1
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Faller KME, Chaytow H, Gillingwater TH. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 2025; 21:86-102. [PMID: 39743546 DOI: 10.1038/s41582-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: metabolic insights into microglia functions. J Neuroinflammation 2024; 21:300. [PMID: 39551788 PMCID: PMC11571669 DOI: 10.1186/s12974-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Aysika Das
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Deepak Kumar Kaushik
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
6
|
Chen HH, Yeo HT, Huang YH, Tsai LK, Lai HJ, Tsao YP, Chen SL. AAV-NRIP gene therapy ameliorates motor neuron degeneration and muscle atrophy in ALS model mice. Skelet Muscle 2024; 14:17. [PMID: 39044305 PMCID: PMC11267858 DOI: 10.1186/s13395-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsin-Tung Yeo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yun-Hsin Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
7
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
8
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
9
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
10
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
12
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Ramirez-Jarquin UN, Lopez-Huerta VG, Tapia R. Characterization of Mitochondria Degeneration in Spinal Motor Neurons Triggered by Chronic Over-activation of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors in the Rat Spinal Cord in Vivo. Neuroscience 2023; 521:31-43. [PMID: 37085005 DOI: 10.1016/j.neuroscience.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Mitochondrial damage is a central mechanism involved in neurological disorders as Alzheimer's, and Parkinson's diseases and amyotrophic lateral sclerosis. Energy production is the most studied mitochondrial function; however, mitochondria are also involved in processes like calcium buffering homeostasis, and cell death control during apoptosis and necrosis. Using transmission electron microscopy, in this in vivo study in male rats, we describe ultrastructural mitochondrial alterations of spinal motor neurons along chronic AMPA-induced excitotoxicity, which has been described as one of the most relevant mechanisms in ALS disease. Mitochondrial alterations begin with a crest swelling, which progresses to a full mitochondrial swelling and crest disruption. Changes on the mitochondrial morphology from elongated to a circular shape also occur along the AMPA-excitotoxicity process. In addition, by combining the TUNEL assay and immunohistochemistry for mitochondrial enzymes, we show evidence of mitochondrial DNA damage. Evidence of mitochondrial alterations during an AMPA-excitotoxic event is relevant because resembles the mitochondrial alterations previously reported in ALS patients and in transgenic familial ALS models, suggesting that a chronic excitotoxic model can be related to sporadic ALS (as has been shown in recent papers), which represent more than the 90% of the ALS cases. Understanding the mechanisms involved in motor neuron degenerative process, such as the ultrastructural mitochondrial changes permits to design strategies for MN-degeneration treatments in ALS.
Collapse
Affiliation(s)
- Uri Nimrod Ramirez-Jarquin
- Dept. of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Belisario Domínguez Secc 16, Tlalpan, 14080 México City, Mexico; División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, Mexico.
| | - Violeta Gisselle Lopez-Huerta
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, Mexico.
| |
Collapse
|
15
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
16
|
Predicting the prevalence of complex genetic diseases from individual genotype profiles using capsule networks. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-022-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
AbstractDiseases that have a complex genetic architecture tend to suffer from considerable amounts of genetic variants that, although playing a role in the disease, have not yet been revealed as such. Two major causes for this phenomenon are genetic variants that do not stack up effects, but interact in complex ways; in addition, as recently suggested, the omnigenic model postulates that variants interact in a holistic manner to establish disease phenotypes. Here we present DiseaseCapsule, as a capsule-network-based approach that explicitly addresses to capture the hierarchical structure of the underlying genome data, and has the potential to fully capture the non-linear relationships between variants and disease. DiseaseCapsule is the first such approach to operate in a whole-genome manner when predicting disease occurrence from individual genotype profiles. In experiments, we evaluated DiseaseCapsule on amyotrophic lateral sclerosis (ALS) and Parkinson’s disease, with a particular emphasis on ALS, which is known to have a complex genetic architecture and is affected by 40% missing heritability. On ALS, DiseaseCapsule achieves 86.9% accuracy on hold-out test data in predicting disease occurrence, thereby outperforming all other approaches by large margins. Also, DiseaseCapsule required sufficiently less training data for reaching optimal performance. Last but not least, the systematic exploitation of the network architecture yielded 922 genes of particular interest, and 644 ‘non-additive’ genes that are crucial factors in DiseaseCapsule, but remain masked within linear schemes.
Collapse
|
17
|
Age-associated alterations of brain mitochondria energetics. Biochem Biophys Res Commun 2023; 643:1-7. [PMID: 36584587 DOI: 10.1016/j.bbrc.2022.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
The study aimed to explore the role of age-associated elevated cytosolic Ca2+ in changes of brain mitochondria energetic processes. Two groups of rats, young adults (4 months) and advanced old (24 months), were evaluated for potential alterations of mitochondrial parameters, the oxidative phosphorylation (OxPhos), membrane potential, calcium retention capacity, activity of glutamate/aspartate carrier (aralar), and ROS formation. We demonstrated that the brain mitochondria of older animals have a lower resistance to Ca2+ stress with resulting consequences. The suppressed complex I OxPhos and decreased membrane potential were accompanied by reduction of the Ca2+ threshold required for induction of mPTP. The Ca2+ binding sites of mitochondrial aralar mediated a lower activity of old brain mitochondria. The altered interaction between aralar and mPTP may underlie mitochondrial dysregulation leading to energetic depression during aging. At the advanced stages of aging, the declined metabolism is accompanied by the diminished oxidative background.
Collapse
|
18
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
19
|
Peggion C, Scalcon V, Massimino ML, Nies K, Lopreiato R, Rigobello MP, Bertoli A. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants (Basel) 2022; 11:614. [PMID: 35453299 PMCID: PMC9032988 DOI: 10.3390/antiox11040614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. While the exact causes of ALS are still unclear, the discovery that familial cases of ALS are related to mutations in the Cu/Zn superoxide dismutase (SOD1), a key antioxidant enzyme protecting cells from the deleterious effects of superoxide radicals, suggested that alterations in SOD1 functionality and/or aberrant SOD1 aggregation strongly contribute to ALS pathogenesis. A new scenario was opened in which, thanks to the generation of SOD1 related models, different mechanisms crucial for ALS progression were identified. These include excitotoxicity, oxidative stress, mitochondrial dysfunctions, and non-cell autonomous toxicity, also implicating altered Ca2+ metabolism. While most of the literature considers motor neurons as primary target of SOD1-mediated effects, here we mainly discuss the effects of SOD1 mutations in non-neuronal cells, such as glial and skeletal muscle cells, in ALS. Attention is given to the altered redox balance and Ca2+ homeostasis, two processes that are strictly related with each other. We also provide original data obtained in primary myocytes derived from hSOD1(G93A) transgenic mice, showing perturbed expression of Ca2+ transporters that may be responsible for altered mitochondrial Ca2+ fluxes. ALS-related SOD1 mutants are also responsible for early alterations of fundamental biological processes in skeletal myocytes that may impinge on skeletal muscle functions and the cross-talk between muscle cells and motor neurons during disease progression.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | | | - Kelly Nies
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol Metab 2022; 60:101468. [PMID: 35248787 PMCID: PMC8958550 DOI: 10.1016/j.molmet.2022.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Methods Results Conclusions Our work is the first to perform a comprehensive and quantitative analysis of intermediary metabolism in neurons in the setting of fALS causing gene products. Because the cardinal feature of ALS is death of motor neurons, these new studies are directly relevant to the pathogenesis of ALS. Our functional interrogations begin to unpack how metabolic re-wiring is induced by fALS genes and it will be very interesting, in the future, to gain insight in amino acid fueling of the TCA cycle. We suspect pleiotropic effects of amino acid fueling, and this may lead to very targeted therapeutic interventions.
Collapse
|
21
|
Dong Z, Yao X. Insight of the role of mitochondrial calcium homeostasis in hepatic insulin resistance. Mitochondrion 2021; 62:128-138. [PMID: 34856389 DOI: 10.1016/j.mito.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/06/2022]
Abstract
Due to the rapid rise in the prevalence of chronic metabolic disease, more and more clinicians and basic medical researchers focus their eyesight on insulin resistance (IR), an early and central event of metabolic diseases. The occurrence and development of IR are primarily caused by excessive energy intake and reduced energy consumption. Liver is the central organ that controls glucose homeostasis, playing a considerable role in systemic IR. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are being blamed as the direct reason for the development of IR. Mitochondrial Ca2+ plays a fundamental role in maintaining proper mitochondrial function and redox stability. The maintaining of mitochondrial Ca2+ homeostasis requires the cooperation of ion channels in the inner and outer membrane of mitochondria, such as mitochondrial calcium uniporter complex (MCUC) and voltage-dependent anion channels (VDACs). In addition, the crosstalk between the endoplasmic reticulum (ER), lysosome and plasma membrane with mitochondria is also significant for mitochondrial calcium homeostasis, which is responsible for an efficient network of cellular Ca2+ signaling. Here, we review the recent progression in the research about the regulation factors for mitochondrial Ca2+ and how the dysregulation of mitochondrial Ca2+ homeostasis is involved in the pathogenesis of hepatic IR, providing a new perspective for further exploring the role of ion in the onset and development of IR.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China.
| |
Collapse
|
22
|
Investigation of some variations of superoxide dismutase gene family in Turkish sporadic amyotrophic lateral sclerosis patients. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Anzilotti S, Valsecchi V, Brancaccio P, Guida N, Laudati G, Tedeschi V, Petrozziello T, Frecentese F, Magli E, Hassler B, Cuomo O, Formisano L, Secondo A, Annunziato L, Pignataro G. Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model. Neurobiol Dis 2021; 159:105480. [PMID: 34411705 DOI: 10.1016/j.nbd.2021.105480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Brenda Hassler
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
24
|
Fogarty MJ, Rana S, Mantilla CB, Sieck GC. Quantifying mitochondrial volume density in phrenic motor neurons. J Neurosci Methods 2021; 353:109093. [PMID: 33549636 PMCID: PMC7990712 DOI: 10.1016/j.jneumeth.2021.109093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous assessments of mitochondrial volume density within motor neurons used electron microscopy (EM) to image mitochondria. However, adequate identification and sampling of motor neurons within a particular motor neuron pool is largely precluded using EM. Here, we present an alternative method for determining mitochondrial volume density in identified motor neurons within the phrenic motor neuron (PhMN) pool, with greatly increased sampling. NEW METHOD This novel method for assessing mitochondrial volume density in PhMNs uses a combination of intrapleural injection of Alexa 488-conjugated cholera toxin B (CTB) to retrogradely label PhMNs, followed by intrathecal application of MitoTracker Red to label mitochondria. This technique was validated by comparison to 3D EM determination of mitochondrial volume density as a "gold standard". RESULTS A mean mitochondrial volume density of ∼11 % was observed across PhMNs using the new MitoTracker Red method. This compared favourably with mitochondrial volume density (∼11 %) measurements using EM. COMPARISON WITH EXISTING METHOD The range, mean and variance of mitochondrial volume density estimates in PhMNs were not different between EM and fluorescent imaging techniques. CONCLUSIONS Fluorescent imaging may be used to estimate mitochondrial volume density in a large sample of motor neurons, with results similar to EM, although EM did distinguish finer mitochondrion morphology compared to MitoTracker fluorescence. Compared to EM methods, the assessment of a larger sample size and unambiguous identification of motor neurons belonging to a specific motor neuron pool represent major advantages over previous methods.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Sabhya Rana
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
25
|
Tedeschi V, Petrozziello T, Secondo A. Ca 2+ dysregulation in the pathogenesis of amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:21-47. [PMID: 34392931 DOI: 10.1016/bs.ircmb.2021.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease without appropriate cure. One of the main reasons for the lack of a proper pharmacotherapy in ALS is the narrow knowledge on the molecular causes of the disease. In this respect, the identification of dysfunctional pathways in ALS is now considered a critical medical need. Among the causative factors involved in ALS, Ca2+ dysregulation is one of the most important pathogenetic mechanisms of the disease. Of note, Ca2+ dysfunction may induce, directly or indirectly, motor neuron degeneration and loss. Interestingly, both familial (fALS) and sporadic ALS (sALS) share the progressive dysregulation of Ca2+ homeostasis as a common noxious mechanism. Mechanicistically, Ca2+ dysfunction involves both plasma membrane and intracellular mechanisms, including AMPA receptor (AMPAR)-mediated excitotoxicity, voltage-gated Ca2+ channels (VGCCs) and Ca2+ transporter dysregulation, endoplasmic reticulum (ER) Ca2+ deregulation, mitochondria-associated ER membranes (MAMs) dysfunction, lysosomal Ca2+ leak, etc. Here, a comprehensive analysis of the main pathways involved in the dysregulation of Ca2+ homeostasis has been reported with the aim to focus the attention on new putative druggable targets.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
26
|
Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity? Cells 2021; 10:525. [PMID: 33801336 PMCID: PMC8000428 DOI: 10.3390/cells10030525] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Collapse
Affiliation(s)
- Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
27
|
Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, Vieira V, Paauw N, Bauer S, Schwencke-Westphal C, Schubert C, Bal LC, Schattling B, Pless O, van Horssen J, Freichel M, Friese MA. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife 2021; 10:61798. [PMID: 33565962 PMCID: PMC7993994 DOI: 10.7554/elife.61798] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here, we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons, resulting in impaired mitochondrial complex IV activity. This was associated with post-translational inactivation of the transcriptional co-regulator proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity, and maximum respiratory capacity. Moreover, Ppargc1a-overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis, while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem A Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maarten E Witte
- Department of Pathology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Vanessa Roth
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nanne Paauw
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Celina Schwencke-Westphal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Can Bal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Schattling
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol 2021; 28:132-142. [PMID: 33398173 DOI: 10.1038/s41594-020-00537-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) was initially thought to be associated with oxidative stress when it was first linked to mutant superoxide dismutase 1 (SOD1). The subsequent discovery of ALS-linked genes functioning in RNA processing and proteostasis raised the question of how different biological pathways converge to cause the disease. Both familial and sporadic ALS are characterized by the aggregation of the essential DNA- and RNA-binding protein TDP-43, suggesting a central role in ALS etiology. Here we report that TDP-43 aggregation in neuronal cells of mouse and human origin causes sensitivity to oxidative stress. Aggregated TDP-43 sequesters specific microRNAs (miRNAs) and proteins, leading to increased levels of some proteins while functionally depleting others. Many of those functionally perturbed gene products are nuclear-genome-encoded mitochondrial proteins, and their dysregulation causes a global mitochondrial imbalance that augments oxidative stress. We propose that this stress-aggregation cycle may underlie ALS onset and progression.
Collapse
|
29
|
Genç B, Gautam M, Gözütok Ö, Dervishi I, Sanchez S, Goshu GM, Koçak N, Xie E, Silverman RB, Özdinler PH. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med 2021; 11:e336. [PMID: 33634973 PMCID: PMC7898037 DOI: 10.1002/ctm2.336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mukesh Gautam
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Öge Gözütok
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ina Dervishi
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Santana Sanchez
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Gashaw M. Goshu
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edward Xie
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard B. Silverman
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
| | - P. Hande Özdinler
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University, Feinberg School of MedicineChicagoIL60611
- Les Turner ALS CenterNorthwestern University, Feinberg School of MedicineChicagoIL60611
| |
Collapse
|
30
|
Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca 2+ Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:599792. [PMID: 33392190 PMCID: PMC7775422 DOI: 10.3389/fcell.2020.599792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) play critical roles in neuronal processes, such as signaling pathway activation, transcriptional regulation, and synaptic transmission initiation. Therefore, the regulation of Ca2+ homeostasis is one of the most important processes underlying the basic cellular viability and function of the neuron. Multiple components, including intracellular organelles and plasma membrane Ca2+-ATPase, are involved in neuronal Ca2+ control, and recent studies have focused on investigating the roles of mitochondria in synaptic function. Numerous mitochondrial Ca2+ regulatory proteins have been identified in the past decade, with studies demonstrating the tissue- or cell-type-specific function of each component. The mitochondrial calcium uniporter and its binding subunits are major inner mitochondrial membrane proteins contributing to mitochondrial Ca2+ uptake, whereas the mitochondrial Na+/Ca2+ exchanger (NCLX) and mitochondrial permeability transition pore (mPTP) are well-studied proteins involved in Ca2+ extrusion. The level of cytosolic Ca2+ and the resulting characteristics of synaptic vesicle release properties are controlled via mitochondrial Ca2+ uptake and release at presynaptic sites, while in dendrites, mitochondrial Ca2+ regulation affects synaptic plasticity. During brain aging and the progress of neurodegenerative disease, mitochondrial Ca2+ mishandling has been observed using various techniques, including live imaging of Ca2+ dynamics. Furthermore, Ca2+ dysregulation not only disrupts synaptic transmission but also causes neuronal cell death. Therefore, understanding the detailed pathophysiological mechanisms affecting the recently discovered mitochondrial Ca2+ regulatory machineries will help to identify novel therapeutic targets. Here, we discuss current research into mitochondrial Ca2+ regulatory machineries and how mitochondrial Ca2+ dysregulation contributes to brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Hyunsu Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Su Yeon Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Fatma Sema Canbakis Cecen
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| | - Yongcheol Cho
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
31
|
Choi SY, Lee JH, Chung AY, Jo Y, Shin JH, Park HC, Kim H, Lopez-Gonzalez R, Ryu JR, Sun W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis 2020; 11:888. [PMID: 33087694 PMCID: PMC7578657 DOI: 10.1038/s41419-020-03102-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
- Department of Neurology, University of Massachusetts Medical school, Worcester, MA, USA
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | | | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Sambri I, Massa F, Gullo F, Meneghini S, Cassina L, Carraro M, Dina G, Quattrini A, Patanella L, Carissimo A, Iuliano A, Santorelli F, Codazzi F, Grohovaz F, Bernardi P, Becchetti A, Casari G. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine 2020; 61:103050. [PMID: 33045469 PMCID: PMC7553352 DOI: 10.1016/j.ebiom.2020.103050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. Methods We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. Findings We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7−/− mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. Interpretation mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. Funding Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18–1–0001
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | | | - Lorenzo Patanella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Institute for Applied Mathematics 'Mauro Picone', National Research Council, Naples, Italy
| | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | - Giorgio Casari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
33
|
Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the SOD1G37R ALS Mouse Model. J Neurosci 2020; 40:7759-7777. [PMID: 32859714 DOI: 10.1523/jneurosci.1748-18.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motoneurons (MNs) in a motor-unit (MU)-dependent manner. Glial dysfunction contributes to numerous aspects of the disease. At the neuromuscular junction (NMJ), early alterations in perisynaptic Schwann cell (PSC), glial cells at this synapse, may impact their ability to regulate NMJ stability and repair. Indeed, muscarinic receptors (mAChRs) regulate the repair phenotype of PSCs and are overactivated at disease-resistant NMJs [soleus muscle (SOL)] in SOD1G37R mice. However, it remains unknown whether this is the case at disease-vulnerable NMJs and whether it translates into an impairment of PSC-dependent repair mechanisms. We used SOL and sternomastoid (STM) muscles from SOD1G37R mice and performed Ca2+-imaging to monitor PSC activity and used immunohistochemistry to analyze their repair and phagocytic properties. We show that PSC mAChR-dependent activity was transiently increased at disease-vulnerable NMJs (STM muscle). Furthermore, PSCs from both muscles extended disorganized processes from denervated NMJs and failed to initiate or guide nerve terminal sprouts at disease-vulnerable NMJs, a phenomenon essential for compensatory reinnervation. This was accompanied by a failure of numerous PSCs to upregulate galectin-3 (MAC-2), a marker of glial axonal debris phagocytosis, on NMJ denervation in SOD1 mice. Finally, differences in these PSC-dependent NMJ repair mechanisms were MU type dependent, thus reflecting MU vulnerability in ALS. Together, these results reveal that neuron-glia communication is ubiquitously altered at the NMJ in ALS. This appears to prevent PSCs from adopting a repair phenotype, resulting in a maladapted response to denervation at the NMJ in ALS.SIGNIFICANCE STATEMENT Understanding how the complex interplay between neurons and glial cells ultimately lead to the degeneration of motor neurons and loss of motor function is a fundamental question to comprehend amyotrophic lateral sclerosis (ALS). An early and persistent alteration of glial cell activity takes place at the neuromuscular junction (NMJ), the output of motor neurons, but its impact on NMJ repair remains unknown. Here, we reveal that glial cells at disease-vulnerable NMJs often fail to guide compensatory nerve terminal sprouts and to adopt a phagocytic phenotype on denervated NMJs in SOD1G37R mice. These results show that glial cells at the NMJ elaborate an inappropriate response to NMJ degeneration in a manner that reflects motor-unit (MU) vulnerability and potentially impairs compensatory reinnervation.
Collapse
|
34
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
35
|
Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, Diaz Garcia S, Ghosh Dastidar S, Rodriguez MJ, King P, Zhang Y, La Spada AR, Xu H, Petrucelli L, Ravits J, Da Cruz S, Lagier-Tourenne C, Cleveland DW. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci 2020; 23:615-624. [PMID: 32284607 PMCID: PMC7384305 DOI: 10.1038/s41593-020-0619-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Hexanucleotide expansions in C9orf72, which encodes a predicted guanine exchange factor, are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although repeat expansion has been established to generate toxic products, mRNAs encoding the C9ORF72 protein are also reduced in affected individuals. In this study, we tested how C9ORF72 protein levels affected repeat-mediated toxicity. In somatic transgenic mice expressing 66 GGGGCC repeats, inactivation of one or both endogenous C9orf72 alleles provoked or accelerated, respectively, early death. In mice expressing a C9orf72 transgene with 450 repeats that did not encode the C9ORF72 protein, inactivation of one or both endogenous C9orf72 alleles exacerbated cognitive deficits, hippocampal neuron loss, glial activation and accumulation of dipeptide-repeat proteins from translation of repeat-containing RNAs. Reduced C9ORF72 was shown to suppress repeat-mediated elevation in autophagy. These efforts support a disease mechanism in ALS/FTD resulting from reduced C9ORF72, which can lead to autophagy deficits, synergizing with repeat-dependent gain of toxicity.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Jie Jiang
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Lulin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Amy Taylor
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Sandra Diaz Garcia
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Somasish Ghosh Dastidar
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Molecular Neuroscience; Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Maria J Rodriguez
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Patrick King
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today 2020; 25:1074-1085. [PMID: 32320851 DOI: 10.1016/j.drudis.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Microglia are an essential component of the central nervous system (CNS) and are involved in the primary response to microorganisms, neuroinflammation, homeostasis, and tissue regeneration, as well as contributing to the pathogenesis of neurodegenerative diseases. Research has shown that microglial diversity, multifunctionality, and their relationship with glutamate are crucial to determining their roles in these diseases. In this review, we focus on recent progress in determining microglial characteristics and the role of glutamate and its receptors in microglia regulation, which could be a novel therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Dan Wang
- Department of Ophthalmology, the First Hospital of Jilin University, Changchun, China.
| | - Bo Zhang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Zhulin Zhou
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
37
|
The Timing and Extent of Motor Neuron Vulnerability in ALS Correlates with Accumulation of Misfolded SOD1 Protein in the Cortex and in the Spinal Cord. Cells 2020; 9:cells9020502. [PMID: 32098365 PMCID: PMC7072754 DOI: 10.3390/cells9020502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the cellular and molecular basis of selective vulnerability has been challenging, especially for motor neuron diseases. Developing drugs that improve the health of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative readout measures that translate to patient outcome. We initially developed and characterized UCHL1-eGFP mice, in which motor neurons are labeled with eGFP that is stable and long-lasting. By crossing UCHL1-eGFP to amyotrophic lateral sclerosis (ALS) disease models, we generated ALS mouse models with fluorescently labeled motor neurons. Their examination over time began to reveal the cellular basis of selective vulnerability even within the related motor neuron pools. Accumulation of misfolded SOD1 protein both in the corticospinal and spinal motor neurons over time correlated with the timing and extent of degeneration. This further proved simultaneous degeneration of both upper and lower motor neurons, and the requirement to consider both upper and lower motor neuron populations in drug discovery efforts. Demonstration of the direct correlation between misfolded SOD1 accumulation and motor neuron degeneration in both cortex and spinal cord is important for building cell-based assays in vivo. Our report sets the stage for shifting focus from mice to diseased neurons for drug discovery efforts, especially for motor neuron diseases.
Collapse
|
38
|
Abo-Rady M, Kalmbach N, Pal A, Schludi C, Janosch A, Richter T, Freitag P, Bickle M, Kahlert AK, Petri S, Stefanov S, Glass H, Staege S, Just W, Bhatnagar R, Edbauer D, Hermann A, Wegner F, Sterneckert JL. Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins. Stem Cell Reports 2020; 14:390-405. [PMID: 32084385 PMCID: PMC7066330 DOI: 10.1016/j.stemcr.2020.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.
Collapse
Affiliation(s)
- Masin Abo-Rady
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), 81377 Munich, Germany
| | - Antje Janosch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tanja Richter
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Petra Freitag
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anne-Karin Kahlert
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Stefanov
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany
| | - Hannes Glass
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Selma Staege
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Walter Just
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), 81377 Munich, Germany
| | - Andreas Hermann
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany; Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jared L Sterneckert
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany.
| |
Collapse
|
39
|
Vallese F, Barazzuol L, Maso L, Brini M, Calì T. ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:719-746. [PMID: 31646532 DOI: 10.1007/978-3-030-12457-1_29] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is generally accepted that interorganellar contacts are central to the control of cellular physiology. Virtually, any intracellular organelle can come into proximity with each other and, by establishing physical protein-mediated contacts within a selected fraction of the membrane surface, novel specific functions are acquired. Endoplasmic reticulum (ER) contacts with mitochondria are among the best studied and have a major role in Ca2+ and lipid transfer, signaling, and membrane dynamics.Their functional (and structural) diversity, their dynamic nature as well as the growing number of new players involved in the tethering concurred to make their monitoring difficult especially in living cells. This review focuses on the most established examples of tethers/modulators of the ER-mitochondria interface and on the roles of these contacts in health and disease by specifically dissecting how Ca2+ transfer occurs and how mishandling eventually leads to disease. Additional functions of the ER-mitochondria interface and an overview of the currently available methods to measure/quantify the ER-mitochondria interface will also be discussed.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padua, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padua Neuroscience Center (PNC), Padua, Italy.
| |
Collapse
|
40
|
Bravo-Hernandez M, Tadokoro T, Navarro MR, Platoshyn O, Kobayashi Y, Marsala S, Miyanohara A, Juhas S, Juhasova J, Skalnikova H, Tomori Z, Vanicky I, Studenovska H, Proks V, Chen P, Govea-Perez N, Ditsworth D, Ciacci JD, Gao S, Zhu W, Ahrens ET, Driscoll SP, Glenn TD, McAlonis-Downes M, Da Cruz S, Pfaff SL, Kaspar BK, Cleveland DW, Marsala M. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat Med 2019; 26:118-130. [PMID: 31873312 DOI: 10.1038/s41591-019-0674-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.
Collapse
Affiliation(s)
- Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Department of Anesthesiology, University of the Ryukyus, Okinawa, Japan
| | - Michael R Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Vector Core Laboratory, University of California San Diego, La Jolla, CA, USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Helena Skalnikova
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Zoltan Tomori
- Dept. of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous System, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous System, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - PeiXi Chen
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Noe Govea-Perez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dara Ditsworth
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph D Ciacci
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Shang Gao
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Wenlian Zhu
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA. .,Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
41
|
Bellmann J, Monette A, Tripathy V, Sójka A, Abo-Rady M, Janosh A, Bhatnagar R, Bickle M, Mouland AJ, Sterneckert J. Viral Infections Exacerbate FUS-ALS Phenotypes in iPSC-Derived Spinal Neurons in a Virus Species-Specific Manner. Front Cell Neurosci 2019; 13:480. [PMID: 31695598 PMCID: PMC6817715 DOI: 10.3389/fncel.2019.00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from an interplay of genetic mutations and environmental factors. ssRNA viruses are possible ALS risk factors, but testing their interaction with mutations such as in FUS, which encodes an RNA-binding protein, has been difficult due to the lack of a human disease model. Here, we use isogenic induced pluripotent stem cell (iPSC)-derived spinal neurons (SNs) to investigate the interaction between ssRNA viruses and mutant FUS. We find that rabies virus (RABV) spreads ALS phenotypes, including the formation of stress granules (SGs) with aberrant composition due to increased levels of FUS protein, as well as neurodegeneration and reduced restriction activity by FUS mutations. Consistent with this, iPSC-derived SNs harboring mutant FUS are more sensitive to human immunodeficiency virus (HIV-1) and Zika viruses (ZIKV). We demonstrate that RABV and HIV-1 exacerbate cytoplasmic mislocalization of FUS. Our results demonstrate that viral infections worsen ALS pathology in SNs with genetic risk factors, suggesting a novel role for viruses in modulating patient phenotypes.
Collapse
Affiliation(s)
- Jessica Bellmann
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vadreenath Tripathy
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anna Sójka
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Masin Abo-Rady
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Antje Janosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Mouland
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials 2019; 225:119537. [PMID: 31614290 PMCID: PMC7294901 DOI: 10.1016/j.biomaterials.2019.119537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023]
Abstract
Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne’s muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting.
Collapse
|
43
|
Sawada A, Wang S, Jian M, Leem J, Wackerbarth J, Egawa J, Schilling JM, Platoshyn O, Zemljic-Harpf A, Roth DM, Patel HH, Patel PM, Marsala M, Head BP. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1 G93A mice. FASEB J 2019; 33:7545-7554. [PMID: 30894019 DOI: 10.1096/fj.201802652rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice.
Collapse
Affiliation(s)
- Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Sapporo Medical University, Sapporo, Japan
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Minyu Jian
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jesse Wackerbarth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan; and
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Martin Marsala
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
44
|
Neuroprotective potential of GDF11 in experimental intracerebral hemorrhage in elderly rats. J Clin Neurosci 2019; 63:182-188. [PMID: 30827882 DOI: 10.1016/j.jocn.2019.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 02/05/2023]
Abstract
The occurrence of intracerebral hemorrhage (ICH) costs long-standing neurologic deficits in ICH survivors, elderly ones in particular. Recent researches have proved rejuvenating effect of Growth Differentiation Factor 11 (GDF11) in improving multiple systemic diseases on old individuals. Thus, we designed this study to explore the neuroprotective effect and mechanisms of GDF11 in elderly ICH. 45 aged male Sprague-Dawley (SD) rats were randomly divided into sham + vehicle, ICH + vehicle and ICH + rGDF11 groups. ICH models were induced via injection of autologous whole blood into right basal ganglia of rats. ICH rats were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days prior to operation and continued till the experiment completed. Neurological deficits, brain edema, cell apoptosis, microglial activation and heme oxygenase-1 (HO-1) positive cells were compared among each group. In addition, cytochrome c release, mitochondrial calcium buffering capacity and ATP level were monitored to explore the level of mitochondrial injury. Seen in the result, behavior disorders, severe perihematomal edema, inflammation, apoptosis, oxidative stress and mitochondria damage indicated a significant increase in ICH + vehicle group. While in ICH + rGDF11 group, administration of rGDF11 successfully reduced neurological deficits and alleviated ICH-induced edema, inflammation, apoptosis, oxidative stress, and mitochondria damage in perihematomal tissues. Collectively, our study showed that GDF11 ameliorated ICH-induced neurological deficits in elderly individuals via reducing perihematomal edema, apoptosis, inflammatory reaction, oxidative stress and improving mitochondrial dysfunction, indicating neuroprotective effect of GDF11 in elderly ICH.
Collapse
|
45
|
So E, Mitchell JC, Memmi C, Chennell G, Vizcay-Barrena G, Allison L, Shaw CE, Vance C. Mitochondrial abnormalities and disruption of the neuromuscular junction precede the clinical phenotype and motor neuron loss in hFUSWT transgenic mice. Hum Mol Genet 2019; 27:463-474. [PMID: 29194538 PMCID: PMC5886082 DOI: 10.1093/hmg/ddx415] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 11/16/2022] Open
Abstract
FUS (fused in sarcoma) mislocalization and cytoplasmic aggregation are hallmark pathologies in FUS-related amyotrophic lateral sclerosis and frontotemporal dementia. Many of the mechanistic hypotheses have focused on a loss of nuclear function in the FUS-opathies, implicating dysregulated RNA transcription and splicing in driving neurodegeneration. Recent studies describe an additional somato-dendritic localization for FUS in the cerebral cortex implying a regulatory role in mRNA transport and local translation at the synapse. Here, we report that FUS is also abundant at the pre-synaptic terminal of the neuromuscular junction (NMJ), suggesting an important function for this protein at peripheral synapses. We have previously reported dose and age-dependent motor neuron degeneration in transgenic mice overexpressing human wild-type FUS, resulting in a motor phenotype detected by ∼28 days and death by ∼100 days. Now, we report the earliest structural events using electron microscopy and quantitative immunohistochemistry. Mitochondrial abnormalities in the pre-synaptic motor nerve terminals are detected at postnatal day 6, which are more pronounced at P15 and accompanied by a loss of synaptic vesicles and synaptophysin protein coupled with NMJs of a smaller size at a time when there is no detectable motor neuron loss. These changes occur in the presence of abundant FUS and support a peripheral toxic gain of function. This appearance is typical of a ‘dying-back’ axonopathy, with the earliest manifestation being mitochondrial disruption. These findings support our hypothesis that FUS has an important function at the NMJ, and challenge the ‘loss of nuclear function’ hypothesis for disease pathogenesis in the FUS-opathies.
Collapse
Affiliation(s)
- Eva So
- Department of Basic and Clinical Neuroscience
| | | | | | - George Chennell
- Department of Basic and Clinical Neuroscience.,Wohl Cellular Imaging Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King's College London, New Hunts House, Guy's Campus, London SE1 1UL, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, King's College London, New Hunts House, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
46
|
Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res 2018; 138:25-36. [PMID: 30236524 PMCID: PMC6263743 DOI: 10.1016/j.phrs.2018.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and oxidative stress form a vicious cycle that promotes neurodegeneration and muscle wasting. To quantify the disease-stage-dependent changes of mitochondrial function and their relationship to the generation of reactive oxygen species (ROS), we generated double transgenic mice (G93A/cpYFP) that carry human ALS mutation SOD1G93A and mt-cpYFP transgenes, in which mt-cpYFP detects dynamic changes of ROS-related mitoflash events at individual mitochondria level. Compared with wild type mice, mitoflash activity in the SOD1G93A (G93A) mouse muscle showed an increased flashing frequency prior to the onset of ALS symptom (at the age of 2 months), whereas the onset of ALS symptoms (at the age of 4 months) is associated with drastic changes in the kinetics property of mitoflash signal with prolonged full duration at half maximum (FDHM). Elevated levels of cytosolic ROS in skeletal muscle derived from the SOD1G93A mice were confirmed with fluorescent probes, MitoSOX™ Red and ROS Brite™570. Immunoblotting analysis of subcellular mitochondrial fractionation of G93A muscle revealed an increased expression level of cyclophilin D (CypD), a regulatory component of the mitochondrial permeability transition pore (mPTP), at the age of 4 months but not at the age of 2 months. Transient overexpressing of SOD1G93A in skeletal muscle of wild type mice directly promoted mitochondrial ROS production with an enhanced mitoflash activity in the absence of motor neuron axonal withdrawal. Remarkably, the SOD1G93A-induced mitoflash activity was attenuated by the application of cyclosporine A (CsA), an inhibitor of CypD. Similar to the observation with the SOD1G93A transgenic mice, an increased expression level of CypD was also detected in skeletal muscle following transient overexpression of SOD1G93A. Overall, this study reveals a disease-stage-dependent change in mitochondrial function that is associated with CypD-dependent mPTP opening; and the ALS mutation SOD1G93A directly contributes to mitochondrial dysfunction in the absence of motor neuron axonal withdrawal.
Collapse
Affiliation(s)
- Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Lin Zhang
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Zunyi Medical College, Zunyi, China
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Dosuk Yoon
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Paul Ramlow
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Tian Yu
- Zunyi Medical College, Zunyi, China
| | - Zhaohui Mo
- 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
47
|
López-Erauskin J, Tadokoro T, Baughn MW, Myers B, McAlonis-Downes M, Chillon-Marinas C, Asiaban JN, Artates J, Bui AT, Vetto AP, Lee SK, Le AV, Sun Y, Jambeau M, Boubaker J, Swing D, Qiu J, Hicks GG, Ouyang Z, Fu XD, Tessarollo L, Ling SC, Parone PA, Shaw CE, Marsala M, Lagier-Tourenne C, Cleveland DW, Da Cruz S. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron 2018; 100:816-830.e7. [PMID: 30344044 PMCID: PMC6277851 DOI: 10.1016/j.neuron.2018.09.044] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Through the generation of humanized FUS mice expressing full-length human FUS, we identify that when expressed at near endogenous murine FUS levels, both wild-type and ALS-causing and frontotemporal dementia (FTD)-causing mutations complement the essential function(s) of murine FUS. Replacement of murine FUS with mutant, but not wild-type, human FUS causes stress-mediated induction of chaperones, decreased expression of ion channels and transporters essential for synaptic function, and reduced synaptic activity without loss of nuclear FUS or its cytoplasmic aggregation. Most strikingly, accumulation of mutant human FUS is shown to activate an integrated stress response and to inhibit local, intra-axonal protein synthesis in hippocampal neurons and sciatic nerves. Collectively, our evidence demonstrates that human ALS/FTD-linked mutations in FUS induce a gain of toxicity that includes stress-mediated suppression in intra-axonal translation, synaptic dysfunction, and progressive age-dependent motor and cognitive disease without cytoplasmic aggregation, altered nuclear localization, or aberrant splicing of FUS-bound pre-mRNAs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Takahiro Tadokoro
- Department of Anesthesiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael W Baughn
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brian Myers
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Carlos Chillon-Marinas
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Joshua N Asiaban
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan Artates
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anh T Bui
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anne P Vetto
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sandra K Lee
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ai Vy Le
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ying Sun
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mélanie Jambeau
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jihane Boubaker
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Deborah Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Geoffrey G Hicks
- Regenerative Medicine Program and Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Philippe A Parone
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9NU London, U.K; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Martin Marsala
- Department of Anesthesiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Martineau É, Di Polo A, Vande Velde C, Robitaille R. Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. eLife 2018; 7:41973. [PMID: 30320556 PMCID: PMC6234026 DOI: 10.7554/elife.41973] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
Despite being an early event in ALS, it remains unclear whether the denervation of neuromuscular junctions (NMJ) is simply the first manifestation of a globally degenerating motor neuron. Using in vivo imaging of single axons and their NMJs over a three-month period, we identify that single motor-units are dismantled asynchronously in SOD1G37R mice. We reveal that weeks prior to complete axonal degeneration, the dismantling of axonal branches is accompanied by contemporaneous new axonal sprouting resulting in synapse formation onto nearby NMJs. Denervation events tend to propagate from the first lost NMJ, consistent with a contribution of neuromuscular factors extrinsic to motor neurons, with distal branches being more susceptible. These results show that NMJ denervation in ALS is a complex and dynamic process of continuous denervation and new innervation rather than a manifestation of sudden global motor neuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a fatal neurodegenerative disorder. It occurs when the neurons that control muscles – the motoneurons – disconnect from their target muscles and die. This causes the muscles to weaken and waste away. More and more muscles become affected over time until eventually the muscles that control breathing also become paralyzed. Most patients die within two to five years of diagnosis. Motoneurons consist of a cell body plus a cable-like structure called the axon. The cell body of each motoneuron sits within the spinal cord, and the axon extends out of the spinal cord to the motoneuron’s target muscle. Within the muscle the axon divides into branches, each of which connects with multiple muscle fibers. The breakdown of these connections, known as neuromuscular junctions, is one of the first signs of ALS. Does a motoneuron lose all of its connections with muscle fibers at once, or do the connections break down a few at a time? This distinction is important as it will help to identify the events that lead to muscle paralysis in ALS. To find out, Martineau et al. studied mice that had two genetic mutations: one that causes ALS and another that produces fluorescent molecules in some motoneurons. This allowed the branches of the motoneurons to be tracked over time with a fluorescence microscope. Martineau et al. found that individual neurons lose their connections to muscle fibers gradually. Moreover, motoneurons grow new branches and form new connections even while losing their old ones. This dual process of pruning and budding lasts for several weeks, until eventually the motoneuron dies. Developing drugs to stabilize neuromuscular junctions during the period when motoneurons gradually disconnect from muscles could be a promising avenue to explore to improve the quality of life of ALS patients. One advantage of this treatment strategy is that neuromuscular junctions in muscles are easier to access than motoneurons inside the spinal cord. To identify potential drugs, future studies will need to focus on the proteins and signals that cause the neuromuscular junctions to break down.
Collapse
Affiliation(s)
- Éric Martineau
- Département de neurosciences, Université de Montréal, Québec, Canada.,Groupe de recherche sur le système nerveux central, Université de Montréal, Québec, Canada
| | - Adriana Di Polo
- Département de neurosciences, Université de Montréal, Québec, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | - Christine Vande Velde
- Département de neurosciences, Université de Montréal, Québec, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | - Richard Robitaille
- Département de neurosciences, Université de Montréal, Québec, Canada.,Groupe de recherche sur le système nerveux central, Université de Montréal, Québec, Canada
| |
Collapse
|
49
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 563] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
50
|
Kamei Y, Koushi M, Aoyama Y, Asakai R. The yeast mitochondrial permeability transition is regulated by reactive oxygen species, endogenous Ca 2+ and Cpr3, mediating cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1313-1326. [PMID: 30031690 DOI: 10.1016/j.bbabio.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022]
Abstract
We investigated the properties of the permeability transition pore (PTP) in Saccharomyces cerevisiae in agar-embedded mitochondria (AEM) and agar-embedded cells (AEC) and its role in yeast death. In AEM, ethanol-induced pore opening, as indicated by the release of calcein and mitochondrial membrane depolarization, can be inhibited by CsA, by Cpr3 deficiency, and by the antioxidant glutathione. Notably, the pore opening is inhibited, when mitochondria are preloaded by EGTA or Fluo3 to chelate matrix Ca2+, or are pretreated with 4-Br A23187 to extract matrix Ca2+, prior to agar-embedding, or when pore opening is induced in the presence of EGTA; opened pores are re-closed by sequential treatment with CsA, 4-Br A23187 plus EGTA and NADH, indicating endogenous matrix Ca2+ involvement. CsA also inhibits the pore opening with low conductance triggered by exogenous Ca2+ transport with ETH129. In AEC, the treatment of tert-butylhydroperoxide, a pro-oxidant that triggers transient pore opening in high conductance in AEM, induces yeast death, which is also dependent on CsA and Cpr3. Furthermore, AEMs from mutants lacking three ADP/ATP carrier (AAC) isoforms and with defective ATP synthase dimerization exhibit high and low conductance pore openings with CsA sensitivity, respectively. Collectively, these data show that the yeast PTP is regulated by Cpr3, endogenous matrix Ca2+, and reactive oxygen species, and that it is involved in yeast death; furthermore, ATP synthase dimers play a key role in CsA-sensitive pore formation, while AACs are dispensable.
Collapse
Affiliation(s)
- Yoshiko Kamei
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Masami Koushi
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Yasunori Aoyama
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Rei Asakai
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| |
Collapse
|