1
|
Anjum F, Alsharif A, Bakhuraysah M, Shafie A, Hassan MI, Mohammad T. Discovering Novel Biomarkers and Potential Therapeutic Targets of Amyotrophic Lateral Sclerosis Through Integrated Machine Learning and Gene Expression Profiling. J Mol Neurosci 2025; 75:61. [PMID: 40304918 DOI: 10.1007/s12031-025-02340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has multiple factors that make its molecular pathogenesis difficult to understand and its diagnosis and treatment during the early stages difficult to determine. Discovering novel biomarkers in ALS for diagnostic and therapeutic potential has become important. Consequently, bioinformatics and machine learning algorithms are useful for identifying differentially expressed genes (DEGs) and potential biomarkers, as well as understanding the molecular mechanisms and intricacies of diseases such as ALS. To achieve the aim of the present study, six datasets obtained from the Gene Expression Omnibus (GEO) were utilized and analyzed using an integrative bioinformatics and machine learning approach. Log transformation was done during data preprocessing, RMA normalization was performed, and the batch effect was corrected. Differential expression analysis identified 206 DEGs that were significantly associated with different biological processes, including muscle function, energy metabolism, and mitochondrial membrane activity. Functional enrichment analysis highlighted pathways, including those related to prion disease, Parkinson's disease, and ATP synthesis via chemiosmotic coupling. We employed a multi-step machine learning framework incorporating random forest, LASSO regression, and SVM-RFE to identify robust biomarkers. This approach identified three key genes, CHRNA1, DLG5, and PLA2G4C, which could be explored as promising biomarkers for ALS after further validation. The internal validation, including principal component analysis (PCA) and ROC-AUC analysis, demonstrated strong diagnostic potential of these hub genes, achieving an AUC of 0.96. This work highlights the utility of bioinformatics and machine learning in identifying key genes as biomarkers for diagnostic and therapeutic potential in ALS.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| | - Maha Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
3
|
Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, Hourihan M, Jiang S, Lee HC, Bendl J, Voloudakis G, Haroutunian V, Hoffman GE, Roussos P, Kellis M. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024; 384:eadg5136. [PMID: 38781388 DOI: 10.1126/science.adg5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 05/25/2024]
Abstract
The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shahin Mohammadi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Sivan Subburaju
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reed Tso
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Makayla Hourihan
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Shan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hao-Chih Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Cao MC, Ryan B, Wu J, Curtis MA, Faull RLM, Dragunow M, Scotter EL. A panel of TDP-43-regulated splicing events verifies loss of TDP-43 function in amyotrophic lateral sclerosis brain tissue. Neurobiol Dis 2023; 185:106245. [PMID: 37527763 DOI: 10.1016/j.nbd.2023.106245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
TDP-43 dysfunction is a molecular hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A major hypothesis of TDP-43 dysfunction in disease is the loss of normal nuclear function, resulting in impaired RNA regulation and the emergence of cryptic exons. Cryptic exons and differential exon usage are emerging as promising markers of lost TDP-43 function in addition to revealing biological pathways involved in neurodegeneration in ALS/FTD. In this brief report, we identified markers of TDP-43 loss of function by depleting TARDBP from post-mortem human brain pericytes, a manipulable in vitro primary human brain cell model, and identifying differential exon usage events with bulk RNA-sequencing analysis. We present these data in an interactive database (https://www.scotterlab.auckland.ac.nz/research-themes/tdp43-lof-db-v2/) together with seven other TDP-43-depletion datasets we meta-analysed previously, for user analysis of differential expression and splicing signatures. Differential exon usage events that were validated by qPCR were then compiled into a 'differential exon usage panel' with other well-established TDP-43 loss-of-function exon markers. This differential exon usage panel was investigated in ALS and control motor cortex tissue to verify whether, and to what extent, TDP-43 loss of function occurs in ALS. We find that profiles of TDP-43-regulated cryptic exons, changed exon usage and changed 3' UTR usage discriminate ALS brain tissue from controls, verifying that TDP-43 loss of function occurs in ALS. We propose that TDP-43-regulated splicing events that occur in brain tissue will have promise as predictors of disease.
Collapse
Affiliation(s)
- Maize C Cao
- Department of Pharmacology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Jane Wu
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Mike Dragunow
- Department of Pharmacology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
5
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
6
|
Cuevas M, Terhune E, Wethey C, James M, Netsanet R, Grofova D, Monley A, Hadley Miller N. Cytoskeletal Keratins Are Overexpressed in a Zebrafish Model of Idiopathic Scoliosis. Genes (Basel) 2023; 14:genes14051058. [PMID: 37239418 DOI: 10.3390/genes14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Idiopathic scoliosis (IS) is a three-dimensional rotation of the spine >10 degrees with an unknown etiology. Our laboratory established a late-onset IS model in zebrafish (Danio rerio) containing a deletion in kif7. A total of 25% of kif7co63/co63 zebrafish develop spinal curvatures and are otherwise developmentally normal, although the molecular mechanisms underlying the scoliosis are unknown. To define transcripts associated with scoliosis in this model, we performed bulk mRNA sequencing on 6 weeks past fertilization (wpf) kif7co63/co63 zebrafish with and without scoliosis. Additionally, we sequenced kif7co63/co63, kif7co63/+, and AB zebrafish (n = 3 per genotype). Sequencing reads were aligned to the GRCz11 genome and FPKM values were calculated. Differences between groups were calculated for each transcript by the t-test. Principal component analysis showed that transcriptomes clustered by sample age and genotype. kif7 mRNA was mildly reduced in both homozygous and heterozygous zebrafish compared to AB. Sonic hedgehog target genes were upregulated in kif7co63/co63 zebrafish over AB, but no difference was detected between scoliotic and non-scoliotic mutants. The top upregulated genes in scoliotic zebrafish were cytoskeletal keratins. Pankeratin staining of 6 wpf scoliotic and non-scoliotic kif7co63/co63 zebrafish showed increased keratin levels within the zebrafish musculature and intervertebral disc (IVD). Keratins are major components of the embryonic notochord, and aberrant keratin expression has been associated with intervertebral disc degeneration (IVDD) in both zebrafish and humans. The role of increased keratin accumulation as a molecular mechanism associated with the onset of scoliosis warrants further study.
Collapse
Affiliation(s)
- Melissa Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cambria Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - MkpoutoAbasi James
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rahwa Netsanet
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Denisa Grofova
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Cao MC, Scotter EL. Novel and known transcriptional targets of ALS/FTD protein TDP-43: Meta-analysis and interactive graphical database. Dis Model Mech 2022; 15:276263. [PMID: 35946434 PMCID: PMC9509890 DOI: 10.1242/dmm.049418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
TDP-43 proteinopathy is the major pathology in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal dementia (FTD). Mounting evidence implicates loss of normal TDP-43 RNA processing function as a key pathomechanism. However, the RNA targets of TDP-43 differ by report, and have never been formally collated or compared between models and disease, hampering understanding of TDP-43 function. Here, we conducted re-analysis and meta-analysis of publicly available RNA-sequencing datasets from six TDP-43-knockdown models, and TDP-43-immunonegative neuronal nuclei from ALS/ FTD brain, to identify differentially expressed genes (DEGs) and exon usage (DEU) events. There was little overlap in DEGs between knockdown models, but PFKP, STMN2, CFP, KIAA1324 and TRHDE were common targets and were also differentially expressed in TDP-43-immunonegative neurons. DEG enrichment analysis revealed diverse biological pathways including immune and synaptic functions. Common DEU events in human datasets included well-known targets POLDIP3 and STMN2, and novel targets EXD3, MMAB, DLG5 and GOSR2. Our interactive database https://phpstack-449938-2576646.cloudwaysapps.com/ allows further exploration of TDP-43 DEG and DEU targets. Together, these data identify TDP-43 targets that can be exploited therapeutically or to validate loss-of-function processes.
Collapse
Affiliation(s)
- Maize C Cao
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| | - Emma L Scotter
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Kundu S, Nandhu MS, Longo SL, Longo JA, Rai S, Chin LS, Richardson TE, Viapiano MS. The scaffolding protein DLG5 promotes glioblastoma growth by controlling Sonic Hedgehog signaling in tumor stem cells. Neuro Oncol 2022; 24:1230-1242. [PMID: 34984467 PMCID: PMC9340653 DOI: 10.1093/neuonc/noac001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tumor invasion, a hallmark of malignant gliomas, involves reorganization of cell polarity and changes in the expression and distribution of scaffolding proteins associated with polarity complexes. The scaffolding proteins of the DLG family are usually downregulated in invasive tumors and regarded as tumor suppressors. Despite their important role in regulating neurodevelopmental signaling, the expression and functions of DLG proteins have remained almost entirely unexplored in malignant gliomas. METHODS Western blot, immunohistochemistry, and analysis of gene expression were used to quantify DLG members in glioma specimens and cancer datasets. Over-expression and knockdown of DLG5, the highest-expressed DLG member in glioblastoma, were used to investigate its effects on tumor stem cells and tumor growth. qRT-PCR, Western blotting, and co-precipitation assays were used to investigate DLG5 signaling mechanisms. RESULTS DLG5 was upregulated in malignant gliomas compared to other solid tumors, being the predominant DLG member in all glioblastoma molecular subtypes. DLG5 promoted glioblastoma stem cell invasion, viability, and self-renewal. Knockdown of this protein in vivo disrupted tumor formation and extended survival. At the molecular level, DLG5 regulated Sonic Hedgehog (Shh) signaling, making DLG5-deficient cells insensitive to Shh ligand. Loss of DLG5 increased the proteasomal degradation of Gli1, underlying the loss of Shh signaling and tumor stem cell sensitization. CONCLUSIONS The high expression and pro-tumoral functions of DLG5 in glioblastoma, including its dominant regulation of Shh signaling in tumor stem cells, reveal a novel role for this protein that is strikingly different from its proposed tumor-suppressor role in other solid tumors.
Collapse
Affiliation(s)
- Somanath Kundu
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mohan S Nandhu
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sharon L Longo
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - John A Longo
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Shawn Rai
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lawrence S Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Timothy E Richardson
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Mariano S Viapiano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
10
|
Yamada T, Saitoh Y, Kametani K, Kamijo A, Sakamoto T, Terada N. Involvement of membrane palmitoylated protein 2 (MPP2) in the synaptic molecular complex at the mouse cerebellar glomerulus. Histochem Cell Biol 2022; 158:497-511. [PMID: 35854144 DOI: 10.1007/s00418-022-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized. Immunostaining for MPP2 was observed at cerebellar glomeruli (CG) in the granular layer after postnatal day 14. Using the high-resolution Airyscan mode of a confocal laser-scanning microscope, MPP2 was detected as a dot pattern and colocalized with CADM1 and Lin7, recognized as small ring/line patterns, as well as with calcium/calmodulin-dependent serine protein kinase (CASK), NMDA glutamate receptor 1 (GluN1), and M-cadherin, recognized as dot patterns, indicating the localization of MPP2 in the excitatory postsynaptic region and adherens junctions of granule cells. An immunoprecipitation analysis revealed that MPP2 formed a molecular complex with CADM1, CASK, M-cadherin, and Lin7. Furthermore, the Lin7 staining pattern showed small rings surrounding mossy fibers in wild-type CG, while it changed to the dot/spot pattern inside small rings detected with CADM1 staining in MPP2-deficient CG. These results indicate that MPP2 influences the distribution of Lin7 to synaptic cell membranes at postsynaptic regions in granule cells at CG, at which electric signals enter the cerebellum.
Collapse
Affiliation(s)
- Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Division of Basic and Clinical Medicine, Nagano College of Nursing, Komagane, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
11
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Rohena C, Rajapakse N, Lo IC, Novick P, Sahoo D, Ghosh P. GIV/Girdin and Exo70 Collaboratively Regulate the Mammalian Polarized Exocytic Machinery. iScience 2020; 23:101246. [PMID: 32590327 PMCID: PMC7322189 DOI: 10.1016/j.isci.2020.101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
Polarized exocytosis is a fundamental process by which membranes and cargo proteins are delivered to the cell surface with precise spatial control. Although the need for the octameric exocyst complex is conserved from yeast to humans, what imparts spatial control is known only in yeast, i.e., a polarity scaffold called Bem1p. We demonstrate here that the mammalian scaffold protein, GIV/Girdin, fulfills the key criteria and functions of its yeast counterpart Bem1p; both bind Exo70 proteins via similar short-linear interaction motifs, and each prefers its evolutionary counterpart. Selective disruption of the GIV⋅Exo-70 interaction derails the delivery of the metalloprotease MT1-MMP to invadosomes and impairs collagen degradation and haptotaxis through basement membrane matrix. GIV's interacting partners reveal other components of polarized exocytosis in mammals. Findings expose how the exocytic functions aid GIV's pro-metastatic functions and how signal integration via GIV may represent an evolutionary advancement of the exocytic process in mammals.
Collapse
Affiliation(s)
- Cristina Rohena
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA; Veterans Affairs Medical Center, 3350 La Jolla Village Dr, San Diego, CA 92161, USA.
| |
Collapse
|
13
|
Venugopal P, Veyssière H, Couderc JL, Richard G, Vachias C, Mirouse V. Multiple functions of the scaffold protein Discs large 5 in the control of growth, cell polarity and cell adhesion in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2020; 20:10. [PMID: 32552730 PMCID: PMC7301484 DOI: 10.1186/s12861-020-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Background Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. Results Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. Conclusions Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.
Collapse
Affiliation(s)
- Parvathy Venugopal
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Hugo Veyssière
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : University Clermont Auvergne, INSERM U1240, Centre de Lutte Contre le Cancer Jean PERRIN, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Jean-Louis Couderc
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Graziella Richard
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Caroline Vachias
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Mohan V, Sullivan CS, Guo J, Wade SD, Majumder S, Agarwal A, Anton ES, Temple BS, Maness PF. Temporal Regulation of Dendritic Spines Through NrCAM-Semaphorin3F Receptor Signaling in Developing Cortical Pyramidal Neurons. Cereb Cortex 2020; 29:963-977. [PMID: 29415226 DOI: 10.1093/cercor/bhy004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/06/2018] [Indexed: 01/03/2023] Open
Abstract
Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive β1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jiami Guo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sarah D Wade
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Samarpan Majumder
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Eva S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brenda S Temple
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Cherra SJ, Goncharov A, Boassa D, Ellisman M, Jin Y. C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. J Neurogenet 2020; 34:298-306. [PMID: 32366143 DOI: 10.1080/01677063.2020.1726915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Wang D, Zhang Q, Li F, Wang C, Yang C, Yu H. β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int 2019; 19:298. [PMID: 31787846 PMCID: PMC6858669 DOI: 10.1186/s12935-019-1029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase (MAGUK) adaptor family of proteins and its deregulation has been implicated in the malignancy of several cancer types. Dlg5 was down-regulated in hepatocellular carcinoma (HCC) and lower Dlg5 expression was associated with poor survival of HCC patients. However, how to regulate Dlg5 remains largely unknown. Methods The co-immunoprecipitation assay was used to determine the interaction between Dlg5 and β-TrCP. The in vivo ubiquitination assay was performed to determine the regulation of Dlg5 by β-TrCP. CCK-8 and colony formation assay were implemented to detect the biological effect of Dlg5 on the growth of HCC cells in vitro. The effect of Dlg5 on HCC tumor growth in vivo was studied in a tumor xenograft model in mice. Results Here we report that Dlg5 is regulated by the ubiquitin proteasome system and depletion of either Cullin 1 or β-TrCP led to increased levels of Dlg5. β-TrCP regulated Dlg5 protein stability by targeting it for ubiquitination and subsequent destruction in a phosphorylation-dependent manner. We further demonstrated a crucial role of Ser730 in the non-canonical phosphodegron of Dlg5 in governing β-TrCP-mediated Dlg5 degradation. Importantly, failure to degrade Dlg5 significantly inhibited HCC cells proliferation both in vitro and in vivo. Conclusion Collectively, our finding provides a novel molecular mechanism for the negative regulation of Dlg5 by β-TRCP in HCC cells. It further suggests that preventing Dlg5 degradation could be a possible novel strategy for clinical treatment of HCC.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Anesthesiology, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| | - Qi Zhang
- Department of Operation Room, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| | - Fenfen Li
- Department of Nursing, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| | - Chan Wang
- Department of Anesthesiology, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| | - Changming Yang
- Department of Anesthesiology, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| | - Hong Yu
- Department of Neonatology, The First People's of Hospital of Jingmen City, Jingmen, Hubei 448000 China
| |
Collapse
|
17
|
Barbiero I, De Rosa R, Kilstrup-Nielsen C. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder? Int J Mol Sci 2019; 20:E4075. [PMID: 31438497 PMCID: PMC6747382 DOI: 10.3390/ijms20174075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy caused by mutations in the X-linked CDKL5 gene that encodes a serine/threonine kinase. CDD is characterised by the early onset of seizures and impaired cognitive and motor skills. Loss of CDKL5 in vitro and in vivo affects neuronal morphology at early and late stages of maturation, suggesting a link between CDKL5 and the neuronal cytoskeleton. Recently, various microtubule (MT)-binding proteins have been identified as interactors of CDKL5, indicating that its roles converge on regulating MT functioning. MTs are dynamic structures that are important for neuronal morphology, migration and polarity. The delicate control of MT dynamics is fundamental for proper neuronal functions, as evidenced by the fact that aberrant MT dynamics are involved in various neurological disorders. In this review, we highlight the link between CDKL5 and MTs, discussing how CDKL5 deficiency may lead to deranged neuronal functions through aberrant MT dynamics. Finally, we discuss whether the regulation of MT dynamics through microtubule-targeting agents may represent a novel strategy for future pharmacological approaches in the CDD field.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Roberta De Rosa
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy.
| |
Collapse
|
18
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
19
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
20
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
21
|
Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 2017; 30:2696-2709. [PMID: 28087714 PMCID: PMC5238729 DOI: 10.1101/gad.284539.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Here, Kwan et al. investigated the mechanisms connecting cell polarity proteins with intracellular signaling pathways. They found that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, demonstrating a direct connection between cell polarity proteins and Hippo that is needed for proper development of multicellular organisms. Disruption of apical–basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5−/− tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz. Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms.
Collapse
Affiliation(s)
- Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anna Sczaniecka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emad Heidary Arash
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liem Nguyen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chia-Chun Chen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Srdjana Ratkovic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Liliana Attisano
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
22
|
Suenami S, Paul RK, Takeuchi H, Okude G, Fujiyuki T, Shirai K, Kubo T. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.). PLoS One 2016; 11:e0157841. [PMID: 27351839 PMCID: PMC4924639 DOI: 10.1371/journal.pone.0157841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023] Open
Abstract
The adult honeybee (Apis mellifera L.) mushroom bodies (MBs, a higher center in the insect brain) comprise four subtypes of intrinsic neurons: the class-I large-, middle-, and small-type Kenyon cells (lKCs, mKCs, and sKCs, respectively), and class-II KCs. Analysis of the differentiation of KC subtypes during metamorphosis is important for the better understanding of the roles of KC subtypes related to the honeybee behaviors. In the present study, aiming at identifying marker genes for KC subtypes, we used a cDNA microarray to comprehensively search for genes expressed in an MB-preferential manner in the honeybee brain. Among the 18 genes identified, we further analyzed three genes whose expression was enriched in the MBs: phospholipase C epsilon (PLCe), synaptotagmin 14 (Syt14), and discs large homolog 5 (dlg5). Quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of PLCe, Syt14, and dlg5 was more enriched in the MBs than in the other brain regions by approximately 31-, 6.8-, and 5.6-fold, respectively. In situ hybridization revealed that expression of both Syt14 and dlg5 was enriched in the lKCs but not in the mKCs and sKCs, whereas expression of PLCe was similar in all KC subtypes (the entire MBs) in the honeybee brain, suggesting that Syt14 and dlg5, and PLCe are available as marker genes for the lKCs, and all KC subtypes, respectively. In situ hybridization revealed that expression of PLCe is already detectable in the class-II KCs at the larval fifth instar feeding stage, indicating that PLCe expression is a characteristic common to the larval and adult MBs. In contrast, expression of both Syt14 and dlg5 became detectable at the day three pupa, indicating that Syt14 and dlg5 expressions are characteristic to the late pupal and adult MBs and the lKC specific molecular characteristics are established during the late pupal stages.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Tomoko Fujiyuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Kenichi Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail:
| |
Collapse
|
23
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [PMID: 25808930 DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 02/14/2025] Open
Abstract
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27.
Collapse
Affiliation(s)
- Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
High-performance probes for light and electron microscopy. Nat Methods 2015; 12:568-76. [PMID: 25915120 PMCID: PMC4573404 DOI: 10.1038/nmeth.3365] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.
Collapse
|
25
|
Molecular regulation of synaptogenesis during associative learning and memory. Brain Res 2014; 1621:239-51. [PMID: 25485772 DOI: 10.1016/j.brainres.2014.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.
Collapse
|