1
|
Ribeiro O, Félix L, Ribeiro C, Torres-Ruiz M, Tiritan ME, Gonçalves VMF, Langa I, Carrola JS. Unveil the toxicity induced on early life stages of zebrafish (Danio rerio) exposed to 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176906. [PMID: 39423890 DOI: 10.1016/j.scitotenv.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The increased detection of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) in aquatic ecosystems, has raised concern worldwide about its possible negative impacts on wildlife. MDMA is produced as racemate but its enantioselective effects on non-target organisms are poorly understood. Therefore, this study aimed to provide a comprehensive study of the toxicity of MDMA and its enantiomers in the early life stages of zebrafish (Danio rerio). Zebrafish embryos (≈3 h post fertilization) were exposed to different concentrations (0.02, 0.2, 2, 20, and 200 μg/L) of (R,S)-MDMA and both pure enantiomers. Both enantiomers induced effects on embryonic development, DNA integrity, and behaviour and enantioselective effects were noted. (S)-MDMA exhibits higher toxic effects on embryonic development level with increased mortality and severity of teratogenic effects, and behavioural abnormalities in acoustic startle-habituation response. (R)-MDMA affected general activity and avoidance behaviour, showing greater inhibitory effects on behavioural activity. Additionally, (R,S)-MDMA induced higher genotoxic effects than the two isolated enantiomers. These results are of concern at populational levels since effects on mortality, development, and behaviour were observed even at environmentally relevant concentrations, which can cause a reduction of larval viability and in the number of individuals in each generation, and an increase in the risk of predation of the organisms. Yet, the bioaccumulation studies showed that MDMA is not accumulated in zebrafish. Therefore, this work demonstrated for the first time the occurrence of MDMA enantiotoxicity in the early life stages of zebrafish, which should be considered in further environmental risk assessments involving fish species or other non-target aquatic organisms.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Cláudia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Monica Torres-Ruiz
- Toxicology Department, National Centre for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Maria Elizabeth Tiritan
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Virgínia M F Gonçalves
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Ivan Langa
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal.
| |
Collapse
|
2
|
Brudzynski SM, Burgdorf JS, Moskal JR. From emotional arousal to executive action. Role of the prefrontal cortex. Brain Struct Funct 2024; 229:2327-2338. [PMID: 39096390 PMCID: PMC11611949 DOI: 10.1007/s00429-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Emotional arousal is caused by the activity of two parallel ascending systems targeting mostly the subcortical limbic regions and the prefrontal cortex. The aversive, negative arousal system is initiated by the activity of the mesolimbic cholinergic system and the hedonic, appetitive, arousal is initiated by the activity of the mesolimbic dopaminergic system. Both ascending projections have a diffused nature and arise from the rostral, tegmental part of the brain reticular activating system. The mesolimbic cholinergic system originates in the laterodorsal tegmental nucleus and the mesolimbic dopaminergic system in the ventral tegmental area. Cholinergic and dopaminergic arousal systems have converging input to the medial prefrontal cortex. The arousal system can modulate cortical EEG with alpha rhythms, which enhance synaptic strength as shown by an increase in long-term potentiation (LTP), whereas delta frequencies are associated with decreased arousal and a decrease in synaptic strength as shown by an increase in long-term depotentiation (LTD). It is postulated that the medial prefrontal cortex is an adaptable node with decision making capability and may control the switch between positive and negative affect and is responsible for modifying or changing emotional state and its expression.
Collapse
Affiliation(s)
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Kabanova A, Yang M, Logothetis NK, Eschenko O. Partial chemogenetic inhibition of the locus coeruleus due to heterogeneous transduction of noradrenergic neurons preserved auditory salience processing in wild-type rats. Eur J Neurosci 2024; 60:6237-6253. [PMID: 39349382 DOI: 10.1111/ejn.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 μm) to the LC core resulted in partial LC transduction, while proximal (< 50 μm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
- Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
4
|
Barioni NO, Beduschi RS, da Silva AV, Martins MG, Almeida-Francia CCD, Rodrigues SA, López DE, Gómez-Nieto R, Horta-Júnior JAC. The role of the Ventral Nucleus of the Trapezoid Body in the auditory prepulse inhibition of the acoustic startle reflex. Hear Res 2024; 450:109070. [PMID: 38972084 DOI: 10.1016/j.heares.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.
Collapse
Affiliation(s)
- N O Barioni
- Department of Functional and Structural Biology - Anatomy Division, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - R S Beduschi
- Department of Functional and Structural Biology - Anatomy Division, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - A V da Silva
- Medicine School, Federal University of Mato Grosso do Sul, UFMS-CPTL, Três Lagoas, Mato Grosso do Sul, Brazil
| | - M G Martins
- Department of Functional and Structural Biology - Anatomy Division, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - C C D Almeida-Francia
- Department of Functional and Structural Biology - Anatomy Division, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - S A Rodrigues
- Department of Bioprocesses and Biotechnology - Faculty of Agricultural Sciences, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - D E López
- Neuroscience Institute of Castilla y León (INCyL), Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - R Gómez-Nieto
- Neuroscience Institute of Castilla y León (INCyL), Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain.
| | - J A C Horta-Júnior
- Department of Functional and Structural Biology - Anatomy Division, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
McCullough KB, Titus A, Reardon K, Conyers S, Dougherty JD, Ge X, Garbow JR, Dickson P, Yuede CM, Maloney SE. Characterization of early markers of disease in the mouse model of mucopolysaccharidosis IIIB. J Neurodev Disord 2024; 16:16. [PMID: 38632525 PMCID: PMC11022360 DOI: 10.1186/s11689-024-09534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model. METHODS Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging. RESULTS We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively. CONCLUSIONS Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.
Collapse
Affiliation(s)
- Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda Titus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kate Reardon
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sara Conyers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia Dickson
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Favero JD, Luck C, Lipp OV, Marinovic W. The effect of prepulse amplitude and timing on the perception of an electrotactile pulse. Atten Percept Psychophys 2024; 86:1038-1047. [PMID: 36385671 PMCID: PMC11062989 DOI: 10.3758/s13414-022-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The perceived intensity of an intense stimulus as well as the startle reflex it elicits can both be reduced when preceded by a weak stimulus (prepulse). Both phenomena are used to characterise the processes of sensory gating in clinical and non-clinical populations. The latter phenomenon, startle prepulse inhibition (PPI), is conceptualised as a measure of pre-attentive sensorimotor gating due to its observation at short latencies. In contrast, the former, prepulse inhibition of perceived stimulus intensity (PPIPSI), is believed to involve higher-order cognitive processes (e.g., attention), which require longer latencies. Although conceptually distinct, PPIPSI is often studied using parameters that elicit maximal PPI, likely limiting what we can learn about sensory gating's influence on conscious perception. Here, we tested an array of stimulus onset asynchronies (SOAs; 0-602 ms) and prepulse intensities (0-3× perceptual threshold) to determine the time course and sensitivity to the intensity of electrotactile PPIPSI. Participants were required to compare an 'unpleasant but not painful' electric pulse to their left wrist that was presented alone with the same stimulus preceded by an electric prepulse, and report which pulse stimulus felt more intense. Using a 2× perceptual threshold prepulse, PPIPSI emerged as significant at SOAs from 162 to 602 ms. We conclude that evidence of electrotactile PPIPSI at SOAs of 162 ms or longer is consistent with gating of perception requiring higher-level processes, not measured by startle PPI. The possible role of attentional processes, stimuli intensity, modality-specific differences, and methods of investigating PPIPSI further are discussed.
Collapse
Affiliation(s)
- Jaspa D Favero
- School of Population Health, Curtin University, Perth, WA, Australia.
| | - Camilla Luck
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia.
| |
Collapse
|
7
|
Favero JD, Luck C, Lipp OV, Nguyen AT, Marinovic W. N1-P2 event-related potentials and perceived intensity are associated: The effects of a weak pre-stimulus and attentional load on processing of a subsequent intense stimulus. Biol Psychol 2023; 184:108711. [PMID: 37832864 DOI: 10.1016/j.biopsycho.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
A weak stimulus presented immediately before a more intense one reduces both the N1-P2 cortical response and the perceived intensity of the intense stimulus. The former effect is referred to as cortical prepulse inhibition (PPI), the latter as prepulse inhibition of perceived stimulus intensity (PPIPSI). Both phenomena are used to study sensory gating in clinical and non-clinical populations, however little is known about their relationship. Here, we investigated 1) the possibility that cortical PPI and PPIPSI are associated, and 2) how they are affected by attentional load. Participants were tasked with comparing the intensity of an electric pulse presented alone versus one preceded 200 ms by a weaker electric prepulse (Experiment 1), or an acoustic pulse presented alone with one preceded 170 ms by a weaker acoustic prepulse (Experiment 2). A counting task (easy vs. hard) manipulating attentional load was included in Experiment 2. In both experiments, we observed a relationship between N1-P2 amplitude and perceived intensity, where greater cortical PPI was associated with a higher probability of perceiving the 'pulse with prepulse' as less intense. Moreover, higher attentional load decreased observations of PPIPSI but had no effect on N1-P2 amplitude. Based on the findings we propose that PPIPSI partially relies on the allocation of attentional resources towards monitoring cortical channels that process stimulus intensity characteristics such as the N1-P2 complex.
Collapse
Affiliation(s)
- Jaspa D Favero
- School of Population Health, Curtin University, Perth, Western Australia, Australia.
| | - Camilla Luck
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Ottmar V Lipp
- School of Psychology & Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - An T Nguyen
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
El-Cheikh Mohamad A, Möhrle D, Haddad FL, Rose A, Allman BL, Schmid S. Assessing the Cntnap2 knockout rat prepulse inhibition deficit through prepulse scaling of the baseline startle response curve. Transl Psychiatry 2023; 13:321. [PMID: 37852987 PMCID: PMC10584930 DOI: 10.1038/s41398-023-02629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Many neurodevelopmental disorders, including autism spectrum disorder (ASD), are associated with changes in sensory processing and sensorimotor gating. The acoustic startle response and prepulse inhibition (PPI) of startle are widely used translational measures for assessing sensory processing and sensorimotor gating, respectively. The Cntnap2 knockout (KO) rat has proven to be a valid model for ASD, displaying core symptoms, including sensory processing perturbations. Here, we used a novel method to assess startle and PPI in Cntnap2 KO rats that allows for the identification of separate scaling components: startle scaling, which is a change in startle amplitude to a given sound, and sound scaling, which reflects a change in sound processing. Cntnap2 KO rats show increased startle due to both an increased overall response (startle scaling) and a left shift of the sound/response curve (sound scaling). In the presence of a prepulse, wildtype rats show a reduction of startle due to both startle scaling and sound scaling, whereas Cntnap2 KO rats show normal startle scaling, but disrupted sound scaling, resulting in the reported PPI deficit. These results validate that startle and sound scaling by a prepulse are indeed two independent processes, with only the latter being impaired in Cntnap2 KO rats. As startle scaling is likely related to motor output and sound scaling to sound processing, this novel approach reveals additional information on the possible cause of PPI disruptions in preclinical models.
Collapse
Affiliation(s)
- Alaa El-Cheikh Mohamad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Dorit Möhrle
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Anton Rose
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian L Allman
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
- Department of Psychology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
9
|
Zhao P, Jiang T, Wang H, Jia X, Li A, Gong H, Li X. Upper brainstem cholinergic neurons project to ascending and descending circuits. BMC Biol 2023; 21:135. [PMID: 37280580 DOI: 10.1186/s12915-023-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.
Collapse
Affiliation(s)
- Peilin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute of neurological diseases, North Sichuan Medical University, Nanchong, 637100, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Huading Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Haddad FL, De Oliveira C, Schmid S. Investigating behavioral phenotypes related to autism spectrum disorder in a gene-environment interaction model of Cntnap2 deficiency and Poly I:C maternal immune activation. Front Neurosci 2023; 17:1160243. [PMID: 36998729 PMCID: PMC10043204 DOI: 10.3389/fnins.2023.1160243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionAutism Spectrum Disorder (ASD) has been associated with a wide variety of genetic and environmental risk factors in both human and preclinical studies. Together, findings support a gene-environment interaction hypothesis whereby different risk factors independently and synergistically impair neurodevelopment and lead to the core symptoms of ASD. To date, this hypothesis has not been commonly investigated in preclinical ASD models. Mutations in the Contactin-associated protein-like 2 (Cntnap2) gene and exposure to maternal immune activation (MIA) during pregnancy have both been linked to ASD in humans, and preclinical rodent models have shown that both MIA and Cntnap2 deficiency lead to similar behavioral deficits.MethodsIn this study, we tested the interaction between these two risk factors by exposing Wildtype, Cntnap2+/–, and Cntnap2–/– rats to Polyinosinic: Polycytidylic acid (Poly I:C) MIA at gestation day 9.5.ResultsOur findings showed that Cntnap2 deficiency and Poly I:C MIA independently and synergistically altered ASD-related behaviors like open field exploration, social behavior, and sensory processing as measured through reactivity, sensitization, and pre-pulse inhibition (PPI) of the acoustic startle response. In support of the double-hit hypothesis, Poly I:C MIA acted synergistically with the Cntnap2–/– genotype to decrease PPI in adolescent offspring. In addition, Poly I:C MIA also interacted with the Cntnap2+/– genotype to produce subtle changes in locomotor hyperactivity and social behavior. On the other hand, Cntnap2 knockout and Poly I:C MIA showed independent effects on acoustic startle reactivity and sensitization.DiscussionTogether, our findings support the gene-environment interaction hypothesis of ASD by showing that different genetic and environmental risk factors could act synergistically to exacerbate behavioral changes. In addition, by showing the independent effects of each risk factor, our findings suggest that ASD phenotypes could be caused by different underlying mechanisms.
Collapse
Affiliation(s)
- Faraj L. Haddad
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cleusa De Oliveira
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Psychology, The University of Western Ontario, London, ON, Canada
- *Correspondence: Susanne Schmid,
| |
Collapse
|
11
|
Zheng A, Schmid S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci Biobehav Rev 2023; 148:105129. [PMID: 36914078 DOI: 10.1016/j.neubiorev.2023.105129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
The startle response consists of whole-body muscle contractions, eye-blink, accelerated heart rate, and freezing in response to a strong, sudden stimulus. It is evolutionarily preserved and can be observed in any animal that can perceive sensory signals, indicating the important protective function of startle. Startle response measurements and its alterations have become a valuable tool for exploring sensorimotor processes and sensory gating, especially in the context of pathologies of psychiatric disorders. The last reviews on the neural substrates underlying acoustic startle were published around 20 years ago. Advancements in methods and techniques have since allowed new insights into acoustic startle mechanisms. This review is focused on the neural circuitry that drives the primary acoustic startle response in mammals. However, there have also been very successful efforts to identify the acoustic startle pathway in other vertebrates and invertebrates in the past decades, so at the end we briefly summarize these studies and comment on the similarities and differences between species.
Collapse
Affiliation(s)
- Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
12
|
Zheng A, Scott KE, Schormans AL, Mann R, Allman BL, Schmid S. Differences in Startle and Prepulse Inhibition in Contactin-associated Protein-like 2 Knock-out Rats are Associated with Sex-specific Alterations in Brainstem Neural Activity. Neuroscience 2023; 513:96-110. [PMID: 36708798 DOI: 10.1016/j.neuroscience.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene encodes for the CASPR2 protein, which plays an essential role in neurodevelopment. Mutations in CNTNAP2 are associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. Rats with a loss of function mutation in the Cntnap2 gene show increased acoustic startle response (ASR) and decreased prepulse inhibition (PPI). The neural basis of this altered auditory processing in Cntnap2 knock-out rats is currently unknown. Auditory brainstem recordings previously revealed no differences between the genotypes. The next step is to investigate brainstem structures outside of the primary auditory pathway that mediate ASR and PPI, which are the pontine reticular nucleus (PnC) and pedunculopontine tegmentum (PPTg), respectively. Multi-unit responses from the PnC and PPTg in vivo of the same rats revealed sex-specific effects of loss of CASPR2 expression on PnC activity, but no effects on PPTg activity. Female Cntnap2-/- rats showed considerably increased PnC firing rates compared with female wildtypes, whereas the difference between the genotypes was modest in male rats. In contrast, for both females and males we found meager differences between the genotypes for PPTg firing rates and inhibition of PnC firing rates, indicating that altered firing rates of these brainstem structures are not responsible for decreased PPI in Cntnap2-/- rats. We conclude that the auditory processing changes seen in Cntnap2-/- rats are associated with, but cannot be fully explained by, differences in PnC firing rates, and that a loss of function mutation in the Cntnap2 gene has differential effects depending on sex.
Collapse
Affiliation(s)
- Alice Zheng
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Kaela E Scott
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Ashley L Schormans
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Rajkamalpreet Mann
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Brian L Allman
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
13
|
Maamrah B, Pocsai K, Bayasgalan T, Csemer A, Pál B. KCNQ4 potassium channel subunit deletion leads to exaggerated acoustic startle reflex in mice. Neuroreport 2023; 34:232-237. [PMID: 36789839 PMCID: PMC10399928 DOI: 10.1097/wnr.0000000000001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
The potassium voltage-gated channel subfamily Q member 4 (KCNQ4) subunit forms channels responsible for M-current, a muscarine-sensitive potassium current regulating neuronal excitability. In contrast to other KCNQ subunits, its expression is restricted to the cochlear outer hair cells, the auditory brainstem and other brainstem nuclei in a great overlap with structures involved in startle reflex. We aimed to show whether startle reflexis affected by the loss of KCNQ4 subunit and whether these alterations are similar to the ones caused by brainstem hyperexcitability. Young adult KCNQ4 knockout mice and wild-type littermates, as well as mice expressing hM3D chemogenetic actuator in the pontine caudal nucleus and neurons innervating it were used for testing acoustic startle. The acoustic startle reflex was significantly increased in knockout mice compared with wild-type littermates. When mice expressing human M3 muscarinic (hM3D) in nuclei related to startle reflex were tested, a similar increase of the first acoustic startle amplitude and a strong habituation of the further responses was demonstrated. We found that the acoustic startle reflex is exaggerated and minimal habituation occurs in KCNQ4 knockout animals. These changes are distinct from the effects of the hyperexcitability of nuclei involved in startle. One can conclude that the exaggerated startle reflex found with the KCNQ4 subunit deletion is the consequence of both the cochlear damage and the changes in neuronal excitability of startle networks.
Collapse
Affiliation(s)
- Baneen Maamrah
- Department of Physiology, Faculty of Medicine, University of Debrecen
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen
| | - Tsogbadrakh Bayasgalan
- Department of Physiology, Faculty of Medicine, University of Debrecen
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen
| |
Collapse
|
14
|
François M, Delgado IC, Lafond A, Lewis EM, Kuromaru M, Hassouna R, Deng S, Thaker VV, Dölen G, Zeltser LM. Amygdala AVPR1A mediates susceptibility to chronic social isolation in females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528679. [PMID: 36824966 PMCID: PMC9948989 DOI: 10.1101/2023.02.15.528679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.
Collapse
|
15
|
TCB-2, a 5-hydroxytryptamine 2A receptor agonist, disrupts prepulse inhibition in the ventral pallidum and nucleus accumbens. Behav Brain Res 2023; 437:114127. [PMID: 36174843 DOI: 10.1016/j.bbr.2022.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
The 5-hydroxytryptamine 2A (5-HT2A) receptor plays an important role in schizophrenia. The 5-HT2A receptor is also involved in the regulation of prepulse inhibition (PPI) in rodents. The aim of this study was to determine whether selective 5-HT2A receptor agonizts or antagonists may alter PPI in rats and to identify the critical brain regions in which the activity of 5-HT2A receptors regulates PPI. The results showed that infusion of the 5-HT2A receptor agonist TCB-2 into the lateral ventricle disrupted PPI, but the 5-HT2A receptor antagonist M100907 had no such effect. In addition, local infusion of TCB-2 into the nucleus accumbens and ventral pallidum disrupted PPI, whereas the same manipulation in the medial prefrontal cortex, ventral hippocampus, and ventral tegmental area did not disrupt PPI. In conclusion, agonism of 5-HT2A receptors in the ventral pallidum and nucleus accumbens can disrupt PPI. The ventral pallidum and nucleus accumbens are critical brain regions responsible for the regulation of PPI by serotonin. These findings contribute to the extensive exploration of the molecular and neural mechanisms underlying the regulatory effect of 5-HT2A receptor activity on PPI, especially the neural circuits modulated by 5-HT2A receptor activity.
Collapse
|
16
|
Tryon SC, Sakamoto IM, Kaigler KF, Gee G, Turner J, Bartley K, Fadel JR, Wilson MA. ChAT::Cre transgenic rats show sex-dependent altered fear behaviors, ultrasonic vocalizations and cholinergic marker expression. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12837. [PMID: 36636833 PMCID: PMC9994175 DOI: 10.1111/gbb.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.
Collapse
Affiliation(s)
- Sarah C. Tryon
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Iris M. Sakamoto
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Gabriella Gee
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jarrett Turner
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Katherine Bartley
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Columbia VA Health Care SystemColumbiaSouth CarolinaUSA
| |
Collapse
|
17
|
REACTIVITY OF POSTERIOR CORTICAL ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS DURING EYES OPENING IN COGNITIVELY INTACT OLDER ADULTS AND PATIENTS WITH DEMENTIA DUE TO ALZHEIMER'S AND LEWY BODY DISEASES. Neurobiol Aging 2022; 115:88-108. [DOI: 10.1016/j.neurobiolaging.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
18
|
Nolan SO, Hodges SL, Binder MS, Smith GD, Okoh JT, Jefferson TS, Escobar B, Lugo JN. Dietary rescue of adult behavioral deficits in the Fmr1 knockout mouse. PLoS One 2022; 17:e0262916. [PMID: 35089938 PMCID: PMC8797197 DOI: 10.1371/journal.pone.0262916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
The current study aimed to further address important questions regarding the therapeutic efficacy of omega-3 fatty acids for various behavioral and neuroimmune aspects of the Fmr1 phenotype. To address these questions, our experimental design utilized two different omega-3 fatty acid administration timepoints, compared to both standard laboratory chow controls ("Standard") and a diet controlling for the increase in fat content ("Control Fat"). In the first paradigm, post-weaning supplementation (after postnatal day 21) with the omega-3 fatty acid diet ("Omega-3") reversed deficits in startle threshold, but not deficits in prepulse inhibition, and the effect on startle threshold was not specific to the Omega-3 diet. However, post-weaning supplementation with both experimental diets also impaired acquisition of a fear response, recall of the fear memory and contextual fear conditioning compared to the Standard diet. The post-weaning Omega-3 diet reduced hippocampal expression of IL-6 and this reduction of IL-6 was significantly associated with diminished performance in the fear conditioning task. In the perinatal experimental paradigm, the Omega-3 diet attenuated hyperactivity and acquisition of a fear response. Additionally, perinatal exposure to the Control Fat diet (similar to a "Western" diet) further diminished nonsocial anxiety in the Fmr1 knockout. This study provides significant evidence that dietary fatty acids throughout the lifespan can significantly impact the behavioral and neuroimmune phenotype of the Fmr1 knockout model.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Samantha L. Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - James T. Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Brianna Escobar
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
19
|
Zhang J, Wang M, Wei B, Shi J, Yu T. Research Progress in the Study of Startle Reflex to Disease States. Neuropsychiatr Dis Treat 2022; 18:427-435. [PMID: 35237036 PMCID: PMC8884703 DOI: 10.2147/ndt.s351667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
The startle reflex is considered a primitive physiological reflex, a defense response that occurs in the organism when the body feels sudden danger and uneasiness, characterized by habituation and sensitization effects, and studies on the startle reflex often deal with pre-pulse inhibition (PPI) and sensorimotor gating. Under physiological conditions, the startle reflex is stable at a certain level, and when the organism is in a pathological state, such as stroke, spinal cord injury, schizophrenia, and other diseases, the reflex undergoes a series of changes, making it closely related to the progress of disease. This paper summarizes the startle reflex in physiological and pathological states by reviewing the databases of PubMed, Web of Science, Cochrane Library, EMBASE, China Biology Medicine, China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodical, Wanfang Data, and identifies and analyzes the startle reflex and excessive startle reaction disorder.
Collapse
Affiliation(s)
- Junfeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Baoyu Wei
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| |
Collapse
|
20
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
21
|
Sherafat Y, Chen E, Lallai V, Bautista M, Fowler JP, Chen YC, Miwa J, Fowler CD. Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse Inhibition. Front Behav Neurosci 2021; 15:703748. [PMID: 34803621 PMCID: PMC8595198 DOI: 10.3389/fnbeh.2021.703748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1–/– or lynx2–/– knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1–/– mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2–/– mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2–/– mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Edison Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Julie Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
22
|
Koch L, Gaese BH, Nowotny M. Strain Comparison in Rats Differentiates Strain-Specific from More General Correlates of Noise-Induced Hearing Loss and Tinnitus. J Assoc Res Otolaryngol 2021; 23:59-73. [PMID: 34796410 PMCID: PMC8782999 DOI: 10.1007/s10162-021-00822-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Experiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.
Collapse
Affiliation(s)
- L Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - B H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany. .,Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
23
|
Haddad FL, Lu L, Baines KJ, Schmid S. Sensory filtering disruption caused by poly I:C - Timing of exposure and other experimental considerations. Brain Behav Immun Health 2021; 9:100156. [PMID: 34589898 PMCID: PMC8474281 DOI: 10.1016/j.bbih.2020.100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Maternal immune activation (MIA) in response to infection during pregnancy has been linked through various epidemiological and preclinical studies to an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia in exposed offspring. Sensory filtering disruptions occur in both of these disorders and are typically measured using the acoustic startle response in both humans and rodents. Our study focuses on characterizing the baseline reactivity, habituation and prepulse inhibition (PPI) of the acoustic startle response following exposure to MIA. We induced MIA using polyinosinic: polycytidylic acid (poly I:C) at gestational day (GD) 9.5 or 14.5, and we tested sensory filtering phenotypes in adolescent and adult offspring. Our results show that startle reactivity was robustly increased in adult GD9.5 but not GD14.5 poly I:C offspring. In contrast to some previous studies, we found no consistent changes in short-term habituation, long-term habituation or prepulse inhibition of startle. Our study highlights the importance of MIA exposure timing and discusses sensory filtering phenotypes as they relate to ASD, schizophrenia and the poly I:C MIA model. Moreover, we analyze and discuss the potential impact of between- and within-litter variability on behavioural findings in poly I:C studies.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Lu Lu
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Kelly J Baines
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| |
Collapse
|
24
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Dense cholinergic projections to auditory and multisensory nuclei of the intercollicular midbrain. Hear Res 2021; 411:108352. [PMID: 34564033 DOI: 10.1016/j.heares.2021.108352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Cholinergic axons from the pedunculopontine tegmental nucleus (PPT) innervate the inferior colliculus where they are positioned to modulate both excitatory and inhibitory circuits across the central nucleus and adjacent cortical regions. More rostral regions of the auditory midbrain include the nucleus of the brachium of the inferior colliculus (NBIC), the intercollicular tegmentum (ICt) and the rostral pole of the inferior colliculus (ICrp). These regions appear especially important for multisensory integration and contribute to orienting behavior and many aspects of auditory perception. These regions appear to receive cholinergic innervation but little is known about the distribution of cholinergic axons in these regions or the cells that they contact. The present study used immunostaining to examine the distribution of cholinergic axons and then used chemically-specific viral tracing to examine cholinergic projections from the PPT to the intercollicular areas in male and female transgenic rats. Staining with antibodies against vesicular acetylcholine transporter revealed dense cholinergic innervation throughout the NBIC, ICt and ICrp. Deposits of viral vector into the PPT labeled cholinergic axons bilaterally in the NBIC, ICt and ICrp. In each area, the projections were denser on the ipsilateral side. The axons appeared morphologically similar across the three areas. In each area, en passant and terminal boutons from these axons appeared in the neuropil and also in close apposition to cell bodies. Immunostaining with a marker for GABAergic cells suggested that the cholinergic axons likely contact both GABAergic and non-GABAergic cells in the NBIC, ICt and ICrp. Thus, the cholinergic axons could affect multisensory processing by modulating excitatory and inhibitory circuits in the NBIC, ICt and ICrp. The similarity of axons and their targets suggests there may be a common function for cholinergic innervation across the three areas. Given what is known about the PPT, such functions could be associated with arousal, sleep-wake cycle, reward and plasticity.
Collapse
Affiliation(s)
- William A Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Brett R Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
25
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
26
|
Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021; 15:715369. [PMID: 34335196 PMCID: PMC8319744 DOI: 10.3389/fncir.2021.715369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
The superior olivary complex (SOC) is a major computation center in the brainstem auditory system. Despite previous reports of high expression levels of cholinergic receptors in the SOC, few studies have addressed the functional role of acetylcholine in the region. The source of the cholinergic innervation is unknown for all but one of the nuclei of the SOC, limiting our understanding of cholinergic modulation. The medial nucleus of the trapezoid body, a key inhibitory link in monaural and binaural circuits, receives cholinergic input from other SOC nuclei and also from the pontomesencephalic tegmentum. Here, we investigate whether these same regions are sources of cholinergic input to other SOC nuclei. We also investigate whether individual cholinergic cells can send collateral projections bilaterally (i.e., into both SOCs), as has been shown at other levels of the subcortical auditory system. We injected retrograde tract tracers into the SOC in gerbils, then identified retrogradely-labeled cells that were also immunolabeled for choline acetyltransferase, a marker for cholinergic cells. We found that both the SOC and the pontomesencephalic tegmentum (PMT) send cholinergic projections into the SOC, and these projections appear to innervate all major SOC nuclei. We also observed a small cholinergic projection into the SOC from the lateral paragigantocellular nucleus of the reticular formation. These various sources likely serve different functions; e.g., the PMT has been associated with things such as arousal and sensory gating whereas the SOC may provide feedback more closely tuned to specific auditory stimuli. Further, individual cholinergic neurons in each of these regions can send branching projections into both SOCs. Such projections present an opportunity for cholinergic modulation to be coordinated across the auditory brainstem.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
27
|
Cano JC, Huang W, Fénelon K. The amygdala modulates prepulse inhibition of the auditory startle reflex through excitatory inputs to the caudal pontine reticular nucleus. BMC Biol 2021; 19:116. [PMID: 34082731 PMCID: PMC8176709 DOI: 10.1186/s12915-021-01050-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
Background Sensorimotor gating is a fundamental pre-attentive process that is defined as the inhibition of a motor response by a sensory event. Sensorimotor gating, commonly measured using the prepulse inhibition (PPI) of the auditory startle reflex task, is impaired in patients suffering from various neurological and psychiatric disorders. PPI deficits are a hallmark of schizophrenia, and they are often associated with attention and other cognitive impairments. Although the reversal of PPI deficits in animal models is widely used in pre-clinical research for antipsychotic drug screening, the neurotransmitter systems and synaptic mechanisms underlying PPI are still not resolved, even under physiological conditions. Recent evidence ruled out the longstanding hypothesis that PPI is mediated by midbrain cholinergic inputs to the caudal pontine reticular nucleus (PnC). Instead, glutamatergic, glycinergic, and GABAergic inhibitory mechanisms are now suggested to be crucial for PPI, at the PnC level. Since amygdalar dysfunctions alter PPI and are common to pathologies displaying sensorimotor gating deficits, the present study was designed to test that direct projections to the PnC originating from the amygdala contribute to PPI. Results Using wild type and transgenic mice expressing eGFP under the control of the glycine transporter type 2 promoter (GlyT2-eGFP mice), we first employed tract-tracing, morphological reconstructions, and immunohistochemical analyses to demonstrate that the central nucleus of the amygdala (CeA) sends glutamatergic inputs lateroventrally to PnC neurons, including GlyT2+ cells. Then, we showed the contribution of the CeA-PnC excitatory synapses to PPI in vivo by demonstrating that optogenetic inhibition of this connection decreases PPI, and optogenetic activation induces partial PPI. Finally, in GlyT2-Cre mice, whole-cell recordings of GlyT2+ PnC neurons in vitro paired with optogenetic stimulation of CeA fibers, as well as photo-inhibition of GlyT2+ PnC neurons in vivo, allowed us to implicate GlyT2+ neurons in the PPI pathway. Conclusions Our results uncover a feedforward inhibitory mechanism within the brainstem startle circuit by which amygdalar glutamatergic inputs and GlyT2+ PnC neurons contribute to PPI. We are providing new insights to the clinically relevant theoretical construct of PPI, which is disrupted in various neuropsychiatric and neurological diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01050-z.
Collapse
Affiliation(s)
- Jose Carlos Cano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79912, USA
| | - Wanyun Huang
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Karine Fénelon
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA.
| |
Collapse
|
28
|
Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal. Sci Rep 2021; 11:1409. [PMID: 33446792 PMCID: PMC7809417 DOI: 10.1038/s41598-020-80703-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
An alerting sound elicits the Acoustic Startle Response (ASR) that is dependent on the sound volume and organisms’ state, which is regulated by neuromodulatory centers. The locus coeruleus (LC) neurons respond to salient stimuli and noradrenaline release affects sensory processing, including auditory. The LC hyperactivity is detrimental for sensorimotor gating. We report here that priming microstimulation of the LC (100-ms at 20, 50, and 100 Hz) attenuated the ASR in rats. The ASR reduction scaled with frequency and 100 Hz-stimulation mimicked pre-exposure to a non-startling tone (prepulse). A rapid (~ 40 ms) EEG desynchronization following the LC stimulation suggested that the ASR reduction was due to elevated cortical arousal. The effects of LC stimulation on the ASR and EEG were consistent with systematic relationships between the ASR, awake/sleep state, and the cortical arousal level; for that matter, a lower ASR amplitude corresponded to a higher arousal level. Thus, the LC appears to modulate the ASR circuit via its diffuse ascending projections to the forebrain saliency network. The LC modulation directly in the brainstem and/or spinal cord may also play a role. Our findings suggest the LC as a part of the brain circuitry regulating the ASR, while underlying neurophysiological mechanisms require further investigation.
Collapse
|
29
|
Wang ML, Song Y, Liu JX, Du YL, Xiong S, Fan X, Wang J, Zhang ZD, Mao LQ, Ma FR. Role of the caudate-putamen nucleus in sensory gating in induced tinnitus in rats. Neural Regen Res 2021; 16:2250-2256. [PMID: 33818509 PMCID: PMC8354105 DOI: 10.4103/1673-5374.310692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tinnitus can be described as the conscious perception of sound without external stimulation, and it is often accompanied by anxiety, depression, and insomnia. Current clinical treatments for tinnitus are ineffective. Although recent studies have indicated that the caudate-putamen nucleus may be a sensory gating area involved in noise elimination in tinnitus, the underlying mechanisms of this disorder are yet to be determined. To investigate the potential role of the caudate-putamen nucleus in experimentally induced tinnitus, we created a rat model of tinnitus induced by intraperitoneal administration of 350 mg/kg sodium salicylate. Our results revealed that the mean spontaneous firing rate of the caudate-putamen nucleus was increased by sodium salicylate treatment, while dopamine levels were decreased. In addition, electrical stimulation of the caudate-putamen nucleus markedly reduced the spontaneous firing rate of neurons in the primary auditory cortex. These findings suggest that the caudate-putamen nucleus plays a sensory gating role in sodium salicylate-induced tinnitus. This study was approved by the Institutional Animal Care and Use Committee of Peking University Health Science Center (approval No. A2010031) on December 6, 2017.
Collapse
Affiliation(s)
- Meng-Lin Wang
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Yu Song
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Jun-Xiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Ya-Li Du
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Shan Xiong
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Fan
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Jiang Wang
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Zhi-Di Zhang
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Lan-Qun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, China
| | - Fu-Rong Ma
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Zakharova EI, Storozheva ZI, Proshin AT, Monakov MY, Dudchenko AM. Opposite Pathways of Cholinergic Mechanisms of Hypoxic Preconditioning in the Hippocampus: Participation of Nicotinic α7 Receptors and Their Association with the Baseline Level of Startle Prepulse Inhibition. Brain Sci 2020; 11:brainsci11010012. [PMID: 33374246 PMCID: PMC7824639 DOI: 10.3390/brainsci11010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background. A one-time moderate hypobaric hypoxia (HBH) has a preconditioning effect whose neuronal mechanisms are not studied well. Previously, we found a stable correlation between the HBH efficiency and acoustic startle prepulse inhibition (PPI). This makes it possible to predict the individual efficiency of HBH in animals and to study its potential adaptive mechanisms. We revealed a bi-directional action of nicotinic α7 receptor agonist PNU-282987 and its solvent dimethyl sulfoxide on HBH efficiency with the level of PPI > or < 40%. (2) The aim of the present study was to estimate cholinergic mechanisms of HBH effects in different brain regions. (3) Methods: in rats pretested for PPI, we evaluated the activity of synaptic membrane-bound and water-soluble choline acetyltransferase (ChAT) in the sub-fractions of ‘light’ and ‘heavy’ synaptosomes of the neocortex, hippocampus and caudal brainstem in the intact brain and after HBH. We tested the dose-dependent influence of PNU-282987 on the HBH efficiency. (4) Results: PPI level and ChAT activity correlated negatively in all brain structures of the intact animals, so that the values of the latter were higher in rats with PPI < 40% compared to those with PPI > 40%. After HBH, this ChAT activity difference was leveled in the neocortex and caudal brainstem, while for membrane-bound ChAT in the ‘light’ synaptosomal fraction of hippocampus, it was reversed to the opposite. In addition, a pharmacological study revealed that PNU-282987 in all used doses and its solvent displayed corresponding opposite effects on HBH efficiency in rats with different levels of PPI. (5) Conclusion: We substantiate that in rats with low and high PPI two opposite hippocampal cholinergic mechanisms are involved in hypoxic preconditioning, and both are implemented by forebrain projections via nicotinic α7 receptors. Possible causes of association between general protective adaptation, HBH, PPI, forebrain cholinergic system and hippocampus are discussed.
Collapse
Affiliation(s)
- Elena I. Zakharova
- Laboratory of General Pathology of Cardiorespiratory System, Institute of General Pathology and Pathophysiology, Baltiyskaya, 8, 125315 Moscow, Russia; (M.Y.M.); (A.M.D.)
- Correspondence: ; Tel.: +7-9199668657; Fax: +7-4991511756
| | - Zinaida I. Storozheva
- Laboratory of Clinical Neurophysiology, Serbsky’ National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per., 23, 111395 Moscow, Russia;
| | - Andrey T. Proshin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Baltiyskaya, 8, 125315 Moscow, Russia;
| | - Mikhail Yu. Monakov
- Laboratory of General Pathology of Cardiorespiratory System, Institute of General Pathology and Pathophysiology, Baltiyskaya, 8, 125315 Moscow, Russia; (M.Y.M.); (A.M.D.)
| | - Alexander M. Dudchenko
- Laboratory of General Pathology of Cardiorespiratory System, Institute of General Pathology and Pathophysiology, Baltiyskaya, 8, 125315 Moscow, Russia; (M.Y.M.); (A.M.D.)
| |
Collapse
|
31
|
Pascarelli MT, Del Percio C, De Pandis MF, Ferri R, Lizio R, Noce G, Lopez S, Rizzo M, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Franciotti R, Onofri M, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Paul Taylor J, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, Bonanni L, Babiloni C. Abnormalities of resting-state EEG in patients with prodromal and overt dementia with Lewy bodies: Relation to clinical symptoms. Clin Neurophysiol 2020; 131:2716-2731. [PMID: 33039748 DOI: 10.1016/j.clinph.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Here we tested if cortical sources of resting state electroencephalographic (rsEEG) rhythms may differ in sub-groups of patients with prodromal and overt dementia with Lewy bodies (DLB) as a function of relevant clinical symptoms. METHODS We extracted clinical, demographic and rsEEG datasets in matched DLB patients (N = 60) and control Alzheimer's disease (AD, N = 60) and healthy elderly (Nold, N = 60) seniors from our international database. The eLORETA freeware was used to estimate cortical rsEEG sources. RESULTS As compared to the Nold group, the DLB and AD groups generally exhibited greater spatially distributed delta source activities (DLB > AD) and lower alpha source activities posteriorly (AD > DLB). As compared to the DLB "controls", the DLB patients with (1) rapid eye movement (REM) sleep behavior disorders showed lower central alpha source activities (p < 0.005); (2) greater cognitive deficits exhibited higher parietal and central theta source activities as well as higher central, parietal, and occipital alpha source activities (p < 0.01); (3) visual hallucinations pointed to greater parietal delta source activities (p < 0.005). CONCLUSIONS Relevant clinical features were associated with abnormalities in spatial and frequency features of rsEEG source activities in DLB patients. SIGNIFICANCE Those features may be used as neurophysiological surrogate endpoints of clinical symptoms in DLB patients in future cross-validation prospective studies.
Collapse
Affiliation(s)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Susanna Lopez
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Marco Rizzo
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; Neuromed: IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofri
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz, Austria
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | | | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Harald Hampel
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM), François Lhermitte Building, France
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, FR, Italy.
| |
Collapse
|
32
|
Prepulse Inhibition of the Auditory Startle Reflex Assessment as a Hallmark of Brainstem Sensorimotor Gating Mechanisms. Brain Sci 2020; 10:brainsci10090639. [PMID: 32947873 PMCID: PMC7563436 DOI: 10.3390/brainsci10090639] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
When a low-salience stimulus of any type of sensory modality-auditory, visual, tactile-immediately precedes an unexpected startle-like stimulus, such as the acoustic startle reflex, the startle motor reaction becomes less pronounced or is even abolished. This phenomenon is known as prepulse inhibition (PPI), and it provides a quantitative measure of central processing by filtering out irrelevant stimuli. As PPI implies plasticity of a reflex and is related to automatic or attentional processes, depending on the interstimulus intervals, this behavioral paradigm might be considered a potential marker of short- and long-term plasticity. Assessment of PPI is directly related to the examination of neural sensorimotor gating mechanisms, which are plastic-adaptive operations for preventing overstimulation and helping the brain to focus on a specific stimulus among other distracters. Despite their obvious importance in normal brain activity, little is known about the intimate physiology, circuitry, and neurochemistry of sensorimotor gating mechanisms. In this work, we extensively review the current literature focusing on studies that used state-of-the-art techniques to interrogate the neuroanatomy, connectomics, neurotransmitter-receptor functions, and sex-derived differences in the PPI process, and how we can harness it as biological marker in neurological and psychiatric pathology.
Collapse
|
33
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Cholinergic Projections From the Pedunculopontine Tegmental Nucleus Contact Excitatory and Inhibitory Neurons in the Inferior Colliculus. Front Neural Circuits 2020; 14:43. [PMID: 32765226 PMCID: PMC7378781 DOI: 10.3389/fncir.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The inferior colliculus processes nearly all ascending auditory information. Most collicular cells respond to sound, and for a majority of these cells, the responses can be modulated by acetylcholine (ACh). The cholinergic effects are varied and, for the most part, the underlying mechanisms are unknown. The major source of cholinergic input to the inferior colliculus is the pedunculopontine tegmental nucleus (PPT), part of the pontomesencephalic tegmentum known for projections to the thalamus and roles in arousal and the sleep-wake cycle. Characterization of PPT inputs to the inferior colliculus has been complicated by the mixed neurotransmitter population within the PPT. Using selective viral-tract tracing techniques in a ChAT-Cre Long Evans rat, the present study characterizes the distribution and targets of cholinergic projections from PPT to the inferior colliculus. Following the deposit of viral vector in one PPT, cholinergic axons studded with boutons were present bilaterally in the inferior colliculus, with the greater density of axons and boutons ipsilateral to the injection site. On both sides, cholinergic axons were present throughout the inferior colliculus, distributing boutons to the central nucleus, lateral cortex, and dorsal cortex. In each inferior colliculus (IC) subdivision, the cholinergic PPT axons appear to contact both GABAergic and glutamatergic neurons. These findings suggest cholinergic projections from the PPT have a widespread influence over the IC, likely affecting many aspects of midbrain auditory processing. Moreover, the effects are likely to be mediated by direct cholinergic actions on both excitatory and inhibitory circuits in the inferior colliculus.
Collapse
Affiliation(s)
- William A. Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brett R. Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
34
|
Abstract
Altered prepulse inhibition (PPI) is an endophenotype associated with multiple brain disorders, including schizophrenia. Circuit mechanisms that regulate PPI have been suggested, but none has been demonstrated through direct manipulations. IRSp53 is an abundant excitatory postsynaptic scaffold implicated in schizophrenia, autism spectrum disorders, and attention-deficit/hyperactivity disorder. We found that mice lacking IRSp53 in cortical excitatory neurons display decreased PPI. IRSp53-mutant layer 6 cortical neurons in the anterior cingulate cortex (ACC) displayed decreased excitatory synaptic input but markedly increased neuronal excitability, which was associated with excessive excitatory synaptic input in downstream mediodorsal thalamic (MDT) neurons. Importantly, chemogenetic inhibition of mutant neurons projecting to MDT normalized the decreased PPI and increased excitatory synaptic input onto MDT neurons. In addition, chemogenetic activation of MDT-projecting layer 6 neurons in the ACC decreased PPI in wild-type mice. These results suggest that the hyperactive ACC-MDT pathway suppresses PPI in wild-type and IRSp53-mutant mice.
Collapse
Affiliation(s)
- Yangsik Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea,Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,To whom correspondence should be addressed; Mental Health Research Institute, National Center for Mental Health, Yongmasan-ro 127, Gwangjin-gu, Seoul, South Korea 04933; tel: +82-2-2204-0502, fax: +82-2-2204-0393, e-mail:
| | - Young Woo Noh
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
35
|
Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer's disease. Ageing Res Rev 2020; 59:101028. [PMID: 32092463 DOI: 10.1016/j.arr.2020.101028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Inhibition plays a crucial role in many functional domains, such as cognition, emotion, and actions. Studies on cognitive aging demonstrate changes in inhibitory mechanisms are age- and pathology-related. Prepulse inhibition (PPI) is the suppression of an acoustic startle reflex (ASR) to an intense stimulus when a weak prepulse stimulus precedes the startle stimulus. A reduction of PPI is thought to reflect dysfunction of sensorimotor gating which normally suppresses excessive behavioral responses to disruptive stimuli. Both human and rodent studies show age-dependent alterations of PPI of the ASR that are further compromised in Alzheimer's disease (AD). The auditory P50 gating, an index of repetition suppression, also is characterized as a putative electrophysiological biomarker of prodromal AD. This review provides the latest evidence of age- and AD-associated impairment of sensorimotor gating based upon both human and rodent studies, as well as the AD-related disruption of P50 gating in humans. It begins with a concise review of neural networks underlying PPI regulation. Then, evidence of age- and AD-related dysfunction of both PPI and P50 gating is discussed. The attentional/ emotional aspects of sensorimotor gating and the neurotransmitter mechanisms underpinning PPI and P50 gating are also reviewed. The review ends with conclusions and research directions.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| |
Collapse
|
36
|
Arenas MC, Blanco-Gandía MC, Miñarro J, Manzanedo C. Prepulse Inhibition of the Startle Reflex as a Predictor of Vulnerability to Develop Locomotor Sensitization to Cocaine. Front Behav Neurosci 2020; 13:296. [PMID: 32116585 PMCID: PMC7008852 DOI: 10.3389/fnbeh.2019.00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Prepulse inhibition (PPI) of the startle reflex is a measure of sensory-motor synchronization. A deficit in PPI has been observed in psychiatric patients, especially those with schizophrenia and vulnerable subjects, since the neural bases of this disorder are also involved in the regulation of PPI. Recently, we have reported that baseline PPI levels in mice can predict their sensitivity to the conditioned reinforcing effects of cocaine in the conditioned place preference (CPP) paradigm. Mice with a low PPI presented a lower sensitivity to the conditioned rewarding effects of cocaine; however, once they acquired conditioned preference with a higher dose of the drug, a more persistent associative effect of cocaine with respect to environmental cues was evident in these animals when compared with High-PPI mice. Therefore, we proposed that the PPI paradigm can determine subjects with a higher vulnerability to the effects of cocaine. Developing locomotor sensitization after pre-exposure to cocaine is considered an indicator of transitioning from recreational use to a compulsive consumption of the drug. Thus, the aim of the present study was to evaluate whether subjects with a low PPI display a higher locomotor sensitization induced by cocaine. First, male and female OF1 mice were classified as High- or Low-PPI according to their baseline PPI levels. Subsequently, the motor effects induced by an acute dose of cocaine (Experiments 1 and 2) and the development of locomotor sensitization induced by pre-exposure to this drug (Experiments 3 and 4) were recorded using two apparatuses (Ethovision and actimeter). Low-PPI mice presented low sensitivity to the motor effects of an acute dose of cocaine, but a high increase of activity after repeated administration of the drug, thus suggesting a great developed behavioral sensitization. Differences after pretreatment with cocaine vs. saline were more pronounced among Low-PPI subjects than among High-PPI animals. These results endorse our hypothesis that the PPI paradigm can detect subjects who are more likely to display behaviors induced by cocaine and which can increase the risk of developing a cocaine use disorder. Herein, we further discuss whether a PPI deficit can be considered an endophenotype for cocaine use disorder.
Collapse
Affiliation(s)
- M Carmen Arenas
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - María Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Campus de Teruel, Teruel, Spain
| | - José Miñarro
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Carmen Manzanedo
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| |
Collapse
|
37
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
38
|
Fulcher N, Azzopardi E, De Oliveira C, Hudson R, Schormans AL, Zaman T, Allman BL, Laviolette SR, Schmid S. Deciphering midbrain mechanisms underlying prepulse inhibition of startle. Prog Neurobiol 2019; 185:101734. [PMID: 31863802 DOI: 10.1016/j.pneurobio.2019.101734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Prepulse inhibition (PPI) is an operational measure of sensorimotor gating. Deficits of PPI are a hallmark of schizophrenia and associated with several other psychiatric illnesses such as e.g. autism spectrum disorder, yet the mechanisms underlying PPI are still not fully understood. There is growing evidence contradicting the long-standing hypothesis that PPI is mediated by a short feed-forward midbrain circuitry including inhibitory cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the startle pathway. Here, we employed a chemogenetic approach to explore the involvement of the PPTg in general, and cholinergic neurons specifically, in PPI. Activation of inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in the PPTg by systemic administration of clozapine-N-oxide (CNO) disrupted PPI, confirming the involvement of the PPTg in PPI. In contrast, chemogenetic inhibition of specifically cholinergic PPTg neurons had no effect on PPI, but inhibited morphine-induced conditioned place preference (CPP) in the same animals, showing that the DREADDs were effective in modulating behavior. These findings support a functional role of the PPTg and/or neighboring structures in PPI in accordance with previous lesion studies, but also provide strong evidence against the hypothesis that specifically cholinergic PPTg neurons are involved in mediating PPI, implicating rather non-cholinergic midbrain neurons.
Collapse
Affiliation(s)
- Niveen Fulcher
- University of Western Ontario, Schulich School of Medicine & Dentistry, Neuroscience Graduate Program, London, ON, N6A 5C1 Canada
| | - Erin Azzopardi
- University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Cleusa De Oliveira
- University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Roger Hudson
- University of Western Ontario, Schulich School of Medicine & Dentistry, Neuroscience Graduate Program, London, ON, N6A 5C1 Canada
| | - Ashley L Schormans
- University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Tariq Zaman
- University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Brian L Allman
- University of Western Ontario, Schulich School of Medicine & Dentistry, Neuroscience Graduate Program, London, ON, N6A 5C1 Canada; University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Steven R Laviolette
- University of Western Ontario, Schulich School of Medicine & Dentistry, Neuroscience Graduate Program, London, ON, N6A 5C1 Canada; University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada
| | - Susanne Schmid
- University of Western Ontario, Schulich School of Medicine & Dentistry, Neuroscience Graduate Program, London, ON, N6A 5C1 Canada; University of Western Ontario, Schulich School of Medicine & Dentistry, Department of Anatomy & Cell Biology, London, ON, N6A 5C1 Canada.
| |
Collapse
|
39
|
Mantanona CP, Alsiö J, Elson JL, Fisher BM, Dalley JW, Bussey T, Pienaar IS. Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats. Brain Struct Funct 2019; 224:3095-3116. [PMID: 31506825 PMCID: PMC6875150 DOI: 10.1007/s00429-019-01957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic-pituitary-adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.
Collapse
Affiliation(s)
- Craig P Mantanona
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Johan Alsiö
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Beth M Fisher
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Timothy Bussey
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
40
|
Rodrigues S, Ferreira TL. Muscimol injection into the substantia nigra but not globus pallidus affects prepulse inhibition and startle reflex. Neuropharmacology 2019; 162:107796. [PMID: 31563465 DOI: 10.1016/j.neuropharm.2019.107796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Behavioral arrest is an essential feature of an animal's survival. Acoustic startle reflex (ASR) is an involuntary whole-body contraction of the skeletal musculature to an unexpected auditory stimulus. This strong reaction can be decreased by prepulse inhibition (PPI) phenomenon; which, for example, is important in reducing distraction during the processing of sensory input. Several brainstem regions are involved in the PPI and startle reflex, but a previous study from our laboratory showed that the main input structure of Basal Ganglia (BG) - the striatum - modulates PPI. The pallidum and nigra are connected with striatum and these brainstem structures. Here, we investigated the role of these striatum outputs in the brain regions on startle amplitude, PPI regulation, and exploratory behavior in Wistar rats. The temporary bilateral inhibition of the globus pallidus (GP) by muscimol lead to motor impairment, without disturbing startle amplitude or PPI. Similarly, inhibition of the entopeduncular nucleus (EPN) specifically disrupted the exploratory behavior. On the other hand, the substantia nigra reticulata (SNr) inhibition interfered in all measured behaviors: decreased the PPI percentage, increased ASR and impaired the locomotor activity. The nigra is a key BG output structure which projects to the thalamus and brainstem. These findings extend our previous study showing that the striatum neurons expressing D1 receptors involvement in PPI occurs via the direct pathway to SNr, but not to the pallidum which more likely occurs by its connection with the caudal pontine nucleus, superior colliculus and/or pedunculopontine nucleus pivotal structures for startle reflex modulation.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | | |
Collapse
|
41
|
Hormigo S, Rodriguez-Lorenzana A, Castro-Salazar E, Millian-Morell L, López DE. Subchronic use of rivastigmine increases procognitive flexibility across multimodal behavioral tasks in healthy male rats. Behav Brain Res 2019; 376:112077. [PMID: 31499090 DOI: 10.1016/j.bbr.2019.112077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023]
Abstract
Rivastigmine (RVT) is a reversible inhibitor of cholinesterase approved worldwide for the treatment of cognitive dysfunctions, especially in Alzheimer's disease. Most previous pre-clinical studies have examined the effects of RVT treatment in a wide variety of pathological research models. Nonetheless, the effects of this drug on sensorimotor gating, memory, and learning tasks in healthy subjects remains unclear. In this study, we investigate the procognitive effects of RVT treatment in healthy rats through sensorimotor gating evaluations (measured as prepulse inhibition of the acoustic startle reflex), active avoidance learning, and spatial memory learning in a radial maze. There is an increase in the amplitude of the startle reflex in RVT-treated rats compared to the control groups, whereas the latency remained constant. Sensorimotor gating values were also incremented compared to those values from controls. In active avoidance, rats treated with RVT learned faster to successfully perform the task compared to controls, but afterwards all groups exhibited virtually identical results. During the sessions in the radial maze, RVT-treated rats committed fewer errors in both the working and reference memory compared to controls. All in all, our results support the hypothesis that RVT treatment may entail procognitive effects in healthy subjects.
Collapse
Affiliation(s)
- Sebastian Hormigo
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.
| | - Alberto Rodriguez-Lorenzana
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Escuela de Psicologia, Universidad de Las Americas; Quito, Ecuador
| | - E Castro-Salazar
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Lymarie Millian-Morell
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
42
|
Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019; 130:925-940. [PMID: 30981899 PMCID: PMC7365492 DOI: 10.1016/j.clinph.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The pedunculopontine nucleus (PPN) is located in the mesopontine tegmentum and is best delimited by a group of large cholinergic neurons adjacent to the decussation of the superior cerebellar peduncle. This part of the brain, populated by many other neuronal groups, is a crossroads for many important functions. Good evidence relates the PPN to control of reflex reactions, sleep-wake cycles, posture and gait. However, the precise role of the PPN in all these functions has been controversial and there still are uncertainties in the functional anatomy and physiology of the nucleus. It is difficult to grasp the extent of the influence of the PPN, not only because of its varied functions and projections, but also because of the controversies arising from them. One controversy is its relationship to the mesencephalic locomotor region (MLR). In this regard, the PPN has become a new target for deep brain stimulation (DBS) for the treatment of parkinsonian gait disorders, including freezing of gait. This review is intended to indicate what is currently known, shed some light on the controversies that have arisen, and to provide a framework for future research.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - C B Saper
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David B Rye
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - M Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - J Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, the Netherlands
| | - A Lozano
- Division of Neurosurgery, University of Toronto and Krembil Neuroscience Centre, University Health Network, Toronto, Canada
| | - J Valls-Solé
- Neurology Department, Hospital Clínic, University of Barcelona, IDIBAPS (Institut d'Investigació Biomèdica August Pi i Sunyer), Barcelona, Spain
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Social context influences sensorimotor gating in female African cichlid fish Astatotilapia burtoni. Behav Brain Res 2019; 370:111925. [PMID: 31102599 DOI: 10.1016/j.bbr.2019.111925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/23/2022]
Abstract
Disruption in prepulse inhibition (PPI), a sensorimotor gating phenomenon found in many species, has been associated with various psychiatric disorders in humans. Social defeat has been identified as a mediator of naturally evoked reductions of PPI in African cichlid fish Astatotilapia burtoni where males reversibly alter social status and their sensorimotor gating abilities. Here we investigated A. burtoni females, which establish a male-like social hierarchy with dominant (DOM) and subordinate (SUB) individuals when housed in communities without males. We asked if DOM and SUB females demonstrate socially induced PPI differences comparable to their male DOM and SUB counterparts. Results suggest that social defeat reduced PPI in SUB females as compared to DOM females (p = 0.033) and mixed-sex community female controls (p = 0.017). However, socially defeated females in same-sex communities remained proactive when engaging in antagonistic behaviors, which appears beneficial in avoiding substantial reductions in PPI as seen in reactive, socially defeated males. In open field swimming tests, SUB females exhibited increased anxiety-related behavior (thigmotaxis) as compared to females from mixed-sex communities (COM). Taken together, our results emphasize social defeat is a reliable modulator of PPI independent of sex, and anxiety related to social defeat might be a factor in mediating PPI plasticity.
Collapse
|
44
|
Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019; 9:brainsci9030064. [PMID: 30889866 PMCID: PMC6468768 DOI: 10.3390/brainsci9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.
Collapse
|