1
|
Thibeault KC, Leonard MZ, Kondev V, Emerson SD, Bethi R, Lopez AJ, Sens JP, Nabit BP, Elam HB, Winder DG, Patel S, Kiraly DD, Grueter BA, Calipari ES. A Cocaine-Activated Ensemble Exerts Increased Control Over Behavior While Decreasing in Size. Biol Psychiatry 2025; 97:590-601. [PMID: 38901723 PMCID: PMC11995305 DOI: 10.1016/j.biopsych.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Substance use disorder is characterized by long-lasting changes in reward-related brain regions, such as the nucleus accumbens. Previous work has shown that cocaine exposure induces plasticity in broad, genetically defined cell types in the nucleus accumbens; however, in response to a stimulus, only a small percentage of neurons are transcriptionally active-termed an ensemble. Here, we identify an Arc-expressing neuronal ensemble that has a unique trajectory of recruitment and causally controls drug self-administration after repeated, but not acute, cocaine exposure. METHODS Using Arc-CreERT2 transgenic mice, we expressed transgenes in Arc+ ensembles activated by cocaine exposure (either acute [1 × 10 mg/kg intraperitoneally] or repeated [10 × 10 mg/kg intraperitoneally]). Using genetic, optical, and physiological recording and manipulation strategies, we assessed the contribution of these ensembles to behaviors associated with substance use disorder. RESULTS Repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its control over behavior. Neurons within the repeated cocaine ensemble were hyperexcitable, and their optogenetic excitation was sufficient for reinforcement. Finally, lesioning the repeated cocaine, but not the acute cocaine, ensemble blunted cocaine self-administration. Thus, repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its contributions to drug reinforcement. CONCLUSIONS We showed that repeated, but not acute, cocaine exposure induced a physiologically distinct ensemble characterized by the expression of the immediate early gene Arc, which was uniquely capable of modulating reinforcement behavior.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Michael Z Leonard
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Soren D Emerson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Rishik Bethi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Alberto J Lopez
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathon P Sens
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brett P Nabit
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Hannah B Elam
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Drew D Kiraly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
2
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
3
|
Madangopal R, Zhao Y, Heins C, Zhou J, Liang B, Barbera G, Lam KC, Komer LE, Weber SJ, Thompson DJ, Gera Y, Pham DQ, Savell KE, Warren BL, Caprioli D, Venniro M, Bossert JM, Ramsey LA, Jedema HP, Schoenbaum G, Lin DT, Shaham Y, Pereira F, Hope BT. Distinct prelimbic cortex ensembles encode response execution and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639736. [PMID: 40060503 PMCID: PMC11888377 DOI: 10.1101/2025.02.23.639736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Learning when to initiate or withhold actions is essential for survival and requires integration of past experiences with new information to adapt to changing environments. While stable prelimbic cortex (PL) ensembles have been identified during reward learning, it remains unclear how they adapt when contingencies shift. Does the same ensemble adjust its activity to support behavioral suppression upon reward omission, or is a distinct ensemble recruited for this new learning? We used single-cell calcium imaging to longitudinally track PL neurons in rats across operant food reward Training, Extinction and Reinstatement, trained rat-specific decoders to predict trial-wise behavior, and implemented an in-silico deletion approach to characterize ensemble contributions to behavior. We show that operant training and extinction recruit distinct PL ensembles that encode response execution and inhibition, and that both ensembles are re-engaged and maintain their roles during Reinstatement. These findings highlight ensemble-based encoding of multiple learned associations within a region, with selective ensemble recruitment supporting behavioral flexibility under changing contingencies.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yuan Zhao
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Conor Heins
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jingfeng Zhou
- Cellular and Neurocomputational Systems Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bo Liang
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Giovanni Barbera
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Ka Chun Lam
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Lauren E Komer
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Drake J Thompson
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yugantar Gera
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Diana Q Pham
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Katherine E Savell
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Brandon L Warren
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Marco Venniro
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jennifer M Bossert
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Hank P Jedema
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Geoffrey Schoenbaum
- Cellular and Neurocomputational Systems Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Da-Ting Lin
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Francisco Pereira
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Bruce T Hope
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
4
|
Glanzberg JT, Denman AJ, Beacher NJ, Broomer MC, Liang B, Li Y, Shaham Y, Barbera G, Zhang Y, Lin DT. Individual differences in prelimbic neural representation of food and cocaine seeking. Cell Rep 2024; 43:115022. [PMID: 39607827 PMCID: PMC11744894 DOI: 10.1016/j.celrep.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
The prelimbic cortex is involved in operant reward seeking. However, the precise nature of its activity patterns and whether/how they differ between different types of rewards are largely unknown. We use miniscope calcium imaging to observe prelimbic activity during both food and cocaine seeking in freely behaving mice. We find that neurobehavioral representations remain stable across days within individual mice. Unexpectedly, our data reveal significant individual differences: some mice display high similarity in their prelimbic cortex activity patterns for both food and cocaine seeking, while others show no such overlap. These findings suggest that individual differences in the neural mechanisms underlying food and cocaine seeking could be a critical factor to consider when developing future addiction treatment strategies.
Collapse
Affiliation(s)
- Joseph T Glanzberg
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Alexander J Denman
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Nicholas J Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Matthew C Broomer
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Bo Liang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Liu S, Nawarawong N, Liu X, Liu QS, Olsen CM. Dissociable dorsal medial prefrontal cortex ensembles are necessary for cocaine seeking and fear conditioning in mice. Transl Psychiatry 2024; 14:387. [PMID: 39313502 PMCID: PMC11420216 DOI: 10.1038/s41398-024-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The dorsal medial prefrontal cortex (dmPFC) plays a dual role in modulating drug seeking and fear-related behaviors. Learned associations between cues and drug seeking are encoded by a specific ensemble of neurons. This study explored the stability of a dmPFC cocaine seeking ensemble over 2 weeks and its influence on persistent cocaine seeking and fear memory retrieval. In the first series of experiments, we trained TetTag c-fos-driven-EGFP mice in cocaine self-administration and tagged strongly activated neurons with EGFP during the initial day 7 cocaine seeking session. Subsequently, a follow-up seeking test was conducted 2 weeks later to examine ensemble reactivation between two seeking sessions via c-Fos immunostaining. In the second series of experiments, we co-injected viruses expressing TRE-cre and a cre-dependent inhibitory PSAM-GlyR into the dmPFC of male and female c-fos-tTA mice to enable "tagging" of cocaine seeking ensemble or cued fear ensemble neurons with inhibitory chemogenetic receptors. These c-fos-tTA mice have the c-fos promoter that drives expression of the tetracycline transactivator (tTA). The tTA can bind to the tetracycline response element (TRE) site on the viral construct, resulting in the expression of cre-recombinase, which enables the expression of cre-dependent inhibitory chemogenetic receptors and fluorescent reporters. Then we investigated ensemble contribution to subsequent cocaine seeking and fear recall during inhibition of the tagged ensemble by administering uPSEM792s (0.3 mg/kg), a selective ligand for PSAM-GlyR. In both sexes, there was a positive association between the persistence of cocaine seeking and the proportion of reactivated EGFP+ neurons within the dmPFC. More importantly, inhibition of the cocaine seeking ensemble suppressed cocaine seeking, but not recall of fear memory, while inhibition of the fear ensemble reduced conditioned freezing but not cocaine seeking. The results demonstrate that cocaine and fear recall ensembles in the dmPFC are stable, but largely exclusive from one another.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalie Nawarawong
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaojie Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology & Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher M Olsen
- Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Rakela S, Sortman BW, Gobin C, Hao S, Caceres-Brun D, Warren BL. Self-administration acquisition latency predicts locomotor sensitivity to cocaine in male rats. Behav Brain Res 2024; 473:115170. [PMID: 39084564 PMCID: PMC11956165 DOI: 10.1016/j.bbr.2024.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Individual differences in drug use emerge soon after initial exposure, and only a fraction of individuals who initiate drug use go on to develop a substance use disorder. Variability in vulnerability to establishing drug self-administration behavior is also evident in preclinical rodent models. Latent characteristics that underlie this variability and the relationship between early drug use patterns and later use remain unclear. Here, we attempt to determine whether propensity to establish cocaine self-administration is related to subsequent cocaine self-administration behavior in male Sprague-Dawley rats (n = 14). Prior to initiating training, we evaluated basal locomotor and anxiety-like behavior in a novel open field test. We then trained rats to self-administer cocaine in daily 3 h cocaine (0.75 mg/kg/infusion) self-administration sessions until acquisition criteria (≥30 active lever presses with ≥70 % responding on the active lever in one session) was met and divided rats into Early and Late groups by median-split analysis based on their latency to meet acquisition criteria. After each rat met acquisition criteria, we gave them 10 additional daily cocaine self-administration sessions. We then conducted a progressive ratio, cocaine-induced locomotor sensitivity test, and non-reinforced cocaine seeking test after two weeks of forced abstinence. Early Learners exhibited significantly less locomotion after an acute injection of cocaine, but the groups did not differ in any other behavioral parameter examined. These results indicate that cocaine self-administration acquisition latency is not predictive of subsequent drug-taking behavior, but may be linked to physiological factors like drug sensitivity that can predispose rats to learn the operant task.
Collapse
Affiliation(s)
- Samantha Rakela
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Bo W Sortman
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Christina Gobin
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Sophie Hao
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Delfina Caceres-Brun
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States.
| | - Brandon L Warren
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| |
Collapse
|
7
|
Callan L, Caroland-Williams A, Lee G, Belflower J, Belflower J, Modi U, Kase C, Patel A, Collins N, Datta A, Qasi S, Gheidi A. After a period of forced abstinence, rats treated with the norepinephrine neurotoxin DSP-4 still exhibit preserved food-seeking behavior and prefrontal cortex fos-expressing neurons. Heliyon 2024; 10:e32146. [PMID: 39027623 PMCID: PMC11255514 DOI: 10.1016/j.heliyon.2024.e32146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Aims Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.
Collapse
Affiliation(s)
- L.N. Callan
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.J. Caroland-Williams
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - G. Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.M. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.T. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - U.A. Modi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - C.V. Kase
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.D. Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - N.A. Collins
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Datta
- Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| | - S. Qasi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| |
Collapse
|
8
|
Clarke RE, Grant RI, Woods SN, Pagoota BE, Buchmaier S, Bordieanu B, Tsyrulnikov A, Westphal AM, Paniccia JE, Doncheck EM, Carroll-Deaton J, Vollmer KM, Ward AL, Winston KT, King DI, Baek J, Martino MR, Green LM, McGinty JF, Scofield MD, Otis JM. Corticostriatal ensemble dynamics across heroin self-administration to reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599790. [PMID: 38979314 PMCID: PMC11230161 DOI: 10.1101/2024.06.21.599790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Corticostriatal projection neurons from prelimbic medial prefrontal cortex to the nucleus accumbens core critically regulate drug-seeking behaviors, yet the underlying encoding dynamics whereby these neurons contribute to drug seeking remain elusive. Here we use two-photon calcium imaging to visualize the activity of corticostriatal neurons in mice from the onset of heroin use to relapse. We find that the activity of these neurons is highly heterogeneous during heroin self-administration and seeking, with at least 8 distinct neuronal ensembles that display both excitatory and inhibitory encoding dynamics. These neuronal ensembles are particularly apparent during relapse, where excitatory responses are amplified compared to heroin self-administration. Moreover, we find that optogenetic inhibition of corticostriatal projection neurons attenuates heroin seeking regardless of the relapse trigger. Our results reveal the precise corticostriatal activity dynamics underlying drug-seeking behaviors and support a key role for this circuit in mediating relapse to drug seeking.
Collapse
Affiliation(s)
- Rachel E. Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger I. Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shannon N. Woods
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bayleigh E. Pagoota
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophie Buchmaier
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Tsyrulnikov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Annaka M. Westphal
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jayda Carroll-Deaton
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy L. Ward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kion T. Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danielle I. King
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jade Baek
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mike R. Martino
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa M. Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Co-last authors
| | - James M. Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Co-last authors
| |
Collapse
|
9
|
Liu S, Nawarawong N, Liu X, Liu QS, Olsen CM. Dissociable dorsal medial prefrontal cortex ensembles are necessary for cocaine seeking and fear conditioning in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585444. [PMID: 38562850 PMCID: PMC10983871 DOI: 10.1101/2024.03.17.585444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dmPFC plays a dual role in modulating drug seeking and fear-related behaviors. Learned associations between cues and drug seeking are encoded by a specific ensemble of neurons. This study explored the stability of a dmPFC cocaine seeking ensemble over two weeks and its influence on persistent cocaine seeking and fear memory retrieval. In the first series of experiments, we trained TetTag mice in cocaine self-administration and tagged strongly activated neurons with EGFP during the initial day 7 cocaine seeking session. Subsequently, a follow-up seeking test was conducted two weeks later to examine ensemble reactivation between two seeking sessions via c-Fos immunostaining. In the second series of experiments, we co-injected viruses expressing TRE-cre and a cre-dependent inhibitory PSAM-GlyR into the dmPFC of male and female c-fos -tTA mice to enable "tagging" of cocaine seeking ensemble or cued fear ensemble neurons with an inhibitory chemogenetic receptors. Then we investigated their contribution to subsequent cocaine seeking and fear recall during inhibition of the tagged ensemble by administering uPSEM792s (0.3 mg/kg), a selective ligand for PSAM-GlyR. In both sexes, there was a positive association between the persistence of cocaine seeking and the proportion of reactivated EGFP+ neurons within the dmPFC. More importantly, inhibition of the cocaine seeking ensemble suppressed cocaine seeking, but not recall of fear memory, while inhibition of the fear ensemble reduced conditioned freezing but not cocaine seeking. The results demonstrate that cocaine and fear recall ensembles in the dmPFC are stable, but largely exclusive from one another.
Collapse
|
10
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|
11
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
12
|
Estrin DJ, Kulik JM, Beacher NJ, Pawlak AP, Klein SD, West MO. Acquired Alterations in Nucleus Accumbens Responsiveness to a Cocaine-Paired Discriminative Stimulus Preceding Rats' Daily Cocaine Consumption. ADDICTION NEUROSCIENCE 2023; 8:100121. [PMID: 37664217 PMCID: PMC10470667 DOI: 10.1016/j.addicn.2023.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Resumption of drug taking is a primary focus for substance use disorder research and can be triggered by drug-associated environmental stimuli. The Nucleus Accumbens (NAc) is a key brain region which guides motivated behavior and is implicated in resumption. There remains a pressing need to characterize NAc neurons' responsiveness to drug associated stimuli during withdrawal and abstinence. We recorded discriminative stimulus (DS) induced NAc activity via in vivo single-unit electrophysiology in rats that self-administered cocaine. Male and female rats implanted with a jugular catheter and a microwire array in NAc Core and Shell self-administered cocaine under control of a 30s auditory DS for 6 hours per session across 14 consecutive days. Rats acquired tone discrimination within 4 sessions. To exclude pharmacological effects of circulating cocaine from all neural analyses, we studied changes in DS-induced firing only for trials preceding the first infusion of cocaine in each of the 14 sessions, which were defined as "pre-drug trials." NAc neuron responses were assessed prior to tone-evoked movement onset. Responsiveness to the DS tone was exhibited throughout all sessions by the NAc Core population, but only during Early sessions by the NAc Shell population. Both Core and Shell responded selectively to the DS, i.e., more strongly on drug taking trials, or Hits, than on Missed opportunities. These findings suggest that NAc Core and Shell play distinct roles in initiating cocaine seeking prior to daily cocaine consumption, and align with reports suggesting that as drug use becomes chronic, cue-evoked activity shifts from NAc Shell to NAc Core.
Collapse
Affiliation(s)
- David J. Estrin
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Julianna M. Kulik
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Nicholas J. Beacher
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Neural Engineering Section, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224
| | - Anthony P. Pawlak
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Center of Alcohol & Substance Use Studies, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
- Graduate School of Applied & Professional Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Samuel D. Klein
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Department of Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Mark O. West
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| |
Collapse
|
13
|
Barber KR, Vizcarra VS, Zilch A, Majuta L, Diezel CC, Culver OP, Hughes BW, Taniguchi M, Streicher JM, Vanderah TW, Riegel AC. The Role of Ryanodine Receptor 2 in Drug-Associated Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560743. [PMID: 37873212 PMCID: PMC10592901 DOI: 10.1101/2023.10.03.560743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type-2 ryanodine receptor (RyR2) ion channels facilitate the release of Ca 2+ from stores and serve an important function in neuroplasticity. The role for RyR2 in hippocampal-dependent learning and memory is well established and chronic hyperphosphorylation of RyR2 (RyR2P) is associated with pathological calcium leakage and cognitive disorders, including Alzheimer's disease. By comparison, little is known about the role of RyR2 in the ventral medial prefrontal cortex (vmPFC) circuitry important for working memory, decision making, and reward seeking. Here, we evaluated the basal expression and localization of RyR2 and RyR2P in the vmPFC. Next, we employed an operant model of sucrose, cocaine, or morphine self-administration (SA) followed by a (reward-free) recall test, to reengage vmPFC neurons and reactivate reward-seeking and re-evaluated the expression and localization of RyR2 and RyR2P in vmPFC. Under basal conditions, RyR2 was expressed in pyramidal cells but not regularly detected in PV/SST interneurons. On the contrary, RyR2P was rarely observed in PFC somata and was restricted to a different subcompartment of the same neuron - the apical dendrites of layer-5 pyramidal cells. Chronic SA of drug (cocaine or morphine) and nondrug (sucrose) rewards produced comparable increases in RyR2 protein expression. However, recalling either drug reward impaired the usual localization of RyR2P in dendrites and markedly increased its expression in somata immunoreactive for Fos, a marker of highly activated neurons. These effects could not be explained by chronic stress or drug withdrawal and instead appeared to require a recall experience associated with prior drug SA. In addition to showing the differential distribution of RyR2/RyR2P and affirming the general role of vmPFC in reward learning, this study provides information on the propensity of addictive drugs to redistribute RyR2P ion channels in a neuronal population engaged in drug-seeking. Hence, focusing on the early impact of addictive drugs on RyR2 function may serve as a promising approach to finding a treatment for substance use disorders.
Collapse
|
14
|
Matchynski JI, Cilley TS, Sadik N, Makki KM, Wu M, Manwar R, Woznicki AR, Kallakuri S, Arfken CL, Hope BT, Avanaki K, Conti AC, Perrine SA. Quantification of prefrontal cortical neuronal ensembles following conditioned fear learning in a Fos-LacZ transgenic rat with photoacoustic imaging in Vivo. PHOTOACOUSTICS 2023; 33:100551. [PMID: 38021296 PMCID: PMC10658601 DOI: 10.1016/j.pacs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.
Collapse
Affiliation(s)
- James I Matchynski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Wayne State MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy S Cilley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kassem M Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Min Wu
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | | | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cynthia L Arfken
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce T Hope
- The National Institute on Drug Abuse (NIDA), Intramural Research Program, Baltimore, MD, USA
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | - Alana C Conti
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Birmingham EA, Wickens MM, Kirkland JM, Knouse MC, McGrath AG, Briand LA. Circulating ovarian hormones interact with protein interacting with C kinase (PICK1) within the medial prefrontal cortex to influence cocaine seeking in female mice. Horm Behav 2023; 155:105408. [PMID: 37541099 PMCID: PMC10543586 DOI: 10.1016/j.yhbeh.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
Protein interacting with C kinase 1 (PICK1) is an AMPA receptor binding protein that works in conjunction with glutamate receptor interacting protein (GRIP) to balance the number of GluA2-containing AMPARs in the synapse. In male mice, disrupting PICK1 in the medial prefrontal cortex (mPFC) leads to a decrease in cue-induced cocaine seeking and disrupting GRIP in the mPFC has the opposing effect, consistent with other evidence that removal of GluA2-containing AMPARs potentiates reinstatement. However, PICK1 does not seem to play the same role in female mice, as knockdown of either PICK1 or GRIP in the mPFC leads to similar increases in cue-induced cocaine seeking. These previous findings indicate that the role of PICK1 in the prefrontal cortex is sex specific. The goal of the current study was to examine whether ovarian hormones contribute to the effect of prefrontal PICK1 knockdown on reinstatement of cocaine seeking. While we replicated the increased cue-induced cocaine seeking in prefrontal PICK1 knockdown sham mice, we did not see any difference between the GFP control mice and PICK1 knockdowns following ovariectomy. However, this effect was driven primarily by an increase in cocaine seeking in ovariectomized GFP control mice while there was no effect ovariectomy in PICK1 knockdown mice. Taken together, these findings suggest that circulating ovarian hormones interact with the effects of PICK1 on cue-induced reinstatement.
Collapse
Affiliation(s)
| | - Megan M Wickens
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Julia M Kirkland
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Melissa C Knouse
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Anna G McGrath
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Lisa A Briand
- Department of Psychology & Neuroscience, Temple University, United States of America; Neuroscience Program, Temple University, United States of America.
| |
Collapse
|
16
|
Levinstein MR, Carlton ML, Di Ianni T, Ventriglia EN, Rizzo A, Gomez JL, Budinich RC, Shaham Y, Airan RD, Zarate CA, Bonaventura J, Michaelides M. Mu Opioid Receptor Activation Mediates (S)-ketamine Reinforcement in Rats: Implications for Abuse Liability. Biol Psychiatry 2023; 93:1118-1126. [PMID: 36841701 PMCID: PMC11947972 DOI: 10.1016/j.biopsych.2022.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND (S)-ketamine is an NMDA receptor antagonist, but it also binds to and activates mu opioid receptors (MORs) and kappa opioid receptors in vitro. However, the extent to which these receptors contribute to (S)-ketamine's in vivo pharmacology is unknown. METHODS We investigated the extent to which (S)-ketamine interacts with opioid receptors in rats by combining in vitro and in vivo pharmacological approaches, in vivo molecular and functional imaging, and behavioral procedures relevant to human abuse liability. RESULTS We found that the preferential opioid receptor antagonist naltrexone decreased (S)-ketamine self-administration and (S)-ketamine-induced activation of the nucleus accumbens, a key brain reward region. A single reinforcing dose of (S)-ketamine occupied brain MORs in vivo, and repeated doses decreased MOR density and activity and decreased heroin reinforcement without producing changes in NMDA receptor or kappa opioid receptor density. CONCLUSIONS These results suggest that (S)-ketamine's abuse liability in humans is mediated in part by brain MORs.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Tommaso Di Ianni
- Neuroradiology Division, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Emilya N Ventriglia
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Reece C Budinich
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Yavin Shaham
- Neurobiology of Relapse Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Raag D Airan
- Neuroradiology Division, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Rubio FJ, Olivares DE, Dunn C, Zhang S, Hilaire EM, Henry A, Mejias-Aponte C, Nogueras-Ortiz CJ, Selvam PV, Cruz FC, Madangopal R, Morales M, Hope BT. Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. J Neurosci 2023; 43:4217-4233. [PMID: 37160369 PMCID: PMC10255002 DOI: 10.1523/jneurosci.0927-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.
Collapse
Affiliation(s)
- F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Daniel E Olivares
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Elias M Hilaire
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Akeem Henry
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos J Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Fabio C Cruz
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, CEP 04023-062, São Paulo, Brazil
| | - Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
18
|
Tavares GEB, Bianchi PC, Yokoyama TS, Palombo P, Cruz FC. INVOLVEMENT OF CORTICAL PROJECTIONS TO BASOLATERAL AMYGDALA IN CONTEXT-INDUCED REINSTATEMENT OF ETHANOL-SEEKING IN RATS. Behav Brain Res 2023; 448:114435. [PMID: 37044222 DOI: 10.1016/j.bbr.2023.114435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Ethanol is the most consumed substance of abuse in the world, and its misuse may lead to the development of alcohol use disorder (AUD). High relapse rates remain a relevant problem in the treatment of AUD. Exposure to environmental cues previously associated with ethanol intake could trigger ethanol-seeking behavior. However, the neural mechanisms involved in this phenomenon are not entirely clear. In this context, cortical projections to the basolateral amygdala (BLA) play a role in appetitive and aversive learned behaviors. Therefore, we aimed to evaluate the activation of the cortical projections from the prelimbic (PL), orbitofrontal (OFC), and infralimbic (IL), to the BLA in the context-induced reinstatement of ethanol-seeking. Male Long-Evans rats were trained to self-administer 10% ethanol in Context A. Subsequently, lever pressing in the presence of the discrete cue was extinguished in Context B. After nine extinction sessions, rats underwent intracranial surgery for the unilateral injection of red fluorescent retrograde tracer into the BLA. The context-induced reinstatement of ethanol-seeking was assessed by re-exposing the rats to Context A or B under extinction conditions. Finally, we combined retrograde neuronal tracing with Fos to identify activated cortical inputs to BLA during the reinstatement of ethanol-seeking behavior. We found that PL, but not OFC or IL, retrogradely-labeled neurons from BLA presented increased Fos expression during the re-exposure to the ethanol-associated context, suggesting that PL projection to BLA is involved in the context-induced reinstatement of ethanol-seeking behavior.
Collapse
Affiliation(s)
| | - Paula Cristina Bianchi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Thais Suemi Yokoyama
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Paola Palombo
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Moorman DE, Aston-Jones G. Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales. Psychopharmacology (Berl) 2023; 240:575-594. [PMID: 36464693 PMCID: PMC10406502 DOI: 10.1007/s00213-022-06287-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
20
|
Brown A, Chaudhri N. Optogenetic stimulation of infralimbic cortex projections to the paraventricular thalamus attenuates context-induced renewal. Eur J Neurosci 2023; 57:762-779. [PMID: 36373226 DOI: 10.1111/ejn.15862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Contexts associated with prior reinforcement can renew extinguished conditioned responding. The prelimbic (PL) and infralimbic (IL) cortices are thought to mediate the expression and suppression of conditioned responding, respectively. Evidence suggests that PL inputs to the paraventricular nucleus of the thalamus (PVT) drive the expression of cue-induced reinstatement of drug seeking and that IL inputs to the PVT mediate fear extinction retrieval. However, the role of these projections in renewal of appetitive Pavlovian conditioned responding is unknown. We trained male and female Long-Evans rats to associate a conditioned stimulus (CS; 10 s white noise) with delivery of a 10% sucrose unconditioned stimulus (US; .2 ml/CS) to a fluid port in a distinct context (Context A). We then extinguished responding by presenting the CS without the US in a different context (Context B). At test, rats were returned to Context A, and optogenetic stimulation was delivered to either the IL-to-PVT or PL-to-PVT pathway during CS presentations. Optically stimulating the IL-to-PVT, but not the PL-to-PVT pathway, attenuated ABA renewal of CS port entries, and this effect was similar in males and females. Further, rats self-administered optical stimulation of the IL-to-PVT but not the PL-to-PVT pathway suggesting that activation of the IL-to-PVT pathway is reinforcing. The effectiveness of optical stimulation parameters to activate neurons in the IL, PL and PVT was confirmed using Fos immunohistochemistry. These findings provide evidence for novel neural mechanisms in renewal of responding to a sucrose-predictive CS, as well as more generally in contextual processing and appetitive associative learning.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Brown A, Villaruel FR, Chaudhri N. Neural correlates of recall and extinction in a rat model of appetitive Pavlovian conditioning. Behav Brain Res 2023; 440:114248. [PMID: 36496079 DOI: 10.1016/j.bbr.2022.114248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Extinction is a fundamental form of inhibitory learning that is important for adapting to changing environmental contingencies. While numerous studies have investigated the neural correlates of extinction using Pavlovian fear conditioning and appetitive operant reward-seeking procedures, less is known about the neural circuitry mediating the extinction of appetitive Pavlovian responding. Here, we aimed to generate an extensive brain activation map of extinction learning in a rat model of appetitive Pavlovian conditioning. Male Long-Evans rats were trained to associate a conditioned stimulus (CS; 20 s white noise) with the delivery of a 10% sucrose unconditioned stimulus (US; 0.3 ml/CS) to a fluid port. Control groups also received CS presentations, but sucrose was delivered either during the inter-trial interval or in the home-cage. After conditioning, 1 or 6 extinction sessions were conducted in which the CS was presented but sucrose was withheld. We performed Fos immunohistochemistry and network connectivity analyses on a set of cortical, striatal, thalamic, and amygdalar brain regions. Neural activity in the prelimbic cortex, ventral orbitofrontal cortex, nucleus accumbens core, and paraventricular nucleus of the thalamus was greater during recall relative to extinction. Conversely, prolonged extinction following 6 sessions induced increased neural activity in the infralimbic cortex, medial orbitofrontal cortex, and nucleus accumbens shell compared to home-cage controls. All these structures were similarly recruited during recall on the first extinction session. These findings provide novel evidence for the contribution of brain areas and neural networks that are differentially involved in the recall versus extinction of appetitive Pavlovian conditioned responding.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Franz R Villaruel
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
22
|
The Recruitment of a Neuronal Ensemble in the Central Nucleus of the Amygdala During the First Extinction Episode Has Persistent Effects on Extinction Expression. Biol Psychiatry 2023; 93:300-308. [PMID: 36336498 DOI: 10.1016/j.biopsych.2022.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Adaptive behavior depends on the delicate and dynamic balance between acquisition and extinction memories. Disruption of this balance, particularly when the extinction of memory loses control over behavior, is the root of treatment failure of maladaptive behaviors such as substance abuse or anxiety disorders. Understanding this balance requires a better understanding of the underlying neurobiology and its contribution to behavioral regulation. METHODS We microinjected Daun02 in Fos-lacZ transgenic rats following a single extinction training episode to delete extinction-recruited neuronal ensembles in the basolateral amygdala (BLA) and central nucleus of the amygdala (CN) and examined their contribution to behavior in an appetitive Pavlovian task. In addition, we used immunohistochemistry and neuronal staining methods to identify the molecular markers of activated neurons in the BLA and CN during extinction learning or retrieval. RESULTS CN neurons were preferentially engaged following extinction, and deletion of these extinction-activated ensembles in the CN but not the BLA impaired the retrieval of extinction despite additional extinction training and promoted greater levels of behavioral restoration in spontaneous recovery and reinstatement. Disrupting extinction processing in the CN in turn increased activity in the BLA. Our results also show a specific role for CN PKCδ+ neurons in behavioral inhibition but not during initial extinction learning. CONCLUSIONS We showed that the initial extinction-recruited CN ensemble is critical to the acquisition-extinction balance and that greater behavioral restoration does not mean weaker extinction contribution. These findings provide a novel avenue for thinking about the neural mechanisms of extinction and for developing treatments for cue-triggered appetitive behaviors.
Collapse
|
23
|
Psychostimulant Drugs Activate Cell-type Specific and Topographic cFos Expression in the Lumbar Spinal Cord. Neuroscience 2023; 510:9-20. [PMID: 36502959 DOI: 10.1016/j.neuroscience.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Psychostimulant drugs, such as cocaine, d-amphetamine and methylphenidate, alter a wide range of behaviors including locomotor activity and somatosensory perception. These altered behaviors are accompanied by the activation of specific neuronal populations within reward-, emotion- and locomotion-related circuits. However, whether such regulation occurs at the level of the spinal cord, a key node for neural circuits integrating and coordinating sensory and motor functions has never been addressed. By evaluating the temporal and spatial expression pattern of the phosphorylated form of the immediate early gene cFos at Ser32 (pS32-cFos), used as a proxy of neuronal activation, we demonstrate that, in adult male mice, d-amphetamine increases pS32-cFos expression in both inhibitory and excitatory neurons in dorsal and ventral horns at the lumbar spinal cord level. Interestingly, a fraction of neurons activated by a first exposure to d-amphetamine can be re-activated following d-amphetamine re-exposure. Similar expression patterns were observed in response to cocaine and methylphenidate, but not following morphine and dozilcipine administration. Finally, the blockade of dopamine reuptake was sufficient to recapitulate the increase in pS32-cFos expression induced by psychostimulant drugs. Our work provides evidence that cFos expression can be activated in lumbar spinal cord in response to acute psychostimulants administration.
Collapse
|
24
|
Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Minier-Toribio A, Batista A, Chow JJ, Altidor L, Barbier E, Cifani C, Li X, Reiner DJ, Rubio FJ, Hope BT, Yang Y, Bossert JM, Shaham Y. Role of ventral subiculum neuronal ensembles in incubation of oxycodone craving after electric barrier-induced voluntary abstinence. SCIENCE ADVANCES 2023; 9:eadd8687. [PMID: 36630511 PMCID: PMC9833671 DOI: 10.1126/sciadv.add8687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | | | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Jonathan J. Chow
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Lindsay Altidor
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, USA
| | - David J. Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - F. Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| |
Collapse
|
25
|
Lv X, Zhang J, Yuan TF. Retrieval-extinction of drug memory requires AMPA receptor trafficking. SCIENCE ADVANCES 2022; 8:eadd6642. [PMID: 36563160 PMCID: PMC9788760 DOI: 10.1126/sciadv.add6642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Disruption of drug-associated memory reduces relapse. Transient memory retrieval facilitates the upcoming extinction of addiction memory, while the neural basis for this beneficial outcome remains unelucidated. Here, we report that AMPA receptor trafficking acts as the central component for retrieval-extinction-based drug memory intervention. Drug memory retrieval transiently reduces AMPA receptor-mediated synaptic transmission in prefrontal cortical neurons (lasting for 2 to 4 hours) through rapid removal of calcium-permeable AMPA receptors from the synapse, which returned to basal state level after 6 hours. The receptor trafficking is orchestrated by dopamine D1 but not D2 receptor signaling. Blocking AMPA receptor trafficking abolishes retrieval-extinction-mediated addiction memory degradation. These results reveal the molecular mechanism underlying the efficacy of transient memory retrieval on helping to erase addiction memory and support targeting the prefrontal cortex to reduce relapse (e.g., with noninvasive brain stimulation).
Collapse
Affiliation(s)
- Xinyou Lv
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Laboratory Section, Affiliated Tongzhou Hospital of Nantong University, Nantong, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
27
|
Mesa JR, Wesson DW, Schwendt M, Knackstedt LA. The roles of rat medial prefrontal and orbitofrontal cortices in relapse to cocaine-seeking: A comparison across methods for identifying neurocircuits. ADDICTION NEUROSCIENCE 2022; 4:100031. [PMID: 36277334 PMCID: PMC9583858 DOI: 10.1016/j.addicn.2022.100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large body of research supports the notion that regions of the rodent frontal cortex regulate reinstatement of cocaine seeking after cessation of intravenous cocaine self-administration. However, earlier studies identifying the roles of medial (mPFC) and orbital prefrontal cortices (OFC) in reinstatement relied on pharmacological inactivation methods, which indiscriminately inhibited cells within a target region. Here, we first review the anatomical borders and pathways of the rat mPFC and OFC. Next, we compare and contrast findings from more recent cocaine seeking and reinstatement studies that used chemogenetics, optogenetics, or advanced tracing to manipulate specific local cell types or input/output projections of the mPFC and OFC subregions. We found that these studies largely corroborated the roles for mPFC subregions as ascribed by pharmacological inactivation studies. Namely, the prelimbic cortex generally drives cocaine seeking behaviors while the infralimbic cortex is recruited to inhibit cocaine seeking by extinction training but may contribute to seeking after prolonged abstinence. While the OFC remains understudied, we suggest it should not be overlooked, and, as with prelimbic and infralimbic cortices, we identify specific pathways of interest for future studies.
Collapse
Affiliation(s)
- Javier R. Mesa
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA,Corresponding author at: Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA. (J.R. Mesa)
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A. Knackstedt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Körber C, Sommer WH. From ensembles to meta-ensembles: Specific reward encoding by correlated network activity. Front Behav Neurosci 2022; 16:977474. [PMID: 36177094 PMCID: PMC9513968 DOI: 10.3389/fnbeh.2022.977474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal ensembles are local, sparsely distributed populations of neurons that are reliably re-activated by a specific stimulus, context or task. Such discrete cell populations can be defined either functionally, by electrophysiological recordings or in vivo calcium imaging, or anatomically, using the expression of markers such as the immediate early gene cFos. A typical example of tasks that involve the formation of neuronal ensembles is reward learning, such as the cue-reward pairing during operant conditioning. These ensembles are re-activated during cue-presentation and increasing evidence suggests that this re-activation is the neurophysiological basis for the execution of reward-seeking behavior. Whilst the pursuit of rewards is a common daily activity, it is also related to the consumption of drugs, such as alcohol, and may result in problematic behaviors including addiction. Recent research has identified neuronal ensembles in several reward-related brain regions that control distinct aspects of a conditioned response, e.g., contextual information about the availability of a specific reward or the actions needed to retrieve this reward under the given circumstances. Here, we review studies using the activity marker cFos to identify and characterize neuronal ensembles related to alcohol and non-drug rewards with a special emphasis on the discrimination between different rewards by meta-ensembles, i.e., by dynamic co-activation of multiple ensembles across different brain areas.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Sommer
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Sortman BW, Gobin C, Rakela S, Cerci B, Warren BL. Prelimbic Ensembles Mediate Cocaine Seeking After Behavioral Acquisition and Once Rats Are Well-Trained. Front Behav Neurosci 2022; 16:920667. [PMID: 36225390 PMCID: PMC9549214 DOI: 10.3389/fnbeh.2022.920667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Substance use disorder (SUD) is a chronic relapsing condition characterized by continued use of drugs despite negative consequences. SUD is thought to involve disordered learning and memory wherein drug-paired cues gain increased salience, and ultimately drive craving and relapse. These types of associations are thought to be encoded within sparsely distributed sets of neurons, called neuronal ensembles, that drive encoded behaviors through synchronous activity of the participant neurons. We have previously found that Fos-expressing neuronal ensembles within the prefrontal cortex are required for well-trained cocaine seeking. However, less is known about how quickly cortical neuronal ensembles form during the initiation of cocaine seeking behavior. Here, we seek to further elucidate the role of Fos-expressing neuronal ensembles within the prelimbic cortex (PL) after the initial acquisition of cocaine self-administration (SA), or, after 10 days of additional SA training (well-trained). We trained Fos-LacZ transgenic rats to lever press for cocaine under an FR1 schedule of reinforcement. Once rats met acquisition criteria for cocaine self-administration, we ablated Fos-expressing neuronal ensembles in the PL using the Daun02 inactivation method, either 1 or 10 days after the rats met the acquisition criteria. Targeted ablation of Fos-expressing neuronal ensembles in the PL attenuated active lever pressing both 1 day and 10 days after rats acquired cocaine self-administration. Together, this suggests that Fos-expressing neuronal ensembles rapidly form in the PL and continue to mediate maintained cocaine seeking behavior.
Collapse
|
30
|
Babiczky Á, Matyas F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system. eLife 2022; 11:78813. [PMID: 36063145 PMCID: PMC9444245 DOI: 10.7554/elife.78813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical influence over the mesolimbic system - including the nucleus accumbens (NAc) and the ventral tegmental area (VTA) - is implicated in various cognitive processes and behavioral malfunctions. The functional versatility of this system could be explained by an underlying anatomical complexity; however, the detailed characterization of the medial prefrontal cortical (mPFC) innervation of the NAc and VTA is still lacking. Therefore, combining classical retrograde and conditional viral tracing techniques with multiple fluorescent immunohistochemistry, we sought to deliver a precise, cell- and layer-specific anatomical description of the cortico-mesolimbic pathways in mice. We demonstrated that NAc- (mPFCNAc) and VTA-projecting mPFC (mPFCVTA) populations show different laminar distribution (layers 2/3-5a and 5b-6, respectively) and express different molecular markers. Specifically, calbindin and Ntsr1 are specific to mPFCNAc neurons, while mPFCVTA neurons express high levels of Ctip2 and FoxP2, indicating that these populations are mostly separated at the cellular level. We directly tested this with double retrograde tracing and Canine adenovirus type 2-mediated viral labeling and found that there is indeed minimal overlap between the two populations. Furthermore, whole-brain analysis revealed that the projection pattern of these populations is also different throughout the brain. Taken together, we demonstrated that the NAc and the VTA are innervated by two, mostly nonoverlapping mPFC populations with different laminar distribution and molecular profile. These results can contribute to the advancement in our understanding of mesocorticolimbic functions and its disorders in future studies.
Collapse
Affiliation(s)
- Ákos Babiczky
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Doctoral School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Matyas
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
31
|
Shelkar GP, Gandhi PJ, Liu J, Dravid SM. Cocaine preference and neuroadaptations are maintained by astrocytic NMDA receptors in the nucleus accumbens. SCIENCE ADVANCES 2022; 8:eabo6574. [PMID: 35867797 PMCID: PMC9307248 DOI: 10.1126/sciadv.abo6574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cocaine-associated memories induce cravings and interfere with the ability of users to cease cocaine use. Reducing the strength of cue-drug memories by facilitating extinction may have therapeutic value for the treatment of cocaine addiction. Here, we demonstrate the expression of GluN1/2A/2C NMDA receptor currents in astrocytes in the nucleus accumbens core. Selective ablation of GluN1 subunit from astrocytes in the nucleus accumbens enhanced extinction of cocaine preference memory but did not affect cocaine conditioning or reinstatement. Repeated cocaine exposure up-regulated GluN2C subunit expression and increased astrocytic NMDA receptor currents. Furthermore, intra-accumbal inhibition of GluN2C/2D-containing receptors and GluN2C subunit deletion facilitated extinction of cocaine memory. Cocaine-induced neuroadaptations including dendritic spine maturation and AMPA receptor recruitment were absent in GluN2C knockout mice. Impaired retention of cocaine preference memory in GluN2C knockout mice was restored by exogenous administration of recombinant glypican 4. Together, these results identify a previously unknown astrocytic GluN2C-containing NMDA receptor mechanism underlying maintenance of cocaine preference memory.
Collapse
Affiliation(s)
- Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Pauravi J. Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | | |
Collapse
|
32
|
Visser E, Matos MR, Mitrić MM, Kramvis I, van der Loo RJ, Mansvelder HD, Smit AB, van den Oever MC. Extinction of Cocaine Memory Depends on a Feed-Forward Inhibition Circuit Within the Medial Prefrontal Cortex. Biol Psychiatry 2022; 91:1029-1038. [PMID: 34715992 DOI: 10.1016/j.biopsych.2021.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cocaine-associated environments (i.e., contexts) evoke persistent memories of cocaine reward and thereby contribute to the maintenance of addictive behavior in cocaine users. From a therapeutic perspective, enhancing inhibitory control over cocaine-conditioned responses is of pivotal importance but requires a more detailed understanding of the neural circuitry that can suppress context-evoked cocaine memories, e.g., through extinction learning. The ventral medial prefrontal cortex (vmPFC) and dorsal medial prefrontal cortex (dmPFC) are thought to bidirectionally regulate responding to cocaine cues through their projections to other brain regions. However, whether these mPFC subregions interact to enable adaptive responding to cocaine-associated contextual stimuli has remained elusive. METHODS We used antero- and retrograde tracing combined with chemogenetic intervention to examine the role of vmPFC-to-dmPFC projections in extinction of cocaine-induced place preference in mice. In addition, electrophysiological recordings and optogenetics were used to determine whether parvalbumin-expressing inhibitory interneurons and pyramidal neurons in the dmPFC are innervated by vmPFC projections. RESULTS We found that vmPFC-to-dmPFC projecting neurons are activated during unreinforced re-exposure to a cocaine-associated context, and selective suppression of these cells impairs extinction learning. Parvalbumin-expressing inhibitory interneurons in the dmPFC receive stronger monosynaptic excitatory input from vmPFC projections than local dmPFC pyramidal neurons, consequently resulting in disynaptic inhibition of pyramidal neurons. In line with this, we show that chemogenetic suppression of dmPFC parvalbumin-expressing inhibitory interneurons impairs extinction learning. CONCLUSIONS Our data reveal that vmPFC projections mediate extinction of a cocaine-associated contextual memory through recruitment of feed-forward inhibition in the dmPFC, thereby providing a novel neuronal substrate that promotes extinction-induced inhibitory control.
Collapse
Affiliation(s)
- Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mariana R Matos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Miodrag M Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ioannis Kramvis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrated Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Hamel L, Cavdaroglu B, Yeates D, Nguyen D, Riaz S, Patterson D, Khan N, Kirolos N, Roper K, Ha QA, Ito R. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment. J Neurosci 2022; 42:3811-3822. [PMID: 35351827 PMCID: PMC9087743 DOI: 10.1523/jneurosci.2175-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been associated with the expression of adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, reported effects of mPFC manipulations on cue-elicited natural reward-seeking and inhibition thereof have been varied, with few studies examining cortico-striatal contributions in tasks that require adaptive responding to cues signaling reward and punishment within the same session. The current study aimed to better elucidate the role of mPFC and NAc subdivisions, and their functional connectivity in cue-elicited adaptive responding using a novel discriminative cue responding task. Male Long-Evans rats learned to lever-press on a VR5 schedule for a discriminative cue signaling reward, and to avoid pressing the same lever in the presence of another cue signaling punishment. Postacquisition, prelimbic (PL) and infralimbic (IL) areas of the mPFC, NAc core, shell, PL-core, or IL-shell circuits were pharmacologically or chemogenetically inhibited while animals performed under (1) nonreinforced (extinction) conditions, where the appetitive and aversive cues were presented in alternating trials alone or as a compound stimulus; and (2) reinforced conditions, whereby cued responding was accompanied by associated outcomes. PL and IL inactivation attenuated nonreinforced and reinforced goal-directed cue responding, whereas NAc core and shell inactivation impaired nonreinforced responding for the appetitive, but not aversive cue. Furthermore, PL-core and IL-shell inhibition disinhibited nonreinforced but not reinforced cue responding. Our findings implicate the mPFC as a site of confluence of motivationally significant cues and outcomes, and in the regulation of nonreinforced cue responding via downstream NAc targets.SIGNIFICANCE STATEMENT The ability to discriminate and respond appropriately to environmental cues that signal availability of reward or punishment is essential for survival. The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been implicated in adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, less is known about the role they play in orchestrating adaptive responses to natural reward and punishment cues within the same behavioral task. Here, using a novel discriminative cue responding task combined with pharmacological or chemogenetic inhibition of mPFC, NAc and mPFC-NAc circuits, we report that mPFC is critically involved in responding to changing cued response-outcomes, both when the responses are reinforced, and nonreinforced. Furthermore, the mPFC coordinates nonreinforced discriminative cue responding by suppressing inappropriate responding via downstream NAc targets.
Collapse
Affiliation(s)
- Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Bilgehan Cavdaroglu
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - David Nguyen
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Patterson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Nardin Kirolos
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Katherine Roper
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Quynh An Ha
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| |
Collapse
|
34
|
Jin M, Nguyen JD, Weber SJ, Mejias-Aponte CA, Madangopal R, Golden SA. SMART: An Open-Source Extension of WholeBrain for Intact Mouse Brain Registration and Segmentation. eNeuro 2022; 9:ENEURO.0482-21.2022. [PMID: 35396258 PMCID: PMC9070730 DOI: 10.1523/eneuro.0482-21.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mapping immediate early gene (IEG) expression across intact mouse brains allows for unbiased identification of brain-wide activity patterns underlying complex behaviors. Accurate registration of sample brains to a common anatomic reference is critical for precise assignment of IEG-positive ("active") neurons to known brain regions of interest (ROIs). While existing automated voxel-based registration methods provide a high-throughput solution, they require substantial computing power, can be difficult to implement and fail when brains are damaged or only partially imaged. Additionally, it is challenging to cross-validate these approaches or compare them to any preexisting literature based on serial coronal sectioning. Here, we present the open-source R package SMART (Semi-Manual Alignment to Reference Templates) that extends the WholeBrain R package framework to automated segmentation and semi-automated registration of intact mouse brain light-sheet fluorescence microscopy (LSFM) datasets. The SMART package was created for novice programmers and introduces a streamlined pipeline for aligning, registering, and segmenting LSFM volumetric datasets across the anterior-posterior (AP) axis, using a simple "choice game" and interactive menus. SMART provides the flexibility to register whole brains, partial brains or discrete user-chosen images, and is fully compatible with traditional sectioned coronal slice-based analyses. We demonstrate SMART's core functions using example datasets and provide step-by-step video tutorials for installation and implementation of the package. We also present a modified iDISCO+ tissue clearing procedure for uniform immunohistochemical labeling of the activity marker Fos across intact mouse brains. The SMART pipeline, in conjunction with the modified iDISCO+ Fos procedure, is ideally suited for examination and orthogonal cross-validation of brain-wide neuronal activation datasets.
Collapse
Affiliation(s)
- Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Joseph D Nguyen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Carlos A Mejias-Aponte
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle 98195, WA
| |
Collapse
|
35
|
Nall RW, Chalhoub RM, Kalivas PW. Drug versus non-drug behaviors: A dual-reward model of sex differences and neurobiological mechanisms in rats. J Exp Anal Behav 2022; 117:457-471. [PMID: 35297047 PMCID: PMC10775707 DOI: 10.1002/jeab.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
Substance Use Disorders (SUDs) are an impactful problem characterized by chronic relapse and engagement in drug-related behaviors at the expense of non-drug behaviors. Brain regions implicated in drug and non-drug-related behaviors often overlap, complicating investigations of neurobiological mechanisms underlying SUDs. Here we presented a within-subject model for studying self-administration, reinforcer competition, extinction, and cued reinstatement of cocaine- and food-seeking in rats. Due to differences in cocaine- and food-reinforced behavior, we transformed data to proportions of baseline, revealing increased resistance to extinction and disproportionately greater cued reinstatement of cocaine seeking relative to food seeking. Consistent with previous reports, females showed greater preference for cocaine reinforcement than males, though these findings failed to reach statistical significance. To demonstrate the model's utility for investigating neurobiological mechanisms, we included proof-of-concept calcium imaging data demonstrating the utility of the behavioral model for detecting cellular activity patterns associated with cocaine- and food-seeking behaviors. Future studies utilizing this model should improve understanding of the development and expression of pathological behaviors characteristic of SUDs in humans, sex differences in these behaviors, and their neurobiological correlates. Thus, the model has utility for improving understanding of SUDs, leading to novel treatments to reduce the pathological behaviors associated with SUDs.
Collapse
Affiliation(s)
- Rusty W. Nall
- Medical University of South Carolina
- Jacksonville State University
| | | | | |
Collapse
|
36
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
37
|
Gobin C, Sortman B, Rakela S, Quintana-Feliciano R, Warren BL. Fos-expressing neuronal ensembles in rat infralimbic cortex encode initial and maintained oxycodone seeking in rats. Addict Biol 2022; 27:e13148. [PMID: 35229934 PMCID: PMC10167745 DOI: 10.1111/adb.13148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
Neuronal ensembles within the infralimbic cortex (IL) and their projections to the nucleus accumbens (NAc) mediate opiate seeking in well-trained rats. However, it is unclear how early this circuitry is recruited during oxycodone self-administration. Here, we used retrograde labelling (CTb) and immunohistochemistry to identify NAc-projecting neurons in the IL that were activated during initial oxycodone seeking. Next, we sought to determine the role of IL neuronal ensembles in initial oxycodone self-administration. We used the Daun02 procedure in male and female Fos-LacZ rats to chemogenetically inactivate IL Fos-expressing neurons at different time points in oxycodone self-administration training: immediately after meeting criteria for acquisition of behaviour and following nine daily sessions with increasing schedules of reinforcement (FR1, FR2 and FR3) in which rats demonstrated stable oxycodone intake under increasing effort to self-administer. We found that Daun02 infusions attenuated oxycodone seeking at both the initial learning and well-trained time points. These results suggest that IL neuronal ensembles are formed during initial learning of oxycodone self-administration and required for the maintenance and expression of oxycodone seeking.
Collapse
Affiliation(s)
- Christina Gobin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Bo Sortman
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Samantha Rakela
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | | | - Brandon L Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Jessen K, Slaker Bennett ML, Liu S, Olsen CM. Comparison of prefrontal cortex sucrose seeking ensembles engaged in multiple seeking sessions: Context is key. J Neurosci Res 2022; 100:1008-1029. [PMID: 35137974 PMCID: PMC8940716 DOI: 10.1002/jnr.25025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Encoding of memories, including those associated with prior drug or reward, is thought to take place within distinct populations of neurons, termed ensembles. Neuronal ensembles for drug- and reward-seeking have been identified in regions of the medial prefrontal cortex, but much of our understanding of these ensembles is based on experiments that take place in a single reward-associated environment and measure ensemble encoding over short durations of time. In contrast, reward seeking behavior is evident across different reward-associated environments and persists over time. Using TetTag mice and Fos immunohistochemistry, we examined the relationship between persistent sucrose-seeking and ensemble encoding in mice that undergo seeking sessions in the same or different sucrose self-administration contexts 2 weeks apart. We found that prelimbic (PrL) and anterior cingulate cortex ensembles tagged in the first seeking session were highly sensitive to the context in which a second seeking session took place: reactivation of these ensembles was reduced in the same context but elevated in a distinct sucrose self-administration context. Correlational analyses revealed that ensemble reactivation in the PrL was proportional to the persistence of sucrose seeking behavior across sessions in differing ways in female mice. In the same context, reactivation was proportional to the persistence of non-reinforced operant responses, whereas in a distinct context, reactivation was proportional to the persistence of non-reinforced head entries into the sucrose receptacle. This study underlines the importance of the medial prefrontal cortex importance in maintaining a reward-seeking ensemble over time and identifies context-dependent changes in behavioral correlates of ensemble reactivation.
Collapse
Affiliation(s)
- Kristen Jessen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L Slaker Bennett
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Neuroscience, Wisconsin Lutheran College, Milwaukee, Wisconsin, USA
| | - Shuai Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher M Olsen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
39
|
Villaruel FR, Martins M, Chaudhri N. Corticostriatal Suppression of Appetitive Pavlovian Conditioned Responding. J Neurosci 2022; 42:834-849. [PMID: 34880119 PMCID: PMC8808725 DOI: 10.1523/jneurosci.1664-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
The capacity to suppress learned responses is essential for animals to adapt in dynamic environments. Extinction is a process by which animals learn to suppress conditioned responding when an expected outcome is omitted. The infralimbic (IL) cortex to nucleus accumbens shell (NAcS) neural circuit is implicated in suppressing conditioned responding after extinction, especially in the context of operant cocaine-seeking behavior. However, the role of the IL-to-NAcS neural circuit in the extinction of responding to appetitive Pavlovian cues is unknown, and the psychological mechanisms involved in response suppression following extinction are unclear. We trained male Long Evans rats to associate a 10 s auditory conditioned stimulus (CS; 14 trials per session) with a sucrose unconditioned stimulus (US; 0.2 ml per CS) in a specific context, and then following extinction in a different context, precipitated a renewal of CS responding by presenting the CS alone in the original Pavlovian conditioning context. Unilateral, optogenetic stimulation of the IL-to-NAcS circuit selectively during CS trials suppressed renewal. In a separate experiment, IL-to-NAcS stimulation suppressed CS responding regardless of prior extinction and impaired extinction retrieval. Finally, IL-to-NAcS stimulation during the CS did not suppress the acquisition of Pavlovian conditioning but was required for the subsequent expression of CS responding. These results are consistent with multiple studies showing that the IL-to-NAcS neural circuit is involved in the suppression of operant cocaine-seeking, extending these findings to appetitive Pavlovian cues. The suppression of appetitive Pavlovian responding following IL-to-NAcS circuit stimulation, however, does not appear to be an extinction-dependent process.SIGNIFICANCE STATEMENT Extinction is a form of inhibitory learning through which animals learn to suppress conditioned responding in the face of nonreinforcement. We investigated the role of the IL cortex inputs to the NAcS in the extinction of responding to appetitive Pavlovian cues and the psychological mechanisms involved in response suppression following extinction. Using in vivo optogenetics, we found that stimulating the IL-to-NAcS neural circuit suppressed context-induced renewal of conditioned responding after extinction. In a separate experiment, stimulating the IL-to-NAcS circuit suppressed conditioned responding in an extinction-independent manner. These findings can be used by future research aimed at understanding how corticostriatal circuits contribute to behavioral flexibility and mental disorders that involve the suppression of learned behaviors.
Collapse
Affiliation(s)
- Franz R Villaruel
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Melissa Martins
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
40
|
Müller Ewald VA, Kim J, Farley SJ, Freeman JH, LaLumiere RT. Theta oscillations in rat infralimbic cortex are associated with the inhibition of cocaine seeking during extinction. Addict Biol 2022; 27:e13106. [PMID: 34672059 PMCID: PMC8922975 DOI: 10.1111/adb.13106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Infralimbic cortical (IL) manipulations indicate that this region mediates extinction learning and suppresses cocaine seeking following cocaine self‐administration. However, little work has recorded IL activity during the inhibition of cocaine seeking due to the difficulty of determining precisely when cocaine‐seeking behaviour is inhibited within a cocaine‐seeking session. The present study used in vivo electrophysiology to examine IL activity across extinction as well as during cocaine self‐administration and reinstatement. Sprague–Dawley rats underwent 6‐h access cocaine self‐administration in which the response lever was available during discrete signalled trials, a procedure which allowed for the comparison between epochs of cocaine seeking versus the inhibition thereof. Subsequently, rats underwent extinction and cocaine‐primed reinstatement using the same procedure. Results indicate that theta rhythms (4–10 Hz) dominated IL local‐field potential (LFP) activity during all experimental stages. During extinction, theta power fluctuated significantly surrounding the lever press and was lower when rats engaged in cocaine seeking versus when they withheld from doing so. These patterns of oscillatory activity differed from self‐administration and reinstatement stages. Single‐unit analyses indicate heterogeneity of IL unit responses, supporting the idea that multiple neuronal subpopulations exist within the IL and promote the expression of different and even opposing cocaine‐seeking behaviours. Together, these results are consistent with the idea that aggregate synaptic and single‐unit activity in the IL represent the engagement of the IL in action monitoring to promote adaptive behaviour in accordance with task contingencies and reveal critical insights into the relationship between IL activity and the inhibition of cocaine seeking.
Collapse
Affiliation(s)
- Victória A. Müller Ewald
- Department of Psychiatry University of Iowa Iowa City Iowa USA
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
| | - Jangjin Kim
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - Sean J. Farley
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
| | - John H. Freeman
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
- Iowa Neuroscience Institute University of Iowa Iowa City Iowa USA
| | - Ryan T. LaLumiere
- Interdisciplinary Neuroscience Program University of Iowa Iowa City Iowa USA
- Department of Psychological and Brain Sciences University of Iowa Iowa City Iowa USA
- Iowa Neuroscience Institute University of Iowa Iowa City Iowa USA
| |
Collapse
|
41
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- James I. Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Karl J. Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajtarun Madangopal
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Veronica A. Lennon
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Abbey L. Reppen
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | | | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Shane A. Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C. Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
42
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
43
|
Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT. Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology 2021; 46:1969-1980. [PMID: 34162997 PMCID: PMC8429767 DOI: 10.1038/s41386-021-01067-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Megan B Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Veronica A Lennon
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia R Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lauren E Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Brendan J Tunstall
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
44
|
Heinsbroek JA, Giannotti G, Mandel MR, Josey M, Aston-Jones G, James MH, Peters J. A common limiter circuit for opioid choice and relapse identified in a rodent addiction model. Nat Commun 2021; 12:4788. [PMID: 34373454 PMCID: PMC8352904 DOI: 10.1038/s41467-021-25080-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Activity in numerous brain regions drives heroin seeking, but no circuits that limit heroin seeking have been identified. Furthermore, the neural circuits controlling opioid choice are unknown. In this study, we examined the role of the infralimbic cortex (IL) to nucleus accumbens shell (NAshell) pathway during heroin choice and relapse. This model yielded subpopulations of heroin versus food preferring rats during choice, and choice was unrelated to subsequent relapse rates to heroin versus food cues, suggesting that choice and relapse are distinct behavioral constructs. Supporting this, inactivation of the IL with muscimol produced differential effects on opioid choice versus relapse. A pathway-specific chemogenetic approach revealed, however, that the IL-NAshell pathway acts as a common limiter of opioid choice and relapse. Furthermore, dendritic spines in IL-NAshell neurons encode distinct aspects of heroin versus food reinforcement. Thus, opioid choice and relapse share a common addiction-limiting circuit in the IL-NAshell pathway.
Collapse
Affiliation(s)
- Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Giuseppe Giannotti
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mitchel R Mandel
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Megan Josey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.,Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
46
|
Kane L, Venniro M, Quintana‐Feliciano R, Madangopal R, Rubio FJ, Bossert JM, Caprioli D, Shaham Y, Hope BT, Warren BL. Fos-expressing neuronal ensemble in rat ventromedial prefrontal cortex encodes cocaine seeking but not food seeking in rats. Addict Biol 2021; 26:e12943. [PMID: 32683756 DOI: 10.1111/adb.12943] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
Neuronal ensembles in ventromedial prefrontal cortex (vmPFC) play a role in both cocaine and palatable food seeking. However, it is unknown whether similar or different vmPFC neuronal ensembles mediate food and cocaine seeking. Here, we used the Daun02 inactivation procedure to assess whether the neuronal ensembles mediating food and cocaine seeking can be functionally distinguished. We trained male and female Fos-LacZ rats to self-administer palatable food pellets and cocaine on alternating days for 18 days. We then exposed the rats to a brief nonreinforced food- or cocaine-seeking test to induce Fos and β-gal in neuronal ensembles associated with food or cocaine seeking, respectively and infused Daun02 into vmPFC to ablate the β-gal-expressing ensembles. Two days later, we tested the rats for food or cocaine seeking under extinction conditions. Although inactivation of the food-seeking ensemble did not influence food or cocaine seeking, inactivation of the cocaine-seeking ensemble reduced cocaine seeking but not food seeking. Results indicate that the neuronal ensemble activated by cocaine seeking in vmPFC is functionally separate from the ensemble activated by food seeking.
Collapse
Affiliation(s)
- Louisa Kane
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
| | - Marco Venniro
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
| | - Richard Quintana‐Feliciano
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
- Department of Pharmacodynamics University of Florida Gainesville Florida USA
| | | | - F. Javier Rubio
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
| | | | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia) Rome Italy
- Department of Physiology and Pharmacology Sapienza University of Rome Rome Italy
| | - Yavin Shaham
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
| | - Bruce T. Hope
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
| | - Brandon L. Warren
- Behavioral Neuroscience Branch IRP/NIDA/NIH/DHHS Baltimore Maryland USA
- Department of Pharmacodynamics University of Florida Gainesville Florida USA
| |
Collapse
|
47
|
Food-Seeking Behavior Is Mediated by Fos-Expressing Neuronal Ensembles Formed at First Learning in Rats. eNeuro 2021; 8:ENEURO.0373-20.2021. [PMID: 33472867 PMCID: PMC8174054 DOI: 10.1523/eneuro.0373-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal ensembles in the infralimbic cortex (IL) develop after prolonged food self-administration training. However, rats demonstrate evidence of learning the food self-administration response as early as day 1, with responding quickly increasing to asymptotic levels. Since the contribution of individual brain regions to task performance shifts over the course of training, it remains unclear whether IL ensembles are gradually formed and refined over the course of extensive operant training, or whether functionally-relevant ensembles might be recruited and formed as early as the initial acquisition of food self-administration behavior. Here, we aimed to determine the role of IL ensembles at the earliest possible point after demonstrable learning of a response-outcome association. We first allowed rats to lever press for palatable food pellets and stopped training rats once their behavior evidenced the response-outcome association (learners). We compared their food-seeking behavior and neuronal activation (Fos protein expression) to similarly trained rats that did not form this association (non-learners). Learners had greater food-seeking behavior and neuronal activation within the medial prefrontal cortex (mPFC), suggesting that mPFC subregions might encode initial food self-administration memories. To test the functional relevance of mPFC Fos-expressing ensembles to subsequent food seeking, we tested region-wide inactivation of the IL using muscimol+baclofen and neuronal ensemble-specific ablation using the Daun02 inactivation procedure. Both region-wide inactivation and ensemble-specific inactivation of the IL significantly decreased food seeking. These data suggest that IL neuronal ensembles form during initial learning of food self-administration behavior, and furthermore, that these ensembles play a functional role in food seeking.
Collapse
|
48
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
49
|
Margetts-Smith G, Macnaghten AI, Brebner LS, Ziminski JJ, Sieburg MC, Grimm JW, Crombag HS, Koya E. Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice. Eur J Neurosci 2021; 53:2580-2591. [PMID: 33565633 PMCID: PMC8085094 DOI: 10.1111/ejn.15146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 02/02/2021] [Indexed: 12/04/2022]
Abstract
Exposure to environmental enrichment can modify the impact of motivationally relevant stimuli. For instance, previous studies in rats have found that even a brief, acute (~1 day), but not chronic, exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker "Fos." Currently, it is not known whether acute EE also reduces sucrose seeking and corticoaccumbens activity elicited by non-contingent or "forced" exposure to sucrose cues, which more closely resembles cue exposure encountered in daily life. We therefore measured the effects of acute/intermittent (1 day or 6 day of EE prior to test day) versus chronic (EE throughout conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6 day or chronic EE , reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1 day, 6 day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking across species.
Collapse
Affiliation(s)
- Gabriella Margetts-Smith
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- University of Exeter College of Medicine and Health, Hatherly Laboratories, Exeter, UK
| | | | - Leonie S. Brebner
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joseph J. Ziminski
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Meike C. Sieburg
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Biomedicine/DANDRITE, Aarhus University, Aarhus C, Denmark
| | - Jeffrey W. Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, USA
| | - Hans S. Crombag
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| | - Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| |
Collapse
|
50
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|