1
|
Rapti A, Androutsopoulou T, Andreopoulou E, Mellou M, Leventakos G, Anesti M, Mastori K, Chatzopoulou M, Smyrli P, Lakos N, Muse K, Mitsainas GP, Kazanis I. Lab life, seasons and chromosome fusions affect non-cell-autonomously proliferation and neurogenesis, but not oligodendrogenesis, in mice and voles. Sci Rep 2025; 15:18737. [PMID: 40436940 PMCID: PMC12119966 DOI: 10.1038/s41598-025-01670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Abstract
Environmental and behavioral factors have been shown, in experimental settings, to affect neurogenesis in the mouse brain. We found that the density of proliferating neural stem/progenitor cells (NSPCs) and of neuroblasts was significantly lower in the Subependymal Zone stem cell niche of lab mice when compared with mice and pine voles captured in the wild, with seasonal variation observed only in voles. Moreover, levels of proliferation and neurogenesis were found to decrease in proportion to the decrease in the numbers of chromosomes (from the typical 2n = 40 down to 2n = 26) caused by Robertsonian fusions. In contrast, oligodendroglial progenitors and microglial cells were unaffected by wildlife, seasons and chromosomal fusions. When NSPCs were grown in cultures no differences were detected, suggesting that environmental and genetic effects are mediated by non-cell-autonomous mechanisms. These "real-world" data provide a platform for the identification of systemic factors and genetic loci that control postnatal brain neurogenesis.
Collapse
Affiliation(s)
- Athanasia Rapti
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
- Section of Animal Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Theodosia Androutsopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
- Section of Animal Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
- Section of Animal Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Maria Mellou
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
- Section of Animal Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Georgios Leventakos
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Maria Anesti
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Konstantina Mastori
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Myrto Chatzopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Paraskevi Smyrli
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Nikiforos Lakos
- School of Life Sciences, University of Westminster, London, UK
| | - Kawthar Muse
- School of Life Sciences, University of Westminster, London, UK
| | - Georgios P Mitsainas
- Section of Animal Biology, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504, Patras, Greece.
- School of Life Sciences, University of Westminster, London, UK.
| |
Collapse
|
2
|
Morini R, Tagliatti E, Bizzotto M, Matteoli M. Microglial and TREM2 dialogues in the developing brain. Immunity 2025; 58:1068-1084. [PMID: 40324380 DOI: 10.1016/j.immuni.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
From the migration of precursor cells to the refinement of neural circuits, the immune system plays a critical role in the development of the central nervous system. As the brain resident macrophages, microglia are integral to these processes, influencing key developmental stages and contributing to circuit remodeling. Recent years have brought a wealth of new insights into how microglia regulate key stages of brain development, particularly through their continuous crosstalk with various brain cell types. In this review, we synthesize this growing body of literature on microglia and neurodevelopment, highlighting the involvement of the TREM2 receptor, known for its role in aging and neurodegeneration, which profoundly affects the state of microglia and guides target cells by shaping their transcriptional and functional fate. We examine microglial communication with four major cell types-neural precursors, neurons, astrocytes, and oligodendrocytes-also delving into the described mechanisms that underpin these interactions.
Collapse
Affiliation(s)
- Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090 Milan, Italy.
| |
Collapse
|
3
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
4
|
Godeanu S, Cătălin B. The Complementary Role of Morphology in Understanding Microglial Functional Heterogeneity. Int J Mol Sci 2025; 26:3811. [PMID: 40332469 PMCID: PMC12027755 DOI: 10.3390/ijms26083811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
A search of the PubMed database for publications on microglia reveals an intriguing shift in scientific interest over time. Dividing microglia into categories such as "resting" and "activated" or M1 versus M2 is nowadays obsolete, with the current research focusing on unraveling microglial heterogeneity. The onset of transcriptomics, especially single-cell RNA sequencing (scRNA-seq), has profoundly reshaped our understanding of microglia heterogeneity. Conversely, microglia morphology analysis can offer important insights regarding their activation state or involvement in tissue responses. This review explores microglial heterogeneity under homeostatic conditions, developmental stages, and disease states, with a focus on integrating transcriptomic data with morphological analysis. Beyond the core gene expression profile, regional differences are observed with cerebellar microglia exhibiting a uniquely immune-vigilant profile. During development, microglia express homeostatic genes before birth, yet the bushy appearance is a characteristic that appears later on. In neurodegeneration, microglia alternate between proinflammatory and neuroprotective roles, influenced by regional factors and disease onset. Understanding these structural adaptations may help identify specific microglial subpopulations for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sânziana Godeanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Building 48, University of Saarland, 66421 Homburg, Germany
| |
Collapse
|
5
|
Blanchard AC, Maximova A, Phillips-Jones T, Bruce MR, Anastasiadis P, Dionisos CV, Engel K, Reinl E, Pham A, Malaiya S, Singh N, Ament S, McCarthy MM. Mast cells proliferate in the peri-hippocampal space during early development and modulate local and peripheral immune cells. Dev Cell 2025; 60:853-870.e7. [PMID: 39662467 PMCID: PMC11945645 DOI: 10.1016/j.devcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Brain development is a non-linear process of regionally specific epochs occurring during windows of sensitivity to endogenous and exogenous stimuli. We have identified an epoch in the neonatal rat brain defined by a transient population of peri-hippocampal mast cells (phMCs) that are abundant from birth through 2-weeks post-natal but absent thereafter. The phMCs are maintained by proliferation and harbor a unique transcriptome compared with mast cells residing in the skin, bone marrow, or other brain regions. Pharmacological activation of this population broadly increases blood-brain barrier permeability, recruits peripheral immune cells, and stunts local microglia proliferation. Examination of the post-mortem human brain demonstrated mast cells in the peri-hippocampal region of a newborn, but not an older infant, suggesting a similar developmental period exists in humans. Mast cells specifically, and early-life inflammation generally, have been linked to heightened risk for neurodevelopmental disorders, and these results demonstrate a plausible source of that risk.
Collapse
Affiliation(s)
- Alexa C Blanchard
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Maximova
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Taylor Phillips-Jones
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew R Bruce
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Christie V Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaliroi Engel
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aidan Pham
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Malaiya
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nevil Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Walter E, Angst G, Bollinger J, Truong L, Ware E, Wohleb ES, Fan Y, Wang C. Atg5 in microglia regulates sex-specific effects on postnatal neurogenesis in Alzheimer's disease. NPJ AGING 2025; 11:18. [PMID: 40091054 PMCID: PMC11911432 DOI: 10.1038/s41514-025-00209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Female Alzheimer's disease (AD) patients display greater cognitive deficits and worse AD pathology as compared to male AD patients. In this study, we found that conditional knockout (cKO) of Atg5 in female microglia failed to obtain disease-associated microglia (DAM) gene signatures in familiar AD mouse model (5xFAD). Next, we analyzed the maintenance and neurogenesis of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ) from 5xFAD mice with Atg5 cKO. Our data indicated that Atg5 cKO reduced the NSC number in hippocampus of female but not male 5xFAD mice. However, in the SVZ, Atg5 cKO only impaired NSCs in male 5xFAD mice. Interestingly, female 5xFAD;Fip200 cKO mice and 5xFAD;Atg14 cKO mice did not show NSC defects. These autophagy genes cKO 5xFAD mice exhibited a higher neurogenesis activity in their SVZ. Together, our data indicate a sex-specific role for microglial Atg5 in postnatal neurogenesis in AD mice.
Collapse
Affiliation(s)
- Ellen Walter
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Gabrielle Angst
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA
| | - Justin Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Linh Truong
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Elena Ware
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA.
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Zheng Y, Fuse H, Alzoubi I, Graeber MB. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025; 14:413. [PMID: 40136662 PMCID: PMC11940947 DOI: 10.3390/cells14060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Malignant gliomas, and notably glioblastoma, are highly aggressive brain tumors. Understanding the mechanisms underlying their progression is crucial for developing more effective treatments. Recent studies have highlighted the role of microglia and brain macrophages in glioblastoma development, but the specific interactions between these immune cells and glioblastoma stem cells (GSCs) remain unclear. Methods: To address this question, we have utilized AI-assisted cell recognition to investigate the spatial relationship between GSCs expressing high levels of CD276 (B7-H3) and microglia- and bone marrow-derived brain macrophages, respectively. Results: Using PathoFusion, our previously developed open-source AI framework, we were able to map specific immunohistochemical phenotypes at the single-cell level within whole-slide images. This approach enabled us to selectively identify Iba1+ and CD163+ macrophages as well as CD276+ GSCs with high specificity and to study their co-localization. Our analysis suggests a closer association of Iba1+ macrophages with GSCs than between CD163+ macrophages and GSCs in glioblastoma. Conclusions: Our findings provide novel insights into the spatial context of tumor immunity in glioblastoma and point to microglia-GSC interactions as a potential mechanism for tumor progression, especially during diffuse tissue infiltration. These findings have significant implications for our understanding of glioblastoma biology, providing a foundation for a comprehensive analysis of microglia activation phenotypes during glioma development. This, in turn, may lead to new therapeutic strategies targeting the early stages of the immune microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
| | - Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Darlinghurst, Sydney, NSW 2010, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Meller SJ, Greer CA. Olfactory Development and Dysfunction: Involvement of Microglia. Physiology (Bethesda) 2025; 40:0. [PMID: 39499248 DOI: 10.1152/physiol.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/07/2024] Open
Abstract
Olfactory deficits are increasingly recognized in a variety of neurological, neurodevelopmental, psychiatric, and viral diseases. While the pathology underlying olfactory loss is likely to differ across diseases, one shared feature may be an immune response mediated by microglia. Microglia orchestrate the brain's response to environmental insults and maintain neurodevelopmental homeostasis. Here, we explore the potential involvement of microglia in olfactory development and loss in disease. The effects of microglia-mediated immune response during development may be of special relevance to the olfactory system, which is unique in both its vulnerability to environmental insults as well as its extended period of neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Sarah J Meller
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Charles A Greer
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
9
|
King DP, Abdalaziz M, Majewska AK, Cameron JL, Fudge JL. Microglia Morphology in the Developing Primate Amygdala and Effects of Early Life Stress. eNeuro 2025; 12:ENEURO.0466-24.2024. [PMID: 39753372 PMCID: PMC11735683 DOI: 10.1523/eneuro.0466-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures in rhesus macaques, we found that microglia in the infant primate PL had relatively large somas and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size, and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under normal maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more "mature" phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a "hyper-ramified" phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates.
Collapse
Affiliation(s)
- Dennisha P King
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Miral Abdalaziz
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
10
|
Tahmasian N, Feng MY, Arbabi K, Rusu B, Cao W, Kukreja B, Lubotzky A, Wainberg M, Tripathy SJ, Kalish BT. Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography. eNeuro 2024; 11:ENEURO.0224-24.2024. [PMID: 39681473 DOI: 10.1523/eneuro.0224-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.
Collapse
Affiliation(s)
- Nareh Tahmasian
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Min Yi Feng
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Bianca Rusu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Wuxinhao Cao
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Asael Lubotzky
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Shreejoy J Tripathy
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Brian T Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Nath S, Martínez Santamaría JC, Chu YH, Choi JS, Conforti P, Lin JD, Sankowski R, Amann L, Galanis C, Wu K, Deshpande SS, Vlachos A, Prinz M, Lee JK, Schachtrup C. Interaction between subventricular zone microglia and neural stem cells impacts the neurogenic response in a mouse model of cortical ischemic stroke. Nat Commun 2024; 15:9095. [PMID: 39448558 PMCID: PMC11502905 DOI: 10.1038/s41467-024-53217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
After a stroke, the neurogenic response from the subventricular zone (SVZ) to repair the brain is limited. Microglia, as an integral part of the distinctive SVZ microenvironment, control neural stem / precursor cell (NSPC) behavior. Here, we show that discrete stroke-associated SVZ microglial clusters negatively impact the innate neurogenic response, and we propose a repository of relevant microglia-NSPC ligand-receptor pairs. After photothrombosis, a mouse model of ischemic stroke, the altered SVZ niche environment leads to immediate activation of microglia in the niche and an abnormal neurogenic response, with cell-cycle arrest of neural stem cells and neuroblast cell death. Pharmacological restoration of the niche environment increases the SVZ-derived neurogenic repair and microglial depletion increases the formation and survival of newborn neuroblasts in the SVZ. Therefore, we propose that altered cross-communication between microglial subclusters and NSPCs regulates the extent of the innate neurogenic repair response in the SVZ after stroke.
Collapse
Affiliation(s)
- Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Pasquale Conforti
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kexin Wu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Yu D, Jain S, Wangzhou A, De Florencio S, Zhu B, Kim JY, Choi JJY, Paredes MF, Nowakowski TJ, Huang EJ, Piao X. Microglia regulate GABAergic neurogenesis in prenatal human brain through IGF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619180. [PMID: 39464051 PMCID: PMC11507959 DOI: 10.1101/2024.10.19.619180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
GABAergic neurons are an essential cellular component of neural circuits. Their abundance and diversity have enlarged significantly in the human brain, contributing to the expanded cognitive capacity of humans. However, the developmental mechanism of the extended production of GABAergic neurons in the human brain remains elusive. Here, we use single-cell transcriptomics, bioinformatics, and histological analyses to uncover microglial regulation of the sustained proliferation of GABAergic progenitors and neuroblasts in the human medial ganglionic eminence (hMGE). We show that insulin-like growth factor 1 (IGF1) and its receptor IGR1R as the top ligand-receptor pair underlying microglia-progenitor communication in the prenatal human brain. Using our newly developed neuroimmune hMGE organoids, which mimics hMGE cytoarchitecture and developmental trajectory, we demonstrate that microglia-derived IGF1 promotes progenitor proliferation and the production of GABAergic neurons. Conversely, IGF1-neutralizing antibodies and IGF1 knockout human embryonic stem cells (hESC)-induced microglia (iMG) completely abolished iMG-mediated progenitor proliferation. Together, these findings reveal a previously unappreciated role of microglia-derived IGF1 in promoting proliferation of neural progenitors and the development of GABAergic neurons.
Collapse
|
13
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
14
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
VanRyzin JW, Marquardt AE, McCarthy MM. Feminization of social play behavior depends on microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608675. [PMID: 39229086 PMCID: PMC11370478 DOI: 10.1101/2024.08.19.608675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Many sex differences in brain and behavior are established developmentally by the opposing processes of feminization and masculinization, which manifest following differential steroid hormone exposure in early life. The cellular mechanisms underlying masculinization are well-documented, a result of the fact that it is steroid-mediated and can be easily induced in newborn female rodents via exogenous steroid treatment. However, the study of feminization of particular brain regions has largely been relegated to being "not masculinization" given the absence of an identified initiating trigger. As a result, the mechanisms of this key developmental process remain elusive. Here we describe a novel role for microglia, the brain's innate immune cell, in the feminization of the medial amygdala and a complex social behavior, juvenile play. In the developing amygdala, microglia promote proliferation of astrocytes equally in both sexes, with no apparent effect on rates of cell division, but support cell survival selectively in females through the trophic actions of Tumor Necrosis Factor α (TNFα). We demonstrate that disrupting TNFα signaling, either by depleting microglia or inhibiting the associated signaling pathways, prevents the feminization of astrocyte density and increases juvenile play levels to that seen in males. This data, combined with our previous finding that male-like patterns of astrocyte density are sculpted by developmental microglial phagocytosis, reveals that sexual differentiation of the medial amygdala involves opposing tensions between active masculinization and active feminization, both of which require microglia but are achieved via distinct processes.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashley E Marquardt
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Margaret M McCarthy
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
16
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
17
|
Surala M, Soso-Zdravkovic L, Munro D, Rifat A, Ouk K, Vida I, Priller J, Madry C. Lifelong absence of microglia alters hippocampal glutamatergic networks but not synapse and spine density. EMBO Rep 2024; 25:2348-2374. [PMID: 38589666 PMCID: PMC11094096 DOI: 10.1038/s44319-024-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.
Collapse
Affiliation(s)
- Michael Surala
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Luna Soso-Zdravkovic
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - David Munro
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK
| | - Ali Rifat
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Koliane Ouk
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany
| | - Imre Vida
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute for Integrative Neuroanatomy, Charitéplatz 1, 10117, Berlin, Germany
| | - Josef Priller
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK.
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany.
- DZNE Berlin, 10117, Berlin, Germany.
- Department of Psychiatry and Psychotherapy; School of Medicine and Health, Technical University of Munich and German Center for Mental Health (DZPG), 81675, Munich, Germany.
| | - Christian Madry
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
18
|
Uweru OJ, Okojie AK, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo UB. A P2RY12 deficiency results in sex-specific cellular perturbations and sexually dimorphic behavioral anomalies. J Neuroinflammation 2024; 21:95. [PMID: 38622726 PMCID: PMC11017545 DOI: 10.1186/s12974-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
Affiliation(s)
- Ogochukwu J Uweru
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| | - Akhabue K Okojie
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Aparna Trivedi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jordan Benderoth
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Lauren S Thomas
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Georgia Davidson
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Kendall Cox
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
20
|
Uweru OJ, Okojie KA, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo U. A P2RY12 Deficiency Results in Sex-specific Cellular Perturbations and Sexually Dimorphic Behavioral Anomalies. RESEARCH SQUARE 2024:rs.3.rs-3997803. [PMID: 38496602 PMCID: PMC10942488 DOI: 10.21203/rs.3.rs-3997803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
|
21
|
Zhao S, Umpierre AD, Wu LJ. Tuning neural circuits and behaviors by microglia in the adult brain. Trends Neurosci 2024; 47:181-194. [PMID: 38245380 PMCID: PMC10939815 DOI: 10.1016/j.tins.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Microglia are the primary immune cells of the CNS, contributing to both inflammatory damage and tissue repair in neurological disorder. In addition, emerging evidence highlights the role of homeostatic microglia in regulating neuronal activity, interacting with synapses, tuning neural circuits, and modulating behaviors. Herein, we review how microglia sense and regulate neuronal activity through synaptic interactions, thereby directly engaging with neural networks and behaviors. We discuss current studies utilizing microglial optogenetic and chemogenetic approaches to modulate adult neural circuits. These manipulations of microglia across different CNS regions lead to diverse behavioral consequences. We propose that spatial heterogeneity of microglia-neuron interaction lays the groundwork for understanding diverse functions of microglia in neural circuits and behaviors.
Collapse
Affiliation(s)
- Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
22
|
Dadwal S, Heneka MT. Microglia heterogeneity in health and disease. FEBS Open Bio 2024; 14:217-229. [PMID: 37945346 PMCID: PMC10839410 DOI: 10.1002/2211-5463.13735] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), have received significant attention due to their critical roles in maintaining brain homeostasis and mediating cerebral immune responses. Understanding the origin of microglia has been a subject of great interest, and emerging evidence suggests that microglia consist of multiple subpopulations with unique molecular and functional characteristics. These subpopulations of microglia may exhibit specialized roles in response to different environmental cues as in disease conditions. The newfound understanding of microglial heterogeneity has significant implications for elucidating their roles in both physiological and pathological conditions. In the context of disease, microglia have been studied rigorously as they play a very important role in neuroinflammation. Dysregulated microglial activation and function contribute to chronic inflammation. Further exploration of microglial heterogeneity and their interactions with other cell types in the CNS will undoubtedly pave the way to novel therapeutic strategies targeting microglia-mediated pathologies. In this review, we discuss the latest advances in the field of microglia research, focusing specifically on the origin and subpopulations of microglia, the populations of microglia types in the brains of patients with neurodegenerative diseases, and how microglia are regulated in the healthy CNS.
Collapse
Affiliation(s)
- Shilauni Dadwal
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | - Michael T. Heneka
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
- Division of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
23
|
Chintamen S, Gaur P, Vo N, Bradshaw EM, Menon V, Kernie SG. Distinct microglial transcriptomic signatures within the hippocampus. PLoS One 2024; 19:e0296280. [PMID: 38180982 PMCID: PMC10775894 DOI: 10.1371/journal.pone.0296280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Microglia, the resident immune cells of the brain, are crucial in the development of the nervous system. Recent evidence demonstrates that microglia modulate adult hippocampal neurogenesis by inhibiting cell proliferation of neural precursors and survival both in vitro and in vivo, thus maintaining a balance between cell division and cell death in the neural stem cell pool. There are increasing reports suggesting these microglia found in neurogenic niches differ from their counterparts in non-neurogenic areas. Here, we present evidence that hippocampal microglia exhibit transcriptomic heterogeneity, with some cells expressing genes associated with neurogenesis. By comprehensively profiling myeloid lineage cells in the hippocampus using single cell RNA-sequencing, we have uncovered a small, yet distinct population of microglia which exhibit depletion in genes associated with homeostatic microglia and enrichment of genes associated with phagocytosis. Intriguingly, this population also expresses a gene signature with substantial overlap with previously characterized phenotypes, including disease associated microglia (DAM), a particularly unique and compelling microglial state.
Collapse
Affiliation(s)
- Sana Chintamen
- Department of Pediatrics, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| | - Pallavi Gaur
- Department of Neurology, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| | - Nicole Vo
- Department of Neurology, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| | - Elizabeth M. Bradshaw
- Department of Neurology, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| | - Vilas Menon
- Department of Neurology, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
- Department of Neurology, Columbia University College of Physicians and
Surgeons, New York, New York, United States of America
| |
Collapse
|
24
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
25
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
26
|
Morrison V, Houpert M, Trapani J, Brockman A, Kingsley P, Katdare K, Layden H, Nguena-Jones G, Trevisan A, Maguire-Zeiss K, Marnett L, Bix G, Ihrie R, Carter B. Jedi-1/MEGF12-mediated phagocytosis controls the pro-neurogenic properties of microglia in the ventricular-subventricular zone. Cell Rep 2023; 42:113423. [PMID: 37952151 PMCID: PMC10842823 DOI: 10.1016/j.celrep.2023.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Microglia are the primary phagocytes in the central nervous system and clear dead cells generated during development or disease. The phagocytic process shapes the microglia phenotype, which affects the local environment. A unique population of microglia resides in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence the neurogenic niche is not well understood. Here, we demonstrate that phagocytosis contributes to a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering a neuroinflammatory microglia phenotype that resembles dysfunctional microglia in neurodegeneration and aging and that reduces neural precursor proliferation via elevated interleukin-1β signaling; interleukin-1 receptor inhibition rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to the maintenance of a pro-neurogenic phenotype in the developing V-SVZ.
Collapse
Affiliation(s)
- Vivianne Morrison
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Matthew Houpert
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan Trapani
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Asa Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Philip Kingsley
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Ketaki Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Hillary Layden
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Gabriela Nguena-Jones
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexandra Trevisan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lawrence Marnett
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Gregory Bix
- Center for Clinical Neuroscience Research, Tulane University, New Orleans, LA 70118, USA
| | - Rebecca Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Bruce Carter
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
27
|
Liu X, Lei Z, Gilhooly D, He J, Li Y, Ritzel RM, Li H, Wu LJ, Liu S, Wu J. Traumatic brain injury-induced inflammatory changes in the olfactory bulb disrupt neuronal networks leading to olfactory dysfunction. Brain Behav Immun 2023; 114:22-45. [PMID: 37557959 PMCID: PMC10910858 DOI: 10.1016/j.bbi.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/14/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Approximately 20-68% of traumatic brain injury (TBI) patients exhibit trauma-associated olfactory deficits (OD) which can compromise not only the quality of life but also cognitive and neuropsychiatric functions. However, few studies to date have examined the impact of experimental TBI on OD. The present study examined inflammation and neuronal dysfunction in the olfactory bulb (OB) and the underlying mechanisms associated with OD in male mice using a controlled cortical impact (CCI) model. TBI caused a rapid inflammatory response in the OB as early as 24 h post-injury, including elevated mRNA levels of proinflammatory cytokines, increased numbers of microglia and infiltrating myeloid cells, and increased IL1β and IL6 production in these cells. These changes were sustained for up to 90 days after TBI. Moreover, we observed significant upregulation of the voltage-gated proton channel Hv1 and NOX2 expression levels, which were predominantly localized in microglia/macrophages and accompanied by increased reactive oxygen species production. In vivo OB neuronal firing activities showed early neuronal hyperexcitation and later hypo-neuronal activity in both glomerular layer and mitral cell layer after TBI, which were improved in the absence of Hv1. In a battery of olfactory behavioral tests, WT/TBI mice displayed significant OD. In contrast, neither Hv1 KO/TBI nor NOX2 KO/TBI mice showed robust OD. Finally, seven days of intranasal delivery of a NOX2 inhibitor (NOX2ds-tat) ameliorated post-traumatic OD. Collectively, these findings highlight the importance of OB neuronal networks and its role in TBI-mediated OD. Thus, targeting Hv1/NOX2 may be a potential intervention for improving post-traumatic anosmia.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dylan Gilhooly
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shaolin Liu
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 USA; Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA.
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Chandwani MN, Kamte YS, Singh VR, Hemerson ME, Michaels AC, Leak RK, O'Donnell LA. The anti-viral immune response of the adult host robustly modulates neural stem cell activity in spatial, temporal, and sex-specific manners. Brain Behav Immun 2023; 114:61-77. [PMID: 37516388 DOI: 10.1016/j.bbi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Yashika S Kamte
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Vivek R Singh
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Marlo E Hemerson
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Alexa C Michaels
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Rehana K Leak
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Zheng H, Zhang C, Zhang J, Duan L. "Sentinel or accomplice": gut microbiota and microglia crosstalk in disorders of gut-brain interaction. Protein Cell 2023; 14:726-742. [PMID: 37074139 PMCID: PMC10599645 DOI: 10.1093/procel/pwad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.
Collapse
Affiliation(s)
- Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
30
|
Yeo S, Jang J, Jung HJ, Lee H, Choe Y. Primary cilia-mediated regulation of microglial secretion in Alzheimer's disease. Front Mol Biosci 2023; 10:1250335. [PMID: 37942288 PMCID: PMC10627801 DOI: 10.3389/fmolb.2023.1250335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder manifested by a gradual decline in cognitive function due to the accumulation of extracellular amyloid plaques, disruptions in neuronal substance transport, and the degeneration of neurons. In affected neurons, incomplete clearance of toxic proteins by neighboring microglia leads to irreversible brain inflammation, for which cellular signaling is poorly understood. Through single-cell transcriptomic analysis, we discovered distinct regional differences in the ability of microglia to clear damaged neurites. Specifically, microglia in the septal region of wild type mice exhibited a transcriptomic signature resembling disease-associated microglia (DAM). These lateral septum (LS)-enriched microglia were associated with dense axonal bundles originating from the hippocampus. Further transcriptomic and proteomic approaches revealed that primary cilia, small hair-like structures found on cells, played a role in the regulation of microglial secretory function. Notably, primary cilia were transiently observed in microglia, and their presence was significantly reduced in microglia from AD mice. We observed significant changes in the secretion and proteomic profiles of the secretome after inhibiting the primary cilia gene intraflagellar transport particle 88 (Ift88) in microglia. Intriguingly, inhibiting primary cilia in the septal microglia of AD mice resulted in the expansion of extracellular amyloid plaques and damage to adjacent neurites. These results indicate that DAM-like microglia are present in the LS, a critical target region for hippocampal nerve bundles, and that the primary ciliary signaling system regulates microglial secretion, affecting extracellular proteostasis. Age-related primary ciliopathy probably contributes to the selective sensitivity of microglia, thereby exacerbating AD. Targeting the primary ciliary signaling system could therefore be a viable strategy for modulating neuroimmune responses in AD treatments.
Collapse
Affiliation(s)
- Seungeun Yeo
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busan, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
31
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
32
|
Song Y, Shi R, Liu Y, Cui F, Han L, Wang C, Chen T, Li Z, Zhang Z, Tang Y, Yang GY, Guan Y. M2 Microglia Extracellular Vesicle miR-124 Regulates Neural Stem Cell Differentiation in Ischemic Stroke via AAK1/NOTCH. Stroke 2023; 54:2629-2639. [PMID: 37586072 DOI: 10.1161/strokeaha.122.041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Small extracellular vesicles (sEVs) derived from M2 microglia (M2-microglia-derived small extracellular vesicles [M2-sEVs]) contribute to central nervous system repair, although the underlying mechanism remains unknown. In this study, we aimed to identify the mechanism through which microRNA-124 (miR-124) carried in sEVs promotes neural stem cell (NSC) proliferation and neuronal differentiation in the ischemic mouse brain. METHODS M2-sEVs with or without miR-124 knockdown were injected intravenously for 7 consecutive days after transient middle cerebral artery occlusion surgery. The atrophy volume, neurological score, and degree of neurogenesis were examined at different time points after ischemic attack. NSCs treated with different sEVs were subjected to proteomic analysis. Target protein concentrations were quantified, and subsequent bioinformatic analysis was conducted to explore the key signaling pathways. RESULTS M2-sEV transplantation promoted functional neurological recovery following transient middle cerebral artery occlusion injury. M2-sEV treatment decreased the brain atrophy volume, neurological score, and mortality rate. The effect was reserved by knockdown of miR-124 in M2-sEVs. M2-sEVs promoted proliferation and differentiation of mature neuronal NSCs in vivo. Proteomic analysis of NSC samples treated with M2-sEVs with and without miR-124 knockdown revealed that AAK1 (adaptor-associated protein kinase 1) was the key responding protein in NSCs. The binding of AAK1 to Notch promoted the differentiation of NSCs into neurons rather than astrocytes. CONCLUSIONS Our data suggest that AAK1/Notch is the key pathway in NSCs that responds to the miR-124 carried within M2-sEVs in the ischemic brain. M2-sEVs carrying ample quantities of miR-124 promote functional recovery after ischemic stroke by enhancing NSC proliferation and differentiation. Targeting of M2-sEVs could represent a potential therapeutic strategy for brain recovery.
Collapse
Affiliation(s)
- Yaying Song
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| | - Rubing Shi
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China (Y.L.)
| | - Fengzhen Cui
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Lu Han
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), China (C.W.)
| | - Tingting Chen
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Zongwei Li
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yangtai Guan
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| |
Collapse
|
33
|
Saha S, Bhattacharjee A, Singh BK, Biswas A, Sen S. An ethnobotanical study of the indigenous medicinal knowledge by the rural people in different villages of Agaya Narah Gram Panchayat, West Bengal, India. PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2023; 157:935-938. [DOI: 10.1080/11263504.2023.2243915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 01/18/2025]
Affiliation(s)
- Sourav Saha
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
- Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Arin Bhattacharjee
- Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Basant Kumar Singh
- Sikkim Himalayan Regional Centre, Botanical Survey of India, Gangtok, Sikkim, India
| | - Ankush Biswas
- Department of Pharmacology, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| |
Collapse
|
34
|
Blasco-Chamarro L, Fariñas I. Fine-tuned rest: unveiling the regulatory landscape of adult quiescent neural stem cells. Neuroscience 2023:S0306-4522(23)00298-1. [PMID: 37437796 DOI: 10.1016/j.neuroscience.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.
Collapse
Affiliation(s)
- Laura Blasco-Chamarro
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain.
| |
Collapse
|
35
|
Walsh AD, Stone S, Freytag S, Aprico A, Kilpatrick TJ, Ansell BRE, Binder MD. Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system. Commun Biol 2023; 6:555. [PMID: 37217597 DOI: 10.1038/s42003-023-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarrabeth Stone
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michele D Binder
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
36
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
37
|
Loayza M, Lin S, Carter K, Ojeda N, Fan LW, Ramarao S, Bhatt A, Pang Y. Maternal immune activation alters fetal and neonatal microglia phenotype and disrupts neurogenesis in mice. Pediatr Res 2023; 93:1216-1225. [PMID: 35963885 DOI: 10.1038/s41390-022-02239-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Activation of microglia, increase in cortical neuron density, and reduction in GABAergic interneurons are some of the key findings in postmortem autism spectrum disorders (ASD) subjects. The aim of this study was to investigate how maternal immune activation (MIA) programs microglial phenotypes and abnormal neurogenesis in offspring mice. METHODS MIA was induced by injection of lipopolysaccharide (LPS, i.p.) to pregnant mice at embryonic (E) day 12.5. Microglial phenotypes and neurogenesis were investigated between E15.5 to postnatal (P) day 21 by immunohistochemistry, flow cytometry, and cytokine array. RESULTS MIA led to a robust increase in fetal and neonatal microglia in neurogenic regions. Homeostatic E15.5 and P4 microglia are heterogeneous, consisting of M1 (CD86+/CD206-) and mixed M1/M2 (CD86+/CD206+)-like subpopulations. MIA significantly reduced M1 but increased mixed M1/M2 microglia, which was associated with upregulation of numerous cytokines with pleotropic property. MIA resulted in a robust increase in Ki67+/Nestin+ and Tbr2+ neural progenitor cells in the subventricular zone (SVZ) of newborn mice. At juvenile stage, a male-specific reduction of Parvalbumin+ but increase in Reelin+ interneurons in the medial prefrontal cortex was found in MIA offspring mice. CONCLUSIONS MIA programs microglia towards a pleotropic phenotype that may drive excessive neurogenesis in ASD patients. IMPACT Maternal immune activation (MIA) alters microglial phenotypes in the brain of fetal and neonatal mouse offspring. MIA leads to excessive proliferation and overproduction of neural progenitors in the subventricular zone (SVZ). MIA reduces parvalbumin+ while increases Reelin+ interneurons in the prefrontal cortex. Our study sheds light on neurobiological mechanisms of abnormal neurogenesis in certain neurodevelopmental disorders, such as autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Marco Loayza
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shuying Lin
- Department of Physical Therapy, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Norma Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sumana Ramarao
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
38
|
Morrison VE, Houpert MG, Trapani JB, Brockman AA, Kingsley PJ, Katdare KA, Layden HM, Nguena-Jones G, Trevisan AJ, Maguire-Zeiss KA, Marnett LJ, Bix GJ, Ihrie RA, Carter BD. Jedi-1/MEGF12-mediated phagocytosis controls the pro-neurogenic properties of microglia in the ventricular-subventricular zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531012. [PMID: 36945622 PMCID: PMC10028845 DOI: 10.1101/2023.03.03.531012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1β signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.
Collapse
Affiliation(s)
- Vivianne E Morrison
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
- Tulane University Center for Clinical Neuroscience Research
| | - Matthew G Houpert
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| | - Jonathan B Trapani
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| | - Asa A Brockman
- Vanderbilt University Department of Cell and Developmental Biology
- Vanderbilt Brain Institute
| | | | | | | | | | - Alexandra J Trevisan
- Vanderbilt University Department of Biochemistry
- St. Jude Children's Research Hospital
| | | | - Lawrence J Marnett
- Vanderbilt University Department of Biochemistry
- Vanderbilt University Department of Chemistry
- Vanderbilt University Department of Pharmacology
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research
| | - Gregory J Bix
- Tulane University Center for Clinical Neuroscience Research
| | - Rebecca A Ihrie
- Vanderbilt University Department of Cell and Developmental Biology
- Vanderbilt Brain Institute
| | - Bruce D Carter
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| |
Collapse
|
39
|
Analysis of a cell niche with proliferative potential at the roof of the aqueduct of Sylvius. Neurosci Res 2023; 188:28-38. [PMID: 36375656 DOI: 10.1016/j.neures.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The aqueduct of Sylvius connects the third with the fourth ventricle and is surrounded by the Periaqueductal Grey. Here, we report a novel niche of cells in the dorsal section of the aqueduct, hereby named dorsal aqueduct niche or DAN, by applying a battery of selective markers and transgenic mouse lines. The somata of DAN cells are located toward the lumen of the ventricle forming multiple layers in close association with the cerebrospinal fluid (CSF). A single process emerges from the soma and run with the blood vessels. Cells of the DAN express radial glia/stem cell markers such as GFAP, vimentin and nestin, and the glutamate transporter GLAST or the oligodendrocyte precursor/pericyte marker NG2, thereby suggesting their potential for the generation of new cells. Morphologically, DAN cells resemble tanycytes of the third ventricle, which transfer biochemical signals from the CSF to the central nervous system and display proliferative capacity. The aqueduct ependymal lining can proliferate as observed by the integration of BrdU and expression of Ki67. Thus, the dorsal section of the aqueduct of Sylvius possesses cells that may act a niche of new glial cells in the adult mouse brain.
Collapse
|
40
|
Meller SJ, Hernandez L, Martin-Lopez E, Kloos ZA, Liberia T, Greer CA. Microglia Maintain Homeostatic Conditions in the Developing Rostral Migratory Stream. eNeuro 2023; 10:ENEURO.0197-22.2023. [PMID: 36697258 PMCID: PMC9910579 DOI: 10.1523/eneuro.0197-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia invade the neuroblast migratory corridor of the rostral migratory stream (RMS) early in development. The early postnatal RMS does not yet have the dense astrocyte and vascular scaffold that helps propel forward migrating neuroblasts, which led us to consider whether microglia help regulate conditions permissive to neuroblast migration in the RMS. GFP-labeled microglia in CX3CR-1GFP/+ mice assemble primarily along the outer borders of the RMS during the first postnatal week, where they exhibit predominantly an ameboid morphology and associate with migrating neuroblasts. Microglia ablation for 3 d postnatally does not impact the density of pulse labeled BrdU+ neuroblasts nor the distance migrated by tdTomato electroporated neuroblasts in the RMS. However, microglia wrap DsRed-labeled neuroblasts in the RMS of P7 CX3CR-1GFP/+;DCXDsRed/+ mice and express the markers CD68, CLEC7A, MERTK, and IGF-1, suggesting active regulation in the developing RMS. Microglia depletion for 14 d postnatally further induced an accumulation of CC3+ DCX+ apoptotic neuroblasts in the RMS, a wider RMS and extended patency of the lateral ventricle extension in the olfactory bulb. These findings illustrate the importance of microglia in maintaining a healthy neuroblast population and an environment permissive to neuroblast migration in the early postnatal RMS.
Collapse
Affiliation(s)
- Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| | - Lexie Hernandez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A Kloos
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
41
|
Moyon S, Holloman M, Salzer JL. Neural stem cells and oligodendrocyte progenitor cells compete for remyelination in the corpus callosum. Front Cell Neurosci 2023; 17:1114781. [PMID: 36779010 PMCID: PMC9909070 DOI: 10.3389/fncel.2023.1114781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
A major therapeutic goal in demyelinating diseases, such as Multiple Sclerosis, is to improve remyelination, thereby restoring effective axon conduction and preventing neurodegeneration. In the adult central nervous system (CNS), parenchymal oligodendrocyte progenitor cells (pOPCs) and, to a lesser extent, pre-existing oligodendrocytes (OLs) and oligodendrocytes generated from neural stem cells (NSCs) in the sub-ventricular zone (SVZ) are capable of forming new myelin sheaths. Due to their self-renewal capabilities and the ability of their progeny to migrate widely within the CNS, NSCs represent an additional source of remyelinating cells that may be targeted to supplement repair by pOPCs. However, in demyelinating disorders and disease models, the NSC contribution to myelin repair is modest and most evident in regions close to the SVZ. We hypothesized that NSC-derived cells may compete with OPCs to remyelinate the same axons, with pOPCs serving as the primary remyelinating cells due to their widespread distribution within the adult CNS, thereby limiting the contribution of NSC-progeny. Here, we have used a dual reporter, genetic fate mapping strategy, to characterize the contribution of pOPCs and NSC-derived OLs to remyelination after cuprizone-induced demyelination. We confirmed that, while pOPCs are the main remyelinating cells in the corpus callosum, NSC-derived cells are also activated and recruited to demyelinating lesions. Blocking pOPC differentiation genetically, resulted in a significant increase in the recruitment NSC-derived cells into the demyelinated corpus callosum and their differentiation into OLs. These results strongly suggest that pOPCs and NSC-progeny compete to repair white matter lesions. They underscore the potential significance of targeting NSCs to improve repair when the contribution of pOPCs is insufficient to affect full remyelination.
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience and Physiology, Institute of Neuroscience, New York University Langone Medical Center, New York, NY, United States
| | - Mara Holloman
- Department of Neuroscience and Physiology, Institute of Neuroscience, New York University Langone Medical Center, New York, NY, United States
| | - James L. Salzer
- Department of Neuroscience and Physiology, Institute of Neuroscience, New York University Langone Medical Center, New York, NY, United States
- Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
42
|
Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19:273. [PMID: 36397116 PMCID: PMC9669544 DOI: 10.1186/s12974-022-02637-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Microglia represent the first line of immune feedback in the brain. Beyond immune surveillance, they are essential for maintaining brain homeostasis. Recent research has revealed the microglial cells' spatiotemporal heterogeneity based on their local and time-based functions in brain trauma or disease when homeostasis is disrupted. Distinct "microglial signatures" have been recorded in physiological states and brain injuries, with discrete or sometimes overlapping pro- and anti-inflammatory functions. Microglia are involved in the neurological repair processes, such as neurovascular unit restoration and synaptic plasticity, and manage the extent of the damage due to their phenotype switching. The versatility of cellular phenotypes beyond the classical M1/M2 classification, as well as the double-edge actions of microglia in neurodegeneration, indicate the need for further exploration of microglial cell dynamics and their contribution to neurodegenerative processes. This review discusses the homeostatic functions of different microglial subsets focusing on neuropathological conditions. Also, we address the feasibility of targeting microglia as a therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
43
|
Gaire BP. Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2022; 42:2505-2525. [PMID: 34460037 PMCID: PMC11421653 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurology and Anesthesiology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
44
|
Narra SS, Rondeau P, Fernezelian D, Gence L, Ghaddar B, Bourdon E, Lefebvre d'Hellencourt C, Rastegar S, Diotel N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J Comp Neurol 2022; 531:238-255. [PMID: 36282721 DOI: 10.1002/cne.25421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA-sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2 O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems‐Biological Information Processing (IBCS‐BIP), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
45
|
Ratiu JJ, Barclay WE, Lin E, Wang Q, Wellford S, Mehta N, Harnois MJ, DiPalma D, Roy S, Contreras AV, Shinohara ML, Wiest D, Zhuang Y. Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes. Nat Commun 2022; 13:5901. [PMID: 36202870 PMCID: PMC9537144 DOI: 10.1038/s41467-022-33610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Production of a functional peripheral T cell compartment typically involves massive expansion of the bone marrow progenitors that seed the thymus. There are two main phases of expansion during T cell development, following T lineage commitment of double-negative (DN) 2 cells and after successful rearrangement and selection for functional TCRβ chains in DN3 thymocytes, which promotes the transition of DN4 cells to the DP stage. The signals driving the expansion of DN2 thymocytes are well studied. However, factors regulating the proliferation and survival of DN4 cells remain poorly understood. Here, we uncover an unexpected link between the transcription factor Zfp335 and control of cGAS/STING-dependent cell death in post-β-selection DN4 thymocytes. Zfp335 controls survival by sustaining expression of Ankle2, which suppresses cGAS/STING-dependent cell death. Together, this study identifies Zfp335 as a key transcription factor regulating the survival of proliferating post-β-selection thymocytes and demonstrates a key role for the cGAS/STING pathway in driving apoptosis of developing T cells.
Collapse
Affiliation(s)
- Jeremy J Ratiu
- Duke University, Department of Immunology, Durham, NC, 27710, USA.
| | | | - Elliot Lin
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Qun Wang
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | | | - Naren Mehta
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | | | - Devon DiPalma
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Sumedha Roy
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Alejandra V Contreras
- Fox Chase Cancer Center, Blood Cell Development and Function Program, Philadelphia, PA, 19111, USA
| | - Mari L Shinohara
- Duke University, Department of Immunology, Durham, NC, 27710, USA
- Duke University, Department of Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - David Wiest
- Fox Chase Cancer Center, Blood Cell Development and Function Program, Philadelphia, PA, 19111, USA
| | - Yuan Zhuang
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| |
Collapse
|
46
|
Rotshenker S. Galectin-3 (MAC-2) controls phagocytosis and macropinocytosis through intracellular and extracellular mechanisms. Front Cell Neurosci 2022; 16:949079. [PMID: 36274989 PMCID: PMC9581057 DOI: 10.3389/fncel.2022.949079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Galectin-3 (Gal-3; formally named MAC-2) is a β-galactoside-binding lectin. Various cell types produce Gal-3 under either normal conditions and/or pathological conditions. Gal-3 can be present in cells' nuclei and cytoplasm, secreted from producing cells, and associated with cells' plasma membranes. This review focuses on how Gal-3 controls phagocytosis and macropinocytosis. Intracellular and extracellular Gal-3 promotes the phagocytosis of phagocytic targets/cargo (e.g., tissue debris and apoptotic cells) in “professional phagocytes” (e.g., microglia and macrophages) and “non-professional phagocytes” (e.g., Schwann cells and astrocytes). Intracellularly, Gal-3 promotes phagocytosis by controlling the “eat me” signaling pathways that phagocytic receptors generate, directing the cytoskeleton to produce the mechanical forces that drive the structural changes on which phagocytosis depends, protrusion and then retraction of filopodia and lamellipodia as they, respectively, engulf and then internalize phagocytic targets. Extracellularly, Gal-3 promotes phagocytosis by functioning as an opsonin, linking phagocytic targets to phagocytic receptors, activating them to generate the “eat me” signaling pathways. Macropinocytosis is a non-selective endocytic mechanism that various cells use to internalize the bulk of extracellular fluid and included materials/cargo (e.g., dissolved nutrients, proteins, and pathogens). Extracellular and intracellular Gal-3 control macropinocytosis in some types of cancer. Phagocytosed and macropinocytosed targets/cargo that reach lysosomes for degradation may rupture lysosomal membranes. Damaged lysosomal membranes undergo either repair or removal by selective autophagy (i.e., lysophagy) that intracellular Gal-3 controls.
Collapse
|
47
|
Guedes JR, Ferreira PA, Costa JM, Cardoso AL, Peça J. Microglia-dependent remodeling of neuronal circuits. J Neurochem 2022; 163:74-93. [PMID: 35950924 PMCID: PMC9826178 DOI: 10.1111/jnc.15689] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Microglia are tissue-resident macrophages responsible for the surveillance, neuronal support, and immune defense of the brain parenchyma. Recently, the role played by microglia in the formation and function of neuronal circuits has garnered substantial attention. During development, microglia have been shown to engulf neuronal precursors and participate in pruning mechanisms while, in the mature brain, they influence synaptic signaling, provide trophic support and shape synaptic plasticity. Recently, studies have unveiled different microglial characteristics associated with specific brain regions. This emerging view suggests that the maturation and function of distinct neuronal circuits may be potentially associated with the molecular identity microglia adopts across the brain. Here, we review and summarize the known role of these cells in the thalamus, hippocampus, cortex, and cerebellum. We focus on in vivo studies to highlight the characteristics of microglia that may be important in the remodeling of these neuronal circuits and in relation to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Joana R. Guedes
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - Pedro A. Ferreira
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| | - Jéssica M. Costa
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - Ana L. Cardoso
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Institute of Interdisciplinary Research (IIIUC), University of CoimbraCoimbraPortugal
| | - João Peça
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
48
|
North HF, Weissleder C, Fullerton JM, Webster MJ, Weickert CS. Increased immune cell and altered microglia and neurogenesis transcripts in an Australian schizophrenia subgroup with elevated inflammation. Schizophr Res 2022; 248:208-218. [PMID: 36108465 DOI: 10.1016/j.schres.2022.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
We previously identified a subgroup of schizophrenia cases (~40 %) with heightened inflammation in the neurogenic subependymal zone (SEZ) (North et al., 2021b). This schizophrenia subgroup had changes indicating reduced microglial activity, increased peripheral immune cells, increased stem cell dormancy/quiescence and reduced neuronal precursor cells. The present follow-up study aimed to replicate and extend those novel findings in an independent post-mortem cohort of schizophrenia cases and controls from Australia. RNA was extracted from SEZ tissue from 20 controls and 22 schizophrenia cases from the New South Wales Brain Tissue Resource Centre, and gene expression analysis was performed. Cluster analysis of inflammation markers (IL1B, IL1R1, SERPINA3 and CXCL8) revealed a high-inflammation schizophrenia subgroup comprising 52 % of cases, which was a significantly greater proportion than the 17 % of high-inflammation controls. Consistent with our previous report (North et al., 2021b), those with high-inflammation and schizophrenia had unchanged mRNA expression of markers for steady-state and activated microglia (IBA1, HEXB, CD68), decreased expression of phagocytic microglia markers (P2RY12, P2RY13), but increased expression of markers for macrophages (CD163), monocytes (CD14), natural killer cells (FCGR3A), and the adhesion molecule ICAM1. Similarly, the high-inflammation schizophrenia subgroup emulated increased quiescent stem cell marker (GFAPD) and decreased neuronal progenitor (DLX6-AS1) and immature neuron marker (DCX) mRNA expression; but also revealed a novel increase in a marker of immature astrocytes (VIM). Replicating primary results in an independent cohort demonstrates that inflammatory subgroups in the SEZ in schizophrenia are reliable, robust and enhance understanding of neuropathological heterogeneity when studying schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
49
|
Barko K, Shelton M, Xue X, Afriyie-Agyemang Y, Puig S, Freyberg Z, Tseng GC, Logan RW, Seney ML. Brain region- and sex-specific transcriptional profiles of microglia. Front Psychiatry 2022; 13:945548. [PMID: 36090351 PMCID: PMC9448907 DOI: 10.3389/fpsyt.2022.945548] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.
Collapse
Affiliation(s)
- Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Micah Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Yvette Afriyie-Agyemang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|