordinated movements directed by spinal central pattern generators (CPGs), including respiratory circuits and left-right alternation in locomotion. One challenge in studying V0 INs has been the limited number of cells that can be isolated from primary sources for basic research or therapeutic use. However, derivation from a pluripotent source, such as has been done recently for other IN populations, could resolve this issue. However, there is currently no protocol to specifically derive V0 interneurons from pluripotent cell types. To generate an induction protocol, mouse embryonic stem cells (mESCs) were grown in suspension culture and then exposed to retinoic acid (RA) and collected at different time points to measure mRNA expression of the V0 progenitor transcription factor marker, Dbx1, and postmitotic transcription factor marker, Evx1. The cultures were also exposed to the sonic hedgehog signaling pathway agonist purmorphamine (purm) and the Notch signaling pathway inhibitor N-{N-(3,5-difluorophenacetyl-L-alanyl)}-(S)-phenylglycine-t-butyl-ester (DAPT) to determine if either of these pathways contribute to V0 IN induction, specifically the ventral (V0V) subpopulation. From the various parameters tested, the final protocol that generated the greatest percentage of cells expressing V0V IN markers was an 8-day protocol using 4 days of suspension culture to form embryoid bodies followed by addition of 1 μM RA from days 4 to 8, 100 nM purm from days 4 to 6, and 5 μM DAPT from days 6 to 8. This protocol will allow investigators to obtain V0 IN cultures for use in in vitro studies, such as those examining CPG microcircuits, electrophysiological characterization, or even for transplantation studies in injury or disease models.
Collapse
Affiliation(s)
- Jennifer Pardieck
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Manwal Harb
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
50
|
Libby ARG, Joy DA, Elder NH, Bulger EA, Krakora MZ, Gaylord EA, Mendoza-Camacho F, Butts JC, McDevitt TC. Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development 2021; 148:269182. [PMID: 34142711 DOI: 10.1242/dev.198275] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors. A critical threshold of Wnt agonism stimulated singular axial extensions while maintaining multiple cell lineages, such that organoids displayed regionalized anterior-to-posterior HOX gene expression with hindbrain (HOXB1) regions spatially distinct from brachial (HOXC6) and thoracic (HOXB9) regions. CRISPR interference-mediated silencing of TBXT, a Wnt pathway target, increased neuroepithelial compartmentalization, abrogated HOX expression and disrupted uniaxial elongation. Together, these results demonstrate the potent capacity of caudalized hPSC organoids to undergo axial elongation in a manner that can be used to dissect the cellular organization and patterning decisions that dictate early human nervous system development.
Collapse
Affiliation(s)
- Ashley R G Libby
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 94143, USA.,Gladstone Institutes, San Francisco, CA 94158, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA.,UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Nicholas H Elder
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 94143, USA.,Gladstone Institutes, San Francisco, CA 94158, USA
| | - Emily A Bulger
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 94143, USA.,Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Eliza A Gaylord
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 94143, USA
| | - Frederico Mendoza-Camacho
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 94143, USA
| | | | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|