1
|
Giuranna J, Zheng Y, Brandt M, Jall S, Mukherjee A, Shankhwar S, Renner S, Kurapati NK, May C, Peters T, Herpertz-Dahlmann B, Seitz J, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Giel K, Egberts K, Burghardt R, Föcker M, Marcus K, Keyvani K, Müller TD, Schmitz F, Rajcsanyi LS, Hinney A. Genetic and functional analyses of CTBP2 in anorexia nervosa and body weight regulation. Mol Psychiatry 2025; 30:1836-1846. [PMID: 39511451 PMCID: PMC12014503 DOI: 10.1038/s41380-024-02791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The C-terminal binding protein 2 (CTBP2) gene (translational isoforms: CTBP2-L/S, RIBEYE) had been identified by a cross-trait analysis of genome-wide association studies for anorexia nervosa (AN) and body mass index (BMI). Here, we did a mutation analysis in CTBP2 by performing polymerase chain reactions with subsequent Sanger-sequencing to identify variants relevant for AN and body weight regulation and ensued functional studies. Analysis of the coding regions of CTBP2 in 462 female patients with AN (acute or recovered), 490 children and adolescents with severe obesity, 445 healthy-lean adult individuals and 168 healthy adult individuals with normal body weight detected 24 variants located in the specific exon of RIBEYE. In the initial analysis, three of these were rare non-synonymous variants (NSVs) detected heterozygously in patients with AN (p.Arg72Trp - rs146900874; p.Val289Met -rs375685611 and p.Gly362Arg - rs202010294). Four NSVs and one heterozygous frameshift variant were exclusively detected in children and adolescents with severe obesity (p.Pro53Ser - rs150867595; p.Gln175ArgfsTer45 - rs141864737; p.Leu310Val - rs769811964; p.Pro397Ala - rs76134089 and p.Pro402Ser - rs113477585). Ribeye mRNA was detected in mouse hypothalamus. No effect of fasting or overfeeding on murine hypothalamic Ribeye expression was determined. Yet, increased Ribeye expression was detected in hypothalami of leptin-treated Lepob/ob mice. This increase was not related to reduced food intake and leptin-induced weight loss. We detected rare and frequent variants in the RIBEYE specific exon in both patients with AN and in children and adolescents with severe obesity. Our data suggest RIBEYE as a relevant gene for weight regulation.
Collapse
Affiliation(s)
- Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | - Sigrid Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amrita Mukherjee
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Soni Shankhwar
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Nirup Kumar Kurapati
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Triinu Peters
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Ehrlich
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Katrin Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Roland Burghardt
- Child and Adolescent Psychiatry Clinic, Oberberg Fachklinik Fasanenkiez Berlin, Berlin, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
- LWL-University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Kathy Keyvani
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Insitute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Luisa Sophie Rajcsanyi
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany.
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany.
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany.
| | - Anke Hinney
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Song X, Cheng M, Gu C, Wang F, Ma K, Wang C, She X, Cui B. Research progress in modulating the auditory system by the cochlear circadian clock system in response to noise exposure. Front Neurosci 2025; 19:1507363. [PMID: 40171535 PMCID: PMC11958988 DOI: 10.3389/fnins.2025.1507363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
The circadian clock is an endogenous system evolved to adapt to environmental changes. Recent studies confirmed that the cochlea exhibits circadian oscillations regulating auditory function. These oscillations are linked to brain-derived neurotrophic factor and glucocorticoid levels. Circadian rhythms influence cochlear sensitivity to noise by regulating the secretion of brain-derived neurotrophic factors and glucocorticoids. This study explores the regulatory mechanism of the circadian clock system, its impact on the auditory system, and its potential role in noise-induced hearing loss. Understanding the regulatory mechanisms of circadian rhythms in auditory function will provide new ideas for developing treatments for noise-induced hearing loss.
Collapse
Affiliation(s)
- Xiaoqiong Song
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| | - Mengzhu Cheng
- Academy of Military Medical Sciences, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Cui Gu
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fenghan Wang
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Ma
- Academy of Military Medical Sciences, Tianjin, China
| | - Chunping Wang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaojun She
- Academy of Military Medical Sciences, Tianjin, China
| | - Bo Cui
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
3
|
Jiang D, Huang XH, Fang K, Zhao MH, Li Y, Hu HT, Fang LQ, Gao H, Zhou J. Peripheral-central correlation study of acupuncture for chronic tinnitus study protocol for a randomized controlled trial. Front Med (Lausanne) 2025; 12:1543023. [PMID: 40018352 PMCID: PMC11865056 DOI: 10.3389/fmed.2025.1543023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Purpose (1) Exploring the evaluation and correlation of peripheral central auditory function in patients with chronic tinnitus. (2) Evaluation of the cumulative effect of acupuncture on peripheral central auditory function in patients with chronic tinnitus. Method Our research is structured as a regulated and randomized trial with assessor blinding. Seventy-two participants who qualify with chronic tinnitus will be allocated in a 1:1 ratio to either the acupuncture group or the sham acupuncture group. Additionally, we will recruit 15 healthy individuals as subjects for data collection to observe the correlation of peripheral-central auditory function under different physiological states. Result Clinical result metrics encompass the Tinnitus Handicap Inventory (THI), ABR testing, and fNIRS data collection. Evaluations will be carried out at baseline, after 10 treatment sessions. Conclusion This research are anticipated to improve our comprehension of the effectiveness and fundamental processes of acupuncture in addressing persistent tinnitus and deeply explain the mechanism of action of the acupuncture method on chronic tinnitus. Clinical trial registration ClinicalTrials.gov, identifier NCT06401993.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Gao
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhou
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Pisani A, Rolesi R, Mohamed-Hizam V, Montuoro R, Paludetti G, Giorgio C, Cocchiaro P, Brandolini L, Detta N, Sirico A, Amendola PG, Novelli R, Aramini A, Allegretti M, Paciello F, Grassi C, Fetoni AR. Early transtympanic administration of rhBDNF exerts a multifaceted neuroprotective effect against cisplatin-induced hearing loss. Br J Pharmacol 2025; 182:546-563. [PMID: 39390645 DOI: 10.1111/bph.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rolando Rolesi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Giorgio
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Pasquale Cocchiaro
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Laura Brandolini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Anna Sirico
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Rubina Novelli
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
5
|
Oestreicher D, Malpede AM, Reitmeier A, Bräuer CP, Schoch L, Strenzke N, Pangrsic T. Noise-induced ribbon synapse loss in the mouse basal cochlear region does not reduce inner hair cell exocytosis. Front Cell Neurosci 2025; 18:1523978. [PMID: 39839350 PMCID: PMC11747652 DOI: 10.3389/fncel.2024.1523978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated. To address this question, we exposed 3-4-week-old C57BL/6J mice to 8-16 kHz noise for 2 h under isoflurane anesthesia. We then employed hearing measurements, immunohistochemistry and patch-clamp to assess IHC synaptic function. Two noise sound pressure levels (SPLs) were used to evoke acute hearing threshold elevations with different levels of recovery 2 weeks post-exposure. Regardless of noise intensity, the exposure resulted in a loss of approximately 25-36% of ribbon synapses in the basal portions of the cochlea that persisted 2 weeks after exposure. Perforated patch-clamp recordings were made in the IHCs of the basal regions of the cochlea where the greatest synaptic losses were observed. Depolarization-evoked calcium currents in IHCs 2 weeks after exposure were slightly but not significantly smaller as compared to controls from age-matched non-exposed animals. Exocytic changes monitored as changes in membrane capacitance did not follow that trend and remained similar to controls despite significant loss of ribbons, likely reflecting increased exocytosis at the remaining synapses. Additionally, we report for the first time that acute application of isoflurane reduces IHC calcium currents, which may have implications for noise-induced IHC synaptic loss.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alfonso Mauro Malpede
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annalena Reitmeier
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Paula Bräuer
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Laura Schoch
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience, InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
8
|
Ranjbar N, Shahbazi A, Nourizadeh N, Namvar Arefi H, Kheirkhah MT. Relationship Between Serum Levels of Brain-Derived Neurotrophic Factor (BDNF) and Hearing Loss and Tinnitus. Indian J Otolaryngol Head Neck Surg 2023; 75:507-513. [PMID: 37206834 PMCID: PMC10188841 DOI: 10.1007/s12070-023-03600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Tinnitus and hearing loss are common problems that can be investigated via subjective and objective approaches. Previous studies have suggested a potential relationship between serum levels of Brain-Derived Neurotrophic Factor (BDNF) and tinnitus, reporting it as a potential objective biomarker for tinnitus. Therefore, the present study aimed to investigate the serum levels of BDNF in patients with tinnitus and/or hearing loss. Sixty patients were divided into 3 groups: Normal hearing with tinnitus (NH-T), hearing Loss with tinnitus (HL-T), and hearing loss without tinnitus (HL-NT). Moreover, 20 healthy participants were assigned to the control group or NH-NT. All participants were assessed using comprehensive audiological evaluations, serum BDNF level assessment, Tinnitus Handicap Inventory (THI), and Beck's Depression Inventory (BDI). There were significant intergroup differences in serum BDNF levels (p < 0.05), with the HL-T group showing the lowest BDNF levels. Moreover, the NH-T group had lower levels of BDNF compared to the HL-NT group. On the other hand, serum BDNF levels were significantly decreased in patients with an increased hearing threshold (p < 0.05). Also, serum BDNF levels had no significant relationship with tinnitus duration and loudness, as well as THI and BDI scores. The present study was the first to illustrate the importance of serum BDNF levels as a possible biomarker for predicting the severity of hearing loss and tinnitus in the affected patients. Also, it is possible that BDNF assessment can help find effective therapeutic methods for patients with hearing problems. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-023-03600-z.
Collapse
Affiliation(s)
- Nastaran Ranjbar
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Nourizadeh
- Otorhinolaryngology-Head and Neck Surgery Department , Imam Reza Educational Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Namvar Arefi
- Department of Audiology, School of Rehabilitation Sciences , Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
9
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
10
|
Li N, Chen B, Jia G, Xu R, Xia Y, Lai C, Li G, Li W, Han Y. Reduced BDNF expression in the auditory cortex contributed to neonatal pain-induced hearing impairment and dendritic pruning deficiency in mice. Reg Anesth Pain Med 2023; 48:85-92. [PMID: 36384877 PMCID: PMC9811087 DOI: 10.1136/rapm-2022-103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Procedural pain in neonates is associated with impaired neurodevelopment. Whether hearing development is impaired, however, remains unknown. This study examined potential cause-and-effect relationship between neonatal pain and subsequent hearing loss in mice. METHODS Male C57BL/6J mouse pups received an intra-plantar injection of complete Freund's adjuvant on postnatal day 7 or repetitive needle prick stimuli from postnatal days 0-7. Mechanical and thermal pain thresholds were tested between postnatal days 14 and 49. The auditory brainstem response test was used to determine hearing thresholds. The inner ear structures and dendritic morphology in auditory cortex were assessed using immunofluorescence and Golgi-staining. The effects of oxycodone, tropomyosin receptor kinase B agonists and antagonists were tested. RESULTS Neonatal pain resulted in impaired hearing in adulthood of both pain models No damage or synapse loss was found in the cochlea but increased dendritic spine density and reduced brain-derived neurotrophic factor level were found in auditory cortex in neonatal pain group. Oxycodone attenuated hearing loss and the associated changes in dendritic spine density and brain-derived neurotrophic factor changes in auditory cortex. A tropomyosin receptor kinase B agonist reversed neonatal pain-induced hearing impairment and decreased caspase 3 expression in auditory cortex. Administration of tropomyosin receptor kinase B antagonist in naïve mouse pups impaired hearing development suppressed phosphorylated-AKT, and increased caspase 3 expression. CONCLUSION Chronic pain during the neonatal period resulted in impaired hearing in adulthood in mice, possibly via the brain-derived neurotrophic factor signaling pathway and dendritic spine pruning deficiency in auditory cortex.
Collapse
Affiliation(s)
- Nanqi Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Bing Chen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China,Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Gaogan Jia
- NHC Key Laboratory of Hearing Medicine, ENT Hospital of Fudan University, Shanghai, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chuijin Lai
- NHC Key Laboratory of Hearing Medicine, ENT Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Savitska D, Hess M, Calis D, Marchetta P, Harasztosi C, Fink S, Eckert P, Ruth P, Rüttiger L, Knipper M, Singer W. Stress Affects Central Compensation of Neural Responses to Cochlear Synaptopathy in a cGMP-Dependent Way. Front Neurosci 2022; 16:864706. [PMID: 35968392 PMCID: PMC9372611 DOI: 10.3389/fnins.2022.864706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
In light of the increasing evidence supporting a link between hearing loss and dementia, it is critical to gain a better understanding of the nature of this relationship. We have previously observed that following cochlear synaptopathy, the temporal auditory processing (e.g., auditory steady state responses, ASSRs), is sustained when reduced auditory input is centrally compensated. This central compensation process was linked to elevated hippocampal long-term potentiation (LTP). We further observed that, independently of age, central responsiveness to cochlear synaptopathy can differ, resulting in either a low or high capacity to compensate for the reduced auditory input. Lower central compensation resulted in poorer temporal auditory processing, reduced hippocampal LTP, and decreased recruitment of activity-dependent brain-derived neurotrophic factor (BDNF) expression in hippocampal regions (low compensators). Higher central compensation capacity resulted in better temporal auditory processing, higher LTP responses, and increased activity-dependent BDNF expression in hippocampal regions. Here, we aimed to identify modifying factors that are potentially responsible for these different central responses. Strikingly, a poorer central compensation capacity was linked to lower corticosterone levels in comparison to those of high compensators. High compensators responded to repeated placebo injections with elevated blood corticosterone levels, reduced auditory brainstem response (ABR) wave I amplitude, reduced inner hair cell (IHC) ribbon number, diminished temporal processing, reduced LTP responses, and decreased activity-dependent hippocampal BDNF expression. In contrast, the same stress exposure through injection did not elevate blood corticosterone levels in low compensators, nor did it reduce IHC ribbons, ABR wave I amplitude, ASSR, LTP, or BDNF expression as seen in high compensators. Interestingly, in high compensators, the stress-induced responses, such as a decline in ABR wave I amplitude, ASSR, LTP, and BDNF could be restored through the "memory-enhancing" drug phosphodiesterase 9A inhibitor (PDE9i). In contrast, the same treatment did not improve these aspects in low compensators. Thus, central compensation of age-dependent cochlear synaptopathy is a glucocorticoid and cyclic guanosine-monophosphate (cGMP)-dependent neuronal mechanism that fails upon a blunted stress response.
Collapse
Affiliation(s)
- Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Csaba Harasztosi
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G, Le TN. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther 2022; 30:519-533. [PMID: 34298130 PMCID: PMC8821893 DOI: 10.1016/j.ymthe.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Moderate noise exposure may cause acute loss of cochlear synapses without affecting the cochlear hair cells and hearing threshold; thus, it remains "hidden" to standard clinical tests. This cochlear synaptopathy is one of the main pathologies of noise-induced hearing loss (NIHL). There is no effective treatment for NIHL, mainly because of the lack of a proper drug-delivery technique. We hypothesized that local magnetic delivery of gene therapy into the inner ear could be beneficial for NIHL. In this study, we used superparamagnetic iron oxide nanoparticles (SPIONs) and a recombinant adeno-associated virus (AAV) vector (AAV2(quad Y-F)) to deliver brain-derived neurotrophic factor (BDNF) gene therapy into the rat inner ear via minimally invasive magnetic targeting. We found that the magnetic targeting effectively accumulates and distributes the SPION-tagged AAV2(quad Y-F)-BDNF vector into the inner ear. We also found that AAV2(quad Y-F) efficiently transfects cochlear hair cells and enhances BDNF gene expression. Enhanced BDNF gene expression substantially recovers noise-induced BDNF gene downregulation, auditory brainstem response (ABR) wave I amplitude reduction, and synapse loss. These results suggest that magnetic targeting of AAV2(quad Y-F)-mediated BDNF gene therapy could reverse cochlear synaptopathy after NIHL.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Maya Kuroiwa
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Wendy Oakden
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Brandon T. Paul
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ayesha Noman
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Joseph Chen
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Vincent Lin
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Andrew Dimitrijevic
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Greg Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Trung N. Le
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada,Corresponding author: Trung N. Le, Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
13
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
14
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
15
|
Shew M, Wichova H, Warnecke A, Lenarz T, Staecker H. Evaluating Neurotrophin Signaling Using MicroRNA Perilymph Profiling in Cochlear Implant Patients With and Without Residual Hearing. Otol Neurotol 2021; 42:e1125-e1133. [PMID: 33973949 DOI: 10.1097/mao.0000000000003182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS MicroRNAs predicted to regulate neurotrophin signaling can be found in human perilymph. BACKGROUND Animal and human temporal bone studies suggest that spiral ganglion health can affect cochlear implant (CI) outcomes. Neurotrophins have been identified as a key factor in the maintenance of spiral ganglion health. Changes in miRNAs may regulate neurotrophin signaling and may reflect neurotrophin expression levels. METHODS Perilymph sampling was carried out in 18 patients undergoing cochlear implantation or stapedotomy. Expression of miRNAs in perilymph was evaluated using an Agilent miRNA gene chip. Using ingenuity pathway analysis (IPA) software, miRNAs targeting neurotrophin signaling pathway genes present in a cochlear cDNA library were annotated. Expression levels of miRNAs in perilymph were correlated to the patients' preoperative pure-tone average. RESULTS Expression of mRNAs coding for neurotrophins and their receptors were identified in tissue obtained from normal human cochlea during skull base surgery. We identified miRNAs predicted to regulate these signaling cascades, including miR-1207-5p, miR-4651, miR-103-3p, miR-100-5p, miR-221-3p, miR-200-3p. There was a correlation between poor preoperative hearing and lower expression of miR-1207 (predicted to regulate NTR3) and miR-4651 (predicted to regulate NTR2). Additionally, miR-3960, miR-4481, and miR-675 showed significant differences in expression level when comparing mild and profound hearing loss patients. CONCLUSIONS Expression of some miRNAs that are predicted to regulate neurotrophin signaling in the perilymph of cochlear implant patients vary with the patient's level of residual hearing. These miRNAs may serve as biomarkers for changes in neurotrophin signaling.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
16
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
17
|
吴 婷, 徐 聪, 孙 岩. [Research progress on the protective mechanism of insulin like growth factor-1 on inner ear]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:572-576. [PMID: 34304523 PMCID: PMC10128612 DOI: 10.13201/j.issn.2096-7993.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/12/2022]
Abstract
As one of the neurotrophic factors and insulin family, insulin like growth factor-1(IGF-1) can promote cell synthesis and metabolism in tissues and organs, activate cell growth, proliferation and differentiation, and inhibit cell apoptosis. Sensorineural hearing loss is the most common manifestation of the inner ear disease, which is mainly caused by the damage of cochlear hair cells. The lack of IGF-1 directly affects the growth, development and differentiation of cochlear hair cells, thus IGF-1 participates in the maintenance of cell survival and repair during inner ear cell injury. This article systematically reviews the recent research progress on the protective mechanism of IGF-1 on the inner ear.
Collapse
Affiliation(s)
- 婷 吴
- 青岛大学附属烟台毓璜顶医院耳鼻咽喉头颈外科(山东烟台,264000)
| | | | - 岩 孙
- 青岛大学附属烟台毓璜顶医院耳鼻咽喉头颈外科(山东烟台,264000)
| |
Collapse
|
18
|
Eckert P, Marchetta P, Manthey MK, Walter MH, Jovanovic S, Savitska D, Singer W, Jacob MH, Rüttiger L, Schimmang T, Milenkovic I, Pilz PKD, Knipper M. Deletion of BDNF in Pax2 Lineage-Derived Interneuron Precursors in the Hindbrain Hampers the Proportion of Excitation/Inhibition, Learning, and Behavior. Front Mol Neurosci 2021; 14:642679. [PMID: 33841098 PMCID: PMC8033028 DOI: 10.3389/fnmol.2021.642679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies indicate that deficits in the proper integration or migration of specific GABAergic precursor cells from the subpallium to the cortex can lead to severe cognitive dysfunctions and neurodevelopmental pathogenesis linked to intellectual disabilities. A different set of GABAergic precursors cells that express Pax2 migrate to hindbrain regions, targeting, for example auditory or somatosensory brainstem regions. We demonstrate that the absence of BDNF in Pax2-lineage descendants of BdnfPax2KOs causes severe cognitive disabilities. In BdnfPax2KOs, a normal number of parvalbumin-positive interneurons (PV-INs) was found in the auditory cortex (AC) and hippocampal regions, which went hand in hand with reduced PV-labeling in neuropil domains and elevated activity-regulated cytoskeleton-associated protein (Arc/Arg3.1; here: Arc) levels in pyramidal neurons in these same regions. This immaturity in the inhibitory/excitatory balance of the AC and hippocampus was accompanied by elevated LTP, reduced (sound-induced) LTP/LTD adjustment, impaired learning, elevated anxiety, and deficits in social behavior, overall representing an autistic-like phenotype. Reduced tonic inhibitory strength and elevated spontaneous firing rates in dorsal cochlear nucleus (DCN) brainstem neurons in otherwise nearly normal hearing BdnfPax2KOs suggests that diminished fine-grained auditory-specific brainstem activity has hampered activity-driven integration of inhibitory networks of the AC in functional (hippocampal) circuits. This leads to an inability to scale hippocampal post-synapses during LTP/LTD plasticity. BDNF in Pax2-lineage descendants in lower brain regions should thus be considered as a novel candidate for contributing to the development of brain disorders, including autism.
Collapse
Affiliation(s)
- Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie K Manthey
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany.,Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michael H Walter
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Peter K D Pilz
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Schulze J, Staecker H, Wedekind D, Lenarz T, Warnecke A. Expression pattern of brain-derived neurotrophic factor and its associated receptors: Implications for exogenous neurotrophin application. Hear Res 2020; 413:108098. [PMID: 33143996 DOI: 10.1016/j.heares.2020.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023]
Abstract
The application of neurotrophins such as brain-derived neurotrophic factor (BDNF) is a promising pharmacological approach in cochlear implant research. Several in vitro and in vivo studies demonstrated that treatment with neurotrophins support the spiral ganglion neuron (SGN) survival and the synapses. Of the more than 40 companies that are working in the field of inner ear therapeutics, only one company is currently advancing BDNF towards clinical translation. Thus, there are no approved clinical therapies with neurotrophins, their precursors or neurotrophin-like substances. For a better understanding of the mechanisms of BDNF in the inner ear, we analysed the expression of mature BDNF (mBDNF), its pro-form proBDNF and their respective receptors the low affinity p75 neurotrophin receptor (p75NTR) and the neurotrophic receptor tyrosine kinase 2 (NTRK2). In the adult murine inner ear, mBDNF is expressed in the inner and outer hair cells (IHC and OHC) of the organ of Corti and in the spiral ganglion of the Rosenthal's canal, whereas proBDNF is only detected in the supporting cells below the OHC. The corresponding receptors NTRK2 and p75NTR are expressed in the spiral ganglion whereof p75NTR is stronger expressed. For more insights in the effects of mBDNF and proBDNF on inner ear specific cells, we treated primary dissociated SGN with different concentrations of mBDNF and proBDNF alone and in combination. Interestingly, treatment with proBDNF is not toxic for SGN but simultaneously not protective. However, combined treatment of mBDNF and proBDNF maintained and perhaps slightly increased the protective effect of mBDNF. Thus, the mixture of mBDNF and proBDNF could be the new direction for the development of BDNF-based therapeutics in cochlear implantation and could represent more precisely the natural environment.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1).
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Dirk Wedekind
- Department of experimental animal science, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| |
Collapse
|
20
|
Gao L, Kita T, Katsuno T, Yamamoto N, Omori K, Nakagawa T. Insulin-Like Growth Factor 1 on the Maintenance of Ribbon Synapses in Mouse Cochlear Explant Cultures. Front Cell Neurosci 2020; 14:571155. [PMID: 33132846 PMCID: PMC7579230 DOI: 10.3389/fncel.2020.571155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 01/31/2023] Open
Abstract
Hearing loss has become one of the most common disabilities worldwide. The synaptic connections between inner hair cells (IHCs) and spiral ganglion neurons have specialized synaptic constructions, termed ribbon synapses, which are important for auditory function. The ribbon synapses in the cochlea are quite vulnerable to various insults. As such, the maintenance of ribbon synapses is important for ensuring hearing function. Insulin-like growth factor 1 (IGF1) plays a critical role in the development and maintenance of the cochlea and has the potential to protect cochlear hair cells from various insults. In this study, we examined the role of IGF1 in the maintenance of ribbon synapses in cochlear explants of postnatal day four mice. We cultured cochlear explants with an IGF1 receptor antagonist, JB1, which is an IGF1 peptide analog. Results showed that exposure to JB1 for 24 h resulted in the loss of ribbon synapses. After an additional 24-h culture without JB1, the number of ribbon synapses spontaneously recovered. The application of exogenous IGF1 showed two different aspects of ribbon synapses. Low doses of exogenous IGF1 promoted the recovery of ribbon synapses, while it compromised the spontaneous recovery of ribbon synapses at high doses. Altogether, these results indicate that the paracrine or autocrine release of IGF1 in the cochlea plays a crucial role in the maintenance of cochlear ribbon synapses.
Collapse
Affiliation(s)
- Li Gao
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Katsuno
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Urness LD, Wang X, Li C, Quadros RM, Harms DW, Gurumurthy CB, Mansour SL. Slc26a9P2ACre : a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia. Development 2020; 147:dev.191015. [PMID: 32541002 DOI: 10.1242/dev.191015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022]
Abstract
Pan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We have previously identified Slc26a9 as an otic placode-specific target of the FGFR2b ligands FGF3 and FGF10. We show here that Slc26a9 is otic specific through E10.5, but is not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5 to P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.
Collapse
Affiliation(s)
- Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaofen Wang
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chaoying Li
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Delhez A, Lefebvre P, Péqueux C, Malgrange B, Delacroix L. Auditory function and dysfunction: estrogen makes a difference. Cell Mol Life Sci 2020; 77:619-635. [PMID: 31522250 PMCID: PMC11105012 DOI: 10.1007/s00018-019-03295-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Estrogen is the major female hormone involved in reproductive functions, but it also exerts a variety of additional roles in non-reproductive organs. In this review, we highlight the preclinical and clinical studies that have pointed out sex differences and estrogenic influence on audition. We also describe the experimental evidences supporting a protective role of estrogen towards acquired forms of hearing loss. Although a high level of endogenous estrogen is associated with a better hearing function, hormonal treatments at menopause have provided contradictory outcomes. The various factors that are likely to explain these discrepancies include the treatment regimen as well as the hormonal status and responsiveness of the patients. The complexity of estrogen signaling is being untangled and many downstream effectors of its genomic and non-genomic actions have been identified in other systems. Based on these advances and on the common physio-pathological events that underlie age-related, drug or noise-induced hearing loss, we discuss potential mechanisms for their protective actions in the cochlea.
Collapse
Affiliation(s)
- Amandine Delhez
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
- Department of ENT, CHU de Liege, Liege, Belgium
| | | | - Christel Péqueux
- GIGA-Cancer, Laboratory of Tumors Biology and Development, University of Liege, Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium.
| |
Collapse
|
24
|
Luo Y, Qu T, Song Q, Qi Y, Yu S, Gong S, Liu K, Jiang X. Repeated Moderate Sound Exposure Causes Accumulated Trauma to Cochlear Ribbon Synapses in Mice. Neuroscience 2020; 429:173-184. [PMID: 31935490 DOI: 10.1016/j.neuroscience.2019.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022]
Abstract
Repeated induction of a temporary threshold shift (TTS) may result in a permanent threshold shift (PTS) and is thought to be associated with early onset of age-related hearing loss (ARHL). The possibility that a PTS might be induced by administration of repeated TTS-inducing noise exposures (NEs) over a short period during early adulthood has not been formally investigated. We aimed to investigate possible cumulative acoustic overstimulation effects that permanently shift the auditory threshold. Young adult C57BL/6J mice were exposed twice to moderate white noise in an experimental design that minimized the effects of aging. The first exposure resulted in a reversible noise-induced hearing loss (NIHL) measured as recoverable alterations in auditory brainstem response (ABR) thresholds, waveform amplitudes, and numbers of ribbon synapses. The second NE with the same parameters caused persistent threshold shifts, wave I amplitude reductions, wave IV/I ratio enhancements, and synaptic losses, even though recovery time sufficient for a TTS had been provided. The pattern of PTS resembled NIHL since the observed impairments tonotopically followed the power spectrum of the noise insult, rather than ARHL, which distributes at higher frequencies. No significant changes were observed in the control group as the mice aged. To conclude, our results demonstrate a cumulative effect of repetitive TTS-inducing NE on hearing function and synaptic plasticity that does not cause premature ARHL, thereby providing insight into the pathophysiological mechanisms underlying NIHL and ARHL.
Collapse
Affiliation(s)
- Yangtuo Luo
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Tengfei Qu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qingling Song
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shukui Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
25
|
Bardhan T, Jeng J, Waldmann M, Ceriani F, Johnson SL, Olt J, Rüttiger L, Marcotti W, Holley MC. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J Physiol 2019; 597:3389-3406. [PMID: 31069810 PMCID: PMC6636704 DOI: 10.1113/jp277997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cochlea/metabolism
- Cochlea/physiology
- GATA3 Transcription Factor/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Membrane Proteins/metabolism
- Mice, Knockout
- Mice, Transgenic
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/physiology
- Synapses/metabolism
Collapse
Affiliation(s)
- Tanaya Bardhan
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Marco Waldmann
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | - Jennifer Olt
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Lukas Rüttiger
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
26
|
Eckrich S, Hecker D, Sorg K, Blum K, Fischer K, Münkner S, Wenzel G, Schick B, Engel J. Cochlea-Specific Deletion of Ca v1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Front Cell Neurosci 2019; 13:225. [PMID: 31178698 PMCID: PMC6538774 DOI: 10.3389/fncel.2019.00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Inner hair cell (IHC) Cav1.3 Ca2+ channels are multifunctional channels mediating Ca2+ influx for exocytosis at ribbon synapses, the generation of Ca2+ action potentials in pre-hearing IHCs and gene expression. IHCs of deaf systemic Cav1.3-deficient (Cav1.3-/-) mice stay immature because they fail to up-regulate voltage- and Ca2+-activated K+ (BK) channels but persistently express small conductance Ca2+-activated K+ (SK2) channels. In pre-hearing wildtype mice, cholinergic neurons from the superior olivary complex (SOC) exert efferent inhibition onto spontaneously active immature IHCs by activating their SK2 channels. Because Cav1.3 plays an important role for survival, health and function of SOC neurons, SK2 channel persistence and lack of BK channels in systemic Cav1.3-/- IHCs may result from malfunctioning neurons of the SOC. Here we analyze cochlea-specific Cav1.3 knockout mice with green fluorescent protein (GFP) switch reporter function, Pax2::cre;Cacna1d-eGFPflex/flexand Pax2::cre;Cacna1d-eGFPflex/-. Profound hearing loss, lack of BK channels and persistence of SK2 channels in Pax2::cre;Cacna1d-eGFPflex/- mice recapitulated the phenotype of systemic Cav1.3-/- mice, indicating that in wildtype mice, regulation of SK2 and BK channel expression is independent of Cav1.3 expression in SOC neurons. In addition, we noticed dose-dependent GFP toxicity leading to death of basal coil IHCs of Pax2::cre;Cacna1d-eGFPflex/flex mice, likely because of high GFP concentration and small repair capacity. This and the slower time course of Pax2-driven Cre recombinase in switching two rather than one Cacna1d-eGFPflex allele lead us to study Pax2::cre;Cacna1d-eGFPflex/- mice. Notably, control Cacna1d-eGFPflex/- IHCs showed a significant reduction in Cav1.3 channel cluster sizes and currents, suggesting that the intronic construct interfered with gene translation or splicing. These pitfalls are likely to be a frequent problem of many genetically modified mice with complex or multiple gene-targeting constructs or fluorescent proteins. Great caution and appropriate controls are therefore required.
Collapse
Affiliation(s)
- Stephanie Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Katharina Sorg
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Fischer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Stefan Münkner
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gentiana Wenzel
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Jang M, Gould E, Xu J, Kim EJ, Kim JH. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. eLife 2019; 8:42156. [PMID: 30998186 PMCID: PMC6504230 DOI: 10.7554/elife.42156] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Neuron–glia communication contributes to the fine-tuning of synaptic functions. Oligodendrocytes near synapses detect and respond to neuronal activity, but their role in synapse development and plasticity remains largely unexplored. We show that oligodendrocytes modulate neurotransmitter release at presynaptic terminals through secretion of brain-derived neurotrophic factor (BDNF). Oligodendrocyte-derived BDNF functions via presynaptic tropomyosin receptor kinase B (TrkB) to ensure fast, reliable neurotransmitter release and auditory transmission in the developing brain. In auditory brainstem slices from Bdnf+/– mice, reduction in endogenous BDNF significantly decreased vesicular glutamate release by reducing the readily releasable pool of glutamate vesicles, without altering presynaptic Ca2+ channel activation or release probability. Using conditional knockout mice, cell-specific ablation of BDNF in oligodendrocytes largely recapitulated this effect, which was recovered by BDNF or TrkB agonist application. This study highlights a novel function for oligodendrocytes in synaptic transmission and their potential role in the activity-dependent refinement of presynaptic properties.
Collapse
Affiliation(s)
- Miae Jang
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Elizabeth Gould
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jie Xu
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States.,Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Eun Jung Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jun Hee Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| |
Collapse
|
28
|
Liu W, Wang X, Wang M, Wang H. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:93-107. [DOI: 10.1007/978-981-13-6123-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
29
|
de Vries I, Schmitt H, Lenarz T, Prenzler N, Alvi S, Staecker H, Durisin M, Warnecke A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front Neurosci 2019; 13:214. [PMID: 30971872 PMCID: PMC6445295 DOI: 10.3389/fnins.2019.00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/05/2022] Open
Abstract
The outcome of cochlear implantation depends on multiple variables including the underlying health of the cochlea. Brain derived neurotrophic factor (BDNF) has been shown to support spiral ganglion neurons and to improve implant function in animal models. Whether endogenous BDNF or BDNF-regulated proteins can be used as biomarkers to predict cochlear health and implant outcome has not been investigated yet. Gene expression of BDNF and downstream signaling molecules were identified in tissue of human cochleae obtained from normal hearing patients (n = 3) during skull base surgeries. Based on the gene expression data, bioinformatic analysis was utilized to predict the regulation of proteins by BDNF. The presence of proteins corresponding to these genes was investigated in perilymph (n = 41) obtained from hearing-impaired patients (n = 38) during cochlear implantation or skull base surgery for removal of vestibular schwannoma by nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Analyzed by mass spectrometry were 41 perilymph samples despite three patients undergoing bilateral cochlear implantation. These particular BDNF regulated proteins were not detectable in any of the perilymph samples. Subsequently, targeted analysis of the perilymph proteome data with Ingenuity Pathway Analysis (IPA) identified further proteins in human perilymph that could be regulated by BDNF. These BDNF regulated proteins were correlated to the presence of residual hearing (RH) prior to implantation and to the performance data with the cochlear implant after 1 year. There was overall a decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some RH. Phospholipid transfer protein was positively correlated to the preoperative hearing level of the patients. Our data show that combination of gene expression arrays and bioinformatic analysis can aid in the prediction of downstream signaling proteins related to the BDNF pathway. Proteomic analysis of perilymph may help to identify the presence or absence of these molecules in the diseased organ. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Ines de Vries
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Sameer Alvi
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| |
Collapse
|
30
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
31
|
Chen H, Amazit L, Lombès M, Le Menuet D. Crosstalk Between Glucocorticoid Receptor and Early-growth Response Protein 1 Accounts for Repression of Brain-derived Neurotrophic Factor Transcript 4 Expression. Neuroscience 2018; 399:12-27. [PMID: 30578973 DOI: 10.1016/j.neuroscience.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key player in brain functions such as synaptic plasticity, stress, and behavior. Its gene structure in rodents contains 8 untranslated exons (I to VIII) whose expression is finely regulated and which spliced onto a common and unique translated exon IX. Altered Bdnf expression is associated with many pathologies such as depression, Alzheimer's disease and addiction. Through binding to glucocorticoid receptor (GR), glucocorticoids play a pivotal role for stress responses, mood and neuronal plasticity. We recently showed in neuronal primary culture and in the immortalized neuronal-like BZ cells that GR repressed Bdnf expression, notably the bdnf exon IV containing mRNA isoform (Bdnf4) via GR binding to a short 275-bp sequence of Bdnf promoter. Herein, we demonstrate by transient transfection experiments and mutagenesis in BZ cells that GR interacts with an early growth response protein 1 (EGR1) response element (EGR-RE) located in the transcription start site of Bdnf exon IV promoter. Using Chromatin Immunoprecipitation, we find that both GR and EGR1 bind to this promoter sequence in a glucocorticoid-dependent manner and demonstrate by co-immunoprecipitation that GR and EGR1 are interacting physically. Interestingly, EGR1 has been widely characterized as a regulator of brain plasticity. In conclusion, we deciphered a mechanism by which GR downregulates Bdnf expression, identifying a novel functional crosstalk between glucocorticoid pathways, immediate early growth response proteins and Bdnf. As all these factors are well-recognized germane for brain pathophysiology, these findings may have significant implications in neurosciences as well as in therapeutics.
Collapse
Affiliation(s)
- Hui Chen
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Larbi Amazit
- UMS-32, Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin Bicêtre F-94275, France
| | - Damien Le Menuet
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
32
|
Singer W, Manthey M, Panford-Walsh R, Matt L, Geisler HS, Passeri E, Baj G, Tongiorgi E, Leal G, Duarte CB, Salazar IL, Eckert P, Rohbock K, Hu J, Strotmann J, Ruth P, Zimmermann U, Rüttiger L, Ott T, Schimmang T, Knipper M. BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo. Front Mol Neurosci 2018; 11:325. [PMID: 30319348 PMCID: PMC6170895 DOI: 10.3389/fnmol.2018.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.
Collapse
Affiliation(s)
- Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Eleonora Passeri
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Gabriele Baj
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrico Tongiorgi
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Graciano Leal
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ivan L. Salazar
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Jörg Strotmann
- Department of Physiology, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PKD, Knipper M, Rüttiger L. GC-B Deficient Mice With Axon Bifurcation Loss Exhibit Compromised Auditory Processing. Front Neural Circuits 2018; 12:65. [PMID: 30275816 PMCID: PMC6152484 DOI: 10.3389/fncir.2018.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory axon T-like branching (bifurcation) in neurons from dorsal root ganglia and cranial sensory ganglia depends on the molecular signaling cascade involving the secreted factor C-type natriuretic peptide, the natriuretic peptide receptor guanylyl cyclase B (GC-B; also known as Npr2) and cGMP-dependent protein kinase I (cGKI, also known as PKGI). The bifurcation of cranial nerves is suggested to be important for information processing by second-order neurons in the hindbrain or spinal cord. Indeed, mice with a spontaneous GC-B loss of function mutation (Npr2cn/cn ) display an impaired bifurcation of auditory nerve (AN) fibers. However, these mice did not show any obvious sign of impaired basal hearing. Here, we demonstrate that mice with a targeted inactivation of the GC-B gene (Npr2 lacZ/lacZ , GC-B KO mice) show an elevation of audiometric thresholds. In the inner ear, the cochlear hair cells in GC-B KO mice were nevertheless similar to those from wild type mice, justified by the typical expression of functionally relevant marker proteins. However, efferent cholinergic feedback to inner and outer hair cells was reduced in GC-B KO mice, linked to very likely reduced rapid efferent feedback. Sound-evoked AN responses of GC-B KO mice were elevated, a feature that is known to occur when the efferent axo-dendritic feedback on AN is compromised. Furthermore, late sound-evoked brainstem responses were significantly delayed in GC-B KO mice. This delay in sound response was accompanied by a weaker sensitivity of the auditory steady state response to amplitude-modulated sound stimuli. Finally, the acoustic startle response (ASR) - one of the fastest auditory responses - and the prepulse inhibition of the ASR indicated significant changes in temporal precision of auditory processing. These findings suggest that GC-B-controlled axon bifurcation of spiral ganglion neurons is important for proper activation of second-order neurons in the hindbrain and is a prerequisite for proper temporal auditory processing likely by establishing accurate efferent top-down control circuits. These data hypothesize that the bifurcation pattern of cranial nerves is important to shape spatial and temporal information processing for sensory feedback control.
Collapse
Affiliation(s)
- Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sylvia Pfeiffer
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Dennis Zelle
- Department of Otolaryngology, Head and Neck Surgery, Physiological Acoustics and Communication, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter K D Pilz
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Matt L, Eckert P, Panford-Walsh R, Geisler HS, Bausch AE, Manthey M, Müller NIC, Harasztosi C, Rohbock K, Ruth P, Friauf E, Ott T, Zimmermann U, Rüttiger L, Schimmang T, Knipper M, Singer W. Visualizing BDNF Transcript Usage During Sound-Induced Memory Linked Plasticity. Front Mol Neurosci 2018; 11:260. [PMID: 30127717 PMCID: PMC6089339 DOI: 10.3389/fnmol.2018.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV (BDNF-live-exon-visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Tübingen Hearing Research Center, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology, and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Beer-Hammer S, Lee SC, Mauriac SA, Leiss V, Groh IAM, Novakovic A, Piekorz RP, Bucher K, Chen C, Ni K, Singer W, Harasztosi C, Schimmang T, Zimmermann U, Pfeffer K, Birnbaumer L, Forge A, Montcouquiol M, Knipper M, Nürnberg B, Rüttiger L. Gαi Proteins are Indispensable for Hearing. Cell Physiol Biochem 2018; 47:1509-1532. [PMID: 29940568 PMCID: PMC11825972 DOI: 10.1159/000490867] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.
Collapse
Affiliation(s)
- Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Sze Chim Lee
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Stephanie A. Mauriac
- INSERM, Neurocentre Magendie, U1215, 146 rue Leo-Saignat, Bordeaux
- University of Bordeaux, Neurocentre Magendie, Bordeaux, France
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Isabel A. M. Groh
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Ana Novakovic
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Roland P. Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Kirsten Bucher
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Chengfang Chen
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Kun Ni
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Csaba Harasztosi
- Department of Otolaryngology, Tübingen Hearing Research Center, Section of Physiological Acoustics and Communication, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, USA
- Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | | | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, 146 rue Leo-Saignat, Bordeaux
- University of Bordeaux, Neurocentre Magendie, Bordeaux, France
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Alemi R, Motassadi Zarandy M, Joghataei MT, Eftekharian A, Zarrindast MR, Vousooghi N. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses. Int J Pediatr Otorhinolaryngol 2018; 105:103-110. [PMID: 29447794 DOI: 10.1016/j.ijporl.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. METHODS Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. RESULTS Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. CONCLUSION It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Motassadi Zarandy
- Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Eftekharian
- Department of Otorhinolaryngology, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomic Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Möhrle D, Reimann K, Wolter S, Wolters M, Varakina K, Mergia E, Eichert N, Geisler HS, Sandner P, Ruth P, Friebe A, Feil R, Zimmermann U, Koesling D, Knipper M, Rüttiger L. NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy. Mol Pharmacol 2017; 92:375-388. [PMID: 28874607 DOI: 10.1124/mol.117.108548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 02/14/2025] Open
Abstract
Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC β1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.
Collapse
MESH Headings
- Animals
- Female
- Guanylate Cyclase/metabolism
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Morpholines/pharmacology
- Nitric Oxide/metabolism
- Noise/adverse effects
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Katrin Reimann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Markus Wolters
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ksenya Varakina
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Evanthia Mergia
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Nicole Eichert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Sandner
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Ruth
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Andreas Friebe
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Robert Feil
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Doris Koesling
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| |
Collapse
|
38
|
Chen H, Lombès M, Le Menuet D. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain 2017; 10:12. [PMID: 28403881 PMCID: PMC5389111 DOI: 10.1186/s13041-017-0295-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer’s, Huntington’s and Parkinson’s diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.
Collapse
Affiliation(s)
- Hui Chen
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Damien Le Menuet
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
39
|
McGovern MM, Brancheck J, Grant AC, Graves KA, Cox BC. Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. J Assoc Res Otolaryngol 2016; 18:227-245. [PMID: 27873085 DOI: 10.1007/s10162-016-0598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Four CreER lines that are commonly used in the auditory field to label cochlear supporting cells (SCs) are expressed in multiple SC subtypes, with some lines also showing reporter expression in hair cells (HCs). We hypothesized that altering the tamoxifen dose would modify CreER expression and target subsets of SCs. We also used two different reporter lines, ROSA26 tdTomato and CAG-eGFP, to achieve the same goal. Our results confirm previous reports that Sox2 CreERT2 and Fgfr3-iCreER T2 are not only expressed in neonatal SCs but also in HCs. Decreasing the tamoxifen dose did not reduce HC expression for Sox2 CreERT2 , but changing to the CAG-eGFP reporter decreased reporter-positive HCs sevenfold. However, there was also a significant decrease in the number of reporter-positive SCs. In contrast, there was a large reduction in reporter-positive HCs in Fgfr3-iCreER T2 mice with the lowest tamoxifen dose tested yet only limited reduction in SC labeling. The targeting of reporter expression to inner phalangeal and border cells was increased when Plp-CreER T2 was paired with the CAG-eGFP reporter; however, the total number of labeled cells decreased. Changes to the tamoxifen dose or reporter line with Prox1 CreERT2 caused minimal changes. Our data demonstrate that modifications to the tamoxifen dose or the use of different reporter lines may be successful in narrowing the numbers and/or types of cells labeled, but each CreER line responded differently. When the ROSA26 tdTomato reporter was combined with any of the four CreER lines, there was no difference in the number of tdTomato-positive cells after one or two injections of tamoxifen given at birth. Thus, tamoxifen-mediated toxicity could be reduced by only giving one injection. While the CAG-eGFP reporter consistently labeled fewer cells, both reporter lines are valuable depending on the goal of the study.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Joseph Brancheck
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Auston C Grant
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
- Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
| |
Collapse
|
40
|
High mobility group box 1 (HMGB1): dual functions in the cochlear auditory neurons in response to stress? Histochem Cell Biol 2016; 147:307-316. [PMID: 27704212 DOI: 10.1007/s00418-016-1506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding protein that facilitates gene transcription and may act extracellularly as a late mediator of inflammation. The roles of HMGB1 in the pathogenesis of the spiral ganglion neurons (SGNs) of the cochlea are currently unknown. In the present study, we tested the hypothesis that early phenotypical changes in the SGNs of the amikacin-poisoned rat cochlea are mediated by HMGB1. Our results showed that a marked downregulation of HMGB1 had occurred by completion of amikacin treatment, coinciding with acute damage at the dendrite extremities of the SGNs. A few days later, during the recovery of the SGN dendrites, the protein was re-expressed and transiently accumulated within the nuclei of the SGNs. The phosphorylated form of the transcription factor c-Jun (p-c-Jun) was concomitantly detected in the nuclei of the SGNs where it often co-localized with HMGB1, while the anti-apoptotic protein BCL2 was over-expressed in the cytoplasm. In animals co-treated with amikacin and the histone deacetylase inhibitor trichostatin A, both HMGB1 and p-c-Jun were exclusively found within the cytoplasm. The initial disappearance of HMGB1 from the affected SGNs may be due to its release into the external medium, where it may have a cytokine-like function. Once re-expressed and translocated into the nucleus, HMGB1 may facilitate the transcriptional activity of p-c-Jun, which in turn may promote repair mechanisms. Our study therefore suggests that HMGB1 can positively influence the survival of SGNs following ototoxic exposure via both its extracellular and intranuclear functions.
Collapse
|
41
|
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016; 44:173-184. [DOI: 10.1016/j.neurobiolaging.2016.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
|
42
|
Dlugaiczyk J, Hecker D, Neubert C, Buerbank S, Campanelli D, Becker CM, Betz H, Knipper M, Rüttiger L, Schick B. Loss of glycine receptors containing the α3 subunit compromises auditory nerve activity, but not outer hair cell function. Hear Res 2016; 337:25-34. [DOI: 10.1016/j.heares.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/25/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
43
|
Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci 2016; 37:1511-6. [DOI: 10.1007/s10072-016-2603-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
44
|
Suli A, Pujol R, Cunningham DE, Hailey DW, Prendergast A, Rubel EW, Raible DW. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. J Cell Sci 2016; 129:2250-60. [PMID: 27103160 DOI: 10.1242/jcs.182592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/15/2016] [Indexed: 01/24/2023] Open
Abstract
Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse.
Collapse
Affiliation(s)
- Arminda Suli
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Remy Pujol
- V.M. Bloedel Hearing Center, University of Washington, Seattle, WA 98195, USA INSERM-Unit 1051, Université Montpellier, France
| | - Dale E Cunningham
- V.M. Bloedel Hearing Center, University of Washington, Seattle, WA 98195, USA
| | - Dale W Hailey
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA V.M. Bloedel Hearing Center, University of Washington, Seattle, WA 98195, USA
| | - Andrew Prendergast
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA Institut du Cerveau et de la Moelle Épinère 47, Boulevard de l'Hôpital, 75013 Paris, France
| | - Edwin W Rubel
- V.M. Bloedel Hearing Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Barclay M, Constable R, James NR, Thorne PR, Montgomery JM. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea. Neuroscience 2016; 325:50-62. [PMID: 27012610 DOI: 10.1016/j.neuroscience.2016.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC.
Collapse
Affiliation(s)
- M Barclay
- Department of Physiology and Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - R Constable
- Department of Physiology and Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - N R James
- Department of Physiology and Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - P R Thorne
- Department of Physiology and Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Section of Audiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
46
|
Monzack EL, May LA, Roy S, Gale JE, Cunningham LL. Live imaging the phagocytic activity of inner ear supporting cells in response to hair cell death. Cell Death Differ 2015; 22:1995-2005. [PMID: 25929858 PMCID: PMC4816108 DOI: 10.1038/cdd.2015.48] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.
Collapse
Affiliation(s)
- E L Monzack
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - L A May
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - S Roy
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - J E Gale
- UCL Ear Institute, University College, London WC1X 8EE, UK
| | - L L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Chumak T, Rüttiger L, Lee SC, Campanelli D, Zuccotti A, Singer W, Popelář J, Gutsche K, Geisler HS, Schraven SP, Jaumann M, Panford-Walsh R, Hu J, Schimmang T, Zimmermann U, Syka J, Knipper M. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury. Mol Neurobiol 2015; 53:5607-27. [PMID: 26476841 PMCID: PMC5012152 DOI: 10.1007/s12035-015-9474-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNFPax2-KO) versus the auditory cortex and hippocampus (BDNFTrkC-KO). We demonstrate that BDNFPax2-KO but not BDNFTrkC-KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNFPax2 mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNFPax2-KO, but not of BDNFTrkC-KO mice. Also, BDNFPax2-WT but not BDNFPax2-KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.
Collapse
Affiliation(s)
- Tetyana Chumak
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Lukas Rüttiger
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sze Chim Lee
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Dario Campanelli
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Annalisa Zuccotti
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.,Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wibke Singer
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Jiří Popelář
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Katja Gutsche
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sebastian Philipp Schraven
- Department of Otolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Mirko Jaumann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | | | - Jing Hu
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Ulrike Zimmermann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.
| |
Collapse
|
48
|
Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing. J Neurosci 2015; 35:9236-45. [PMID: 26085645 DOI: 10.1523/jneurosci.4384-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve-muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. SIGNIFICANCE STATEMENT This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing.
Collapse
|
49
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
50
|
Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015; 329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration.
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|