1
|
Li MG, Qu ST, Yu Y, Xu Z, Zhang FC, Li YC, Gao R, Xu GY. Upregulation of NR2A in Glutamatergic VTA Neurons Contributes to Chronic Visceral Pain in Male Mice. Neurosci Bull 2025:10.1007/s12264-025-01402-7. [PMID: 40293685 DOI: 10.1007/s12264-025-01402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic visceral pain is a persistent and debilitating condition arising from dysfunction or sensitization of the visceral organs and their associated nervous pathways. Increasing evidence suggests that imbalances in central nervous system function play an essential role in the progression of visceral pain, but the exact mechanisms underlying the neural circuitry and molecular targets remain largely unexplored. In the present study, the ventral tegmental area (VTA) was shown to mediate visceral pain in mice. Visceral pain stimulation increased c-Fos expression and Ca2+ activity of glutamatergic VTA neurons, and optogenetic modulation of glutamatergic VTA neurons altered visceral pain. In particular, the upregulation of NMDA receptor 2A (NR2A) subunits within the VTA resulted in visceral pain in mice. Administration of a selective NR2A inhibitor decreased the number of visceral pain-induced c-Fos positive neurons and attenuated visceral pain. Pharmacology combined with chemogenetics further demonstrated that glutamatergic VTA neurons regulated visceral pain behaviors based on NR2A. In summary, our findings demonstrated that the upregulation of NR2A in glutamatergic VTA neurons plays a critical role in visceral pain. These insights provide a foundation for further comprehension of the neural circuits and molecular targets involved in chronic visceral pain and may pave the way for targeted therapies in chronic visceral pain.
Collapse
Affiliation(s)
- Meng-Ge Li
- Center of Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shu-Ting Qu
- Department of Gastroenterology, Suzhou Dushu Lake Hospital, The Forth Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Yang Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Zhenhua Xu
- Center of Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Fu-Chao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yong-Chang Li
- Center of Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Rong Gao
- Center of Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Pérez-Montalbán M, García-Domínguez E, Oliva-Pascual-Vaca Á. Subdiaphragmatic phrenic nerve supply: A systematic review. Ann Anat 2024; 254:152269. [PMID: 38692333 DOI: 10.1016/j.aanat.2024.152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE The aim of this systematic review is to study the subdiaphragmatic anatomy of the phrenic nerve. MATERIALS AND METHODS A computerised systematic search of the Web of Science database was conducted. The key terms used were phrenic nerve, subdiaphragmat*, esophag*, liver, stomach, pancre*, duoden*, intestin*, bowel, gangli*, biliar*, Oddi, gallbladder, peritone*, spleen, splenic, hepat*, Glisson, falciform, coronary ligament, kidney, suprarenal, and adrenal. The 'cited-by' articles were also reviewed to ensure that all appropriate studies were included. RESULTS A total of one thousand three hundred and thirty articles were found, of which eighteen met the inclusion and exclusion criteria. The Quality Appraisal for Cadaveric Studies scale revealed substantial to excellent methodological quality of human studies, while a modified version of the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool denoted poor methodological quality of animal studies. According to human studies, phrenic supply has been demonstrated for the gastro-esophageal junction, stomach, celiac ganglia, liver and its coronary ligament, inferior vena cava, gallbladder and adrenal glands, with half of the human samples studied presenting phrenic nerve connections with any subdiaphragmatic structure. CONCLUSIONS This review provides the first systematic evidence of subdiaphragmatic phrenic nerve supply and connections. This is of interest to professionals who care for people suffering from neck and shoulder pain, as well as patients with peridiaphragmatic disorders or hiccups. However, there are controversies about the autonomic or sensory nature of this supply.
Collapse
Affiliation(s)
- María Pérez-Montalbán
- Universidad de Sevilla. Facultad de Enfermería, Fisioterapia y Podología, Departamento de Fisioterapia, Spain
| | | | - Ángel Oliva-Pascual-Vaca
- Instituto de Biomedicina de Sevilla, IBiS, Departamento de Fisioterapia, Universidad de Sevilla, Spain; Escuela de Osteopatía de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Li YC, Zhang FC, Xu TW, Weng RX, Zhang HH, Chen QQ, Hu S, Gao R, Li R, Xu GY. Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Mol Pain 2024; 20:17448069241305942. [PMID: 39673493 PMCID: PMC11645724 DOI: 10.1177/17448069241305942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Timothy W Xu
- Department of Earth Sciences, University College London, London, UK
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Qian Chen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Hu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Wu YY, Wang Q, Zhang PA, Zhu C, Xu GY. miR-1306-3p directly activates P2X3 receptors in primary sensory neurons to induce visceral pain in rats. Pain 2023; 164:1555-1565. [PMID: 36633528 PMCID: PMC10281022 DOI: 10.1097/j.pain.0000000000002853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
- School of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, P. R. China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
6
|
Liu JY, Xue J, Wang F, Wang YL, Dong WL. α-Synuclein-Induced Destabilized BMAL1 mRNA Leads to Circadian Rhythm Disruption in Parkinson's Disease. Neurotox Res 2023; 41:177-186. [PMID: 36662411 DOI: 10.1007/s12640-022-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023]
Abstract
Circadian dysfunction is a common non-motor symptom in Parkinson's disease (PD). The potential influence of aggravated α-synuclein (SNCA) on circadian disruption remains unclear. SNCAA53T-overexpressing transgenic mice (SNCAA53T mice) and wild-type (WT) littermates were used in this study. The energy metabolism cage test showed differences in 24-h activity pattern between SNCAA53T and WT mice. When compared with the age-matched littermates, brain and muscle ARNT-like 1 (BMAL1) was downregulated in SNCAA53T mice. BMAL1 was downregulated in PC12 cells overexpressing SNCA. Degradation of BMAL1 protein remained unchanged after overexpression of SNCA, while its mRNA level decreased. miRNA (miR)-155 was upregulated by overexpression of SNCA, and downregulation of BMAL1 was partially reversed by transfection with miR-155 inhibitor. Our findings demonstrated that overexpression of SNCA induced biorhythm disruption and downregulated BMAL1 expression through decreasing stability of BMAL1 mRNA via miR-155.
Collapse
Affiliation(s)
- Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 214123, China
| | - Jian Xue
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 214123, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital (North), Nanjing Medical University, Suzhou, 215008, China.
| | - Wan-Li Dong
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 214123, China.
| |
Collapse
|
7
|
Zhang X, Zhu L, Wang X, Xia L, Zhang Y. Advances in the role and mechanism of miRNA in inflammatory pain. Biomed Pharmacother 2023; 161:114463. [PMID: 36868014 DOI: 10.1016/j.biopha.2023.114463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Pain is a distressing experience associated with tissue damage or potential tissue damage, and its occurrence is related to sensory, emotional, cognitive and social factors. Inflammatory pain is one of the chronic pains where pain hypersensitivity are functional features of inflammation used to protect tissues from further damage. Pain has a serious impact on people's lives and has become a social problem that cannot be ignored. MiRNAs are small non-coding RNA molecules that exert directing effects on RNA silencing by complementary binding to the 3'UTR of target mRNA. MiRNAs can target a number of protein-coding genes and participate in almost all developmental and pathological processes in animals. Growing studies have suggested that miRNAs have significant implications for inflammatory pain via participating in multiple processes during the occurrence and development, such as affecting the activation of glial cells, regulating pro-inflammatory cytokines and inhibiting central and peripheral sensitization. In this review, the advances in the role of miRNAs in inflammatory pain were discussed. miRNAs as a class of micro-mediators are potential biomarkers and therapeutic targets for inflammatory pain, which provides a better diagnostic and treatment approach for inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yanan Zhang
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Li YC, Wang Q, Li MG, Hu SF, Xu GY. A paraventricular hypothalamic nucleus input to ventral of lateral septal nucleus controls chronic visceral pain. Pain 2023; 164:625-637. [PMID: 35994589 PMCID: PMC9916060 DOI: 10.1097/j.pain.0000000000002750] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Irritable bowel syndrome is a functional gastrointestinal disorder characterized by chronic visceral pain with complex etiology and difficult treatment. Accumulated evidence has confirmed that the sensitization of the central nervous system plays an important role in the development of visceral pain, whereas the exact mechanisms of action of the neural pathways remain largely unknown. In this study, a distinct neural circuit was identified from the paraventricular hypothalamic (PVH) to the ventral of lateral septal (LSV) region. This circuit was responsible for regulating visceral pain. In particular, the data indicated that the PVH CaMKIIα-positive neurons inputs to the LSV CaMKIIα-positive neurons were only activated by colorectal distention rather than somatic stimulations. The PVH-LSV CaMKIIα + projection pathway was further confirmed by experiments containing a viral tracer. Optogenetic inhibition of PVH CaMKIIα + inputs to LSV CaMKIIα-positive neurons suppressed visceral pain, whereas selective activation of the PVH-LSV CaMKIIα + projection evoked visceral pain. These findings suggest the critical role of the PVH-LSV CaMKIIα + circuit in regulating visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Ge Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shu-Fen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Conan P, Léon A, Caroff N, Rollet C, Chaïr L, Martin J, Bihel F, Mignen O, Voisset C, Friocourt G. New insights into the regulation of Cystathionine beta synthase (CBS), an enzyme involved in intellectual deficiency in Down syndrome. Front Neurosci 2023; 16:1110163. [PMID: 36711154 PMCID: PMC9879293 DOI: 10.3389/fnins.2022.1110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3β was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3β and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3β and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.
Collapse
Affiliation(s)
- Pierre Conan
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Alice Léon
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Noéline Caroff
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Claire Rollet
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Loubna Chaïr
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Jennifer Martin
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR 7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, France
| | - Olivier Mignen
- U1227, Lymphocytes B, Autoimmunité et Immunothérapies, INSERM, Université de Brest, Brest, France
| | - Cécile Voisset
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | | |
Collapse
|
10
|
Sun Q, Zhang S, Zhang BY, Zhang Y, Yao L, Hu J, Zhang HH. microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression. Mol Pain 2023; 19:17448069231159356. [PMID: 36750423 PMCID: PMC9989404 DOI: 10.1177/17448069231159356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Aim: The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. Results: (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. Conclusion: The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Pain Medicine, Institute of Neuroscience, 12582Soochow University, Suzhou, China
| | - Shiyu Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Bing-Yu Zhang
- Department of Emergency, 199193The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yilian Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Lijun Yao
- Department of Endocrinology, 602846The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China.,Clinical Research Center of Neurological Disease, 12582The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Xu QY, Zhang HL, Du H, Li YC, Ji FH, Li R, Xu GY. Identification of a Glutamatergic Claustrum-Anterior Cingulate Cortex Circuit for Visceral Pain Processing. J Neurosci 2022; 42:8154-8168. [PMID: 36100399 PMCID: PMC9637003 DOI: 10.1523/jneurosci.0779-22.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.
Collapse
Affiliation(s)
- Qi-Ya Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Hai-Long Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Han Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
12
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
13
|
Wang X, Yang W, Zhu Y, Zhang S, Jiang M, Hu J, Zhang HH. Genomic DNA Methylation in Diabetic Chronic Complications in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:896511. [PMID: 35846305 PMCID: PMC9277053 DOI: 10.3389/fendo.2022.896511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
AIM To explore the relationship between genomic DNA methylation and diabetic chronic complications. METHODS 299 patients with type 2 diabetes mellitus (T2DM) hospitalized in the Second Affiliated Hospital of Soochow University were enrolled. We divided the patients into different complications groups and corresponding non-complication groups. Clinical and biochemical parameters were compared between the two groups. The level of genomic DNA methylation in leukocytes was determined by high-performance liquid chromatography-tandem mass spectrometry. RESULTS (1) Age, duration of diabetes, creatinine (Cr), blood urea nitrogen (BUN), genomic DNA methylation, 24- hour urine total protein (24-hUTP), and intima-media thickness (IMT) were significantly higher in the carotid plaque (CP) group. Waist-to-hip ratio (WHR), body mass index (BMI), estimated glomerular- filtration rate (eGFR), and albumin (Alb) were significantly lower in the CP group. Gender, age and BMI were the influencing factors of CP. (2) Age, duration, Cr, BUN, urinary microalbumin creatinine ratio (UACR), systolic blood pressure (SBP), TCSS, and 24- hUTP were significantly higher in the diabetic retinopathy (DR) group. eGFR, 2h postprandial C- peptide, and Alb were lower in the DR group. Age, duration, Cr, Alb, SBP, and the presence of DN were the influencing factors of DR. (3) Age, duration, HbA1c, BUN, TCSS, SBP, and IMT(R) were significantly higher in the diabetic nephropathy (DN) group. 2h postprandial C-peptide, and Alb were lower in the DN group. HbA1c, BUN, DR, and HBP were the influencing factors of DN. (4) Age, duration, total cholesterol (TC), low-density lipoprotein (LDL-C), triglyceride (TG), Cr, BUN, uric acid (UA), and SBP were significantly higher in the diabetic peripheral neuropathy (DPN) group. The level of genomic DNA methylation and eGFR were significantly lower in the DPN group. Age, duration, LDL-C, UA, the presence of DR, and the genomic DNA methylation level were the influencing factors for DPN. Incorporating the level of genomic DNA methylation into the prediction model could improve the ability to predict DPN on the basis of conventional risk factors. CONCLUSION Low level of genomic DNA methylation is a relatively specific risk factor for DPN in patients with T2DM and not a contributing factor to the other chronic complications.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Wenhong Yang
- Department of Nursing, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yunyan Zhu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Shiyu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Miao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- *Correspondence: Hong-Hong Zhang, ; Ji Hu,
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- *Correspondence: Hong-Hong Zhang, ; Ji Hu,
| |
Collapse
|
14
|
Effects of Upregulation of TNFAIP3 on Diabetic Neuropathic Pain in Mice. DISEASE MARKERS 2021; 2021:3470950. [PMID: 34853620 PMCID: PMC8629657 DOI: 10.1155/2021/3470950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Globally, diabetes has assumed epidemic proportions with the neuropathic complications attributed to the malady emerging as a substantial burden on patients and society. DNP has greatly affected the daily life of patients, the effect of traditional treatment methods is not ideal, and it is easy to produce drug resistance. This work is aimed at scrutinizing the effect of upregulating the expression of TNFAIP3 on diabetic neuralgia in mice. This work entailed ascertaining the effects of TNFAIP3 on a murine DNP system. This inspired us to observe the analgesic effect via high expression of lentivirus-mediated TNFAIP3 by intrathecal injection in the animal model to explore its regulatory impacts, symptom relief, and mechanistic role in pain. The results displayed an attenuation of hind paw pain hypersensitivity by LV-TNFAIP3 in the animals. The spinal cord and dorsal root ganglion of mice with neuropathic pain displayed an evident dip in TNFAIP3. Inhibition of the ERK/NF-κB signaling pathway employing LV-TNFAIP3 conspicuously suppressed this pathway while the diabetic pain hypersensitivity was quelled. This effect was also seen with insulin treatment evidently. In conclusion, according to the above analyses, the interaction between DNP and extracellular signal-regulated kinase signal transduction pathway is one of the key factors of pathogenesis.
Collapse
|
15
|
Li X, Xu YC, Tian YQ, Zhang PA, Hu SF, Wang LH, Jiang XH, Xu GY. Downregulation of GRK6 in arcuate nucleus promotes chronic visceral hypersensitivity via NF-κB upregulation in adult rats with neonatal maternal deprivation. Mol Pain 2021; 16:1744806920930858. [PMID: 32484026 PMCID: PMC7268126 DOI: 10.1177/1744806920930858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS The arcuate nucleus is a vital brain region for coursing of pain command. G protein-coupled kinase 6 (GRK6) accommodates signaling through G protein-coupled receptors. Studies have demonstrated that GRK6 is involved in inflammatory pain and neuropathic pain. The present study was designed to explore the role and the underlying mechanism of GRK6 in arcuate nucleus of chronic visceral pain. METHODS Chronic visceral pain of rats was induced by neonatal maternal deprivation and evaluated by monitoring the threshold of colorectal distension. Western blotting, immunofluorescence, real-time quantitative polymerase chain reaction techniques, and Nissl staining were employed to determine the expression and mutual effect of GRK6 with nuclear factor κB (NF-κB). RESULTS Expression of GRK6 in arcuate nucleus was significantly reduced in neonatal maternal deprivation rats when compared with control rats. GRK6 was mainly expressed in arcuate nucleus neurons, but not in astrocytes, and a little in microglial cells. Neonatal maternal deprivation reduced the percentage of GRK6-positive neurons of arcuate nucleus. Overexpression of GRK6 by Lentiviral injection into arcuate nucleus reversed chronic visceral pain in neonatal maternal deprivation rats. Furthermore, the expression of NF-κB in arcuate nucleus was markedly upregulated in neonatal maternal deprivation rats. NF-κB selective inhibitor pyrrolidine dithiocarbamate suppressed chronic visceral pain in neonatal maternal deprivation rats. GRK6 and NF-κB were expressed in the arcuate nucleus neurons. Importantly, overexpression of GRK6 reversed NF-κB expression at the protein level. In contrast, injection of pyrrolidine dithiocarbamate once daily for seven consecutive days did not alter GRK6 expression in arcuate nucleus of neonatal maternal deprivation rats. CONCLUSIONS Present data suggest that GRK6 might be a pivotal molecule participated in the central mechanisms of chronic visceral pain, which might be mediated by inhibiting NF-κB signal pathway. Overexpression of GRK6 possibly represents a potential strategy for therapy of chronic visceral pain.
Collapse
Affiliation(s)
- Xin Li
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Yu-Cheng Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Yuan-Qin Tian
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Fen Hu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China
| | - Xing-Hong Jiang
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
16
|
Epigenetic upregulation of acid-sensing ion channel 1 contributes to gastric hypersensitivity in adult offspring rats with prenatal maternal stress. Pain 2021; 161:989-1004. [PMID: 31895269 DOI: 10.1097/j.pain.0000000000001785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional dyspepsia is a common functional gastrointestinal disorder. Gastric hypersensitivity (GHS) is a hallmark of this disorder, but the cellular mechanisms remain largely unknown. Stressors during gestational period could have effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of this study was to test whether prenatal maternal stress (PMS) induces GHS and to investigate role of acid-sensing ion channel (ASIC)/nuclear factor-κB (NF-κB) signaling by examining Asic1 methylation status in adult offspring rats. Gastric hypersensitivity in response to gastric distension was examined by electromyography recordings. Changes in neuronal excitability were determined by whole-cell patch-clamp recording techniques. Demethylation of CpG islands of Asic1 was determined by methylation-specific PCR and bisulfite sequencing assay. Prenatal maternal stress produced GHS in adult offspring rats. Treatment with amiloride, an inhibitor of ASICs, significantly attenuated GHS and reversed hyperexcitability of gastric-specific dorsal root ganglion (DRG) neurons labeled by the dye DiI. Expression of ASIC1 and NF-κBp65 was markedly enhanced in T7 to T10 DRGs. Furthermore, PMS led to a significant demethylation of CpG islands in the Asic1 promoter. A chromatin immunoprecipitation assay showed that PMS also enhanced the ability of NF-κBp65 to bind the promoter of Asic1 gene. Blockade of NF-κB using lentiviral-p65shRNA reversed upregulation of ASIC1 expression, GHS, and the hyperexcitability of DRG neurons. These data suggest that upregulation of ASIC1 expression is attributed to Asic1 promoter DNA demethylation and NF-κB activation, and that the enhanced interaction of the Asic1 and NF-κBp65 contributes to GHS induced by PMS.
Collapse
|
17
|
Adult Stress Promotes Purinergic Signaling to Induce Visceral Pain in Rats with Neonatal Maternal Deprivation. Neurosci Bull 2020; 36:1271-1280. [PMID: 32909219 PMCID: PMC7674540 DOI: 10.1007/s12264-020-00575-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic visceral pain is one of the primary symptoms of patients with irritable bowel syndrome (IBS), which affects up to 15% of the population world-wide. The detailed mechanisms of visceral pain remain largely unclear. Our previous studies have shown that neonatal maternal deprivation (NMD) followed by adult multiple stress (AMS) advances the occurrence of visceral pain, likely due to enhanced norepinephrine (NE)-β2 adrenergic signaling. This study was designed to explore the roles of P2X3 receptors (P2X3Rs) in the chronic visceral pain induced by combined stress. Here, we showed that P2X3Rs were co-expressed in β2 adrenergic receptor (β2-AR)-positive dorsal root ganglion neurons and that NE significantly enhanced ATP-induced Ca2+ signals. NMD and AMS not only significantly increased the protein expression of P2X3Rs, but also greatly enhanced the ATP-evoked current density, number of action potentials, and intracellular Ca2+ concentration of colon-related DRG neurons. Intrathecal injection of the P2X3R inhibitor A317491 greatly attenuated the visceral pain and the ATP-induced Ca2+ signals in NMD and AMS rats. Furthermore, the β2-AR antagonist butoxamine significantly reversed the expression of P2X3Rs, the ATP-induced current density, and the number of action potentials of DRG neurons. Overall, our data demonstrate that NMD followed by AMS leads to P2X3R activation, which is most likely mediated by upregulation of β2 adrenergic signaling in primary sensory neurons, thus contributing to visceral hypersensitivity.
Collapse
|
18
|
Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. Brain Behav Immun 2020; 87:840-851. [PMID: 32205121 PMCID: PMC7316623 DOI: 10.1016/j.bbi.2020.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L4) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L4 DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L4 dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L3/4 DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.
Collapse
|
19
|
Yuan H, Du S, Chen L, Xu X, Wang Y, Ji F. Hypomethylation of nerve growth factor (NGF) promotes binding of C/EBPα and contributes to inflammatory hyperalgesia in rats. J Neuroinflammation 2020; 17:34. [PMID: 31980031 PMCID: PMC6982391 DOI: 10.1186/s12974-020-1711-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 11/11/2022] Open
Abstract
Background Chronic pain usually accompanied by tissue damage and inflammation. However, the pathogenesis of chronic pain remains unclear. Methods We investigated the role of nerve growth factor (NGF) in chronic inflammatory pain induced by complete Freund’s adjuvant (CFA), explored the methylation status of CpG islands in the promoter region of the NGF gene, and clarified the function and mechanism of C/EBPα-NGF signaling pathway from epigenetic perspective in the chronic inflammatory pain model. Results CFA induced significant hyperalgesia and continuous upregulation of NGF mRNA and protein levels in the L4–6 dorsal root ganglions (DRGs) in rats. Hypomethylation of CpG islands occurred in the NGF gene promoter region after CFA treatment. At the same time, the miR-29b expression level was significantly increased, while the DNA methyltransferase 3b (DNMT3b) level reduced significantly. Moreover, CFA treatment promoted binding of C/EBPα to the NGF gene promoter region and C/EBPα siRNA treatment obviously decreased expression of NGF levels and also alleviate inflammatory hyperalgesia significantly in rats. Conclusion Collectively, the results indicated that CFA leads to the upregulation of miR-29b level, which represses the expression of DNMT3b, enhances the demethylation of the NGF gene promoter region, and promotes the binding of C/EBPα with the NGF gene promoter, thus results in the upregulation of NGF gene expression and maintenance of chronic inflammatory pain.
Collapse
Affiliation(s)
- Hongjie Yuan
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.,Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shibin Du
- Department of Anesthesiology, Shenzhen University Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liping Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Fuhai Ji
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Yuan H, Du S, Chen L, Xu X, Wang Y, Ji F. Hypomethylation of nerve growth factor (NGF) promotes binding of C/EBPα and contributes to inflammatory hyperalgesia in rats. J Neuroinflammation 2020; 17:34. [PMID: 31980031 DOI: hypomethylation of nerve growth factor (ngf) promotes binding of c/ebpα and contributes to inflammatory hyperalgesia in rats] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic pain usually accompanied by tissue damage and inflammation. However, the pathogenesis of chronic pain remains unclear. METHODS We investigated the role of nerve growth factor (NGF) in chronic inflammatory pain induced by complete Freund's adjuvant (CFA), explored the methylation status of CpG islands in the promoter region of the NGF gene, and clarified the function and mechanism of C/EBPα-NGF signaling pathway from epigenetic perspective in the chronic inflammatory pain model. RESULTS CFA induced significant hyperalgesia and continuous upregulation of NGF mRNA and protein levels in the L4-6 dorsal root ganglions (DRGs) in rats. Hypomethylation of CpG islands occurred in the NGF gene promoter region after CFA treatment. At the same time, the miR-29b expression level was significantly increased, while the DNA methyltransferase 3b (DNMT3b) level reduced significantly. Moreover, CFA treatment promoted binding of C/EBPα to the NGF gene promoter region and C/EBPα siRNA treatment obviously decreased expression of NGF levels and also alleviate inflammatory hyperalgesia significantly in rats. CONCLUSION Collectively, the results indicated that CFA leads to the upregulation of miR-29b level, which represses the expression of DNMT3b, enhances the demethylation of the NGF gene promoter region, and promotes the binding of C/EBPα with the NGF gene promoter, thus results in the upregulation of NGF gene expression and maintenance of chronic inflammatory pain.
Collapse
Affiliation(s)
- Hongjie Yuan
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shibin Du
- Department of Anesthesiology, Shenzhen University Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liping Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Fuhai Ji
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Yi D, Wang K, Zhu B, Li S, Liu X. Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci 2020; 65:414-420. [PMID: 32536116 DOI: 10.23736/s0390-5616.20.04920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuropathic pain (NP) develops from neuropathic lesions or diseases affecting the nervous system, and has become a serious public health issue due to its complex symptoms, high incidence and long duration. At present, the exact pathogenesis of NP is still unclear. In this study, we sought to identify the genes as well as the related molecular mechanisms associated with NP occurrence and development. METHODS We firstly identified the differentially expressed genes between NP spinal nerve ligation (SNL) rats and control sham rats and then projected them onto a STRING network for functional association analysis. Then, Random Walk with Restart (RWR) was conducted to find some new NP-related genes, with their potential functions sequentially analyzed by GO annotation and KEGG pathway analysis. RESULTS Some new NP-related genes, like Gng13, C3 and Cxcl2, were identified by RWR analysis. Meanwhile, some biological functions like inflammatory responses, chemotaxis and immune responses, as well as some signaling pathways, such as those involved in neuroactive ligand-receptor interactions, complement and blood coagulation cascade reactions, and cytokine-receptor interactions that the new NP- related genes were most activated were found to be associated with NP occurrence and development. CONCLUSIONS This study extends our knowledge of NP occurrence and development and provides new therapeutic targets for future NP treatment.
Collapse
Affiliation(s)
- Duan Yi
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Kai Wang
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Bin Zhu
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Shuiqing Li
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Xiaoguang Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing China -
| |
Collapse
|
22
|
Oliva-Pascual-Vaca Á, González-González C, Oliva-Pascual-Vaca J, Piña-Pozo F, Ferragut-Garcías A, Fernández-Domínguez JC, Heredia-Rizo AM. Visceral Origin: An Underestimated Source of Neck Pain. A Systematic Scoping Review. Diagnostics (Basel) 2019; 9:E186. [PMID: 31726685 PMCID: PMC6963844 DOI: 10.3390/diagnostics9040186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of neck pain is challenging. Many visceral disorders are known to cause it, and clinical practice guidelines recommend to rule them out during neck pain diagnosis. However, the absence of suspicion of any cause impedes one from establishing that specific aetiology as the final diagnosis. To investigate the degree of consideration given to visceral aetiology, a systematic search of trials about neck pain was carried out to evaluate their selection criteria. The search yielded 309 eligible articles, which were screened by two independent reviewers. The PEDro scale score was used to assess the methodological quality of the studies. The following information was retrieved: number of authors affiliated to a clinical or non-clinical institution, number of citations in the Web of Science, study aims, characteristics of participants, and eligibility criteria. The top 15 most cited trials, and the 15 most recent studies about treatment efficacy in neck pain, published in first quartile journals of the Journal Citation Reports, were selected. Females represented 67.5% of participants. A single study was of poor methodological quality (4/10). Based on the eligibility criteria of the articles that were systematically reviewed, it would appear that visceral aetiology was not considered in eighty percent of the trials on neck pain, showing a low level of suspicion both in research and clinical settings.
Collapse
Affiliation(s)
- Ángel Oliva-Pascual-Vaca
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, 41009 Sevilla, Spain; (Á.O.-P.-V.); (C.G.-G.); (A.M.H.-R.)
| | - Carlos González-González
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, 41009 Sevilla, Spain; (Á.O.-P.-V.); (C.G.-G.); (A.M.H.-R.)
| | - Jesús Oliva-Pascual-Vaca
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, 41009 Sevilla, Spain; (Á.O.-P.-V.); (C.G.-G.); (A.M.H.-R.)
- Escuela de Osteopatía de Madrid, 28002 Madrid, Spain
- Department of Physiotherapy, Universitary School of Osuna, University of Sevilla, 41640 Sevilla, Spain;
| | - Fernando Piña-Pozo
- Department of Physiotherapy, Universitary School of Osuna, University of Sevilla, 41640 Sevilla, Spain;
| | - Alejandro Ferragut-Garcías
- Department of Nursing and Physiotherapy, University of the Balearic Islands, 07112 Palma de Mallorca, Spain; (A.F.-G.); (J.C.F.-D.)
| | - Juan Carlos Fernández-Domínguez
- Department of Nursing and Physiotherapy, University of the Balearic Islands, 07112 Palma de Mallorca, Spain; (A.F.-G.); (J.C.F.-D.)
| | - Alberto Marcos Heredia-Rizo
- Department of Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, 41009 Sevilla, Spain; (Á.O.-P.-V.); (C.G.-G.); (A.M.H.-R.)
| |
Collapse
|
23
|
Sun Q, Zhang BY, Zhang PA, Hu J, Zhang HH, Xu GY. Downregulation of glucose-6-phosphate dehydrogenase contributes to diabetic neuropathic pain through upregulation of toll-like receptor 4 in rats. Mol Pain 2019; 15:1744806919838659. [PMID: 30838902 PMCID: PMC6487759 DOI: 10.1177/1744806919838659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background and aim Diabetic neuropathic pain is a refractory and disabling complication of diabetes mellitus. The pathogenesis of the diabetic neuropathic pain is still unclear, and treatment is insufficient. The aim of this study is to investigate the roles of glucose-6-phosphate dehydrogenase (G6PD) and toll-like receptor 4 (TLR4) in neuropathic pain in rats with diabetes. Methods Type 1 diabetes model was induced by intraperitoneal injection of streptozotocin (STZ, 75 mg/kg) in adult female Sprague-Dawley rats. Paw withdrawal threshold and paw withdrawal latency of rats were measured by von Frey filaments and thermal radiation, respectively. The expressions of G6PD and TLR4 in L4-L6 dorsal root ganglions (DRGs) were measured by western blotting and quantitative real-time polymerase chain reaction analysis. Fluorescent immunohistochemistry was employed to detect expressions of G6PD and TLR4 and co-location of G6PD with TLR4. Results The mRNA and protein expression levels of G6PD in DRGs were significantly decreased in diabetic rats when compared with age-matched control rats. Upregulation of G6PD by intrathecal injection of G6PD overexpression adenovirus markedly attenuated hindpaw pain hypersensitivity of diabetic rats. The mRNA and protein expression levels of TLR4 in DRGs of diabetic rats were significantly increased when compared with control rats. Intrathecal injection of TLR4-selective inhibitor CLI-095 attenuated diabetic pain in dose- and time-dependent manners. Furthermore, G6PD and TLR4 were co-localized in DRG neurons. Intrathecal injection of G6PD overexpression adenovirus greatly reduced TLR4 expression, while intrathecal injection of CLI-095 had no significant effect on G6PD expression in diabetic rats. Conclusions Our results suggest that decrease in G6PD expression was involved in diabetic peripheral neuropathic pain, which was most likely through upregulation of TLR4 expression in the DRGs of rats.
Collapse
Affiliation(s)
- Qian Sun
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China.,2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Bing-Yu Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Ji Hu
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Hong-Hong Zhang
- 1 Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- 2 Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
24
|
Possible protective effect of procainamide as an epigenetic modifying agent in experimentally induced type 2 diabetes mellitus in rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons. Mol Neurobiol 2019; 56:7085-7096. [PMID: 30976982 DOI: 10.1007/s12035-019-1545-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.
Collapse
|
26
|
Zhang HH, Han X, Wang M, Hu Q, Li S, Wang M, Hu J. The Association between Genomic DNA Methylation and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:2494057. [PMID: 31781662 PMCID: PMC6875377 DOI: 10.1155/2019/2494057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
AIM DNA methylation is thought to be involved in regulating the expression of key genes and inducing diabetic peripheral neuropathy (DPN). However, clinically, the level of whole-genome DNA methylation and its relationship with DPN remains unclear. METHODS 186 patients with type 2 diabetes mellitus (T2DM) admitted to the Second Affiliated Hospital of Soochow University since Jul. 2016 to Oct. 2017 were enrolled in the study, including 100 patients in the DPN group and 86 patients in the non-DPN group, diagnosed with Toronto Clinical Scoring System (TCSS). Clinical and biochemical characteristics between the two groups were compared, and the correlations with TCSS scores were analyzed. Furthermore, the levels of genomic DNA methylation of leukocytes, measured with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), were also analyzed between the two groups. RESULTS Age, duration, triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), creatinine, uric acid (UA), blood urea nitrogen (BUN), and C-reactive protein (CRP) were significantly higher in the DPN group. Estimated glomerular filtration rate (eGFR) and the level of genomic DNA methylation were much lower in the DPN group. Spearman correlation analysis showed that TCSS was positively correlated with age, duration, UA, and CRP and was negatively correlated with body mass index (BMI), eGFR, and the level of genomic DNA methylation. Interestingly, multiple stepwise regression analysis showed that only duration, genomic DNA methylation, and eGFR had impacts on TCSS. The results also showed that the levels of genomic DNA methylation did not change significantly whether or not there was renal injury. Another multiple stepwise regression analysis showed that TCSS and BMI were the influencing factors of genomic DNA methylation. Finally, we found that genomic DNA methylation levels were decreased significantly in the DPN group compared with the non-DPN group when the duration is ≥5 years or BMI ≥ 25 kg/m2. CONCLUSION Low level of genomic DNA methylation is a relative specific risk factor of diabetic peripheral neuropathy in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Xingfa Han
- Department of Endocrinology, Suzhou Science and Technology Town Hospital, Nanjing Medical University, Suzhou 215004, China
| | - Mengmeng Wang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Meng Wang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| |
Collapse
|
27
|
Li F, Xue Z, Yuan Y, Huang S, Fan Y, Zhu X, Wei L. Upregulation of CXCR4 through promoter demethylation contributes to inflammatory hyperalgesia in rats. CNS Neurosci Ther 2018; 24:947-956. [PMID: 29577638 PMCID: PMC6489799 DOI: 10.1111/cns.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023] Open
Abstract
AIM AND METHODS Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms yet are incompletely defined. DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under inflammatory pain condition remain largely unknown. Here, we investigated how chemokine receptor CXCR4 expression is regulated by DNA methylation and how it contributes to inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. RESULTS Intraplantar injection of CFA could not only induce significant hyperalgesia in rats, but also significantly increase the expression of CXCR4 mRNA and protein in the dorsal root ganglion (DRG). Intrathecal injection of CXCR4 antagonist AMD3100 significantly relieved hyperalgesia in inflammatory rats in a time- and dose-dependent manner. Bisulfite sequencing and methylation-specific PCR demonstrate that CFA injection led to a significant demethylation of CpG island at CXCR4 gene promoter. Consistently, the expression of DNMT3b was significantly downregulated after CFA injection. Online software prediction reveals three binding sites of p65 in the CpG island of CXCR4 gene promoter, which has confirmed by the chromatin immunoprecipitation assay, CFA treatment significantly increases the recruitment of p65 to CXCR4 gene promoter. Inhibition of NF-kB signaling using p65 inhibitor pyrrolidine dithiocarbamate significantly prevented the increases of the CXCR4 expression. CONCLUSION Upregulation of CXCR4 expression due to promoter demethylation followed by increased recruitment of p65 to promoter of CXCR4 gene contributes to inflammatory hyperalgesia. These findings provide a theoretical basis for the treatment of chronic pain from an epigenetic perspective.
Collapse
Affiliation(s)
- Feng Li
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Zhou‐Ya Xue
- Department of AnesthesiologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Yuan Yuan
- Department of OtolaryngologyThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Sai‐Sai Huang
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Yi‐Hui Fan
- Department of ImmunologySchool of MedicineNantong UniversityNantongChina
| | - Xiang Zhu
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantonChina
| | - Lei Wei
- Department of AnesthesiologySuzhou Municipal Hospital Affiliated to Nanjing Medical UniversitySuzhouJiangsuChina
| |
Collapse
|
28
|
Lu HF, Xu CY, Zhang L, Gan L, Chen C, Yan MY, Guo XN, Fang Q, Xu GY, Zhang YB, Ni JQ, Zhao HR. A new central post-stroke pain rat model: autologous blood injected thalamic hemorrhage involved increased expression of P2X4 receptor. Neurosci Lett 2018; 687:124-130. [PMID: 30267847 DOI: 10.1016/j.neulet.2018.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Stroke is the leading cause of disability and death in the world. Central post-stroke pain (CPSP), a central neuropathic pain syndrome occurring after cerebral stroke, is a serious problem. But on account of the lack of reliable animal models, the mechanisms underlying CPSP remains poorly understood. To better understand of the pathophysiological basis of CPSP, we developed and characterized a new rat model of CPSP. This model is based on a hemorrhagic stroke lesion with intra-thalamic autologous blood (ITAB) injection in the ventral posterolateral nucleus of the thalamus. Behavioral analysis demonstrated that the animals displayed a significant decrease in mechanical allodynia threshold. We found a significant increase in P2 × 4 receptor expression in microglia in thalamic peri-lesion tissues post-hemorrhage. The mechanical allodynia in rats with CPSP were reversed by blocking P2 × 4 receptors. A significant alleviation of mechanical allodynia was achieved following the administration of adrenergic antidepressants and antiepileptics. Meanwhile, we found a significant decrease in P2 × 4 receptor expression after treatment with these drugs. Taken together, our results suggest that targeting P2 × 4 receptor may be effective in the treatment of CPSP.
Collapse
Affiliation(s)
- Hai-Feng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chun-Yang Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chan Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Man-Yun Yan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiao-Ning Guo
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yan-Bo Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Jian-Qiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Hong-Ru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
29
|
Cystathionine β-Synthase in Physiology and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3205125. [PMID: 30050925 PMCID: PMC6046153 DOI: 10.1155/2018/3205125] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023]
Abstract
Cystathionine β-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
Collapse
|
30
|
Wang HJ, Xu X, Xie RH, Rui YY, Zhang PA, Zhu XJ, Xu GY. Prenatal maternal stress induces visceral hypersensitivity of adult rat offspring through activation of cystathionine-β-synthase signaling in primary sensory neurons. Mol Pain 2018; 14:1744806918777406. [PMID: 29712513 PMCID: PMC5967159 DOI: 10.1177/1744806918777406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/08/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022] Open
Abstract
Irritable bowel syndrome is a disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that stressors presented during gestational periods could have long-term effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of the present study is to determine whether prenatal maternal stressis a adverse factor affecting gastrointestinal sensitivity and to investigate possible mechanisms underlying prenatal maternal stress-induced visceral hypersensitivity in adult offspring. Prenatal maternal stress was induced in pregnant Sprague-Dawley rats by exposure to heterotypic intermitent stress from gestational day 7 to delivery. Prenatal maternal stress significantly increased visceromotor response to colorectal distention in adult offspring from the age of 6 weeks to 10 weeks. Prenatal maternal stress also enhanced neuronal excitability including depolarization of resting membrane potentials, reduction in rheobase, and an increase in the number of action potentials evoked by 2× and 3× rheobase current stimultion of colon-specific dorsal root ganglion neurons. Prenatal maternal stress remarkably enhanced expression of cystathionine-β-synthase and Nav1.7 in T13-L2 thoracolumbar dorsal root ganglions both at protein and mRNA levels. Intraperitoneal injection of aminooxyacetic acid, an inhibitor of cystathionine-β-synthase, attenuated prenatal maternal stress-induced visceral hypersensitivity in a dose-dependent manner. A consecutive seven-day administration of aminooxyacetic acid reversed the hyperexcitability of colon-specific dorsal root ganglion neurons and markedly reduced Nav1.7 expression. These results indicate that the presence of multiple psychophysical stressors during pregnancy is associated with visceral hypersensitivity in offspring, which is likely mediated by an upregualtion of cystathionine-β-synthase and Nav1.7 expression. Prenatal maternal stress might be a significant contributor to irritable bowel syndrome, and cystathionine-β-synthase might be a potential target for treatment for chronic visceral hypersensitivity in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- Hong-Jun Wang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P. R. China
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, P. R. China
| | - Xue Xu
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
| | - Rui-Hua Xie
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
| | - Yun-Yun Rui
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P. R. China
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
| | - Xiao-Jue Zhu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P. R. China
| | - Guang-Yin Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P. R. China
- Institute of Neuroscience, Soochow University, Soochow University, Suzhou, P. R. China
| |
Collapse
|
31
|
Li Z, Li Y, Cao J, Han X, Cai W, Zang W, Xu J, Zhang W. Membrane protein Nav1.7 contributes to the persistent post-surgical pain regulated by p-p65 in dorsal root ganglion (DRG) of SMIR rats model. BMC Anesthesiol 2017; 17:150. [PMID: 29115943 PMCID: PMC5678798 DOI: 10.1186/s12871-017-0438-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/16/2017] [Indexed: 11/14/2022] Open
Abstract
Background Persistent post-surgical pain is a difficult clinical problem. In this study, we intend to explore the mechanism underlying the persistent post-surgical pain in SMIR (skin/muscle incision and retraction) rats. Methods First of all, the expression of membrane protein Nav1.7 and p-p65 (Phosphorylation of p65) were detected in ipsilateral L4–6 DRGs of SMIR rats by western-blot and immunostaining. Then with ProTx-II (Nav1.7 blocker) or PDTC (p65 inhibitor) were intrathecally injected while the change of Nav1.7 expression and mechanical withdrawal threshold were detected. Finally chromatin immunoprecipitation assay method was used to detect whether could p-p65 bind in the Nav1.7 gene promoter region directly. Results The results shows that mechanical hyperalgesia occurs following SMIR model, from 5 day (d) and lasted more than 20d after surgery. Meanwhile, the expression of Nav1.7 was up-regulated at 10d, 15d and 20d after surgery compared with naïve group. The expression of p-p65 was up-regulated at 10d and 15d compared with incision group. The mechanical hyperalgesia induced by SMIR was reversed after blocking Nav1.7 or inhibiting p65. Furthermore, Nav1.7 expression was down-regulated when p-p65 was inhibited and p-p65 could combine with the Nav1.7 gene promoter region directly. Conclusion Membrane protein Nav1.7 could participate in the peripheral sensitization of persistent post-surgical pain, which may be regulated by p-p65.
Collapse
Affiliation(s)
- Zhisong Li
- Department of Anesthesiology, the First Affiliated Hospital, Zhengzhou University, No 1, Jianshe Road, Zhengzhou, 450052, People's Republic of China
| | - Yaru Li
- Department of Anesthesiology, the First Affiliated Hospital, Zhengzhou University, No 1, Jianshe Road, Zhengzhou, 450052, People's Republic of China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, No 100, Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Xuemin Han
- Department of Anesthesiology, the First Affiliated Hospital, Zhengzhou University, No 1, Jianshe Road, Zhengzhou, 450052, People's Republic of China
| | - Weihua Cai
- Department of Anatomy, Basic Medical College, Zhengzhou University, No 100, Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, No 100, Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Jitian Xu
- Department of Physiology, Basic Medical College, Zhengzhou University, No 100, Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital, Zhengzhou University, No 1, Jianshe Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
32
|
Zhao L, Xiao Y, Weng RX, Liu X, Zhang PA, Hu CY, Yu SP, Xu GY. Neonatal Colonic Inflammation Increases Spinal Transmission and Cystathionine β-Synthetase Expression in Spinal Dorsal Horn of Rats with Visceral Hypersensitivity. Front Pharmacol 2017; 8:696. [PMID: 29046639 PMCID: PMC5632648 DOI: 10.3389/fphar.2017.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by chronic abdominal pain and alteration of bowel movements. The pathogenesis of visceral hypersensitivity in IBS patients remains largely unknown. Hydrogen sulfide (H2S) is reported to play an important role in development of visceral hyperalgesia. However, the role of H2S at spinal dorsal horn level remains elusive in visceral hypersensitivity. The aim of this study is designed to investigate how H2S takes part in visceral hypersensitivity of adult rats with neonatal colonic inflammation (NCI). Visceral hypersensitivity was induced by neonatal colonic injection of diluted acetic acid. Expression of an endogenous H2S synthesizing enzyme cystathionine β-synthetase (CBS) was determined by Western blot. Excitability and synaptic transmission of neurons in the substantia gelatinosa (SG) of spinal cord was recorded by patch clamping. Here, we showed that expression of CBS in the spinal dorsal horn was significantly upregulated in NCI rats. The frequency of glutamatergic synaptic activities in SG was markedly enhanced in NCI rats when compared with control rats. Application of NaHS increased the frequency of both spontaneous and miniature excitatory post-synaptic currents of SG neurons in control rats through a presynaptic mechanism. In contrast, application of AOAA, an inhibitor of CBS, dramatically suppressed the frequency of glutamatergic synaptic activities of SG neurons of NCI rats. Importantly, intrathecal injection of AOAA remarkably attenuated visceral hypersensitivity of NCI rats. These results suggest that H2S modulates pain signaling likely through a presynaptic mechanism in SG of spinal dorsal horn, thus providing a potential therapeutic strategy for treatment for chronic visceral pain in patients with IBS.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Xiao
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui-Xia Weng
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuelian Liu
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping-An Zhang
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuang-Ying Hu
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta GA, United States
| | - Guang-Yin Xu
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Li M, Xue L, Zhu HY, Wang H, Xu X, Zhang PA, Wu G, Xu GY. Protein Kinase C Mediates the Corticosterone-induced Sensitization of Dorsal Root Ganglion Neurons Innervating the Rat Stomach. J Neurogastroenterol Motil 2017; 23:464-476. [PMID: 28343377 PMCID: PMC5503297 DOI: 10.5056/jnm16161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/31/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Gastric hypersensitivity contributes to abdominal pain in patients with functional dyspepsia. Recent studies showed that hormones induced by stress are correlated with visceral hypersensitivity. However, the precise mechanisms underlying gastric hypersensitivity remain largely unknown. The aim of the present study was designed to investigate the roles of corticosterone (CORT) on excitability of dorsal root ganglion (DRG) neurons innervating the stomach. METHODS DRG neurons innervating the stomach were labeled by DiI injection into the stomach wall. Patch clamp recordings were employed to examine neural excitability and voltage-gated sodium channel currents. Electromyograph technique was used to determine the responses of neck muscles to gastric distension. RESULTS Incubation of acutely isolated DRG neurons with CORT significantly depolarized action potential threshold and enhanced the number of action potentials induced by current stimulation of the neuron. Under voltage-clamp mode, incubation of CORT enhanced voltage-gated sodium current density of the recorded neurons. Pre-incubation of GF109203X, an inhibitor of protein kinase C, blocked the CORT-induced hyperexcitability and potentiation of sodium currents. However, pre-incubation of H-89, an inhibitor of protein kinase A, did not alter the sodium current density. More importantly, intraperitoneal injection of CORT produced gastric hypersensitivity of healthy rats, which was blocked by pre-administration of GF109203X but not H-89. CONCLUSIONS Our data strongly suggest that CORT rapidly enhanced neuronal excitability and sodium channel functions, which is most likely mediated by protein kinase C but not protein kinase A signaling pathway in DRG neurons innervating the stomach, thus underlying the gastric hypersensitivity induced by CORT injection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guang-Yin Xu
- Correspondence: Guang-Yin Xu, MD, PhD, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China, Tel: +86-512-6588-2817, Fax: +86-512-6588-3602, E-mail:
| |
Collapse
|
34
|
Koroleva K, Mustafina A, Yakovlev A, Hermann A, Giniatullin R, Sitdikova G. Receptor Mechanisms Mediating the Pro-Nociceptive Action of Hydrogen Sulfide in Rat Trigeminal Neurons and Meningeal Afferents. Front Cell Neurosci 2017; 11:226. [PMID: 28798669 PMCID: PMC5529342 DOI: 10.3389/fncel.2017.00226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
Hydrogen sulfide (H2S), a well-established member of the gasotransmitter family, is involved in a variety of physiological functions, including pro-nociceptive action in the sensory system. Although several reports have shown that H2S activates sensory neurons, the molecular targets of H2S action in trigeminal (TG) nociception, implicated in migraine, remains controversial. In this study, using suction electrode recordings, we investigate the effect of the H2S donor, sodium hydrosulfide (NaHS), on nociceptive firing in rat meningeal TG nerve fibers. The effect of NaHS was also explored with patch-clamp and calcium imaging techniques on isolated TG neurons. NaHS dramatically increased the nociceptive firing in TG nerve fibers. This effect was abolished by the TRPV1 inhibitor capsazepine but was partially prevented by the TRPA1 blocker HC 030031. In a fraction of isolated TG neurons, NaHS transiently increased amplitude of capsaicin-induced currents. Moreover, NaHS by itself induced inward currents in sensory neurons, which were abolished by the TRPV1 inhibitor capsazepine suggesting involvement of TRPV1 receptors. In contrast, the inhibitor of TRPA1 receptors HC 030031 did not prevent the NaHS-induced currents. Imaging of a large population of TG neurons revealed that NaHS induced calcium transients in 41% of tested neurons. Interestingly, this effect of NaHS in some neurons was inhibited by the TRPV1 antagonist capsazepine whereas in others it was sensitive to the TRPA1 blocker HC 030031. Our data suggest that both TRPV1 and TRPA1 receptors play a role in the pro-nociceptive action of NaHS in peripheral TG nerve endings in meninges and in somas of TG neurons. We propose that activation of TRPV1 and TRPA1 receptors by H2S during neuro-inflammation conditions contributes to the nociceptive firing in primary afferents underlying migraine pain.
Collapse
Affiliation(s)
- Kseniya Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Alsu Mustafina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Anton Hermann
- Department of Cell Biology and Physiology, University of SalzburgSalzburg, Austria
| | - Rashid Giniatullin
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
35
|
Sun Y, Yang PP, Song ZY, Feng Y, Hu DM, Hu J, Xu GY, Zhang HH. α-lipoic acid suppresses neuronal excitability and attenuates colonic hypersensitivity to colorectal distention in diabetic rats. J Pain Res 2017; 10:1645-1655. [PMID: 28769585 PMCID: PMC5529097 DOI: 10.2147/jpr.s135017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM Patients with long-standing diabetes often demonstrate intestinal dysfunction, characterized as constipation or colonic hypersensitivity. Our previous studies have demonstrated the roles of voltage-gated sodium channels NaV1.7 and NaV1.8 in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. This study was designed to determine roles of antioxidant α-lipoic acid (ALA) on sodium channel activities and colonic hypersensitivity of rats with diabetes. METHODS Streptozotocin was used to induce diabetes in adult female rats. Colonic sensitivity was measured by behavioral responses to colorectal distention in rats. The excitability and sodium channel currents of colon projection DRG neurons labeled with DiI were measured by whole-cell patch-clamp recordings. The expressions of NaV1.7 and NaV1.8 of colon DRGs were measured by western blot analysis. RESULTS ALA treatment significantly increased distention threshold in responding to colorectal distension in diabetic rats compared with normal saline treatment. ALA treatment also hyper-polarized the resting membrane potentials, depolarized action potential threshold, increased rheobase, and decreased frequency of action potentials evoked by ramp current stimulation. Furthermore, ALA treatment also reduced neuronal sodium current densities of DRG neurons innervating the colon from rats with diabetes. In addition, ALA treatment significantly downregulated NaV1.7 and NaV1.8 expression in colon DRGs from rats with diabetes. CONCLUSION Our results suggest that ALA plays an analgesic role, which was likely mediated by downregulation of NaV1.7 and NaV1.8 expressions and functions, thus providing experimental evidence for using ALA to treat colonic hypersensitivity in patients with diabetic visceral pain.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Pan-Pan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhen-Yuan Song
- Department of Endocrinology, The East District of Suzhou Municipal Hospital, Suzhou, People's Republic of China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Duan-Min Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
36
|
Hu J, Qin X, Song ZY, Yang PP, Feng Y, Sun Q, Xu GY, Zhang HH. Alpha-lipoic Acid suppresses P2X receptor activities and visceral hypersensitivity to colorectal distention in diabetic rats. Sci Rep 2017; 7:3928. [PMID: 28659591 PMCID: PMC5489513 DOI: 10.1038/s41598-017-04283-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate the roles of P2X3 receptors in dorsal root ganglion (DRG) neurons in colonic hypersensitivity and the effects of alpha-lipoic acid (ALA) on P2X3 receptor activity and colonic hypersensitivity of diabetic rats. Streptozotocin (STZ) was used to induce diabetic model. Abdominal withdrawal reflex (AWR) responding to colorectal distention (CRD) was recorded as colonic sensitivity. ATP-induced current density of colon-specific DRG (T13-L2 DRGs) neurons was measured with whole-cell patch clamp. The expression of P2X3Rs of T13-L2 DRGs was measured by western blot analysis. The results showed that AWR scores significantly increased after STZ injection. P2X3R expression and ATP current density of T13-L2 DRG neurons were enhanced in diabetic rats. Intraperitoneal injection with ALA once a day for 1 week remarkably reduced P2X3R expression and ATP current density in diabetic rats. Importantly, ALA treatment attenuated colonic hypersensitivity in diabetic rats. Our data suggest that STZ injection increases expression and function of P2X3 receptors of colon-specific DRG neurons, thus contributing to colonic hypersensitivity in diabetic rats. Administration of ALA attenuates diabetic colonic hypersensitivity, which is most likely mediated by suppressing expression and function of P2X3 receptors in DRGs of diabetic rats.
Collapse
Affiliation(s)
- Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Xin Qin
- Department of Endocrinology, Suzhou Science and Technology Town Hospital, Suzhou, 215000, P.R. China
| | - Zhen-Yuan Song
- Department of Endocrinology, the East District of Suzhou Municipal Hospital, Suzhou, 215000, P.R. China
| | - Pan-Pan Yang
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Yu Feng
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Qian Sun
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China
| | - Guang-Yin Xu
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China. .,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
37
|
Shi J, Jiang K, Li Z. Involvement of spinal glutamate transporter-1 in the development of mechanical allodynia and hyperalgesia associated with type 2 diabetes. J Pain Res 2016; 9:1121-1129. [PMID: 27932896 PMCID: PMC5135479 DOI: 10.2147/jpr.s118412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Little is known about the effects of the development of type 2 diabetes on glutamate homeostasis in the spinal cord. Therefore, we quantified the extracellular levels of glutamate in the spinal cord of Zucker diabetic fatty (ZDF) rats using in vivo microdialysis. In addition, protein levels of glutamate transporter-1 (GLT-1) in the spinal cord of ZDF rats were measured using Western blot. Finally, the effects of repeated intrathecal injections of ceftriaxone, which was previously shown to enhance GLT-1 expression, on the development of mechanical allodynia and hyperalgesia as well as on basal extracellular level of glutamate and the expression of GLT-1 in the spinal cord of ZDF rats were evaluated. It was found that ZDF rats developed mechanical hyperalgesia and allodynia, which were associated with increased basal extracellular levels of glutamate and attenuated levels of GLT-1 expression in the spinal cord, particularly in the dorsal horn. Furthermore, repeated intrathecal administrations of ceftriaxone dose-dependently prevented the development of mechanical hyperalgesia and allodynia in ZDF rats, which were correlated with enhanced GLT-1 expression without altering the basal glutamate levels in the spinal cord of ZDF rats. Overall, the results suggested that impaired glutamate reuptake in the spinal cord may contribute to the development of neuropathic pains in type 2 diabetes.
Collapse
Affiliation(s)
- Jinshan Shi
- Department of Anesthesiology, Guizhou Provincial People's Hospital
| | - Ke Jiang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang
| | - Zhaoduan Li
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| |
Collapse
|
38
|
Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats. Pain 2016; 156:1892-1905. [PMID: 26049406 PMCID: PMC4770335 DOI: 10.1097/j.pain.0000000000000248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is Available in the Text. Epigenetic regulations of P2X3 receptors play a crucial role in cancer pain. Targeting p65 binding to demethylated P2X3 receptor gene suppresses cancer pain. Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin.
Collapse
|
39
|
Zhou Y, Li RJ, Li M, Liu X, Zhu HY, Ju Z, Miao X, Xu GY. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion. Mol Pain 2016; 12:12/0/1744806916646381. [PMID: 27145805 PMCID: PMC4956389 DOI: 10.1177/1744806916646381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Rong-Ji Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Meng Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xuelian Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Hong-Yan Zhu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Zhong Ju
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xiuhua Miao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| |
Collapse
|
40
|
Magrangeas F, Kuiper R, Avet-Loiseau H, Gouraud W, Guérin-Charbonnel C, Ferrer L, Aussem A, Elghazel H, Suhard J, Sakissian HD, Attal M, C Munshi N, Sonneveld P, Dumontet C, Moreau P, van Duin M, Campion L, Minvielle S. A Genome-Wide Association Study Identifies a Novel Locus for Bortezomib-Induced Peripheral Neuropathy in European Patients with Multiple Myeloma. Clin Cancer Res 2016; 22:4350-4355. [PMID: 27060151 DOI: 10.1158/1078-0432.ccr-15-3163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Painful peripheral neuropathy is a frequent toxicity associated with bortezomib therapy. This study aimed to identify loci that affect susceptibility to this toxicity. EXPERIMENTAL DESIGN A genome-wide association study (GWAS) of 370,605 SNPs was performed to identify risk variants for developing severe bortezomib-induced peripheral neuropathy (BiPN) in 469 patients with multiple myeloma who received bortezomib-dexamethasone therapy prior to autologous stem cell in randomized clinical trials of the Intergroupe Francophone du Myelome (IFM) and findings were replicated in 114 patients with multiple myeloma of the HOVON-65/GMMG-HD4 clinical trial. RESULTS An SNP in the PKNOX1 gene was associated with BiPN in the exploratory cohort [rs2839629; OR, 1.89, 95% confidence interval (CI), 1.45-2.44; P = 7.6 × 10(-6)] and in the replication cohort (OR, 2.04; 95% CI, = 1.11-3.33; P = 8.3 × 10(-3)). In addition, rs2839629 is in strong linkage disequilibrium (r(2) = 0.87) with rs915854, located in the intergenic region between PKNOX1 and cystathionine-ß-synthetase (CBS) Expression quantitative trait loci mapping showed that both rs2839629 and rs915854 genotypes have an impact on PKNOX1 expression in nerve tissue, whereas rs2839629 affects CBS expression in skin and blood. CONCLUSIONS The use of GWAS in multiple myeloma pharmacogenomics has identified a novel candidate genetic locus mapping to PKNOX1 and in the immediate vicinity of CBS at 21q22.3 associated with the severe bortezomib-induced toxicity. The proximity of these two genes involved in neurologic pain whose tissue-specific expression is modified by the two variants provides new targets for neuroprotective strategies. Clin Cancer Res; 22(17); 4350-5. ©2016 AACR.
Collapse
Affiliation(s)
- Florence Magrangeas
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Rowan Kuiper
- Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Wilfried Gouraud
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Catherine Guérin-Charbonnel
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Ludovic Ferrer
- Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Alexandre Aussem
- LIRIS UMR 5205 CNRS Université Claude Bernard Lyon I, Lyon, France
| | - Haytham Elghazel
- LIRIS UMR 5205 CNRS Université Claude Bernard Lyon I, Lyon, France
| | - Jérôme Suhard
- Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | | | - Michel Attal
- Centre Hospitalier Universitaire, Toulouse, France
| | - Nikhil C Munshi
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Boston Veterans Administration Healthcare System, West Roxbury, MA, 02132, USA
| | | | | | - Philippe Moreau
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | | | - Loïc Campion
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Stéphane Minvielle
- INSERM UMR 892, CNRS UMR 6299, Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Aberrations in the epigenetic landscape have previously been associated with human diseases such as cancer and schizophrenia, and drugs that target epigenetic processes are currently used as therapeutic agents. This article will review the evidence obtained from animal studies indicating that epigenetic processes might regulate long-term pain states and then discuss the possibility that targeting epigenetic mechanisms might be useful for the management of chronic pain. RECENT FINDINGS Recent animal studies have reported injury-induced changes in epigenetic processes in the central nervous system. The picture that has emerged is that of very complex epigenetic programs that depend on the injury. However, some studies have reported the successful use of nonspecific epigenetic tools to improve the hypersensitivity that develops in animal models of long-term pain states. SUMMARY The field of epigenetics and pain is rapidly emerging but further investigation is needed to fully comprehend the contribution of epigenetic processes to chronic pain states. Although therapeutic approaches targeting these mechanisms might seem worthwhile, we cannot assert that currently available global tools such as histone deacetylase inhibitors can be used successfully for the long-term treatment of chronic pain states.
Collapse
|
42
|
Hu J, Song ZY, Zhang HH, Qin X, Hu S, Jiang X, Xu GY. Colonic Hypersensitivity and Sensitization of Voltage-gated Sodium Channels in Primary Sensory Neurons in Rats with Diabetes. J Neurogastroenterol Motil 2015; 22:129-40. [PMID: 26459453 PMCID: PMC4699730 DOI: 10.5056/jnm15091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background/Aims Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. Methods Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. Results STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. Conclusions Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes.
Collapse
Affiliation(s)
- Ji Hu
- The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhen-Yuan Song
- The Second Affiliated Hospital, Soochow University, Suzhou, China.,The East District of Suzhou Municipal Hospital Suzhou, China
| | - Hong-Hong Zhang
- The Second Affiliated Hospital, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xin Qin
- The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
43
|
DNA methylation in cystathionine-γ-lyase (CSE) gene promoter induced by ox-LDL in macrophages and in apoE knockout mice. Biochem Biophys Res Commun 2015; 469:776-82. [PMID: 26692478 DOI: 10.1016/j.bbrc.2015.11.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that epigenetic alterations such as DNA methylation control many aspects of monocytes/macrophages and participate in the pathogenesis of atherosclerosis, a lipid-driven inflammatory disorder. Our and other groups demonstrated that dysregulation of cystathionine γ-lyase (CSE) -hydrogen sulfide (H2S) pathway was involved in monocyte/macrophages-mediated inflammation and atherosclerosis. However, it remains unknown whether altered cse methylation in macrophages may play a role in linking CSE-H2S dysregulation and atherosclerosis. In the present study, we showed that plasma H2S and H2S production in the peritoneal macrophages of apolipoprotein knockout (apoE(-/-)) mice gradually decreased with ages, and were also lower than that in control mice at 12 weeks older. Moreover, CSE mRNA expressions decreased while DNA methyltransferase (DNMT) expressions increased in the peritoneal macrophages isolated from apoE(-/-) mice, compared to age-matched wildtype mice. Similar observations were obtained in an in vitro study. In oxidized low-density lipoprotein (ox-LDL)-treated raw264.7 macrophages, cse transcription was down-regulated while the expression and activity of DNMT was up-regulated, associated with enhanced DNA methylation in cse promoter. Suppression of DNMT with its inhibitor or siRNA reversed the decrease of CSE mRNA. Therefore, our data suggest that DNA hypermethylation of CpG rich region in cse promoter might contribute to the decrease of cse transcription and H2S production in macrophages, and thus contribute to atherosclerosis development.
Collapse
|
44
|
Zhang HH, Hu J, Zhou YL, Qin X, Song ZY, Yang PP, Hu S, Jiang X, Xu GY. Promoted Interaction of Nuclear Factor-κB With Demethylated Purinergic P2X3 Receptor Gene Contributes to Neuropathic Pain in Rats With Diabetes. Diabetes 2015; 64:4272-84. [PMID: 26130762 DOI: 10.2337/db15-0138] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/24/2015] [Indexed: 11/13/2022]
Abstract
Painful diabetic neuropathy is a common complication of diabetes produced by mechanisms that as yet are incompletely defined. The aim of this study was to investigate the roles of nuclear factor-κB (NF-κB) in the regulation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3R) plasticity in dorsal root ganglion (DRG) neurons of rats with painful diabetes. Here, we showed that hindpaw pain hypersensitivity in streptozocin-induced diabetic rats was attenuated by treatment with purinergic receptor antagonist suramin or A-317491. The expression and function of P2X3Rs was markedly enhanced in hindpaw-innervated DRG neurons in diabetic rats. The CpG (cytosine guanine dinucleotide) island in the p2x3r gene promoter region was significantly demethylated, and the expression of DNA methyltransferase 3b was remarkably downregulated in DRGs in diabetic rats. The binding ability of p65 (an active form of NF-κB) with the p2x3r gene promoter region and p65 expression were enhanced significantly in diabetes. The inhibition of p65 signaling using the NF-κB inhibitor pyrrolidine dithiocarbamate or recombinant lentiviral vectors designated as lentiviral vector-p65 small interfering RNA remarkably suppressed P2X3R activities and attenuated diabetic pain hypersensitivity. Insulin treatment significantly attenuated pain hypersensitivity and suppressed the expression of p65 and P2X3Rs. Our findings suggest that the p2x3r gene promoter DNA demethylation and enhanced interaction with p65 contributes to P2X3R sensitization and diabetic pain hypersensitivity.
Collapse
MESH Headings
- Animals
- CpG Islands/drug effects
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetic Neuropathies/enzymology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/prevention & control
- Epigenesis, Genetic/drug effects
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Hindlimb
- Hypoglycemic Agents/therapeutic use
- Insulin/therapeutic use
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuralgia/complications
- Neuralgia/metabolism
- Neuralgia/prevention & control
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Promoter Regions, Genetic/drug effects
- Purinergic P2X Receptor Antagonists/therapeutic use
- RNA Interference
- Rats, Sprague-Dawley
- Receptors, Purinergic P2X3/chemistry
- Receptors, Purinergic P2X3/genetics
- Receptors, Purinergic P2X3/metabolism
- Transcription Factor RelA/agonists
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Ji Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - You-Lang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Xin Qin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Zhen-Yuan Song
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Pan-Pan Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
45
|
Zhu L, Zhao L, Qu R, Zhu HY, Wang Y, Jiang X, Xu GY. Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity. Sci Rep 2015; 5:16109. [PMID: 26527188 PMCID: PMC4630780 DOI: 10.1038/srep16109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. The present study was designed to investigate roles of adrenergic signaling and the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) in a previously validated rat model of IBS induced by neonatal colonic inflammation (NCI). Here we showed that NCI-induced visceral hypersensitivity (VH) was significantly attenuated by β2 subunit inhibitor but not by β1 or β3 or α subunit inhibitor. NCI markedly elevated plasma norepinephrine (NE) concentration without alteration in expression of β2 subunit receptors in dorsal root ganglion (DRGs) innervating the colon. In addition, NCI markedly enhanced TRPV1 and CBS expression in the colon DRGs. CBS inhibitor AOAA reversed the upregulation of TRPV1 in NCI rats. In vitro experiments showed that incubation of DRG cells with NE markedly enhanced expression of TRPV1, which was reversed by application of AOAA. Incubation of DRG cells with the H2S donor NaHS greatly enhanced TRPV1 expression. Collectively, these data suggest that activation of adrenergic signaling by NCI sensitizes TRPV1 channel activity, which is likely mediated by upregulation of CBS expression in peripheral sensory neurons, thus contributing to chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Liyan Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Liting Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Ruobing Qu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Hong-Yan Zhu
- Center for Translational Medicine, the Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, P.R. China
| | - Yongmeng Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Neurobiology and Physiology, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China.,Center for Translational Medicine, the Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, P.R. China
| |
Collapse
|
46
|
Yuan B, Tang WH, Lu LJ, Zhou Y, Zhu HY, Zhou YL, Zhang HH, Hu CY, Xu GY. TLR4 upregulates CBS expression through NF-κB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity. World J Gastroenterol 2015; 21:8615-8628. [PMID: 26229403 PMCID: PMC4515842 DOI: 10.3748/wjg.v21.i28.8615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/03/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the roles of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB on cystathionine β synthetase (CBS) expression and visceral hypersensitivity in rats.
METHODS: This study used 1-7-wk-old male Sprague-Dawley rats. Western blot analysis was employed to measure the expression of TLR4, NF-κB and the endogenous hydrogen sulfide-producing enzyme CBS in colon dorsal root ganglia (DRG) from control and “irritable bowel syndrome” rats induced by neonatal colonic inflammation (NCI). Colon-specific DRG neurons were labeled with Dil and acutely dissociated to measure excitability with patch-clamp techniques. Immunofluorescence was employed to determine the co-expression of TLR4, NF-κB and CBS in DiI-labeled DRG neurons.
RESULTS: NCI significantly upregulated the expression of TLR4 in colon-related DRGs (0.34 ± 0.12 vs 0.72 ± 0.02 for the control and NCI groups, respectively, P < 0.05). Intrathecal administration of the TLR4-selective inhibitor CLI-095 significantly enhanced the colorectal distention threshold of NCI rats. CLI-095 treatment also markedly reversed the hyperexcitability of colon-specific DRG neurons and reduced the expression of CBS (1.7 ± 0.1 vs 1.1 ± 0.04, P < 0.05) and of the NF-κB subunit p65 (0.8 ± 0.1 vs 0.5 ± 0.1, P < 0.05). Furthermore, the NF-κB-selective inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the upregulation of CBS (1.0 ± 0.1 vs 0.6 ± 0.1, P < 0.05) and attenuated visceral hypersensitivity in the NCI rats. In vitro, incubation of cultured DRG neurons with the TLR4 agonist lipopolysaccharide significantly enhanced the expression of p65 (control vs 8 h: 0.9 ± 0.1 vs 1.3 ± 0.1; control vs 12 h: 0.9 ± 0.1 vs 1.3 ± 0.1, P < 0.05; control vs 24 h: 0.9 ± 0.1 vs 1.6 ± 0.1, P < 0.01) and CBS (control vs 12 h: 1.0 ± 0.1 vs 2.2 ± 0.4; control vs 24 h: 1.0 ± 0.1 vs 2.6 ± 0.1, P < 0.05), whereas the inhibition of p65 via pre-incubation with PDTC significantly reversed the upregulation of CBS expression (1.2 ± 0.1 vs 0.6 ± 0.0, P < 0.01).
CONCLUSION: Our results suggest that the activation of TLR4 by NCI upregulates CBS expression, which is mediated by the NF-κB signaling pathway, thus contributing to visceral hypersensitivity.
Collapse
|
47
|
Li JJ, Li Q, Du HP, Wang YL, You SJ, Wang F, Xu XS, Cheng J, Cao YJ, Liu CF, Hu LF. Homocysteine Triggers Inflammatory Responses in Macrophages through Inhibiting CSE-H2S Signaling via DNA Hypermethylation of CSE Promoter. Int J Mol Sci 2015; 16:12560-77. [PMID: 26047341 PMCID: PMC4490461 DOI: 10.3390/ijms160612560] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/23/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor of atherosclerosis and other cardiovascular diseases. Unfortunately, Hcy-lowering strategies were found to have limited effects in reducing cardiovascular events. The underlying mechanisms remain unclear. Increasing evidence reveals a role of inflammation in the pathogenesis of HHcy. Homocysteine (Hcy) is a precursor of hydrogen sulfide (H2S), which is formed via the transsulfuration pathway catalyzed by cystathionine β-synthase and cystathionine γ-lyase (CSE) and serves as a novel modulator of inflammation. In the present study, we showed that methionine supplementation induced mild HHcy in mice, associated with the elevations of TNF-α and IL-1β in the plasma and reductions of plasma H2S level and CSE expression in the peritoneal macrophages. H2S-releasing compound GYY4137 attenuated the increases of TNF-α and IL-1β in the plasma of HHcy mice and Hcy-treated raw264.7 cells while CSE inhibitor PAG exacerbated it. Moreover, the in vitro study showed that Hcy inhibited CSE expression and H2S production in macrophages, accompanied by the increases of DNA methyltransferase (DNMT) expression and DNA hypermethylation in cse promoter region. DNMT inhibition or knockdown reversed the decrease of CSE transcription induced by Hcy in macrophages. In sum, our findings demonstrate that Hcy may trigger inflammation through inhibiting CSE-H2S signaling, associated with increased promoter DNA methylation and transcriptional repression of cse in macrophages.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
| | - Qian Li
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
- Department of Pharmacology, School of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Hua-Ping Du
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
| | - Ya-Li Wang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Shou-Jiang You
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
| | - Fen Wang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Xing-Shun Xu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Yong-Jun Cao
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
| | - Chun-Feng Liu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Li-Fang Hu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
- Department of Pharmacology, School of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
48
|
Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:758358. [PMID: 26078817 PMCID: PMC4442299 DOI: 10.1155/2015/758358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022]
Abstract
Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.
Collapse
|
49
|
Wang S, Zhu HY, Jin Y, Zhou Y, Hu S, Liu T, Jiang X, Xu GY. Adrenergic signaling mediates mechanical hyperalgesia through activation of P2X3 receptors in primary sensory neurons of rats with chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G710-9. [PMID: 25634810 DOI: 10.1152/ajpgi.00395.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/24/2015] [Indexed: 02/08/2023]
Abstract
The mechanism of pain in chronic pancreatitis (CP) is poorly understood. The aim of this study was designed to investigate roles of norepinephrine (NE) and P2X receptor (P2XR) signaling pathway in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced in male adult rats by intraductal injection of trinitrobenzene sulfonic acid (TNBS). Mechanical hyperalgesia was assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. P2XR-mediated responses of pancreatic dorsal root ganglion (DRG) neurons were measured utilizing calcium imaging and whole cell patch-clamp-recording techniques. Western blot analysis and immunofluorescence were performed to examine protein expression. TNBS injection produced a significant upregulation of P2X3R expression and an increase in ATP-evoked responses of pancreatic DRG neurons. The sensitization of P2X3Rs was reversed by administration of β-adrenergic receptor antagonist propranolol. Incubation of DRG neurons with NE significantly enhanced ATP-induced intracellular calcium signals, which were abolished by propranolol, and partially blocked by protein kinase A inhibitor H-89. Interestingly, TNBS injection led to a significant elevation of NE concentration in DRGs and the pancreas, an upregulation of β2-adrenergic receptor expression in DRGs, and amplification of the NE-induced potentiation of ATP responses. Importantly, pancreatic hyperalgesia was markedly attenuated by administration of purinergic receptor antagonist suramin or A317491 or β2-adrenergic receptor antagonist butoxamine. Sensitization of P2X3Rs, which was likely mediated by adrenergic signaling in primary sensory neurons, contributes to pancreatic pain, thus identifying a potential target for treating pancreatic pain caused by inflammation.
Collapse
Affiliation(s)
- Shusheng Wang
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Hong-Yan Zhu
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Jin
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China
| | - Youlang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China;
| |
Collapse
|
50
|
Wang Q, Zhu H, Zou K, Yuan B, Zhou YL, Jiang X, Yan J, Xu GY. Sensitization of P2X3 receptors by cystathionine β-synthetase mediates persistent pain hypersensitivity in a rat model of lumbar disc herniation. Mol Pain 2015; 11:15. [PMID: 25885215 PMCID: PMC4372268 DOI: 10.1186/s12990-015-0012-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022] Open
Abstract
Lumbar disc herniation (LDH) is a major cause of discogenic low back pain and sciatica, but the underlying mechanisms remain largely unknown. Hydrogen sulfide (H2S) is becoming recognized for its involvement in a wide variety of processes including inflammation and nociception. The present study was designed to investigate the roles of the H2S signaling pathway in the regulation of expression and function of purinergic receptors (P2XRs) in dorsal root ganglion (DRG) neurons from rats with LDH. LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. Implantation of autologous NP induced persistent pain hypersensitivity, which was partially reversed by an intrathecal injection of A317491, a potent inhibitor of P2X3Rs and P2X2/3Rs. The NP induced persistent pain hypersensitivity was associated with the increased expression of P2X3Rs, but not P2X1Rs and P2X2Rs, receptors in L5-6 DRGs. NP implantation also produced a 2-fold increase in ATP-induced intracellular calcium signals in DRG neurons when compared to those of controls (P < 0.05). Interestingly, NP implantation significantly enhanced expression of the endogenous hydrogen sulfide producing enzyme, cystathionine-β-synthetase (CBS). Systematic administration of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor of CBS, suppressed the upregulation of P2X3R expression and the potentiation of ATP-induced intracellular calcium signals in DRG neurons (P < 0.05). Intrathecal injection of AOAA markedly attenuated NP induced- persistent pain hypersensitivity. Our results suggest that sensitization of P2X3Rs, which is likely mediated by CBS-H2S signaling in primary sensory neurons, contributes to discogenic pain. Targeting CBS/H2S-P2X3R signaling may represent a potential treatment for neuropathic pain caused by LDH.
Collapse
Affiliation(s)
- Qianliang Wang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Peoples Republic of China.
| | - Hongyan Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, Peoples Republic of China.
| | - Kang Zou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Peoples Republic of China.
| | - Bo Yuan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, Peoples Republic of China.
| | - You-Lang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, Peoples Republic of China.
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, Peoples Republic of China.
| | - Jun Yan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Peoples Republic of China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, Peoples Republic of China. .,Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|