1
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Schröder LJ, Thiesler H, Gretenkort L, Möllenkamp TM, Stangel M, Gudi V, Hildebrandt H. Polysialic acid promotes remyelination in cerebellar slice cultures by Siglec-E-dependent modulation of microglia polarization. Front Cell Neurosci 2023; 17:1207540. [PMID: 37492129 PMCID: PMC10365911 DOI: 10.3389/fncel.2023.1207540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Translational Medicine, Novartis Institute for Biomedical Research, Novartis, Basel, Switzerland
| | - Viktoria Gudi
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Gretenkort L, Thiesler H, Hildebrandt H. Neuroimmunomodulatory properties of polysialic acid. Glycoconj J 2023; 40:277-294. [PMID: 37171513 DOI: 10.1007/s10719-023-10120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.
Collapse
Affiliation(s)
- Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
5
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
6
|
Bao N, Liu J, Peng Z, Zhang R, Ni R, Li R, Wu J, Liu Z, Pan B. Identification of circRNA-miRNA-mRNA networks to explore the molecular mechanism and immune regulation of postoperative neurocognitive disorder. Aging (Albany NY) 2022; 14:8374-8393. [PMID: 36279395 PMCID: PMC9648807 DOI: 10.18632/aging.204348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
Abstract
Postoperative neurocognitive disorder (PND) is a common complication in older patients. However, its pathogenesis has still remained elusive. Recent studies have shown that circular RNA (circRNA) plays an important role in the development of neurodegenerative diseases, such as PND after surgery. CircRNA, as a competitive endogenous RNA (ceRNA), mainly acts as a molecular sponge for miRNA to "adsorb" microRNA (miRNA) and to reduce the inhibitory effects of miRNAs on target mRNA. The sequencing data of circRNA were obtained from the Gene Expression Omnibus (GEO) database. By bioinformatic methods, circAtlas, miRDB, miRTarBase and miRwalk databases were applied to construct circRNA-miRNA-mRNA networks and screen differentially expressed mRNAs. To improve the accuracy of the data, we randomly divided aging mice into control (non-PND group) and PND groups, and used high-throughput sequencing to analyze their brain hippocampal tissue for analysis. Three key genes were cross-detected in the data of both groups, which were Unc13c, Tbx20 and St8sia2 (as hub genes), providing new targets for PND treatment. According to the results of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, immune cell infiltration analysis, gene set enrichment analysis (GSEA), Connectivity Map (CMap) analysis, quantitative real-time polymerase chain reaction (qRT-PCR), the genes that were not related to the central nervous system were removed, and finally, mmu_circ_0000331/miR-1224-3p/Unc13c and mmu_circ_0000406/miR-24-3p/St8sia2 ceRNA networks were identified. In addition, the CMap method was used to select the top 4 active compounds with the largest negative correlation absolute values, including cimaterol, Rucaparib, FG-7142, and Hydrocortisone.
Collapse
Affiliation(s)
- Ning Bao
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
- Department of Anesthesiology, Shenyang Women’s and Children’s Hospital, Shenyang, Liaoning, China
| | - Jiping Liu
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Zhe Peng
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Rong Zhang
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Rufei Ni
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Runzuan Li
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Jian Wu
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Zhenhua Liu
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Botao Pan
- Department of Anesthesiology, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
7
|
Li Q, Ru X, Yang Y, Zhao H, Qu J, Chen W, Pan P, Ruan H, Li C, Chen Y, Feng H. Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling. Neurosci Bull 2022; 38:1457-1475. [PMID: 35817941 DOI: 10.1007/s12264-022-00906-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 10/17/2022] Open
Abstract
Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hengli Zhao
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Qu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengyu Pan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chaojun Li
- Model Animal Research Center, Nanjing University, Nanjing, 210032, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Thiesler H, Küçükerden M, Gretenkort L, Röckle I, Hildebrandt H. News and Views on Polysialic Acid: From Tumor Progression and Brain Development to Psychiatric Disorders, Neurodegeneration, Myelin Repair and Immunomodulation. Front Cell Dev Biol 2022; 10:871757. [PMID: 35617589 PMCID: PMC9013797 DOI: 10.3389/fcell.2022.871757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Polysialic acid (polySia) is a sugar homopolymer consisting of at least eight glycosidically linked sialic acid units. It is a posttranslational modification of a limited number of proteins with the neural cell adhesion molecule NCAM being the most prominent. As extensively reviewed before, polySia-NCAM is crucial for brain development and synaptic plasticity but also modulates tumor growth and malignancy. Functions of polySia have been attributed to its polyanionic character, its spatial expansion into the extracellular space, and its modulation of NCAM interactions. In this mini-review, we first summarize briefly, how the modulation of NCAM functions by polySia impacts tumor cell growth and leads to malformations during brain development of polySia-deficient mice, with a focus on how the latter may be linked to altered behaviors in the mouse model and to neurodevelopmental predispositions to psychiatric disorders. We then elaborate on the implications of polySia functions in hippocampal plasticity, learning and memory of mice in light of recently described polySia changes related to altered neurogenesis in the aging human brain and in neurodegenerative disease. Furthermore, we highlight recent progress that extends the range of polySia functions across diverse fields of neurobiology such as cortical interneuron development and connectivity, myelination and myelin repair, or the regulation of microglia activity. We discuss possible common and distinct mechanisms that may underlie these seemingly divergent roles of polySia, and provide prospects for new therapeutic approaches building on our improved understanding of polySia functions.
Collapse
Affiliation(s)
| | | | | | | | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med 2022; 28:270-289. [PMID: 35120836 DOI: 10.1016/j.molmed.2022.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.
Collapse
|
10
|
Luo JXX, Cui QL, Yaqubi M, Hall JA, Dudley R, Srour M, Addour N, Jamann H, Larochelle C, Blain M, Healy LM, Stratton JA, Sonnen JA, Kennedy TE, Antel JP. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann Neurol 2021; 91:178-191. [PMID: 34952986 DOI: 10.1002/ana.26288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes. In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human oligodendrocyte lineage cells. METHODS We derived viable primary oligodendrocyte lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature oligodendrocytes (non-selected cells). RESULTS We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of oligodendrocyte progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ vs A2B5- cells and in pediatric A2B5+ vs adult A2B5+ cells. p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric oligodendrocytes to activating cell death responses to stress. INTERPRETATION Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult oligodendrocyte lineage cells and suggest potential targets for remyelination enhancing therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Xiao Xuan Luo
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Roy Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Nassima Addour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Hélène Jamann
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Joshua A Sonnen
- Department of Neuropathology, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal, QC, H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
11
|
Ojeda-Pérez B, Campos-Sandoval JA, García-Bonilla M, Cárdenas-García C, Páez-González P, Jiménez AJ. Identification of key molecular biomarkers involved in reactive and neurodegenerative processes present in inherited congenital hydrocephalus. Fluids Barriers CNS 2021; 18:30. [PMID: 34215285 PMCID: PMC8254311 DOI: 10.1186/s12987-021-00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periventricular extracellular oedema, myelin damage, inflammation, and glial reactions are common neuropathological events that occur in the brain in congenital hydrocephalus. The periventricular white matter is the most affected region. The present study aimed to identify altered molecular and cellular biomarkers in the neocortex that can function as potential therapeutic targets to both treat and evaluate recovery from these neurodegenerative conditions. The hyh mouse model of hereditary hydrocephalus was used for this purpose. METHODS The hyh mouse model of hereditary hydrocephalus (hydrocephalus with hop gait) and control littermates without hydrocephalus were used in the present work. In tissue sections, the ionic content was investigated using energy dispersive X-ray spectroscopy scanning electron microscopy (EDS-SEM). For the lipid analysis, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) was performed in frozen sections. The expression of proteins in the cerebral white matter was analysed by mass spectrometry. The oligodendrocyte progenitor cells (OPCs) were studied with immunofluorescence in cerebral sections and whole-mount preparations of the ventricle walls. RESULTS High sodium and chloride concentrations were found indicating oedema conditions in both the periventricular white matter and extending towards the grey matter. Lipid analysis revealed lower levels of two phosphatidylinositol molecular species in the grey matter, indicating that neural functions were altered in the hydrocephalic mice. In addition, the expression of proteins in the cerebral white matter revealed evident deregulation of the processes of oligodendrocyte differentiation and myelination. Because of the changes in oligodendrocyte differentiation in the white matter, OPCs were also studied. In hydrocephalic mice, OPCs were found to be reactive, overexpressing the NG2 antigen but not giving rise to an increase in mature oligodendrocytes. The higher levels of the NG2 antigen, diacylglycerophosphoserine and possibly transthyretin in the cerebrum of hydrocephalic hyh mice could indicate cell reactions that may have been triggered by inflammation, neurocytotoxic conditions, and ischaemia. CONCLUSION Our results identify possible biomarkers of hydrocephalus in the cerebral grey and white matter. In the white matter, OPCs could be reacting to acquire a neuroprotective role or as a delay in the oligodendrocyte maturation.
Collapse
Affiliation(s)
- Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - José A Campos-Sandoval
- Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Malaga, Malaga, Spain
| | - María García-Bonilla
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | | | - Patricia Páez-González
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| | - Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
| |
Collapse
|
12
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
13
|
Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, Ortega MC, Sánchez-de Lara I, Ojalvo AC, Clemente D, de Castro F. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation. Glia 2020; 69:905-924. [PMID: 33217041 PMCID: PMC7894183 DOI: 10.1002/glia.23936] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The most frequent variant of multiple sclerosis (MS) is the relapsing–remitting form, characterized by symptomatic phases followed by periods of total/partial recovery. Hence, it is possible that these patients can benefit from endogenous agents that control the inflammatory process and favor spontaneous remyelination. In this context, there is increasing interest in the role of myeloid‐derived suppressor cells (MDSCs) during the clinical course of experimental autoimmune encephalomyelitis (EAE). MDSCs speed up infiltrated T‐cell anergy and apoptosis. In different animal models of MS, a milder disease course is related to higher presence/density of MDSCs in the periphery, and smaller demyelinated lesions in the central nervous system (CNS). These observations lead us to wonder whether MDSCs might not only exert an anti‐inflammatory effect but might also have direct influence on oligodendrocyte precursor cells (OPCs) and remyelination. In the present work, we reveal for the first time the relationship between OPCs and MDSCs in EAE, relationship that is guided by the distance from the inflammatory core. We describe the effects of MDSCs on survival, proliferation, as well as potent promoters of OPC differentiation toward mature phenotypes. We show for the first time that osteopontin is remarkably present in the analyzed secretome of MDSCs. The ablation of this cue from MDSCs‐secretome demonstrates that osteopontin is the main MDSC effector on these oligodendroglial cells. These data highlight a crucial pathogenic interaction between innate immunity and the CNS, opening ways to develop MDSC‐ and/or osteopontin‐based therapies to promote effective myelin preservation and repair in MS patients.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Instituto Cajal-CSIC, Madrid, Spain.,Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Maria Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Irene Sánchez-de Lara
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Ana Cristina Ojalvo
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | |
Collapse
|
14
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
15
|
The Role of Forced and Voluntary Training on Accumulation of Neural Cell Adhesion Molecule and Polysialic Acid in Muscle of Mice with Experimental Autoimmune Encephalomyelitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5160958. [PMID: 32328133 PMCID: PMC7168727 DOI: 10.1155/2020/5160958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/28/2022]
Abstract
It has been suggested that depletion of adhesion molecules is one of the factors associated with or possibly responsible for multiple sclerosis (MS) progression. The aim of this study was to investigate the effect of forced and voluntary training before and after induction of experimental autoimmune encephalomyelitis (EAE) on accumulation of neural cell adhesion molecule (NCAM) and polysialic acid (PSA) in neuromuscular junction denervation in plantaris and soleus muscles in C57BL/6 female mice. A total of 40 female C57BL/6 mice, 10-week-old, were randomly divided into four groups, including induced control groups without EAE induction, induced EAE without training, and forced and voluntary training groups. Myelin oligodendrocyte glycoprotein peptide 35–55 (300 μg in saline; MOG 35–55; KJ Ross-Petersen ApS, Denmark) was injected subcutaneously at the base of the tail of each mouse. Clinical assessment of EAE was performed daily using a 15-point scoring system following immunization. Training groups performed the swimming program for 30 min/day, 5 times/week, for 4 weeks. Mice had access to a treadmill for one hour per day, 5times/week, for 4 weeks in individual cage. The mice were scarified, and the plantaris and soleus muscles were then isolated for investigation of proteins expression using IHC. An analysis of the preventive exercise (before) and recovery exercise (after) of the EAE was performed. Images of the stained sections were taken using a fluorescent microscope. Quantitative image analysis was performed using ImageJ software package. The obtained data from the mean percentage expression of PSA and NCAM in pre- and post-soleus and plantaris muscles showed that the highest and lowest expression levels of PSA and NCAM belonged to control and swim EAE (SE) groups, respectively. The low expression levels of PSA and NCAM were detected in rat with MS without intervention. In conclusion, the relationship between increasing levels of NCAM and PSA protein expression and voluntary and compulsory activity were detectable both in pre and post-soleus and plantaris. However, voluntary activity resulted in more expression levels of NCAM and PSA than that of compulsory. In conclusion, since it has been suggested that depletion of NCAM is one of the factors associated with or possibly responsible for MS progression, these findings show exercise MS progression may be reduced by increasing expression of exercise-related adhesion molecule such as NCAM and PSA (a glycan modification of the NCAM).
Collapse
|
16
|
Ferreira BK, Rodrigues MT, Streck EL, Ferreira GC, Schuck PF. White matter disturbances in phenylketonuria: Possible underlying mechanisms. J Neurosci Res 2020; 99:349-360. [PMID: 32141105 DOI: 10.1002/jnr.24598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Melissa Torres Rodrigues
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
17
|
Jiang Y, Liu N, Wang Q, Yu Z, Lin L, Yuan J, Guo S, Ahn BJ, Wang XJ, Li X, Lo EH, Sun X, Wang X. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke 2019; 49:3039-3049. [PMID: 30571410 DOI: 10.1161/strokeaha.118.022119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- The complexity and heterogeneity of stroke, as well as the associated comorbidities, may render neuroprotective drugs less efficacious in clinical practice. Therefore, the development of targeted therapies to specific patient subsets has become a high priority in translational stroke research. Ischemic stroke with type 2 diabetes mellitus has a nearly double mortality rate and worse neurological outcomes. In the present study, we tested our hypothesis that rFGF21 (recombinant human fibroblast growth factor 21) administration is beneficial for improving neurological outcomes of ischemic stroke with type 2 diabetes mellitus. Methods- Type 2 diabetes mellitus db/db and nondiabetic genetic control db/+ mice were subjected into permanent focal ischemia of distal middle cerebral artery occlusion, we examined the effects of poststroke administration with rFGF21 in systemic metabolic disorders, inflammatory gatekeeper PPARγ (peroxisome proliferator-activated receptor γ) activity at 3 days, mRNA expression of inflammatory cytokines and microglia/macrophage activation at 7 days in the perilesion cortex, and last neurological function deficits, ischemic brain infarction, and white matter integrity up to 14 days after stroke of db/db mice. Results- After permanent focal ischemia, diabetic db/db mice presented confounding pathological features, including metabolic dysregulation, more severe brain damage, and neurological impairment, especially aggravated proinflammatory response and white matter integrity loss. However, daily rFGF21 treatment initiated at 6 hours after stroke for 14 days significantly normalized systemic metabolic disorders, rescued PPARγ activity decline, inhibited proinflammatory cytokine mRNA expression, and M1-like microglia/macrophage activation in the brain. Importantly, rFGF21 also significantly reduced white matter integrity loss, ischemic brain infarction, and neurological function deficits up to 14 days after stroke. The potential mechanisms of rFGF21 may in part consist of potent systematic metabolic regulation and PPARγ-activation promotion-associated antiproinflammatory roles in the brain. Conclusions- Taken together, these results suggest rFGF21 might be a novel and potent candidate of the disease-modifying strategy for treating ischemic stroke with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Jiang
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., ).,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,The Third Affiliated Hospital of Zhengzhou University, China (N.L.)
| | - Qingzhi Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Li Lin
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Jing Yuan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Bum Ju Ahn
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiaochuan Sun
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., )
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| |
Collapse
|
18
|
Fewou SN, Röckle I, Hildebrandt H, Eckhardt M. Transgenic overexpression of polysialyltransferase ST8SiaIV under the control of a neuron-specific promoter does not affect brain development but impairs exploratory behavior. Glycobiology 2019; 29:657-668. [PMID: 31147692 PMCID: PMC6704368 DOI: 10.1093/glycob/cwz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/12/2022] Open
Abstract
A large body of the literature has demonstrated that the polysialic acid (polySia) modification of the neural cell adhesion molecule (NCAM) is a key regulator of cellular interactions during brain development, maintenance and plasticity. To properly fulfill these functions, polySia concentration has to be carefully controlled. This is done by the regulation of the expression of the two polySia-synthesizing enzymes ST8SiaII and ST8SiaIV. From this point of view we and others have demonstrated that downregulation of ST8SiaIV during oligodendrocyte differentiation is a prerequisite for efficient myelin formation and maintenance. Here, we addressed the question whether the prevention of polySia downregulation in neurons affects brain and particularly myelin development and functioning. For this purpose, we developed transgenic (tg) mouse lines overexpressing the polysialyltransferase ST8SiaIV in neurons. tg expression of ST8SiaIV prevented the postnatal downregulation of polySia, and most of the polySias in the forebrain and brain stem of adult tg mice were associated with NCAM-140 and NCAM-180 isoforms. Structural examination of the brain revealed no overt abnormalities of axons and myelin. In addition, ultrastructural and western blot analyses indicated normal myelin development. However, behavioral studies revealed reduced rearing activity, a measure for exploratory behavior, while parameters of motor activity were not affected in tg mice. Taken together, these results suggest that a persisting presence of polySia in neurons has no major effect on brain structure, myelination and myelin maintenance, but causes mild behavioral changes.
Collapse
Affiliation(s)
- Simon Ngamli Fewou
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Bonn, Germany.,Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.,Faculty of Health Sciences, Université des Montagnes, Bangangte, Cameroon
| | - Iris Röckle
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Herbert Hildebrandt
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthias Eckhardt
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Bonn, Germany
| |
Collapse
|
19
|
Chrzanowski U, Schmitz C, Horn-Bochtler A, Nack A, Kipp M. Evaluation strategy to determine reliable demyelination in the cuprizone model. Metab Brain Dis 2019; 34:681-685. [PMID: 30607821 DOI: 10.1007/s11011-018-0375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
In multiple sclerosis patients, chronic clinical deficits are known to result from axonal degeneration which is triggered by inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. In vivo models, among the cuprizone model, are valuable tools to study underlying mechanisms of remyelination and its failure. Since complete and reproducible demyelination of the analyzed brain region is an indispensable prerequisite for efficient remyelination experiments, in this study we systematically addressed which part of the corpus callosum is reliably and consistently demyelinated after acute cuprizone-induced demyelination. Following a novel evaluation strategy, we can show that at the level of the rostral hippocampus, the most medial sectors of the corpus callosum (spanning 500 μm in the horizontal plane) are consistently demyelinated, whereas more lateral sectors show inconsistent and incomplete demyelination. These results precisely define a part of the corpus callosum which should be used as a region of interest during remyelination experiments.
Collapse
Affiliation(s)
- Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Anja Horn-Bochtler
- Department of Anatomy I, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Anne Nack
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany.
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18056, Rostock, Germany.
| |
Collapse
|
20
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|