1
|
Mohar B, Michel G, Wang YZ, Hernandez V, Grimm JB, Park JY, Patel R, Clarke M, Brown TA, Bergmann C, Gebis KK, Wilen AP, Liu B, Johnson R, Graves A, Tchumatchenko T, Savas JN, Fornasiero EF, Huganir RL, Tillberg PW, Lavis LD, Svoboda K, Spruston N. DELTA: a method for brain-wide measurement of synaptic protein turnover reveals localized plasticity during learning. Nat Neurosci 2025; 28:1089-1098. [PMID: 40164741 DOI: 10.1038/s41593-025-01923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
Synaptic plasticity alters neuronal connections in response to experience, which is thought to underlie learning and memory. However, the loci of learning-related synaptic plasticity, and the degree to which plasticity is localized or distributed, remain largely unknown. Here we describe a new method, DELTA, for mapping brain-wide changes in synaptic protein turnover with single-synapse resolution, based on Janelia Fluor dyes and HaloTag knock-in mice. During associative learning, the turnover of the ionotropic glutamate receptor subunit GluA2, an indicator of synaptic plasticity, was enhanced in several brain regions, most markedly hippocampal area CA1. More broadly distributed increases in the turnover of synaptic proteins were observed in response to environmental enrichment. In CA1, GluA2 stability was regulated in an input-specific manner, with more turnover in layers containing input from CA3 compared to entorhinal cortex. DELTA will facilitate exploration of the molecular and circuit basis of learning and memory and other forms of plasticity at scales ranging from single synapses to the entire brain.
Collapse
Affiliation(s)
- Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Gabriela Michel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Veronica Hernandez
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Morgan Clarke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy A Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Cornelius Bergmann
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kamil K Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Johnson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Austin Graves
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatjana Tchumatchenko
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugenio F Fornasiero
- Department Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
2
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Zhang R, Jiang H, Liu Y, He G. Structure, function, and pathology of Neurexin-3. Genes Dis 2023; 10:1908-1919. [PMID: 37492720 PMCID: PMC10363586 DOI: 10.1016/j.gendis.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - HanXiao Jiang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - YuanJie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - GuiQiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Shen Y, Wen Y, Sposini S, Vishwanath AA, Abdelfattah AS, Schreiter ER, Lemieux MJ, de Juan-Sanz J, Perrais D, Campbell RE. Rational Engineering of an Improved Genetically Encoded pH Sensor Based on Superecliptic pHluorin. ACS Sens 2023; 8:3014-3022. [PMID: 37481776 DOI: 10.1021/acssensors.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Genetically encoded pH sensors based on fluorescent proteins are valuable tools for the imaging of cellular events that are associated with pH changes, such as exocytosis and endocytosis. Superecliptic pHluorin (SEP) is a pH-sensitive green fluorescent protein (GFP) variant widely used for such applications. Here, we report the rational design, development, structure, and applications of Lime, an improved SEP variant with higher fluorescence brightness and greater pH sensitivity. The X-ray crystal structure of Lime supports the mechanistic rationale that guided the introduction of beneficial mutations. Lime provides substantial improvements relative to SEP for imaging of endocytosis and exocytosis. Furthermore, Lime and its variants are advantageous for a broader range of applications including the detection of synaptic release and neuronal voltage changes.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yurong Wen
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silvia Sposini
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux 33076, France
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2BX, United Kingdom
| | - Anjali Amrapali Vishwanath
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Häpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Ahmed S Abdelfattah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virgina 20147, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island 02906, United States
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virgina 20147, United States
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jaime de Juan-Sanz
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Häpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - David Perrais
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux 33076, France
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
7
|
Nasseri GG, Matin N, Wild AR, Tosefsky K, Flibotte S, Stacey RG, Hollman RB, Foster LJ, Bamji SX. Synaptic activity-dependent changes in the hippocampal palmitoylome. Sci Signal 2022; 15:eadd2519. [PMID: 36473050 DOI: 10.1126/scisignal.add2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic protein S-palmitoylation is critical for neuronal function, development, and synaptic plasticity. Synaptic activity-dependent changes in palmitoylation have been reported for a small number of proteins. Here, we characterized the palmitoylome in the hippocampi of male mice before and after context-dependent fear conditioning. Of the 121 differentially palmitoylated proteins identified, just over half were synaptic proteins, whereas others were associated with metabolic functions, cytoskeletal organization, and signal transduction. The synapse-associated proteins generally exhibited increased palmitoylation after fear conditioning. In contrast, most of the proteins that exhibited decreased palmitoylation were associated with metabolic processes. Similar results were seen in cultured rat hippocampal neurons in response to chemically induced long-term potentiation. Furthermore, we found that the palmitoylation of one of the synaptic proteins, plasticity-related gene-1 (PRG-1), also known as lipid phosphate phosphatase-related protein type 4 (LPPR4), was important for synaptic activity-induced insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynaptic membrane. The findings identify proteins whose dynamic palmitoylation may regulate their role in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nusrat Matin
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kira Tosefsky
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Greg Stacey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Michaluk P, Rusakov DA. Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags. Nat Protoc 2022; 17:3056-3079. [PMID: 36064755 DOI: 10.1038/s41596-022-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Population behavior of signaling molecules on the cell surface is key to their adaptive function. Live imaging of proteins tagged with fluorescent molecules has been an essential tool in understanding this behavior. Typically, genetic or chemical tags are used to target molecules present throughout the cell, whereas antibody-based tags label the externally exposed molecular domains only. Both approaches could potentially overlook the intricate process of in-out membrane recycling in which target molecules appear or disappear on the cell surface. This limitation is overcome by using a pH-sensitive fluorescent tag, such as Super-Ecliptic pHluorin (SEP), because its emission depends on whether it resides inside or outside the cell. Here we focus on the main glial glutamate transporter GLT1 and describe a genetic design that equips GLT1 molecules with SEP without interfering with the transporter's main function. Expressing GLT1-SEP in astroglia in cultures or in hippocampal slices enables monitoring of the real-time dynamics of the cell-surface and cytosolic fractions of the transporter in living cells. Whole-cell fluorescence recovery after photobleaching and quantitative image-kinetic analysis of the resulting time-lapse images enables assessment of the rate of GLT1-SEP recycling on the cell surface, a fundamental trafficking parameter unattainable previously. The present protocol takes 15-20 d to set up cell preparations, and 2-3 d to carry out live cell experiments and data analyses. The protocol can be adapted to study different membrane molecules of interest, particularly those proteins whose lifetime on the cell surface is critical to their adaptive function.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College London, London, UK.
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
9
|
Liu N, Liu K, Yang C. WDR91 specifies the endosomal retrieval subdomain for retromer-dependent recycling. J Cell Biol 2022; 221:213515. [PMID: 36190447 PMCID: PMC9531996 DOI: 10.1083/jcb.202203013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
Retromer-dependent endosomal recycling of membrane receptors requires Rab7, sorting nexin (SNX)-retromer, and factors that regulate endosomal actin organization. It is not fully understood how these factors cooperate to form endosomal subdomains for cargo retrieval and recycling. Here, we report that WDR91, a Rab7 effector, is the key factor that specifies the endosomal retrieval subdomain. Loss of WDR91 causes defective recycling of both intracellular and cell surface receptors. WDR91 interacts with SNXs through their PX domain, and with VPS35, thus promoting their interaction with Rab7. WDR91 also interacts with the WASH subunit FAM21. In WDR91-deficient cells, Rab7, SNX-retromer, and FAM21 fail to localize to endosomal subdomains, and endosomal actin organization is impaired. Re-expression of WDR91 enables Rab7, SNX-retromer, and FAM21 to concentrate at WDR91-specific endosomal subdomains, where retromer-mediated membrane tubulation and release occur. Thus, WDR91 coordinates Rab7 with SNX-retromer and WASH to establish the endosomal retrieval subdomains required for retromer-mediated endosomal recycling.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China,Correspondence to Chonglin Yang:
| |
Collapse
|
10
|
Sugihara Y, Ojima K, Kiyonaka S. [Quantification of AMPA-type glutamate receptors trafficking by ligand-directed two-step labeling]. Nihon Yakurigaku Zasshi 2022; 157:191-195. [PMID: 35491117 DOI: 10.1254/fpj.22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate receptors mediate excitatory neurotransmission in the central nervous system, which have essential roles in our learning and memory. Recent studies have revealed that the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)-type glutamate receptors (AMPA receptors) are dynamically regulated during synaptic plasticity, the cellular basis of learning and memory. Conventionally, biochemical methods such as surface-biotin labeling or genetic incorporation of fluorescent proteins have been utilized to analyze the AMPA receptors dynamics. However, conflicting findings have been reported because of serious issues in these conventional methods. As the alternative, we have developed a new method for labeling AMPA receptors endogenously expressed in neurons by chemical approaches. This is based on a covalent chemical labeling strategy driven by selective ligand-protein recognition to tether small fluorophores to the target receptors, termed ligand-directed acyl imidazole chemistry. This method has successfully visualized AMPA receptors endogenously expressed in neurons. However, the original method required several hours for fluorophore labeling, which hampered analyzing the dynamics of AMPA receptors in detail. As the alternative, we have recently developed an improved strategy for rapid and selective labeling of chemical probes to cell-surface AMPA receptors by combining ligand-directed chemistry and bio-orthogonal click chemistry. This method allowed to quantify their trafficking, which revealed unique features of AMPA receptors such as long lifetime and rapid recycling in neurons. Notably, this method can be expanded to other receptors. Thus, the two-step labeling method would be a useful tool for understanding the physiological or pathophysiological roles of glutamate receptors in neurons.
Collapse
Affiliation(s)
- Yutaro Sugihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Kento Ojima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| |
Collapse
|
11
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
12
|
Godó S, Barabás K, Lengyel F, Ernszt D, Kovács T, Kecskés M, Varga C, Jánosi TZ, Makkai G, Kovács G, Orsolits B, Fujiwara T, Kusumi A, Ábrahám IM. Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons. Front Cell Dev Biol 2021; 9:708715. [PMID: 34631701 PMCID: PMC8495425 DOI: 10.3389/fcell.2021.708715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Gonadal steroid 17β-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.
Collapse
Affiliation(s)
- Soma Godó
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Klaudia Barabás
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Ferenc Lengyel
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Miklós Kecskés
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Csaba Varga
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Tibor Z Jánosi
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Géza Makkai
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Gergely Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Japan
| | - István M Ábrahám
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Nair JD, Braksator E, Yucel BP, Fletcher-Jones A, Seager R, Mellor JR, Bashir ZI, Wilkinson KA, Henley JM. Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. iScience 2021; 24:103029. [PMID: 34553130 PMCID: PMC8441151 DOI: 10.1016/j.isci.2021.103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ellen Braksator
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard Seager
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Zafar I. Bashir
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
14
|
Brachet A, Lario A, Fernández-Rodrigo A, Heisler FF, Gutiérrez Y, Lobo C, Kneussel M, Esteban JA. A kinesin 1-protrudin complex mediates AMPA receptor synaptic removal during long-term depression. Cell Rep 2021; 36:109499. [PMID: 34348158 DOI: 10.1016/j.celrep.2021.109499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
The synaptic removal of AMPA-type glutamate receptors (AMPARs) is a core mechanism for hippocampal long-term depression (LTD). In this study, we address the role of microtubule-dependent transport of AMPARs as a driver for vesicular trafficking and sorting during LTD. Here, we show that the kinesin-1 motor KIF5A/C is strictly required for LTD expression in CA3-to-CA1 hippocampal synapses. Specifically, we find that KIF5 is required for an efficient internalization of AMPARs after NMDA receptor activation. We show that the KIF5/AMPAR complex is assembled in an activity-dependent manner and associates with microsomal membranes upon LTD induction. This interaction is facilitated by the vesicular adaptor protrudin, which is also required for LTD expression. We propose that protrudin links KIF5-dependent transport to endosomal sorting, preventing AMPAR recycling to synapses after LTD induction. Therefore, this work identifies an activity-dependent molecular motor and the vesicular adaptor protein that executes AMPAR synaptic removal during LTD.
Collapse
Affiliation(s)
- Anna Brachet
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Argentina Lario
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Frank F Heisler
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), D-20251 Hamburg, Germany
| | - Yolanda Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara Lobo
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), D-20251 Hamburg, Germany
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
16
|
McMillan KJ, Banks PJ, Hellel FLN, Carmichael RE, Clairfeuille T, Evans AJ, Heesom KJ, Lewis P, Collins BM, Bashir ZI, Henley JM, Wilkinson KA, Cullen PJ. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. eLife 2021; 10:59432. [PMID: 34251337 PMCID: PMC8296521 DOI: 10.7554/elife.59432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.
Collapse
Affiliation(s)
| | - Paul J Banks
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | | | | | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Ashley J Evans
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Kate J Heesom
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Philip Lewis
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | - Jeremy M Henley
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | | | - Peter J Cullen
- School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
17
|
Dissociation of functional and structural plasticity of dendritic spines during NMDAR and mGluR-dependent long-term synaptic depression in wild-type and fragile X model mice. Mol Psychiatry 2021; 26:4652-4669. [PMID: 32606374 PMCID: PMC8095717 DOI: 10.1038/s41380-020-0821-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Many neurodevelopmental disorders are characterized by impaired functional synaptic plasticity and abnormal dendritic spine morphology, but little is known about how these are related. Previous work in the Fmr1-/y mouse model of fragile X (FX) suggests that increased constitutive dendritic protein synthesis yields exaggerated mGluR5-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus, but an effect on spine structural plasticity remains to be determined. In the current study, we used simultaneous electrophysiology and time-lapse two photon imaging to examine how spines change their structure during LTD induced by activation of mGluRs or NMDA receptors (NMDARs), and how this plasticity is altered in Fmr1-/y mice. We were surprised to find that mGluR activation causes LTD and AMPA receptor internalization, but no spine shrinkage in either wildtype or Fmr1-/y mice. In contrast, NMDAR activation caused spine shrinkage as well as LTD in both genotypes. Spine shrinkage was initiated by non-ionotropic (metabotropic) signaling through NMDARs, and in wild-type mice this structural plasticity required activation of mTORC1 and new protein synthesis. In striking contrast, NMDA-induced spine plasticity in Fmr1-/y mice was no longer dependent on acute activation of mTORC1 or de novo protein synthesis. These findings reveal that the structural consequences of mGluR and metabotropic NMDAR activation differ, and that a brake on spine structural plasticity, normally provided by mTORC1 regulation of protein synthesis, is absent in FX. Increased constitutive protein synthesis in FX appears to modify functional and structural plasticity induced through different glutamate receptors.
Collapse
|
18
|
Graves AR, Roth RH, Tan HL, Zhu Q, Bygrave AM, Lopez-Ortega E, Hong I, Spiegel AC, Johnson RC, Vogelstein JT, Tward DJ, Miller MI, Huganir RL. Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. eLife 2021; 10:66809. [PMID: 34658338 PMCID: PMC8616579 DOI: 10.7554/elife.66809] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/16/2021] [Indexed: 02/06/2023] Open
Abstract
Elucidating how synaptic molecules such as AMPA receptors mediate neuronal communication and tracking their dynamic expression during behavior is crucial to understand cognition and disease, but current technological barriers preclude large-scale exploration of molecular dynamics in vivo. We have developed a suite of innovative methodologies that break through these barriers: a new knockin mouse line with fluorescently tagged endogenous AMPA receptors, two-photon imaging of hundreds of thousands of labeled synapses in behaving mice, and computer vision-based automatic synapse detection. Using these tools, we can longitudinally track how the strength of populations of synapses changes during behavior. We used this approach to generate an unprecedentedly detailed spatiotemporal map of synapses undergoing changes in strength following sensory experience. More generally, these tools can be used as an optical probe capable of measuring functional synapse strength across entire brain areas during any behavioral paradigm, describing complex system-wide changes with molecular precision.
Collapse
Affiliation(s)
- Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States,Kavli Neuroscience Discovery InstituteBaltimoreUnited States
| | - Richard H Roth
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Han L Tan
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qianwen Zhu
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Elena Lopez-Ortega
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ingie Hong
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alina C Spiegel
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States,Kavli Neuroscience Discovery InstituteBaltimoreUnited States
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joshua T Vogelstein
- Kavli Neuroscience Discovery InstituteBaltimoreUnited States,Center for Imaging Science, Johns Hopkins University School of EngineeringBaltimoreUnited States,Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel J Tward
- Kavli Neuroscience Discovery InstituteBaltimoreUnited States,Center for Imaging Science, Johns Hopkins University School of EngineeringBaltimoreUnited States,Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael I Miller
- Kavli Neuroscience Discovery InstituteBaltimoreUnited States,Center for Imaging Science, Johns Hopkins University School of EngineeringBaltimoreUnited States,Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States,Kavli Neuroscience Discovery InstituteBaltimoreUnited States
| |
Collapse
|
19
|
Chen S, Wang Y, Wang X, He M, Zhang L, Dong Z. PKA-Dependent Membrane Surface Recruitment of CI-AMPARs Is Crucial for BCP-Mediated Protection Against Post-acute Ischemic Stroke Cognitive Impairment. Front Neurol 2020; 11:566067. [PMID: 33391143 PMCID: PMC7772322 DOI: 10.3389/fneur.2020.566067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Post-acute ischemic stroke cognitive impairment frequently occurs and seriously affects patients daily activities. Recruitment of GluA2-containing Ca2+-impermeable AMPA receptors (CI-AMPARs) to hippocampal synaptic membrane surfaces was shown to trigger synaptic plasticity. Currently, the effect of CI-AMPAR trafficking on acute ischemic stroke remains poorly understood. β-Caryophyllene (BCP) has been shown to ameliorate cognitive impairment. However, the mechanism has not been characterized. In this study, a 60-min temporary middle cerebral artery occlusion (MCAO) model was established to simulate the pathology of acute ischemic stroke. BCP reduced neurologic deficits, cerebral infarct volume, and pathological damage in MCAO mice and caused CI-AMPARs to translocate to synaptic membranes in the hippocampus; surface expression of CI-AMPARs was also decreased in MCAO mice. Furthermore, this study also showed that BCP treatment significantly activated the cAMP/PKA pathway, which is consistent with the synaptic membrane expression of CI-AMPARs. To better understand the underlying mechanisms, the PKA inhibitor H-89 was used to study the role of BCP in MCAO mice. Interestingly, H-89 treatment significantly disrupted the BCP-mediated facilitation of CI-AMPAR translocation to the synaptic membrane surface and substantially attenuated BCP-induced protection against acute ischemic stroke. Additionally, inhibition the cAMP/PKA pathway not only reduced BCP-induced inhibition of AMPAR-mediated excitatory postsynaptic currents in the hippocampal CA1 region but also decreased the effect of BCP-mediated protection against post-acute ischemic stroke cognitive impairment. Taken together, these data indicate that PKA-dependent synaptic membrane surface recruitment of CI-AMPARs is crucial for the neuroprotective effect of BCP against acute ischemic stroke and protection against post-acute ischemic stroke cognitive impairment.
Collapse
Affiliation(s)
- Sha Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China.,Laboratory Sciences, Department of Clinical Biochemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuchun Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xuhui Wang
- Department of Neurosurgery, Research Institute of Surgery Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng He
- Laboratory Sciences, Department of Clinical Biochemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Dong
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Arriagada-Diaz J, Prado-Vega L, Cárdenas Díaz AM, Ardiles AO, Gonzalez-Jamett AM. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease. Neuroscientist 2020; 28:41-58. [PMID: 33300419 DOI: 10.1177/1073858420974313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Gobbo F, Cattaneo A. Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Front Mol Neurosci 2020; 13:572312. [PMID: 33192296 PMCID: PMC7609880 DOI: 10.3389/fnmol.2020.572312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
The development of methods for the activity-dependent tagging of neurons enabled a new way to tackle the problem of engram identification at the cellular level, giving rise to groundbreaking findings in the field of memory studies. However, the resolution of activity-dependent tagging remains limited to the whole-cell level. Notably, events taking place at the synapse level play a critical role in the establishment of new memories, and strong experimental evidence shows that learning and synaptic plasticity are tightly linked. Here, we provide a comprehensive review of the currently available techniques that enable to identify and track the neuronal activity with synaptic spatial resolution. We also present recent technologies that allow to selectively interfere with specific subsets of synapses. Lastly, we discuss how these technologies can be applied to the study of learning and memory.
Collapse
Affiliation(s)
- Francesco Gobbo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
22
|
Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT. A unified computational model for cortical post-synaptic plasticity. eLife 2020; 9:55714. [PMID: 32729828 PMCID: PMC7426095 DOI: 10.7554/elife.55714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity.
Collapse
Affiliation(s)
| | | | | | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Kim T Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, United States
| |
Collapse
|
23
|
Shen H, Zhu H, Panja D, Gu Q, Li Z. Autophagy controls the induction and developmental decline of NMDAR-LTD through endocytic recycling. Nat Commun 2020; 11:2979. [PMID: 32532981 PMCID: PMC7293213 DOI: 10.1038/s41467-020-16794-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
NMDA receptor-dependent long-term depression (NMDAR-LTD) is a long-lasting form of synaptic plasticity. Its expression is mediated by the removal of AMPA receptors from postsynaptic membranes. Under basal conditions, endocytosed AMPA receptors are rapidly recycled back to the plasma membrane. In NMDAR-LTD, however, they are diverted to late endosomes for degradation. The mechanism for this switch is largely unclear. Additionally, the inducibility of NMDAR-LTD is greatly reduced in adulthood. The underlying mechanism and physiological significance of this phenomenon are elusive. Here, we report that autophagy inhibition is essential for the induction and developmental dampening of NMDAR-LTD. Autophagy is inhibited during NMDAR-LTD to decrease endocytic recycling. Autophagy inhibition is both necessary and sufficient for LTD induction. In adulthood, autophagy is up-regulated to make LTD induction harder, thereby preventing the adverse effect of excessive LTD on memory consolidation. These findings reveal the unrecognized functions of autophagy in synaptic plasticity, endocytic recycling, and memory. NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity mediated by reduced recycling of AMPA receptors to the plasma membrane. Here the authors show that autophagy is a regulator of this endocytic recycling and autophagy upregulation dampens NMDAR-LTD in adulthood.
Collapse
Affiliation(s)
- Hongmei Shen
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education & Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Nantong Brain Hospital & Mental Health Center Affiliated to Nantong University, Nantong University, Nantong, 226005, China
| | - Huiwen Zhu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debabrata Panja
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qinhua Gu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
26
|
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci 2019; 38:9318-9329. [PMID: 30381423 DOI: 10.1523/jneurosci.2119-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in the postsynaptic membrane is a fundamental determinant of synaptic transmission and thus of information processing by the brain. The ionotropic AMPA subtype of glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS. The number of AMPARs located en face presynaptic glutamate release sites sets the efficacy of synaptic transmission. Understanding how this number is set and regulated has been the topic of intense research in the last two decades. We showed that AMPARs are not stable in the synapse as initially thought. They continuously enter and exit the postsynaptic density by lateral diffusion, and they exchange between the neuronal surface and intracellular compartments by endocytosis and exocytosis at extrasynaptic sites. Regulation of these various trafficking pathways has emerged as a key mechanism for activity-dependent plasticity of synaptic transmission, a process important for learning and memory. I here present my view of these findings. In particular, the advent of super-resolution microscopy and single-molecule tracking has helped to uncover the intricacy of AMPARs' dynamic organization at the nanoscale. In addition, AMPAR surface diffusion is highly regulated by a variety of factors, including neuronal activity, stress hormones, and neurodegeneration, suggesting that AMPAR diffusion-trapping may play a central role in synapse function. Using innovative tools to understand further the link between receptor dynamics and synapse plasticity is now unveiling new molecular mechanisms of learning. Modifying AMPAR dynamics may emerge as a new target to correct synapse dysfunction in the diseased brain.
Collapse
|
27
|
Agosti F, Altier C. pHluorin-tagged TRPV1 shines light on capsaicin tachyphylaxis. Channels (Austin) 2019; 13:308-310. [PMID: 31262222 PMCID: PMC6629181 DOI: 10.1080/19336950.2019.1638695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Francina Agosti
- a Department of Physiology and Pharmacology , Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Christophe Altier
- a Department of Physiology and Pharmacology , Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
28
|
Letellier M, Levet F, Thoumine O, Goda Y. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biol 2019; 17:e2006223. [PMID: 31166943 PMCID: PMC6576792 DOI: 10.1371/journal.pbio.2006223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/17/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Neurons receive a large number of active synaptic inputs from their many presynaptic partners across their dendritic tree. However, little is known about how the strengths of individual synapses are controlled in balance with other synapses to effectively encode information while maintaining network homeostasis. This is in part due to the difficulty in assessing the activity of individual synapses with identified afferent and efferent connections for a synapse population in the brain. Here, to gain insights into the basic cellular rules that drive the activity-dependent spatial distribution of pre- and postsynaptic strengths across incoming axons and dendrites, we combine patch-clamp recordings with live-cell imaging of hippocampal pyramidal neurons in dissociated cultures and organotypic slices. Under basal conditions, both pre- and postsynaptic strengths cluster on single dendritic branches according to the identity of the presynaptic neurons, thus highlighting the ability of single dendritic branches to exhibit input specificity. Stimulating a single presynaptic neuron induces input-specific and dendritic branchwise spatial clustering of presynaptic strengths, which accompanies a widespread multiplicative scaling of postsynaptic strengths in dissociated cultures and heterosynaptic plasticity at distant synapses in organotypic slices. Our study provides evidence for a potential homeostatic mechanism by which the rapid changes in global or distant postsynaptic strengths compensate for input-specific presynaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Letellier
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- * E-mail: (ML); (YG)
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France
- Bordeaux Imaging Center, CNRS UMS 3420, Bordeaux, France
- Bordeaux Imaging Center, INSERM US04, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- * E-mail: (ML); (YG)
| |
Collapse
|
29
|
Sanderson TM, Bradley CA, Georgiou J, Hong YH, Ng AN, Lee Y, Kim HD, Kim D, Amici M, Son GH, Zhuo M, Kim K, Kaang BK, Kim SJ, Collingridge GL. The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. Cell Rep 2018; 25:3631-3646.e3. [PMID: 30590038 PMCID: PMC6315206 DOI: 10.1016/j.celrep.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
A major mechanism contributing to synaptic plasticity involves alterations in the number of AMPA receptors (AMPARs) expressed at synapses. Hippocampal CA1 synapses, where this process has been most extensively studied, are highly heterogeneous with respect to their probability of neurotransmitter release, P(r). It is unknown whether there is any relationship between the extent of plasticity-related AMPAR trafficking and the initial P(r) of a synapse. To address this question, we induced metabotropic glutamate receptor (mGluR) dependent long-term depression (mGluR-LTD) and assessed AMPAR trafficking and P(r) at individual synapses, using SEP-GluA2 and FM4-64, respectively. We found that either pharmacological or synaptic activation of mGluR1 reduced synaptic SEP-GluA2 in a manner that depends upon P(r); this process involved an activity-dependent reduction in surface mGluR1 that selectively protects high-P(r) synapses from synaptic weakening. Consequently, the extent of postsynaptic plasticity can be pre-tuned by presynaptic activity.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea; School of Physiology, Pharmacology & Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Clarrisa A Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; Neuroscience & Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Yun Hwa Hong
- Neuroscience Research Institute, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea; Department of Physiology, Seoul National University College of Medicine, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea
| | - Ai Na Ng
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Yeseul Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; School of Physiology, Pharmacology & Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Hee-Dae Kim
- Department of Brain and Cognitive Sciences, DGIST, and Korea Brain Institute (KBRI), Daegu, 41068, Korea
| | - Doyeon Kim
- Department of Brain and Cognitive Sciences, DGIST, and Korea Brain Institute (KBRI), Daegu, 41068, Korea
| | - Mascia Amici
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Gi Hoon Son
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Seoul, Korea
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Building 504, Room 202, 599 Gwanangno, Gwanak-gu 151-747, Seoul, Korea; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, DGIST, and Korea Brain Institute (KBRI), Daegu, 41068, Korea
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Building 504, Room 202, 599 Gwanangno, Gwanak-gu 151-747, Seoul, Korea; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sang Jeong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea; Department of Physiology, Seoul National University College of Medicine, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea.
| | - Graham L Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Korea; School of Physiology, Pharmacology & Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Parkinson GT, Hanley JG. Mechanisms of AMPA Receptor Endosomal Sorting. Front Mol Neurosci 2018; 11:440. [PMID: 30568574 PMCID: PMC6289981 DOI: 10.3389/fnmol.2018.00440] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The regulation of synaptic AMPA receptors (AMPARs) is critical for excitatory synaptic transmission, synaptic plasticity and the consequent formation of neural circuits during brain development and their modification during learning and memory processes. The number of synaptic AMPARs is regulated through endocytosis, exocytosis and endosomal sorting that results in recycling back to the plasma membrane or degradation in the lysosome. Hence, endo-lysosomal sorting is vitally important in maintaining AMPAR expression at the synapse, and the dynamic regulation of these trafficking events is a key component of synaptic plasticity. A reduction in synaptic strength such as in long-term depression (LTD) involves AMPAR sorting to lysosomes to reduce synaptic AMPAR number, whereas long-term potentiation (LTP) involves an increase in AMPAR recycling to increase the number of AMPARs at synapses. Here, we review our current understanding of the endosomal trafficking routes taken by AMPARs, and the mechanisms involved in AMPAR endosomal sorting, focussing on the numerous AMPAR associated proteins that have been implicated in this complex process. We also discuss how these events are dysregulated in brain disorders.
Collapse
Affiliation(s)
- Gabrielle T Parkinson
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Localizing Proton-Mediated Inhibitory Feedback at the Retinal Horizontal Cell-Cone Synapse with Genetically-Encoded pH Probes. J Neurosci 2018; 39:651-662. [PMID: 30504272 DOI: 10.1523/jneurosci.1541-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.
Collapse
|
32
|
Hirano T. Visualization of Exo- and Endocytosis of AMPA Receptors During Hippocampal Synaptic Plasticity Around Postsynaptic-Like Membrane Formed on Glass Surface. Front Cell Neurosci 2018; 12:442. [PMID: 30519162 PMCID: PMC6258823 DOI: 10.3389/fncel.2018.00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of exo- and endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor (AMPAR) plays a critical role in the expression of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD) at excitatory central synapses. Enhanced AMPAR exocytosis or endocytosis has been suggested to contribute to LTP or LTD, respectively. However, several unsettled fundamental questions have remained about AMPAR exo- and endocytosis in the basal condition and during synaptic plasticity: (1) Does the size of each exo- or endocytosis event, and/or do the frequencies of these events change during LTP or LTD? If they change, what are the time courses of the respective changes? (2) Where does the exo- or endocytosis preferentially occur in each condition: inside or in the vicinity of postsynaptic membrane, or in the extrasynaptic membrane? (3) Do different types of AMPAR, such as GluA1 homo-tetramer, GluA1/2 hetero-tetramer and GluA2/3 hetero-tetramer, show distinct exo- and endocytosis changes? To address these questions, we developed new methods to observe individual events of AMPAR exo- or endocytosis with a high signal to noise (SN) ratio in a culture preparation using total internal reflection fluorescence microscopy (TIRFM). In these studies, hippocampal neurons were cultured on a neurexin (NRX)-coated glass coverslip, which induced formation of postsynaptic-like membrane (PSLM) directly on the glass surface. Then, a super-ecliptic pHluorin (SEP)-tagged AMPAR subunit such as GluA1 (GluA1-SEP) was expressed in neurons and its fluorescence changes during LTP induced by high frequency electrical field stimulation were observed with TIRFM, which showed different time courses of exocytosis changes of GluA1-, GluA2-, or GluA3-SEP in and around PSLM. In addition, a new method to detect individual endocytosis events of AMPAR was developed by combining TIFRM observation of GluA-SEP around PSLM with a rapid extracellular pH exchange method using a U-tube. Recent results on exo- and endocytosis changes of GluA-SEP during N-methyl-D-aspartate (NMDA)-induced LTD suggested that suppression of AMPAR exocytosis rather than enhancement of AMPAR endocytosis primarily contributes to LTD expression, although the NMDA application transiently enhances clathrin-dependent endocytosis of GluA1-containing AMPAR.
Collapse
Affiliation(s)
- Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Purkey AM, Woolfrey KM, Crosby KC, Stich DG, Chick WS, Aoto J, Dell'Acqua ML. AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca 2+-Permeable AMPA Receptors to Control LTP. Cell Rep 2018; 25:974-987.e4. [PMID: 30355502 PMCID: PMC6263960 DOI: 10.1016/j.celrep.2018.09.085] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022] Open
Abstract
Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses. Using biochemical, super-resolution imaging, and electrophysiological approaches, we found that palmitoylation promotes AKAP150 localization to recycling endosomes and the postsynaptic density (PSD) to limit CP-AMPAR basal synaptic incorporation. In addition, we found that AKAP150 palmitoylation is required for LTP induced by weaker stimulation that recruits CP-AMPARs to synapses but not stronger stimulation that recruits GluA2-containing AMPARs. Thus, AKAP150 palmitoylation controls its subcellular localization to maintain proper basal and activity-dependent regulation of synaptic AMPAR subunit composition.
Collapse
Affiliation(s)
- Alicia M Purkey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin M Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik G Stich
- Advanced Light Microscopy Core, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Advanced Light Microscopy Core, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
35
|
Barabás K, Godó S, Lengyel F, Ernszt D, Pál J, Ábrahám IM. Rapid non-classical effects of steroids on the membrane receptor dynamics and downstream signaling in neurons. Horm Behav 2018; 104:183-191. [PMID: 29775570 DOI: 10.1016/j.yhbeh.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Although rapid effects of steroid hormones on membrane receptors and intracellular signaling molecules have been extensively studied in neurons, we are only beginning to understand the molecular mechanisms behind these non-classical steroid actions. Single molecule tracking (SMT) studies on live cells demonstrated that surface trafficking of membrane receptors determines their ligand binding properties and downstream signaling events. Recent findings suggest that one of the underlying mechanisms of non-classical steroid actions is the alteration of receptor movements on the membrane surface. In order to highlight this novel aspect of steroid effects, we first address the types of receptor movements in the plasma membrane and the role of cortical actin dynamics in receptor movement. We then discuss how single molecules and the surface movements of receptors can be detected in live cells. Next, we review the fundamental processes, which determine the effect of steroids on the plasma membrane: steroid movement through the lipid bilayer and the role of steroid membrane receptors. Using glutamate and neurotrophin receptors (NTRs) as examples, we demonstrate the features of receptor dynamics in the membrane. In addition, we survey the available data of rapid steroid actions on membrane receptor trafficking: we discuss how glucocorticoids act on the surface diffusion of glutamate receptor molecules and how estradiol acts on NTRs and gamma-aminobutyric acid type A receptors (GABAARs) and their related signaling events as well as on cortical actin. Finally, we address the physiological relevance of rapid steroid action on membrane receptors dynamics.
Collapse
Affiliation(s)
- Klaudia Barabás
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Soma Godó
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Ferenc Lengyel
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - József Pál
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - István M Ábrahám
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary.
| |
Collapse
|
36
|
Suppression of AMPA Receptor Exocytosis Contributes to Hippocampal LTD. J Neurosci 2018; 38:5523-5537. [PMID: 29899033 DOI: 10.1523/jneurosci.3210-17.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/17/2018] [Accepted: 05/12/2018] [Indexed: 01/20/2023] Open
Abstract
The decrease in number of AMPA-type glutamate receptor (AMPAR) at excitatory synapses causes LTD, a cellular basis of learning and memory. The number of postsynaptic AMPARs is regulated by the balance of exocytosis and endocytosis, and enhanced endocytosis of AMPAR has been suggested to underlie the LTD expression. However, it remains unclear how endocytosis and exocytosis of AMPAR change during LTD. In this study, we addressed this question by analyzing exocytosis and endocytosis of AMPAR by imaging super-ecliptic pHlorin (SEP)-tagged AMPAR around postsynaptic structure formed directly on the glass surface in the hippocampal culture prepared from rat embryos of both sexes. Contrary to a prevailing view on the LTD expression by endocytosis enhancement, the LTD induction by NMDA application only transiently enhanced endocytosis of SEP-tagged GluA1 subunits of AMPAR, which was counteracted by simultaneous augmentation of exocytosis. As a result, soon after the start of the LTD induction (∼1 min), the surface AMPAR did not markedly decrease. Thereafter, the surface GluA1-SEP gradually decreased (2-5 min) and kept at a low level until the end of observation (>30 min). Surprisingly, this gradual and sustained decrease of surface AMPAR was accompanied not by the enhanced endocytic events of GluA1, but by the suppression of exocytosis. Together, our data highlight an unprecedented mechanism for the LTD expression by attenuation of exocytosis of AMPAR, but not by enhanced endocytosis, together with a reduction of postsynaptic AMPAR scaffolding protein PSD95.SIGNIFICANCE STATEMENT It has been generally assumed that LTD is expressed by enhancement of AMPAR endocytosis. Previous studies reported that endocytosis-related protein was involved in LTD and that significant amount of cell-surface AMPAR moved into intracellular compartments during LTD. Here, we report changes of cell-surface amount of AMPAR, and where and when individual exocytosis and endocytosis occurred during LTD. Cell-surface AMPAR gradually decreased in synchrony with suppression of exocytosis but not with enhancement of endocytosis. These results suggest that the decrease of cell-surface AMPAR amount during LTD was caused not by enhancement of endocytosis but rather by suppression of exocytosis, which revises current understanding of the expression mechanism of LTD.
Collapse
|
37
|
Zhang L, Zhang P, Wang G, Zhang H, Zhang Y, Yu Y, Zhang M, Xiao J, Crespo P, Hell JW, Lin L, Huganir RL, Zhu JJ. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron 2018; 98:783-800.e4. [PMID: 29706584 PMCID: PMC6192044 DOI: 10.1016/j.neuron.2018.03.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/12/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Huaye Zhang
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Yajun Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yilin Yu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxu Zhang
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabriaand CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Johannes W Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Medicine, Ningbo University, Ningbo 315010, China; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen, the Netherlands
| |
Collapse
|
38
|
Lee SH, Jin C, Cai E, Ge P, Ishitsuka Y, Teng KW, de Thomaz AA, Nall D, Baday M, Jeyifous O, Demonte D, Dundas CM, Park S, Delgado JY, Green WN, Selvin PR. Super-resolution imaging of synaptic and Extra-synaptic AMPA receptors with different-sized fluorescent probes. eLife 2017; 6:27744. [PMID: 28749340 PMCID: PMC5779237 DOI: 10.7554/elife.27744] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers. We find that >90% of AMPARs labeled with fluorescent dyes or sQDs were diffusing in confined nanodomains in PSDs, which were stable for 15 min or longer. Less than 10% of sQD-AMPARs were extrasynaptic and highly mobile. In contrast, 5-10% of bQD-AMPARs were in PSDs and 90-95% were extrasynaptic as previously observed. Contrary to the hypothesis that AMPAR entry is limited by the occupancy of open PSD 'slots', our findings suggest that AMPARs rapidly enter stable 'nanodomains' in PSDs with lifetime >15 min, and do not accumulate in extrasynaptic membranes.
Collapse
Affiliation(s)
- Sang Hak Lee
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Chaoyi Jin
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - En Cai
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Pinghua Ge
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Yuji Ishitsuka
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Kai Wen Teng
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Andre A de Thomaz
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Duncan Nall
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Murat Baday
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago and the Marine Biological Laboratory, Chicago, United States
| | - Daniel Demonte
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Christopher M Dundas
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Sheldon Park
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Jary Y Delgado
- Department of Neurobiology, University of Chicago and the Marine Biological Laboratory, Chicago, United States
| | - William N Green
- Department of Neurobiology, University of Chicago and the Marine Biological Laboratory, Chicago, United States
| | - Paul R Selvin
- Department of Physics, Center for Biophysics, and Quantitative Biology, and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Champaign, United States
| |
Collapse
|
39
|
Fujii S, Tanaka H, Hirano T. Detection and characterization of individual endocytosis of AMPA-type glutamate receptor around postsynaptic membrane. Genes Cells 2017; 22:583-590. [PMID: 28474392 DOI: 10.1111/gtc.12493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/31/2023]
Abstract
Synaptic plasticity such as long-term depression (LTD) has been regarded as a cellular mechanism of learning and memory. LTD is expressed by the decrease in number of postsynaptic AMPA-type receptor (AMPAR) at glutamatergic synapses. Although endocytosis is known to play an essential role in the decrease in AMPAR on postsynaptic membrane, the difficulty to detect individual endocytic events hampered clarification of AMPAR dynamics around synapses. Previously, we developed a method to induce formation of postsynaptic-like membrane (PSLM) on the glass surface and observed pHluorin-tagged AMPAR around PSLM with total internal reflection fluorescence microscopy. By this method, individual exocytosis of AMPAR-pHluorin was recorded in both PSLM and non-PSLM. In other studies, endocytic vesicles containing pHluorin-tagged receptors were visualized by changing extracellular pH. Here, we have combined PSLM formation method and rapid pH change method, and detected individual endocytic events of AMPAR around PSLM with high spatial and temporal resolutions. Endocytic events of AMPAR were characterized by comparison with those of transferrin receptor. Constitutive endocytosis of AMPAR was not dependent on clathrin and dynamin in contrast to that of transferrin receptor. However, AMPAR endocytosis triggered by LTD-inducing stimulation was clathrin- and dynamin-dependent.
Collapse
Affiliation(s)
- Shumpei Fujii
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiromitsu Tanaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
40
|
Roth RH, Zhang Y, Huganir RL. Dynamic imaging of AMPA receptor trafficking in vitro and in vivo. Curr Opin Neurobiol 2017; 45:51-58. [PMID: 28411409 DOI: 10.1016/j.conb.2017.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Modulation of synaptic strength through trafficking of AMPA receptors is a fundamental mechanism underlying synaptic plasticity and has been shown to be an important process in higher brain functions such as learning and memory. Many studies have used live time-lapse imaging of fluorescently tagged AMPA receptors to directly monitor their membrane trafficking in the basal state as well as during synaptic plasticity. While most of these studies are performed in vitro using neuronal cell cultures, in the past years technological advances have enabled the imaging of synaptic proteins in vivo in intact organisms. This has allowed for visualization of synaptic plasticity on a molecular level in living and behaving animals. Here, we discuss key studies and approaches using dynamic imaging to visualize AMPA receptor trafficking in vitro as well as imaging synaptic proteins, including AMPA receptors, in vivo.
Collapse
Affiliation(s)
- Richard H Roth
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Yong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China. PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Wakayama S, Kiyonaka S, Arai I, Kakegawa W, Matsuda S, Ibata K, Nemoto YL, Kusumi A, Yuzaki M, Hamachi I. Chemical labelling for visualizing native AMPA receptors in live neurons. Nat Commun 2017; 8:14850. [PMID: 28387242 PMCID: PMC5385570 DOI: 10.1038/ncomms14850] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sho Wakayama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Itaru Arai
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shinji Matsuda
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communication, Tokyo 182-8585, Japan.,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Keiji Ibata
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuri L Nemoto
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
42
|
Bhattacharya S, Kimble W, Buabeid M, Bhattacharya D, Bloemer J, Alhowail A, Reed M, Dhanasekaran M, Escobar M, Suppiramaniam V. Altered AMPA receptor expression plays an important role in inducing bidirectional synaptic plasticity during contextual fear memory reconsolidation. Neurobiol Learn Mem 2017; 139:98-108. [DOI: 10.1016/j.nlm.2016.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022]
|
43
|
Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation. Cell Rep 2017; 18:1840-1847. [DOI: 10.1016/j.celrep.2017.01.081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/16/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
|
44
|
The memory gene KIBRA is a bidirectional regulator of synaptic and structural plasticity in the adult brain. Neurobiol Learn Mem 2016; 135:100-114. [DOI: 10.1016/j.nlm.2016.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
|
45
|
PACSIN1 regulates the dynamics of AMPA receptor trafficking. Sci Rep 2016; 6:31070. [PMID: 27488904 PMCID: PMC4973260 DOI: 10.1038/srep31070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons.
Collapse
|
46
|
Xiong H, Cassé F, Zhou M, Xiong ZQ, Joels M, Martin S, Krugers HJ. Interactions between N-Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus. Hippocampus 2016; 26:848-56. [PMID: 26766634 DOI: 10.1002/hipo.22567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/12/2023]
Abstract
Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation. Peptides which specifically block the interaction between N-Ethylmaleimide-Sensitive Factor (NSF) and the AMPAR-subunit GluA2 prevented the increase in synaptic transmission and surface expression of AMPARs known to occur after corticosterone application to hippocampal neurons. Combining a live imaging Fluorescence Recovery After Photobleaching (FRAP) approach with the use of the pH-sensitive GFP-AMPAR tagging revealed that this NSF/GluA2 interaction was also essential for the increase of the mobile fraction and reduction of the diffusion of AMPARs after treating hippocampal neurons with corticosterone. We conclude that the interaction between NSF and GluA2 contributes to the effects of corticosterone on AMPAR function. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Xiong
- SILS-CNS, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Frédéric Cassé
- Centre National De La Recherche Scientifique, University of Nice - Sophia-Antipolis Institut De Pharmacologie Moléculaire Et Cellulaire, UMR7275, Valbonne, 06560, France
| | - Ming Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 20031, China
| | - Zhi-Qi Xiong
- SILS-CNS, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Marian Joels
- SILS-CNS, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Stéphane Martin
- Centre National De La Recherche Scientifique, University of Nice - Sophia-Antipolis Institut De Pharmacologie Moléculaire Et Cellulaire, UMR7275, Valbonne, 06560, France
| | - Harm J Krugers
- SILS-CNS, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| |
Collapse
|
47
|
The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior. Curr Biol 2016; 26:862-71. [PMID: 26948874 DOI: 10.1016/j.cub.2016.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Abstract
The modification of behavior in response to experience is crucial for animals to adapt to environmental changes. Although factors such as neuropeptides and hormones are known to function in the switch between alternative behavioral states, the mechanisms by which these factors transduce, store, retrieve, and integrate environmental signals to regulate behavior are poorly understood. The rate of locomotion of the nematode Caenorhabditis elegans depends on both current and past food availability. Specifically, C. elegans slows its locomotion when it encounters food, and animals in a food-deprived state slow even more than animals in a well-fed state. The slowing responses of well-fed and food-deprived animals in the presence of food represent distinct behavioral states, as they are controlled by different sets of genes, neurotransmitters, and neurons. Here we describe an evolutionarily conserved C. elegans protein, VPS-50, that is required for animals to assume the well-fed behavioral state. Both VPS-50 and its murine homolog mVPS50 are expressed in neurons, are associated with synaptic and dense-core vesicles, and control vesicle acidification and hence synaptic function, likely through regulation of the assembly of the V-ATPase complex. We propose that dense-core vesicle acidification controlled by the evolutionarily conserved protein VPS-50/mVPS50 affects behavioral state by modulating neuropeptide levels and presynaptic neuronal function in both C. elegans and mammals.
Collapse
|
48
|
Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity. Sci Rep 2016; 6:21019. [PMID: 26880306 PMCID: PMC4754636 DOI: 10.1038/srep21019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 02/05/2023] Open
Abstract
Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity.
Collapse
|
49
|
Lo FS, Erzurumlu RS. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus. Exp Neurol 2016; 275 Pt 2:245-52. [PMID: 25956829 PMCID: PMC4636484 DOI: 10.1016/j.expneurol.2015.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
50
|
miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 2015; 5:3263. [PMID: 24535612 PMCID: PMC3951436 DOI: 10.1038/ncomms4263] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 12/26/2022] Open
Abstract
Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodeling of spines. The mechanisms underlying long-lasting spine remodeling in NMDAR-LTD, however, are largely unclear. Here we show that LTD induction causes global changes in miRNA transcriptomes affecting many cellular activities. Specifically, we show that expression changes of miR-191 and miR-135 are required for maintenance but not induction of spine restructuring. Moreover, we find that actin depolymerization and AMPA receptor exocytosis are regulated for extended periods of time by miRNAs to support long-lasting spine plasticity. These findings reveal a novel miRNA mediated-mechanism and a new role of AMPA receptor exocytosis in long-lasting spine plasticity, and identify a number of candidate miRNAs involved in LTD.
Collapse
|