1
|
Bissen D, Cary BA, Zhang A, Sailor KA, Van Hooser SD, Turrigiano GG. Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635373. [PMID: 39975102 PMCID: PMC11838381 DOI: 10.1101/2025.01.28.635373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Critical periods are developmental windows of high experience-dependent plasticity essential for the correct refinement of neuronal circuitry and function. While the consequences for the visual system of sensory deprivation during the critical period have been well-characterized, far less is known about the effects of enhanced sensory experience. Here, we use prey capture learning to assess structural and functional plasticity mediating visual learning in the primary visual cortex of critical period mice. We show that prey capture learning improves temporal frequency discrimination and drives a profound remodeling of visual circuitry through an increase in excitatory connectivity and spine turnover. This global and persistent rewiring is not observed in adult hunters and is mediated by TNFα-dependent mechanisms. Our findings demonstrate that enhanced visual experience in a naturalistic paradigm during the critical period can drive structural plasticity to improve visual function, and promotes a long-lasting increase in spine dynamics that could enhance subsequent plasticity.
Collapse
Affiliation(s)
- Diane Bissen
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Brian A Cary
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Amanda Zhang
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Kurt A Sailor
- Institut Pasteur, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | | | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
- Lead Contact
| |
Collapse
|
2
|
Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity. J Neurosci 2024; 44:e0021232024. [PMID: 39117456 PMCID: PMC11376332 DOI: 10.1523/jneurosci.0021-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Monocular deprivation (MD) causes an initial decrease in synaptic responses to the deprived eye in juvenile mouse primary visual cortex (V1) through Hebbian long-term depression (LTD). This is followed by a homeostatic increase, which has been attributed either to synaptic scaling or to a slide threshold for Hebbian long-term potentiation (LTP) rather than scaling. We therefore asked in mice of all sexes whether the homeostatic increase during MD requires GluN2B-containing NMDA receptor activity, which is required to slide the plasticity threshold but not for synaptic scaling. Selective GluN2B blockade from 2-6 d after monocular lid suture prevented the homeostatic increase in miniature excitatory postsynaptic current (mEPSC) amplitude in monocular V1 of acute slices and prevented the increase in visually evoked responses in binocular V1 in vivo. The decrease in mEPSC amplitude and visually evoked responses during the first 2 d of MD also required GluN2B activity. Together, these results support the idea that GluN2B-containing NMDA receptors first play a role in LTD immediately following eye closure and then promote homeostasis during prolonged MD by sliding the plasticity threshold in favor of LTP.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Su Hong
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Altagracia Contreras
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Alfredo Kirkwood
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
3
|
Wang M, Yu X. Experience-dependent structural plasticity of pyramidal neurons in the developing sensory cortices. Curr Opin Neurobiol 2023; 81:102724. [PMID: 37068383 DOI: 10.1016/j.conb.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023]
Abstract
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China.
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
4
|
Pchitskaya E, Vasiliev P, Smirnova D, Chukanov V, Bezprozvanny I. SpineTool is an open-source software for analysis of morphology of dendritic spines. Sci Rep 2023; 13:10561. [PMID: 37386071 PMCID: PMC10310755 DOI: 10.1038/s41598-023-37406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Dendritic spines form most excitatory synaptic inputs in neurons and these spines are altered in many neurodevelopmental and neurodegenerative disorders. Reliable methods to assess and quantify dendritic spines morphology are needed, but most existing methods are subjective and labor intensive. To solve this problem, we developed an open-source software that allows segmentation of dendritic spines from 3D images, extraction of their key morphological features, and their classification and clustering. Instead of commonly used spine descriptors based on numerical metrics we used chord length distribution histogram (CLDH) approach. CLDH method depends on distribution of lengths of chords randomly generated within dendritic spines volume. To achieve less biased analysis, we developed a classification procedure that uses machine-learning algorithm based on experts' consensus and machine-guided clustering tool. These approaches to unbiased and automated measurements, classification and clustering of synaptic spines that we developed should provide a useful resource for a variety of neuroscience and neurodegenerative research applications.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
| | - Peter Vasiliev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Daria Smirnova
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Vyacheslav Chukanov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Valakh V, Wise D, Zhu XA, Sha M, Fok J, Van Hooser SD, Schectman R, Cepeda I, Kirk R, O'Toole SM, Nelson SB. A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex. eLife 2023; 12:e74899. [PMID: 36749029 PMCID: PMC10010687 DOI: 10.7554/elife.74899] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here, we uncover negative regulation of cortical network homeostasis by the PARbZIP family of transcription factors. In cortical slice cultures made from knockout mice lacking all three of these factors, the network response to prolonged activity withdrawal measured with calcium imaging is much stronger, while baseline activity is unchanged. Whole-cell recordings reveal an exaggerated increase in the frequency of miniature excitatory synaptic currents reflecting enhanced upregulation of recurrent excitatory synaptic transmission. Genetic analyses reveal that two of the factors, Hlf and Tef, are critical for constraining plasticity and for preventing life-threatening seizures. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.
Collapse
Affiliation(s)
- Vera Valakh
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Derek Wise
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Xiaoyue Aelita Zhu
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Mingqi Sha
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Jaidyn Fok
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Robin Schectman
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Isabel Cepeda
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Ryan Kirk
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Sean M O'Toole
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Sacha B Nelson
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| |
Collapse
|
6
|
Latina V, De Introna M, Caligiuri C, Loviglio A, Florio R, La Regina F, Pignataro A, Ammassari-Teule M, Calissano P, Amadoro G. Immunotherapy with Cleavage-Specific 12A12mAb Reduces the Tau Cleavage in Visual Cortex and Improves Visuo-Spatial Recognition Memory in Tg2576 AD Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020509. [PMID: 36839831 PMCID: PMC9965010 DOI: 10.3390/pharmaceutics15020509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aβ pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aβ in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Margherita De Introna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Chiara Caligiuri
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Alessia Loviglio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Ercole Ramarini 32, 00015 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-49255252
| |
Collapse
|
7
|
Bang JW, Hamilton-Fletcher G, Chan KC. Visual Plasticity in Adulthood: Perspectives from Hebbian and Homeostatic Plasticity. Neuroscientist 2023; 29:117-138. [PMID: 34382456 PMCID: PMC9356772 DOI: 10.1177/10738584211037619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The visual system retains profound plastic potential in adulthood. In the current review, we summarize the evidence of preserved plasticity in the adult visual system during visual perceptual learning as well as both monocular and binocular visual deprivation. In each condition, we discuss how such evidence reflects two major cellular mechanisms of plasticity: Hebbian and homeostatic processes. We focus on how these two mechanisms work together to shape plasticity in the visual system. In addition, we discuss how these two mechanisms could be further revealed in future studies investigating cross-modal plasticity in the visual system.
Collapse
Affiliation(s)
- Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
8
|
The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Sci Rep 2022; 12:22425. [PMID: 36575212 PMCID: PMC9794786 DOI: 10.1038/s41598-022-23614-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2022] [Indexed: 12/28/2022] Open
Abstract
The chromodomain helicase DNA-binding protein CHD8 is the most frequently mutated gene in autism spectrum disorder. Despite its prominent disease involvement, little is known about its molecular function in the human brain. CHD8 is a chromatin regulator which binds to the promoters of actively transcribed genes through genomic targeting mechanisms which have yet to be fully defined. By generating a conditional loss-of-function and an endogenously tagged allele in human pluripotent stem cells, we investigated the molecular function and the interaction of CHD8 with chromatin in human neurons. Chromatin accessibility analysis and transcriptional profiling revealed that CHD8 functions as a transcriptional activator at its target genes in human neurons. Furthermore, we found that CHD8 chromatin targeting is cell context-dependent. In human neurons, CHD8 preferentially binds at ETS motif-enriched promoters. This enrichment is particularly prominent on the promoters of genes whose expression significantly changes upon the loss of CHD8. Indeed, among the ETS transcription factors, we identified ELK1 as being most highly correlated with CHD8 expression in primary human fetal and adult cortical neurons and most highly expressed in our stem cell-derived neurons. Remarkably, ELK1 was necessary to recruit CHD8 specifically to ETS motif-containing sites. These findings imply that ELK1 and CHD8 functionally cooperate to regulate gene expression and chromatin states at MAPK/ERK target genes in human neurons. Our results suggest that the MAPK/ERK/ELK1 axis potentially contributes to the pathogenesis caused by CHD8 mutations in human neurodevelopmental disorders.
Collapse
|
9
|
Ciganok-Hückels N, Jehasse K, Kricsfalussy-Hrabár L, Ritter M, Rüland T, Kampa BM. Postnatal development of electrophysiological and morphological properties in layer 2/3 and layer 5 pyramidal neurons in the mouse primary visual cortex. Cereb Cortex 2022; 33:5875-5884. [PMID: 36453454 PMCID: PMC10183751 DOI: 10.1093/cercor/bhac467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Eye-opening is a critical point for laminar maturation of pyramidal neurons (PNs) in primary visual cortex. Knowing both the intrinsic properties and morphology of PNs from the visual cortex during development is crucial to contextualize the integration of visual inputs at different age stages. Few studies have reported changes in intrinsic excitability in these neurons but were restricted to only one layer or one stage of cortical development. Here, we used in vitro whole-cell patch-clamp to investigate the developmental impact on electrophysiological properties of layer 2/3 and layer 5 PNs in mouse visual cortex. Additionally, we evaluated the morphological changes before and after eye-opening and compared these in adult mice. Overall, we found a decrease in intrinsic excitability in both layers after eye-opening which remained stable between juvenile and adult mice. The basal dendritic length increased in layer 5 neurons, whereas spine density increased in layer 2/3 neurons after eye-opening. These data show increased number of synapses after onset of sensory input paralleled with a reduced excitability, presumably as homeostatic mechanism. Altogether, we provide a database of the properties of PNs in mouse visual cortex by considering the layer- and time-specific changes of these neurons during sensory development.
Collapse
Affiliation(s)
- Natalja Ciganok-Hückels
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
| | | | - Mira Ritter
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
- Institute for Biological Information Processing (IBI-1), Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Björn M Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich , 52428 Jülich , Germany
| |
Collapse
|
10
|
Steinecke A, Bolton MM, Taniguchi H. Neuromodulatory control of inhibitory network arborization in the developing postnatal neocortex. SCIENCE ADVANCES 2022; 8:eabe7192. [PMID: 35263136 PMCID: PMC8906727 DOI: 10.1126/sciadv.abe7192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Interregional neuronal communication is pivotal to instructing and adjusting cortical circuit assembly. Subcortical neuromodulatory systems project long-range axons to the cortex and affect cortical processing. However, their roles and signaling mechanisms in cortical wiring remain poorly understood. Here, we explored whether and how the cholinergic system regulates inhibitory axonal ramification of neocortical chandelier cells (ChCs), which control spike generation by innervating axon initial segments of pyramidal neurons. We found that acetylcholine (ACh) signaling through nicotinic ACh receptors (nAChRs) and downstream T-type voltage-dependent calcium (Ca2+) channels cell-autonomously controls axonal arborization in developing ChCs through regulating filopodia initiation. This signaling axis shapes the basal Ca2+ level range in varicosities where filopodia originate. Furthermore, the normal development of ChC axonal arbors requires proper levels of activity in subcortical cholinergic neurons. Thus, the cholinergic system regulates inhibitory network arborization in the developing neocortex and may tune cortical circuit properties depending on early-life experiences.
Collapse
Affiliation(s)
- André Steinecke
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - McLean M. Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Bhandari A, Ward TW, Smith J, Van Hook MJ. Structural and functional plasticity in the dorsolateral geniculate nucleus of mice following bilateral enucleation. Neuroscience 2022; 488:44-59. [PMID: 35131394 PMCID: PMC8960354 DOI: 10.1016/j.neuroscience.2022.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.
Collapse
|
12
|
Moulin TC, Rayêe D, Schiöth HB. Dendritic spine density changes and homeostatic synaptic scaling: a meta-analysis of animal studies. Neural Regen Res 2022; 17:20-24. [PMID: 34100421 PMCID: PMC8451564 DOI: 10.4103/1673-5374.314283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity. This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders. One of the most studied homeostatic processes is synaptic scaling, where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors, neurotransmitters, and morphology. However, despite the comprehensive literature on the electrophysiological properties of homeostatic scaling, less is known about the structural adjustments that occur in the synapses and dendritic tree. In this study, we performed a meta-analysis of articles investigating the effects of chronic network excitation (synaptic downscaling) or inhibition (synaptic upscaling) on the dendritic spine density of neurons. Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling, independent of the intervention type. Then, we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY, USA
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Retinoid X Receptor α Regulates DHA-Dependent Spinogenesis and Functional Synapse Formation In Vivo. Cell Rep 2021; 31:107649. [PMID: 32433958 DOI: 10.1016/j.celrep.2020.107649] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/01/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
Coordinated intracellular and extracellular signaling is critical to synapse development and functional neural circuit wiring. Here, we report that unesterified docosahexaenoic acid (DHA) regulates functional synapse formation in vivo via retinoid X receptor α (Rxra) signaling. Using Rxra conditional knockout (cKO) mice and virus-mediated transient gene expression, we show that endogenous Rxra plays important roles in regulating spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. We further show that the effects of RXRA are mediated through its DNA-binding domain in a cell-autonomous and reversible manner. Moreover, unesterified DHA increases spine formation and excitatory synaptic transmission in vivo in an Rxra-dependent fashion. Rxra cKO mice generally behave normally but show deficits in behavior tasks associated with social memory. Together, these results demonstrate that unesterified DHA signals through RXRA to regulate spinogenesis and functional synapse formation, providing insight into the mechanism through which DHA promotes brain development and cognitive function.
Collapse
|
14
|
Bissen D, Kracht MK, Foss F, Hofmann J, Acker-Palmer A. EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity. Cell Rep 2021; 34:108923. [PMID: 33789115 PMCID: PMC8028307 DOI: 10.1016/j.celrep.2021.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Despite decades of work, much remains elusive about molecular events at the interplay between physiological and structural changes underlying neuronal plasticity. Here, we combined repetitive live imaging and expansion microscopy in organotypic brain slice cultures to quantitatively characterize the dynamic changes of the intracellular versus surface pools of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) across the different dendritic spine types and the shaft during hippocampal homeostatic plasticity. Mechanistically, we identify ephrinB2 and glutamate receptor interacting protein (GRIP) 1 as mediating AMPAR relocation to the mushroom spine surface following lesion-induced denervation. Moreover, stimulation with the ephrinB2 specific receptor EphB4 not only prevents the lesion-induced disappearance of mushroom spines but is also sufficient to shift AMPARs to the surface and rescue spine recovery in a GRIP1 dominant-negative background. Thus, our results unravel a crucial role for ephrinB2 during homeostatic plasticity and identify a potential pharmacological target to improve dendritic spine plasticity upon injury.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Maximilian Ken Kracht
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jan Hofmann
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Pchitskaya E, Bezprozvanny I. Dendritic Spines Shape Analysis-Classification or Clusterization? Perspective. Front Synaptic Neurosci 2020; 12:31. [PMID: 33117142 PMCID: PMC7561369 DOI: 10.3389/fnsyn.2020.00031] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic spines are small protrusions from the dendrite membrane, where contact with neighboring axons is formed in order to receive synaptic input. Changes in size, shape, and density of synaptic spines are associated with learning and memory, and observed after drug abuse in a variety of neurodegenerative, neurodevelopmental, and psychiatric disorders. Due to the preeminent importance of synaptic spines, there have been major efforts into developing techniques that enable visualization and analysis of dendritic spines in cultured neurons, in fixed slices and in intact brain tissue. The classification of synaptic spines into predefined morphological groups is a standard approach in neuroscience research, where spines are divided into fixed categories such as thin, mushroom, and stubby subclasses. This study examines accumulated evidence that supports the existence of dendritic spine shapes as a continuum rather than separated classes. Using new approaches and software tools we reflect on complex dendritic spine shapes, positing that understanding of their highly dynamic nature is required to perform analysis of their morphology. The study discusses and compares recently developed algorithms that rely on clusterization rather than classification, therefore enabling new levels of spine shape analysis. We reason that improved methods of analysis may help to investigate a link between dendritic spine shape and its function, facilitating future studies of learning and memory as well as studies of brain disorders.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
16
|
Anderson RM, Johnson SB, Lingg RT, Hinz DC, Romig-Martin SA, Radley JJ. Evidence for Similar Prefrontal Structural and Functional Alterations in Male and Female Rats Following Chronic Stress or Glucocorticoid Exposure. Cereb Cortex 2020; 30:353-370. [PMID: 31184364 PMCID: PMC7029687 DOI: 10.1093/cercor/bhz092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work of ours and others has documented regressive changes in neuronal architecture and function in the medial prefrontal cortex (mPFC) of male rats following chronic stress. As recent focus has shifted toward understanding whether chronic stress effects on mPFC are sexually dimorphic, here we undertake a comprehensive analysis to address this issue. First, we show that chronic variable stress (14-day daily exposure to different challenges) resulted in a comparable degree of adrenocortical hyperactivity, working memory impairment, and dendritic spine loss in mPFC pyramidal neurons in both sexes. Next, exposure of female rats to 21-day regimen of corticosterone resulted in a similar pattern of mPFC dendritic spine attrition and increase in spine volume. Finally, we examined the effects of another widely used regimen, chronic restraint stress (CRS, 21-day of daily 6-h restraint), on dendritic spine changes in mPFC in both sexes. CRS resulted in response decrements in adrenocortical output (habituation), and induced a pattern of consistent, but less widespread, dendritic spine loss similar to the foregoing challenges. Our data suggest that chronic stress or glucocorticoid exposure induces a relatively undifferentiated pattern of structural and functional alterations in mPFC in both males and females.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Shane B Johnson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ryan T Lingg
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Dalton C Hinz
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc Natl Acad Sci U S A 2019; 116:21812-21820. [PMID: 31591211 DOI: 10.1073/pnas.1914661116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.
Collapse
|
18
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
19
|
Hobbiss AF, Ramiro-Cortés Y, Israely I. Homeostatic Plasticity Scales Dendritic Spine Volumes and Changes the Threshold and Specificity of Hebbian Plasticity. iScience 2018; 8:161-174. [PMID: 30317078 PMCID: PMC6187013 DOI: 10.1016/j.isci.2018.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022] Open
Abstract
Information is encoded in neural networks through changes in synaptic weights. Synaptic learning rules involve a combination of rapid Hebbian plasticity and slower homeostatic synaptic plasticity that regulates neuronal activity through global synaptic scaling. Hebbian and homeostatic plasticity have been extensively investigated, whereas much less is known about their interaction. Here we investigated structural and functional consequences of homeostatic plasticity at dendritic spines of mouse hippocampal neurons. We found that prolonged activity blockade induced spine growth, paralleling synaptic strength increases. Following activity blockade, glutamate uncaging-mediated stimulation at single spines led to size-dependent structural potentiation: smaller spines underwent robust growth, whereas larger spines remained unchanged. Moreover, spines near the stimulated spine exhibited volume changes following homeostatic plasticity, indicating that there was a breakdown of input specificity following homeostatic plasticity. Overall, these findings demonstrate that Hebbian and homeostatic plasticity interact to shape neural connectivity through non-uniform structural plasticity at inputs. Chronic activity blockade leads to enlarged hippocampal spines and structural scaling Homeostatic plasticity affects subsequent Hebbian plasticity according to size of spines Neighbors also grow after potentiation of single spines, compromising input specificity
Collapse
Affiliation(s)
| | - Yazmin Ramiro-Cortés
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n, Ciudad de México 04510, México
| | - Inbal Israely
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Department of Pathology and Cell Biology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neuroscience, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Moore AR, Richards SE, Kenny K, Royer L, Chan U, Flavahan K, Van Hooser SD, Paradis S. Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. eLife 2018; 7:e33092. [PMID: 29809135 PMCID: PMC6010341 DOI: 10.7554/elife.33092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.
Collapse
Affiliation(s)
- Anna R Moore
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Sarah E Richards
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Katelyn Kenny
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| | - Leandro Royer
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Urann Chan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Kelly Flavahan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Suzanne Paradis
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| |
Collapse
|
21
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
22
|
Weng FJ, Garcia RI, Lutzu S, Alviña K, Zhang Y, Dushko M, Ku T, Zemoura K, Rich D, Garcia-Dominguez D, Hung M, Yelhekar TD, Sørensen AT, Xu W, Chung K, Castillo PE, Lin Y. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation. Neuron 2018; 97:1137-1152.e5. [PMID: 29429933 PMCID: PMC5843542 DOI: 10.1016/j.neuron.2018.01.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/26/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
Abstract
Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation.
Collapse
Affiliation(s)
- Feng-Ju Weng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Rodrigo I Garcia
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuxiang Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Margaret Dushko
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Taeyun Ku
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Khaled Zemoura
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - David Rich
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Dario Garcia-Dominguez
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Matthew Hung
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Tushar D Yelhekar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Andreas Toft Sørensen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
23
|
Mulholland PJ, Teppen TL, Miller KM, Sexton HG, Pandey SC, Swartzwelder HS. Donepezil Reverses Dendritic Spine Morphology Adaptations and Fmr1 Epigenetic Modifications in Hippocampus of Adult Rats After Adolescent Alcohol Exposure. Alcohol Clin Exp Res 2018; 42:706-717. [PMID: 29336496 DOI: 10.1111/acer.13599] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adolescent intermittent ethanol (AIE) exposure produces persistent impairments in cholinergic and epigenetic signaling and alters markers of synapses in the hippocampal formation, effects that are thought to drive hippocampal dysfunction in adult rodents. Donepezil (Aricept), a cholinesterase inhibitor, is used clinically to ameliorate memory-related cognitive deficits. Given that donepezil also prevents morphological impairment in preclinical models of neuropsychiatric disorders, we investigated the ability of donepezil to reverse morphological and epigenetic adaptations in the hippocampus of adult rats exposed to AIE. Because of the known relationship between dendritic spine density and morphology with the fragile X mental retardation 1 (Fmr1) gene, we also assessed Fmr1 expression and its epigenetic regulation in hippocampus after AIE and donepezil pretreatment. METHODS Adolescent rats were administered intermittent ethanol for 16 days starting on postnatal day 30. Rats were treated with donepezil (2.5 mg/kg) once a day for 4 days starting 20 days after the completion of AIE exposure. Brains were dissected out after the fourth donepezil dose, and spine analysis was completed in dentate gyrus granule neurons. A separate cohort of rats, treated identically, was used for molecular studies. RESULTS AIE exposure significantly reduced dendritic spine density and altered morphological characteristics of subclasses of dendritic spines. AIE exposure also increased mRNA levels and H3-K27 acetylation occupancy of the Fmr1 gene in hippocampus. Treatment of AIE-exposed adult rats with donepezil reversed both the dendritic spine adaptations and epigenetic modifications and expression of Fmr1. CONCLUSIONS These findings indicate that AIE produces long-lasting decreases in dendritic spine density and changes in Fmr1 gene expression in the hippocampal formation, suggesting morphological and epigenetic mechanisms underlying previously reported behavioral deficits after AIE. The reversal of these effects by subchronic, post-AIE donepezil treatment indicates that these AIE effects can be reversed by up-regulating cholinergic function.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Tara L Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Kelsey M Miller
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina
| | - Hannah G Sexton
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
24
|
Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss. Neuron 2017; 96:871-882.e5. [PMID: 29107520 PMCID: PMC5697914 DOI: 10.1016/j.neuron.2017.09.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
Abstract
Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.
Collapse
|
25
|
Rechichi C, De Mojà G, Aragona P. Video Game Vision Syndrome: A New Clinical Picture in Children? J Pediatr Ophthalmol Strabismus 2017; 54:346-355. [PMID: 28850642 DOI: 10.3928/01913913-20170510-01] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE To examine a possible relationship between exposure to video games/electronic screens and visual issues in children between 3 and 10 years of age. METHODS An observational, cross-sectional study of a population of children using video games was employed. All patients between 3 and 10 years of age were recruited at an outpatient unit accredited by the Italian Regional Health Service. Three hundred twenty children (159 boys and 161 girls; mean age = 6.9 ± 2 years) were observed. Ophthalmological examination included assessment of stereoscopic vision on Lang-Stereotests I and II (LANG-STEREOTEST AG, Küsnacht, Switzerland) and identification of the dominant eye using the Dolman method. Furthermore, a questionnaire was used to record asthenopic symptoms and daily exposure to video games and electronic screens. Two groups of children were examined according to the average amount of time spent playing video games daily: children who played video games for less than 30 minutes per day and not every day (control group) and children who played video games for 30 minutes or more every day (video game group). Both groups were then divided into two subgroups: children using other types of electronic screens (eg, televisions, computers, tablets, and smartphones) for less than 3 hours daily (low electronic use subgroup) and children using other types of electronic screens for 3 hours or more per day (high electronic use subgroup). RESULTS Asthenopia (especially headache, eyelid tic, transient diplopia, and dizziness), absence of fine stereopsis, and refractive errors were statistically more frequent (mainly in the dominant eye) in children in the video game group. CONCLUSIONS These symptoms were frequent and peculiar in the video game group and might be part of a video game vision syndrome that has not been defined yet. It is important to recognize these signs as possible functional disorders to avoid erroneous diagnostic and therapeutic interventions. [J Pediatr Ophthalmol Strabismus. 2017;54(6):346-355.].
Collapse
|
26
|
Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci Rep 2017; 7:4977. [PMID: 28694464 PMCID: PMC5504056 DOI: 10.1038/s41598-017-05337-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022] Open
Abstract
It is well established that visual deprivation has a profound impact on the responsiveness of neurons in the developing visual cortex. The effect of visual deprivation on synaptic connectivity remains unclear. Using transcranial two-photon microscopy, we examined the effect of visual deprivation and subsequent recovery on dendritic spine remodeling of layer 5 pyramidal neurons in the mouse primary visual cortex. We found that monocular deprivation (MD), but not binocular deprivation (BD), increased dendritic spine elimination over 3 days in the binocular region of 4-week-old adolescent mice. This MD-induced dendritic spine elimination persisted during subsequent 2-4 days of binocular recovery. Furthermore, we found that average dendritic spine sizes were decreased and increased following 3-day MD and BD, respectively. These spine size changes induced by MD or BD tended to be reversed during subsequent binocular recovery. Taken together, these findings reveal differential effects of MD and BD on synaptic connectivity of layer 5 pyramidal neurons and underscore the persistent impact of MD on synapse loss in the developing visual cortex.
Collapse
|
27
|
Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, Gerstner W, Haydon PG, Hübener M, Lee HK, Lisman JE, Rose T, Sengpiel F, Stellwagen D, Stryker MP, Turrigiano GG, van Rossum MC. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160158. [PMID: 28093552 PMCID: PMC5247590 DOI: 10.1098/rstb.2016.0158] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Lu Chen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kevin Fox
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - Wulfram Gerstner
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Mark Hübener
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tobias Rose
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Frank Sengpiel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - David Stellwagen
- Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Michael P Stryker
- Sandler Neurosciences Center, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
28
|
Ghani MU, Mesadi F, Kanık SD, Argunşah AÖ, Hobbiss AF, Israely I, Ünay D, Taşdizen T, Çetin M. Dendritic spine classification using shape and appearance features based on two-photon microscopy. J Neurosci Methods 2016; 279:13-21. [PMID: 27998713 DOI: 10.1016/j.jneumeth.2016.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. The first step towards understanding the structure-function relationships is to classify spine shapes into the main spine types suggested in the literature. Due to the lack of reliable automated analysis tools, classification is mostly performed manually, which is a time-intensive task and prone to subjectivity. NEW METHOD We propose an automated method to classify dendritic spines using shape and appearance features based on challenging two-photon laser scanning microscopy (2PLSM) data. Disjunctive Normal Shape Models (DNSM) is a recently proposed parametric shape representation. We perform segmentation of spine images by applying DNSM and use the resulting representation as shape features. Furthermore, we use Histogram of oriented gradients (HOG) to extract appearance features. In this context, we propose a kernel density estimation (KDE) based framework for dendritic spine classification, which uses these shape and appearance features. RESULTS Our shape and appearance features based approach combined with Neural Network (NN) correctly classifies 87.06% of spines on a dataset of 456 spines. COMPARISON WITH EXISTING METHODS Our proposed method outperforms standard morphological feature based approaches. Our KDE based framework also enables neuroscientists to analyze the separability of spine shape classes in the likelihood ratio space, which leads to further insights about nature of the spine shape analysis problem. CONCLUSIONS Results validate that performance of our proposed approach is comparable to a human expert. It also enable neuroscientists to study shape statistics in the likelihood ratio space.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Signal Processing and Information Systems Lab., Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | - Fitsum Mesadi
- Electrical and Computer Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Sümeyra Demir Kanık
- Signal Processing and Information Systems Lab., Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Özgür Argunşah
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Anna Felicity Hobbiss
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inbal Israely
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Devrim Ünay
- Biomedical Engineering Department, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
| | - Tolga Taşdizen
- Electrical and Computer Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Müjdat Çetin
- Signal Processing and Information Systems Lab., Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
29
|
The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nat Commun 2016; 7:13282. [PMID: 27796283 PMCID: PMC5095516 DOI: 10.1038/ncomms13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023] Open
Abstract
Dendritic spine stabilization depends on afferent synaptic input and requires changes in actin cytoskeleton dynamics and protein synthesis. However, the underlying molecular mechanism remains unclear. Here we report the identification of ‘calmodulin kinase-like vesicle-associated' (CaMKv), a pseudokinase of the CaMK family with unknown function, as a synaptic protein crucial for dendritic spine maintenance. CaMKv mRNA localizes at dendrites, and its protein synthesis is regulated by neuronal activity. CaMKv function is inhibited upon phosphorylation by cyclin-dependent kinase 5 (Cdk5) at Thr345. Furthermore, CaMKv knockdown in mouse hippocampal CA1 pyramidal neurons impairs synaptic transmission and plasticity in vivo, resulting in hyperactivity and spatial memory impairment. These findings collectively indicate that the precise regulation of CaMKv through activity-dependent synthesis and post-translational phosphorylation is critical for dendritic spine maintenance, revealing an unusual signalling pathway in the regulation of synaptic transmission and brain function that involves a pseudokinase. CaMKv is a pseduokinase of unknown function. Here, the authors identify the protein as a substrate of the protein kinase Cdk5, and show that CaMKv is synthesized in response to neural activity and plays an important role in maintaining dendritic spines, synaptic plasticity, and hippocampal memory via RhoA inhibition.
Collapse
|
30
|
Dickstein DL, Dickstein DR, Janssen WGM, Hof PR, Glaser JR, Rodriguez A, O'Connor N, Angstman P, Tappan SJ. Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360. ACTA ACUST UNITED AC 2016; 77:1.27.1-1.27.21. [PMID: 27696360 DOI: 10.1002/cpns.16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Determining the density and morphology of dendritic spines is of high biological significance given the role of spines in synaptic plasticity and in neurodegenerative and neuropsychiatric disorders. Precise quantification of spines in three dimensions (3D) is essential for understanding the structural determinants of normal and pathological neuronal function. However, this quantification has been restricted to time- and labor-intensive methods such as electron microscopy and manual counting, which have limited throughput and are impractical for studies of large samples. While there have been some automated software packages that quantify spine number, they are limited in terms of their characterization of spine structure. This unit presents methods for objective dendritic spine morphometric analysis by providing image acquisition parameters needed to ensure optimal data series for proper spine detection, characterization, and quantification with Neurolucida 360. These protocols will be a valuable reference for scientists working towards quantifying and characterizing spines. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel R Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William G M Janssen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | |
Collapse
|
31
|
Uys JD, McGuier NS, Gass JT, Griffin WC, Ball LE, Mulholland PJ. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines. Addict Biol 2016; 21:560-74. [PMID: 25787124 DOI: 10.1111/adb.12238] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons.
Collapse
Affiliation(s)
- Joachim D. Uys
- Department of Cell and Molecular Pharmacology; Medical University of South Carolina; Charleston SC USA
| | - Natalie S. McGuier
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Justin T. Gass
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - William C. Griffin
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology; Medical University of South Carolina; Charleston SC USA
| | - Patrick J. Mulholland
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
32
|
Raab-Graham KF, Workman ER, Namjoshi S, Niere F. Pushing the threshold: How NMDAR antagonists induce homeostasis through protein synthesis to remedy depression. Brain Res 2016; 1647:94-104. [PMID: 27125595 DOI: 10.1016/j.brainres.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron's critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies-deep brain stimulation and NMDAR antagonists-alter the neuron's "depressed" state by pushing the neuron's current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| | - Emily R Workman
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Sanjeev Namjoshi
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
33
|
Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathol 2016; 131:235-246. [PMID: 26724934 PMCID: PMC4713725 DOI: 10.1007/s00401-015-1527-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/27/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
To successfully treat Alzheimer's disease (AD), pathophysiological events in preclinical stages need to be identified. Preclinical AD refers to the stages that exhibit amyloid deposition in the brain but have normal cognitive function, which are replicated in young adult APPswe/PS1deltaE9 (deltaE9) mice. By long-term in vivo two-photon microscopy, we demonstrate impaired adaptive spine plasticity in these transgenic mice illustrated by their failure to increase dendritic spine density and form novel neural connections when housed in enriched environment (EE). Decrease of amyloid plaques by reducing BACE1 activity restores the gain of spine density upon EE in deltaE9 mice, but not the remodeling of neural networks. On the other hand, anti-inflammatory treatment with pioglitazone or interleukin 1 receptor antagonist in deltaE9 mice successfully rescues the impairments in increasing spine density and remodeling of neural networks during EE. Our data suggest that neuroinflammation disrupts experience-dependent structural plasticity of dendritic spines in preclinical stages of AD.
Collapse
|
34
|
Dendritic Spine Shape Analysis: A Clustering Perspective. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-46604-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere. Brain Struct Funct 2015; 221:3405-26. [PMID: 26420278 DOI: 10.1007/s00429-015-1109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing.
Collapse
|
36
|
Kelly EA, Russo AS, Jackson CD, Lamantia CE, Majewska AK. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice. Front Cell Neurosci 2015; 9:369. [PMID: 26441540 PMCID: PMC4585116 DOI: 10.3389/fncel.2015.00369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/04/2015] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex.
Collapse
Affiliation(s)
- Emily A Kelly
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Amanda S Russo
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Cory D Jackson
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Cassandra E Lamantia
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| | - Ania K Majewska
- Center for Visual Science, School of Medicine and Dentistry, Department of Neurobiology and Anatomy, University of Rochester Rochester, NY, USA
| |
Collapse
|
37
|
Barnes SJ, Sammons RP, Jacobsen RI, Mackie J, Keller GB, Keck T. Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo. Neuron 2015; 86:1290-303. [PMID: 26050045 PMCID: PMC4460189 DOI: 10.1016/j.neuron.2015.05.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
Homeostatic regulation has been shown to restore cortical activity in vivo following sensory deprivation, but it is unclear whether this recovery is uniform across all cells or specific to a subset of the network. To address this issue, we used chronic calcium imaging in behaving adult mice to examine the activity of individual excitatory and inhibitory neurons in the same region of the layer 2/3 monocular visual cortex following enucleation. We found that only a fraction of excitatory neurons homeostatically recover activity after deprivation and inhibitory neurons show no recovery. Prior to deprivation, excitatory cells that did recover were more likely to have significantly correlated activity with other recovering excitatory neurons, thus forming a subnetwork of recovering neurons. These network level changes are accompanied by a reduction in synaptic inhibition onto all excitatory neurons, suggesting that both synaptic mechanisms and subnetwork activity are important for homeostatic recovery of activity after deprivation. In adult cortex, a subset of excitatory neurons recover activity after enucleation Inhibitory neurons do not homeostatically recover activity over 72 hr Excitatory neurons recover in subnetwork specific manner Recovery of activity is facilitated by reduced synaptic inhibition
Collapse
Affiliation(s)
- Samuel J Barnes
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House 4(th) Floor, London SE1 1UL, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Rosanna P Sammons
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House 4(th) Floor, London SE1 1UL, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - R Irene Jacobsen
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House 4(th) Floor, London SE1 1UL, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Jennifer Mackie
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House 4(th) Floor, London SE1 1UL, UK
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Tara Keck
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House 4(th) Floor, London SE1 1UL, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.
| |
Collapse
|
38
|
Gupta SC, Yadav R, Pavuluri R, Morley BJ, Stairs DJ, Dravid SM. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity. Neuropharmacology 2015; 93:274-84. [PMID: 25721396 DOI: 10.1016/j.neuropharm.2015.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023]
Abstract
The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC and hippocampus. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2B-containing receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Subhash C Gupta
- Department of Pharmacology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Roopali Yadav
- Department of Pharmacology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Barbara J Morley
- Neurochemistry Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68178, USA
| | - Dustin J Stairs
- Department of Psychology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Shashank M Dravid
- Department of Pharmacology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
39
|
Yin J, Yuan Q. Structural homeostasis in the nervous system: a balancing act for wiring plasticity and stability. Front Cell Neurosci 2015; 8:439. [PMID: 25653587 PMCID: PMC4299450 DOI: 10.3389/fncel.2014.00439] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.
Collapse
Affiliation(s)
- Jun Yin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
40
|
Luczynski P, Moquin L, Gratton A. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 2015; 18:654-67. [PMID: 26364921 DOI: 10.3109/10253890.2015.1073256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.
Collapse
Affiliation(s)
- Pauline Luczynski
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| | - Luc Moquin
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| | - Alain Gratton
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| |
Collapse
|
41
|
De Bartolo P, Florenzano F, Burello L, Gelfo F, Petrosini L. Activity-dependent structural plasticity of Purkinje cell spines in cerebellar vermis and hemisphere. Brain Struct Funct 2014; 220:2895-904. [DOI: 10.1007/s00429-014-0833-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/24/2014] [Indexed: 12/01/2022]
|
42
|
van der Zee EA. Synapses, spines and kinases in mammalian learning and memory, and the impact of aging. Neurosci Biobehav Rev 2014; 50:77-85. [PMID: 24998408 DOI: 10.1016/j.neubiorev.2014.06.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 02/04/2023]
Abstract
Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.
Collapse
Affiliation(s)
- Eddy A van der Zee
- Department of Molecular Neurobiology, Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
43
|
Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 2013; 80:327-34. [PMID: 24139037 DOI: 10.1016/j.neuron.2013.08.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Homeostatic plasticity is important to maintain a set level of activity in neuronal circuits and has been most extensively studied in cell cultures following activity blockade. It is still unclear, however, whether activity changes associated with mechanisms of homeostatic plasticity occur in vivo, for example after changes in sensory input. Here, we show that activity levels in the visual cortex are significantly decreased after sensory deprivation by retinal lesions, followed by a gradual increase in activity levels in the 48 hr after deprivation. These activity changes are associated with synaptic scaling, manifested in vitro by an increase in mEPSC amplitude and in vivo by an increase in spine size. Together, these data show that homeostatic activity changes occur in vivo in parallel with synaptic scaling.
Collapse
Affiliation(s)
- Tara Keck
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Waselus M, Flagel SB, Jedynak JP, Akil H, Robinson TE, Watson SJ. Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats. Neuroscience 2013; 248:571-84. [PMID: 23811073 PMCID: PMC3859827 DOI: 10.1016/j.neuroscience.2013.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/17/2023]
Abstract
Repeated exposure to drugs of abuse is associated with structural plasticity in brain reward pathways. Rats selectively bred for locomotor response to novelty differ on a number of neurobehavioral dimensions relevant to addiction. This unique genetic animal model was used here to examine both pre-existing differences and long-term consequences of repeated cocaine treatment on structural plasticity. Selectively bred high-responder (bHR) and low-responder (bLR) rats received repeated saline or cocaine injections for 9 consecutive days. Escalating doses of cocaine (7.5, 15 and 30 mg/kg) were administered on the first (day 1) and last (day 9) days of treatment and a single injection of the intermediate dose (15 mg/kg) was given on days 2-8. Motor activity in response to escalating doses of cocaine was compared on the first and last days of treatment to assess the acute and sensitized response to the drug. Following prolonged cocaine abstinence (28 days), spine density was examined on terminal dendrites of medium spiny neurons in the nucleus accumbens core. Relative to bLRs, bHRs exhibited increased psychomotor activation in response to both the acute and repeated effects of cocaine. There were no differences in spine density between bHR and bLR rats under basal conditions or following repeated saline treatment. However, spine density differed markedly between these two lines following prolonged cocaine abstinence. All spine types were decreased in cocaine-treated bHRs, while only mushroom spines were decreased in bLRs that received cocaine. Changes in spine density occurred specifically near the branch point of terminal dendrites. These findings indicate that structural plasticity associated with prolonged cocaine abstinence varies markedly in two selected strains of rats that vary on numerous traits relevant to addiction. Thus, genetic factors that contribute to individual variation in the behavioral response to cocaine also influence cocaine-induced structural plasticity.
Collapse
Affiliation(s)
- M Waselus
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - S B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - J P Jedynak
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - H Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - T E Robinson
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - S J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system. Neural Plast 2013; 2013:683909. [PMID: 24024041 PMCID: PMC3759247 DOI: 10.1155/2013/683909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022] Open
Abstract
The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.
Collapse
|
46
|
FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke. PLoS One 2013; 8:e70124. [PMID: 23936150 PMCID: PMC3729514 DOI: 10.1371/journal.pone.0070124] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. METHODS We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. RESULTS FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. CONCLUSION Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.
Collapse
|
47
|
English CN, Vigers AJ, Jones KR. Genetic evidence that brain-derived neurotrophic factor mediates competitive interactions between individual cortical neurons. Proc Natl Acad Sci U S A 2012; 109:19456-61. [PMID: 23129644 PMCID: PMC3511098 DOI: 10.1073/pnas.1206492109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a secreted protein important for development and function of neocortical circuitry. Although it is well established that BDNF contributes to the sculpting of dendrite structure and modulation of synapse strength, the range and directionality of BDNF signaling underlying these functions are incompletely understood. To gain insights into the role of BDNF at the level of individual neurons, we tested the cell-autonomous requirements for Bdnf in visual cortical layer 2/3 neurons. We found that the number of functional Bdnf alleles a neuron carries relative to the prevailing genotype determines its density of dendritic spines, the structures at which most excitatory synapses are made. This requirement for Bdnf exists both during postnatal development and in adulthood, suggesting that the amount of BDNF a neuron is capable of producing determines its success in ongoing competition in the environment of the neocortex. Our results suggest that BDNF may perform a long-sought function for a secreted growth factor in mediating the competitive events that shape individual neurons and their circuits.
Collapse
Affiliation(s)
- Christopher N. English
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Alison J. Vigers
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Kevin R. Jones
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
48
|
Cheetham CEJ, Barnes SJ, Albieri G, Knott GW, Finnerty GT. Pansynaptic enlargement at adult cortical connections strengthened by experience. ACTA ACUST UNITED AC 2012; 24:521-31. [PMID: 23118196 PMCID: PMC3888373 DOI: 10.1093/cercor/bhs334] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic transmission between neurons become persistent, thereby enabling the storage of previous experience. A long-standing hypothesis is that altered synaptic strength is maintained by structural modifications to synapses. However, the extent of synaptic modifications and the changes in neurotransmission that the modifications support remain unclear. To address these questions, we recorded from pairs of synaptically connected layer 2/3 pyramidal neurons in the barrel cortex and imaged their contacts with high-resolution confocal microscopy after altering sensory experience by whisker trimming. Excitatory connections strengthened by experience exhibited larger axonal varicosities, dendritic spines, and interposed contact zones. Electron microscopy showed that contact zone size was strongly correlated with postsynaptic density area. Therefore, our findings indicate that whole synapses are larger at strengthened connections. Synaptic transmission was both stronger and more reliable following experience-dependent synapse enlargement. Hence, sensory experience modified both presynaptic and postsynaptic function. Our findings suggest that the enlargement of synaptic contacts is an integral part of long-lasting strengthening of cortical connections and, hence, of information storage in the neocortex.
Collapse
Affiliation(s)
- Claire E J Cheetham
- MRC Centre for Neurodegeneration Research, King's College London, London, UK
| | | | | | | | | |
Collapse
|
49
|
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. J Neurosci 2012; 32:10562-73. [PMID: 22855806 DOI: 10.1523/jneurosci.0622-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are extensively refined by sensory experience during postnatal development. How the maturation of recurrent cortical synapses may contribute to events regulating the postnatal refinement of neocortical microcircuits remains controversial. Here we show that, in the main input layer of rat primary visual cortex, layer 4 (L4), recurrent excitatory synapses are endowed with multiple, developmentally regulated mechanisms for induction and expression of excitatory synaptic plasticity. Maturation of L4 synapses and visual experience lead to a sharp switch in sign and mechanisms for plasticity at recurrent excitatory synapses in L4 at the onset of the critical period for visual cortical plasticity. The state of maturation of excitatory pyramidal neurons allows neurons to engage different mechanisms for plasticity in response to the same induction paradigm. Experience is determinant for the maturation of L4 synapses, as well as for the transition between forms of plasticity and the mechanisms they may engage. These results indicate a tight correlation between the effects of sensory drive and maturation on cortical neurons and provide a new set of cellular mechanisms engaged in the postnatal refinement of cortical circuits.
Collapse
|
50
|
Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC. SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 2012; 7:e47073. [PMID: 23056585 PMCID: PMC3464248 DOI: 10.1371/journal.pone.0047073] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 09/12/2012] [Indexed: 12/05/2022] Open
Abstract
Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.
Collapse
Affiliation(s)
- Juan F. Codocedo
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Claudio Allard
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Juan A. Godoy
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|