1
|
Kumar D, Khan B, Okcay Y, Sis ÇÖ, Abdallah A, Murray F, Sharma A, Uemura M, Taliyan R, Heinbockel T, Rahman S, Goyal R. Dynamic endocannabinoid-mediated neuromodulation of retinal circadian circuitry. Ageing Res Rev 2024; 99:102401. [PMID: 38964508 DOI: 10.1016/j.arr.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| | - Bareera Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Çağıl Önal Sis
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Aya Abdallah
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Fiona Murray
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Ashish Sharma
- School of Medicine, Washington University, St. Louis, USA
| | - Maiko Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology Science, Pilani, Rajasthan 333301, India.
| | - Thomas Heinbockel
- Howard University College of Medicine, Department of Anatomy, Washington, DC 20059, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University, Brookings, SD, USA.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| |
Collapse
|
2
|
El-Desoky SMM, Elhanbaly R, Hifny A, Ibrahim N, Gaber W. Temporospatial dynamics of the morphogenesis of the rabbit retina from prenatal to postnatal life: Light and electron microscopic study. Microsc Res Tech 2024; 87:774-789. [PMID: 38062556 DOI: 10.1002/jemt.24466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024]
Abstract
The retina consists of various cell types arranged in eight cell layers and two membranes that originate from the neuroectodermal cells. In this study, the timing of differentiation and distribution of the cellular components and the layers of the rabbit retina are investigated using light and electron microscopy and immunohistochemical techniques. There were 32 rabbit embryos and 12 rabbits used. The rabbit retina begins its prenatal development on the 10th day of gestation in the form of optic cup. The process of neuro- and gliogenesis occurs in several stages: In the first stage, the ganglionic cells are differentiated at the 15th day. The second stage includes the differentiation of Muller, amacrine, and cone cells on the 23rd day. The differentiation of bipolar, horizontal, and rod cells and formation of the inner segments of the photoreceptors consider the late stage that occurs by the 27th and 30th day of gestation. On the first week of age postnatally, the outer segments of the photoreceptors are developed. S100 protein is expressed by the Muller cells and its processes that traverse the retina from the outer to the inner limiting membranes. Calretinin is intensely labeled within the amacrine and displaced amacrine cells. Ganglionic cells exhibited moderate immunoreactivity for calretinin confined to their cytoplasm and dendrites. In conclusion, all stages of neuro- and gliogenesis of the rabbit retina occur during the embryonic period. Then, the retina continues its development postnatally by formation of the photoreceptor outer segments and all layers of the retina become established. RESEARCH HIGHLIGHTS: The aim of this study is to investigate the morphogenesis of the rabbit retina during pre- and postnatal life. The primordia of the retina could be observed in the form of the optic cup. The ganglionic cells are the first cells to differentiate, while the photoreceptor cells are the last. S100 protein is expressed by the Muller cells and its processes. Calretinin is intensely labeled in the amacrine and displaced amacrine cells and moderately expressed in the cytoplasm and dendrites of ganglionic cells.
Collapse
Affiliation(s)
- Sara M M El-Desoky
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ruwaida Elhanbaly
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdalla Hifny
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nagwa Ibrahim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Wafaa Gaber
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Keeley PW, Trod S, Gamboa BN, Coffey PJ, Reese BE. Nfia Is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG. J Neurosci 2023; 43:8367-8384. [PMID: 37775301 PMCID: PMC10711738 DOI: 10.1523/jneurosci.1099-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Stephanie Trod
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Bruno N Gamboa
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Pete J Coffey
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-5060
| |
Collapse
|
4
|
Keeley PW, Patel SS, Reese BE. Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina. J Anat 2023; 243:204-222. [PMID: 35292986 PMCID: PMC10335380 DOI: 10.1111/joa.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.
Collapse
Affiliation(s)
- Patrick W. Keeley
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Shivam S. Patel
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Benjamin E. Reese
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Psychological & Brain SciencesUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
5
|
Yang M, Chen Y, Vagionitis S, Körtvely E, Ueffing M, Schmachtenberg O, Hu Z, Jiao K, Paquet-Durand F. Expression of glucose transporter-2 in murine retina: Evidence for glucose transport from horizontal cells to photoreceptor synapses. J Neurochem 2021; 160:283-296. [PMID: 34726780 DOI: 10.1111/jnc.15533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
The retina has the highest relative energy consumption of any tissue, depending on a steady supply of glucose from the bloodstream. Glucose uptake is mediated by specific transporters whose regulation and expression are critical for the pathogenesis of many diseases, including diabetes and diabetic retinopathy. Here, we used immunofluorescence to show that glucose transporter-2 (GLUT2) is expressed in horizontal cells of the mouse neuroretina in proximity to inner retinal capillaries. To study the function of GLUT2 in the murine retina, we used organotypic retinal explants, cultivated under entirely controlled, serum-free conditions and exposed them to streptozotocin, a cytotoxic drug transported exclusively by GLUT2. Contrary to our expectations, streptozotocin did not measurably affect horizontal cell viability, while it ablated rod and cone photoreceptors in a concentration-dependent manner. Staining for poly-ADP-ribose (PAR) indicated that the detrimental effect of streptozotocin on photoreceptors may be associated with DNA damage. The negative effect of streptozotocin on the viability of rod photoreceptors was counteracted by co-administration of either the inhibitor of connexin-formed hemi-channels meclofenamic acid or the blocker of clathrin-mediated endocytosis dynasore. Remarkably, cone photoreceptors were not protected from streptozotocin-induced degeneration by neither of the two drugs. Overall, these data suggest the existence of a GLUT2-dependent glucose transport shuttle, from horizontal cells into photoreceptor synapses. Moreover, our study points at different glucose uptake mechanisms in rod and cone photoreceptors.
Collapse
Affiliation(s)
- Ming Yang
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China.,1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiyi Chen
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Stavros Vagionitis
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Elöd Körtvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O), Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Oliver Schmachtenberg
- CINV, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Zhulin Hu
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | - Kangwei Jiao
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | | |
Collapse
|
6
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Nemitz L, Dedek K, Janssen-Bienhold U. Synaptic Remodeling in the Cone Pathway After Early Postnatal Horizontal Cell Ablation. Front Cell Neurosci 2021; 15:657594. [PMID: 34122012 PMCID: PMC8187617 DOI: 10.3389/fncel.2021.657594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The first synapse of the visual pathway is formed by photoreceptors, horizontal cells and bipolar cells. While ON bipolar cells invaginate into the photoreceptor terminal and form synaptic triads together with invaginating horizontal cell processes, OFF bipolar cells make flat contacts at the base of the terminal. When horizontal cells are ablated during retina development, no invaginating synapses are formed in rod photoreceptors. However, how cone photoreceptors and their synaptic connections with bipolar cells react to this insult, is unclear so far. To answer this question, we specifically ablated horizontal cells from the developing mouse retina. Following ablation around postnatal day 4 (P4)/P5, cones initially exhibited a normal morphology and formed flat contacts with OFF bipolar cells, but only few invaginating contacts with ON bipolar cells. From P15 on, synaptic remodeling became obvious with clustering of cone terminals and mislocalized cone somata in the OPL. Adult cones (P56) finally displayed highly branched axons with numerous terminals which contained ribbons and vesicular glutamate transporters. Furthermore, type 3a, 3b, and 4 OFF bipolar cell dendrites sprouted into the outer nuclear layer and even expressed glutamate receptors at the base of newly formed cone terminals. These results indicate that cones may be able to form new synapses with OFF bipolar cells in adult mice. In contrast, cone terminals lost their invaginating contacts with ON bipolar cells, highlighting the importance of horizontal cells for synapse maintenance. Taken together, our data demonstrate that early postnatal horizontal cell ablation leads to differential remodeling in the cone pathway: whereas synapses between cones and ON bipolar cells were lost, new putative synapses were established between cones and OFF bipolar cells. These results suggest that synapse formation and maintenance are regulated very differently between flat and invaginating contacts at cone terminals.
Collapse
Affiliation(s)
- Lena Nemitz
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Pourhoseini S, Goswami-Sewell D, Zuniga-Sanchez E. Neurofascin Is a Novel Component of Rod Photoreceptor Synapses in the Outer Retina. Front Neural Circuits 2021; 15:635849. [PMID: 33643000 PMCID: PMC7902911 DOI: 10.3389/fncir.2021.635849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation is an intricate and complex process where multiple neuron types must come together to form synaptic connections at a precise location and time. How this process is orchestrated during development remains poorly understood. Cell adhesion molecules are known to play a pivotal role in assembling neural circuits. They serve as recognition molecules between corresponding synaptic partners. In this study, we identified a new player in assembling neural circuits in the outer retina, the L1-family cell adhesion molecule Neurofascin (Nfasc). Our data reveals Nfasc is expressed in the synaptic layer where photoreceptors make synaptic connections to their respective partners. A closer examination of Nfasc expression shows high levels of expression in rod bipolars but not in cone bipolars. Disruption of Nfasc using a conditional knockout allele results in selective loss of pre- and post-synaptic proteins in the rod synaptic layer but not in the cone synaptic layer. Electron microscopic analysis confirms that indeed there are abnormal synaptic structures with less dendrites of rod bipolars innervating rod terminals in loss of Nfasc animals. Consistent with these findings, we also observe a decrease in rod-driven retinal responses with disruption of Nfasc function but not in cone-driven responses. Taken together, our data suggest a new role of Nfasc in rod synapses within the mouse outer retina.
Collapse
Affiliation(s)
- Sahar Pourhoseini
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | | | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects†. Biol Reprod 2020; 102:1234-1247. [PMID: 32101290 DOI: 10.1093/biolre/ioaa024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Receptor accessory protein 6 (REEP6) is a member of the REEP/Ypt-interacting protein family that we recently identified as essential for normal endoplasmic reticulum homeostasis and protein trafficking in the retina of mice and humans. Interestingly, in addition to the loss of REEP6 in our knockout (KO) mouse model recapitulating the retinal degeneration of humans with REEP6 mutations causing retinitis pigmentosa (RP), we also found that male mice are sterile. Herein, we characterize the infertility caused by loss of Reep6. Expression of both Reep6 mRNA transcripts is present in the testis; however, isoform 1 becomes overexpressed during spermiogenesis. In vitro fertilization assays reveal that Reep6 KO spermatozoa are able to bind the zona pellucida but are only able to fertilize oocytes lacking the zona pellucida. Although spermatogenesis appears normal in KO mice, cauda epididymal spermatozoa have severe motility defects and variable morphological abnormalities, including bent or absent tails. Immunofluorescent staining reveals that REEP6 expression first appears in stage IV tubules within step 15 spermatids, and REEP6 localizes to the connecting piece, midpiece, and annulus of mature spermatozoa. These data reveal an important role for REEP6 in sperm motility and morphology and is the first reported function for a REEP protein in reproductive processes. Additionally, this work identifies a new gene potentially responsible for human infertility and has implications for patients with RP harboring mutations in REEP6.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Smriti Agrawal Zaneveld
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Xiao Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Abigail R Moye
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. Proc Natl Acad Sci U S A 2020; 117:5016-5027. [PMID: 32071204 DOI: 10.1073/pnas.1918628117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, neural progenitors change their competence states over time to sequentially generate different types of neurons and glia. Several cascades of temporal transcription factors (tTFs) have been discovered in Drosophila to control the temporal identity of neuroblasts, but the temporal regulation mechanism is poorly understood in vertebrates. Mammalian retinal progenitor cells (RPCs) give rise to several types of neuronal and glial cells following a sequential yet overlapping temporal order. Here, by temporal cluster analysis, RNA-sequencing analysis, and loss-of-function and gain-of-function studies, we show that the Fox domain TF Foxn4 functions as a tTF during retinogenesis to confer RPCs with the competence to generate the mid/late-early cell types: amacrine, horizontal, cone, and rod cells, while suppressing the competence of generating the immediate-early cell type: retinal ganglion cells (RGCs). In early embryonic retinas, Foxn4 inactivation causes down-regulation of photoreceptor marker genes and decreased photoreceptor generation but increased RGC production, whereas its overexpression has the opposite effect. Just as in Drosophila, Foxn4 appears to positively regulate its downstream tTF Casz1 while negatively regulating its upstream tTF Ikzf1. Moreover, retina-specific ablation of Foxn4 reveals that it may be indirectly involved in the synaptogenesis, establishment of laminar structure, visual signal transmission, and long-term maintenance of the retina. Together, our data provide evidence that Foxn4 acts as a tTF to bias RPCs toward the mid/late-early cell fates and identify a missing member of the tTF cascade that controls RPC temporal identities to ensure the generation of proper neuronal diversity in the retina.
Collapse
|
12
|
Lin Y, Xu CL, Velez G, Yang J, Tanaka AJ, Breazzano MP, Mahajan VB, Sparrow JR, Tsang SH. Novel REEP6 gene mutation associated with autosomal recessive retinitis pigmentosa. Doc Ophthalmol 2019; 140:67-75. [PMID: 31538292 DOI: 10.1007/s10633-019-09719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/04/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE This study reports the ophthalmic and genetic findings of a Cameroonian patient with autosomal recessive retinitis pigmentosa (arRP) caused by a novel Receptor Expression Enhancing Protein 6 (REEP6) homozygous mutation. PATIENT AND METHODS A 33-year-old man underwent comprehensive ophthalmic examinations, including visual acuity measurements, dilated fundus imaging, electroretinography (ERG), and spectral-domain optical coherence tomography (SD-OCT). Short-wavelength fundus autofluorescence (SW-AF) and near-infrared fundus autofluorescence (NIR-AF) were also evaluated. Whole exome sequencing (WES) was used to identify potential pathogenic variants. RESULTS Fundus examination revealed typical RP findings with additional temporal ten micron yellow dots. SD-OCT imaging revealed cystoid macular edema and perifoveal outer retinal atrophy with centrally preserved inner segment ellipsoid zone (EZ) bands. Hyperreflective spots were seen in the inner retinal layers. On SW-AF images, a hypoautofluorescent area in the perifoveal area was observed. NIR-AF imaging revealed an irregularly shaped hyperautofluorescent ring. His visual acuity was mildly affected. ERG showed undetectable rod responses and intact cone responses. Genetic testing via WES revealed a novel homozygous mutation (c.295G>A, p.Glu99Lys) in the gene encoding REEP6, which is predicted to alter the charge in the transmembrane helix. CONCLUSIONS This report is not only the first description of a Cameroonian patient with arRP associated with a REEP6 mutation, but also this particular genetic alteration. Substitution of p.Glu99Lys in REEP6 likely disrupts the interactions between REEP6 and the ER membrane. NIR-AF imaging may be particularly useful for assessing functional photoreceptor cells and show an "avocado" pattern of hyperautofluorescence in patients with the REEP6 mutation.
Collapse
Affiliation(s)
- Yuchen Lin
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Christine L Xu
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Gabriel Velez
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Jing Yang
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Akemi J Tanaka
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mark P Breazzano
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Vinit B Mahajan
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Janet R Sparrow
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
13
|
Nemitz L, Dedek K, Janssen-Bienhold U. Rod Bipolar Cells Require Horizontal Cells for Invagination Into the Terminals of Rod Photoreceptors. Front Cell Neurosci 2019; 13:423. [PMID: 31619966 PMCID: PMC6760018 DOI: 10.3389/fncel.2019.00423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 01/22/2023] Open
Abstract
In the central nervous system, neuronal processing relies on the precisely orchestrated formation of synapses during development. The first synapse of the visual system is a triad synapse, comprising photoreceptors, horizontal cells and bipolar cells. During the second postnatal week, the axon terminal processes of horizontal cells invaginate rod spherules, followed by rod bipolar cell dendrites. Both elements finally oppose the synaptic ribbon (the release site of glutamate). However, it has not been fully elucidated whether horizontal cells are essential for rod bipolar cell dendrites to find their way into the rod terminal. In the present study, we investigated this question by specifically ablating horizontal cells from the early postnatal mouse retina. We monitored the formation of the rod-to-rod bipolar cell synapse during retinal maturation until postnatal day 21. Based on quantitative electron microscopy, we found that without horizontal cells, the dendrites of rod bipolar cells never entered rod terminals. Furthermore, rods displayed significantly fewer and shorter presynaptic ribbons, suggesting that glutamate release is decreased, which coincided with significantly reduced expression of postsynaptic proteins (mGluR6, GPR179) in rod bipolar cells. Collectively, our findings uncover that horizontal cells are indeed necessary guideposts for rod bipolar cells. Whether horizontal cells release diffusible guidance cues or provide structural guidance by expressing specific cell adhesion molecules remains to be seen.
Collapse
Affiliation(s)
- Lena Nemitz
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Méjécase C, Mohand-Saïd S, El Shamieh S, Antonio A, Condroyer C, Blanchard S, Letexier M, Saraiva JP, Sahel JA, Audo I, Zeitz C. A novel nonsense variant in REEP6 is involved in a sporadic rod-cone dystrophy case. Clin Genet 2019; 93:707-711. [PMID: 29120066 DOI: 10.1111/cge.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/22/2022]
Abstract
Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is the most common form of progressive inherited retinal disorders secondary to photoreceptor degeneration. It is a genetically heterogeneous disease characterized by night blindness, followed by visual field constriction and, in most severe cases, total blindness. The aim of our study was to identify the underlying gene defect leading to severe RCD in a 60-year-old woman. The patient's DNA was investigated by targeted next generation sequencing followed by whole exome sequencing. A novel nonsense variant, c.267G>A p.(Trp89*), was identified at a homozygous state in the proband in REEP6 gene, recently reported mutated in 7 unrelated families with RCD. Further functional studies will help to understand the physiopathology associated with REEP6 mutations that may be linked to a protein trafficking defect.
Collapse
Affiliation(s)
- C Méjécase
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - S Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, Paris, France
| | - S El Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - A Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, Paris, France
| | - C Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - S Blanchard
- IntegraGen SA, Genopole Campus, Evry, France
| | - M Letexier
- IntegraGen SA, Genopole Campus, Evry, France
| | - J-P Saraiva
- IntegraGen SA, Genopole Campus, Evry, France
| | - J-A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburg, Pennsylvania, USA
| | - I Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - C Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
15
|
Reese BE. Axon Terminal Arbors of Retinal Horizontal Cells Lose Control. Front Neural Circuits 2018; 12:82. [PMID: 30364242 PMCID: PMC6193083 DOI: 10.3389/fncir.2018.00082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
16
|
Kowalchuk AM, Maurer KA, Shoja-Taheri F, Brown NL. Requirements for Neurogenin2 during mouse postnatal retinal neurogenesis. Dev Biol 2018; 442:220-235. [PMID: 30048641 PMCID: PMC6143394 DOI: 10.1016/j.ydbio.2018.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
Abstract
During embryonic retinal development, the bHLH factor Neurog2 regulates the temporal progression of neurogenesis, but no role has been assigned for this gene in the postnatal retina. Using Neurog2 conditional mutants, we found that Neurog2 is necessary for the development of an early, embryonic cohort of rod photoreceptors, but also required by both a subset of cone bipolar subtypes, and rod bipolars. Using transcriptomics, we identified a subset of downregulated genes in P2 Neurog2 mutants, which act during rod differentiation, outer segment morphogenesis or visual processing. We also uncovered defects in neuronal cell culling, which suggests that the rod and bipolar cell phenotypes may arise via more complex mechanisms rather than a simple cell fate shift. However, given an overall phenotypic resemblance between Neurog2 and Blimp1 mutants, we explored the relationship between these two factors. We found that Blimp1 is downregulated between E12-birth in Neurog2 mutants, which probably reflects a dependence on Neurog2 in embryonic progenitor cells. Overall, we conclude that the Neurog2 gene is expressed and active prior to birth, but also exerts an influence on postnatal retinal neuron differentiation.
Collapse
Affiliation(s)
- Angelica M Kowalchuk
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA
| | - Kate A Maurer
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Farnaz Shoja-Taheri
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA 95616, USA; Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
MLL1 is essential for retinal neurogenesis and horizontal inner neuron integrity. Sci Rep 2018; 8:11902. [PMID: 30093671 PMCID: PMC6085291 DOI: 10.1038/s41598-018-30355-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022] Open
Abstract
Development of retinal structure and function is controlled by cell type-specific transcription factors and widely expressed co-regulators. The latter includes the mixed-lineage leukemia (MLL) family of histone methyltransferases that catalyze histone H3 lysine 4 di- and tri-methylation associated with gene activation. One such member, MLL1, is widely expressed in the central nervous system including the retina. However, its role in retinal development is unknown. To address this question, we knocked out Mll1 in mouse retinal progenitors, and discovered that MLL1 plays multiple roles in retinal development by regulating progenitor cell proliferation, cell type composition and neuron-glia balance, maintenance of horizontal neurons, and formation of functional synapses between neuronal layers required for visual signal transmission and processing. Altogether, our results suggest that MLL1 is indispensable for retinal neurogenesis and function development, providing a new paradigm for cell type-specific roles of known histone modifying enzymes during CNS tissue development.
Collapse
|
18
|
Xiao D, Jin K, Xiang M. Necessity and Sufficiency of Ldb1 in the Generation, Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Front Mol Neurosci 2018; 11:271. [PMID: 30127719 PMCID: PMC6087769 DOI: 10.3389/fnmol.2018.00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
During mammalian retinal development, the multipotent progenitors differentiate into all classes of retinal cells under the delicate control of transcriptional factors. The deficiency of a transcription cofactor, the LIM-domain binding protein Ldb1, has been shown to cause proliferation and developmental defects in multiple tissues including cardiovascular, hematopoietic, and nervous systems; however, it remains unclear whether and how it regulates retinal development. By expression profiling, RNA in situ hybridization and immunostaining, here we show that Ldb1 is expressed in the progenitors during early retinal development, but later its expression gradually shifts to non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Retina-specific ablation of Ldb1 in mice resulted in microphthalmia, optic nerve hypoplasia, retinal thinning and detachment, and profound vision impairment as determined by electroretinography. In the mutant retina, there was precocious differentiation of amacrine and horizontal cells, indicating a requirement of Ldb1 in maintaining the retinal progenitor pool. Additionally, all non-photoreceptor cell types were greatly reduced which appeared to be caused by a generation defect and/or retinal degeneration via excessive cell apoptosis. Furthermore, we showed that misexpressed Ldb1 was sufficient to promote the generation of bipolar, amacrine, horizontal, ganglion, and Müller glial cells at the expense of photoreceptors. Together, these results demonstrate that Ldb1 is not only necessary but also sufficient for the development and/or maintenance of non-photoreceptor cell types, and implicate that the pleiotropic functions of Ldb1 during retinal development are context-dependent and determined by its interaction with diverse LIM-HD (LIM-homeodomain) and LMO (LIM domain-only) binding protein partners.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Wei W, Liu B, Jiang H, Jin K, Xiang M. Requirement of the Mowat-Wilson Syndrome Gene Zeb2 in the Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Mol Neurobiol 2018; 56:1719-1736. [PMID: 29922981 DOI: 10.1007/s12035-018-1186-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
Abstract
Mutations in the human transcription factor gene ZEB2 cause Mowat-Wilson syndrome, a congenital disorder characterized by multiple and variable anomalies including microcephaly, Hirschsprung disease, intellectual disability, epilepsy, microphthalmia, retinal coloboma, and/or optic nerve hypoplasia. Zeb2 in mice is involved in patterning neural and lens epithelia, neural tube closure, as well as in the specification, differentiation and migration of neural crest cells and cortical neurons. At present, it is still unclear how Zeb2 mutations cause retinal coloboma, whether Zeb2 inactivation results in retinal degeneration, and whether Zeb2 is sufficient to promote the differentiation of different retinal cell types. Here, we show that during mouse retinal development, Zeb2 is expressed transiently in early retinal progenitors and in all non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Its retina-specific ablation causes severe loss of all non-photoreceptor cell types, cell fate switch to photoreceptors by retinal progenitors, and elevated apoptosis, which lead to age-dependent retinal degeneration, optic nerve hypoplasia, synaptic connection defects, and impaired ERG (electroretinogram) responses. Moreover, overexpression of Zeb2 is sufficient to promote the fate of all non-photoreceptor cell types at the expense of photoreceptors. Together, our data not only suggest that Zeb2 is both necessary and sufficient for the differentiation of non-photoreceptor cell types while simultaneously inhibiting the photoreceptor cell fate by repressing transcription factor genes involved in photoreceptor specification and differentiation, but also reveal a necessity of Zeb2 in the long-term maintenance of retinal cell types. This work helps to decipher the etiology of retinal atrophy associated with Mowat-Wilson syndrome and hence will impact on clinical diagnosis and management of the patients suffering from this syndrome.
Collapse
Affiliation(s)
- Wen Wei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bin Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity. Cell Rep 2018; 22:3548-3561. [DOI: 10.1016/j.celrep.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
|
21
|
Veleri S, Nellissery J, Mishra B, Manjunath SH, Brooks MJ, Dong L, Nagashima K, Qian H, Gao C, Sergeev YV, Huang XF, Qu J, Lu F, Cideciyan AV, Li T, Jin ZB, Fariss RN, Ratnapriya R, Jacobson SG, Swaroop A. REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Hum Mol Genet 2017; 26:2218-2230. [PMID: 28369466 PMCID: PMC5458339 DOI: 10.1093/hmg/ddx111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 01/20/2023] Open
Abstract
In retinal photoreceptors, vectorial transport of cargo is critical for transduction of visual signals, and defects in intracellular trafficking can lead to photoreceptor degeneration and vision impairment. Molecular signatures associated with routing of transport vesicles in photoreceptors are poorly understood. We previously reported the identification of a novel rod photoreceptor specific isoform of Receptor Expression Enhancing Protein (REEP) 6, which belongs to a family of proteins involved in intracellular transport of receptors to the plasma membrane. Here we show that loss of REEP6 in mice (Reep6−/−) results in progressive retinal degeneration. Rod photoreceptor dysfunction is observed in Reep6−/− mice as early as one month of age and associated with aberrant accumulation of vacuole-like structures at the apical inner segment and reduction in selected rod phototransduction proteins. We demonstrate that REEP6 is detected in a subset of Clathrin-coated vesicles and interacts with the t-SNARE, Syntaxin3. In concordance with the rod degeneration phenotype in Reep6−/− mice, whole exome sequencing identified homozygous REEP6-E75K mutation in two retinitis pigmentosa families of different ethnicities. Our studies suggest a critical function of REEP6 in trafficking of cargo via a subset of Clathrin-coated vesicles to selected membrane sites in retinal rod photoreceptors.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory
| | | | | | | | | | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunio Nagashima
- Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Haohua Qian
- Visual Function Core, 5Biological Imaging Core
| | - Chun Gao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiu-Feng Huang
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Jia Qu
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Fan Lu
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiansen Li
- Neurobiology Neurodegeneration and Repair Laboratory
| | - Zi-Bing Jin
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Robert N Fariss
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory
| |
Collapse
|
22
|
Versatile functional roles of horizontal cells in the retinal circuit. Sci Rep 2017; 7:5540. [PMID: 28717219 PMCID: PMC5514144 DOI: 10.1038/s41598-017-05543-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.
Collapse
|
23
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
24
|
Functional ectopic neuritogenesis by retinal rod bipolar cells is regulated by miR-125b-5p during retinal remodeling in RCS rats. Sci Rep 2017; 7:1011. [PMID: 28432360 PMCID: PMC5430652 DOI: 10.1038/s41598-017-01261-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Following retinal degeneration, retinal remodeling can cause neuronal microcircuits to undergo structural alterations, which particularly affect the dendrites of bipolar cells. However, the mechanisms and functional consequences of such changes remain unclear. Here, we used Royal College of Surgeon (RCS) rats as a model of retinal degeneration, to study structural changes in rod bipolar cells (RBCs) and the underlying mechanisms of these changes. We found that, with retinal degeneration, RBC dendrites extended into the outer nuclear layer (ONL) of the retina, and the ectopic dendrites formed synapses with the remaining photoreceptors. This ectopic neuritogenesis was associated with brain-derived neurotrophic factor (BDNF) - expression of which was negatively regulated by miR-125b-5p. Overexpression of miR-125b-5p in the retinae of RCS rats diminished RBC ectopic dendrites, and compromised the b-wave of the flash electroretinogram (ERG). In contrast, down-regulation of miR-125b-5p (or exogenous BDNF treatment) increased RBC ectopic dendrites, and improved b-wave. Furthermore, we showed that the regulation of ectopic neuritogenesis by BDNF occurred via the downstream modulation of the TrkB-CREB signaling pathway. Based on these findings, we conclude that ectopic dendrites are likely to be providing functional benefits and that, in RCS rats, miR-125b-5p regulates ectopic neuritogenesis by RBCs through modulation of the BDNF-TrkB-CREB pathway. This suggests that therapies that reduce miR-125b-5p expression could be beneficial in human retinal degenerative disease.
Collapse
|
25
|
Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. J Neurosci 2016; 36:2827-42. [PMID: 26937019 DOI: 10.1523/jneurosci.3575-15.2016] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. SIGNIFICANCE STATEMENT Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses. Our results indicate that retinal microglia contribute constitutively to the maintenance of synapses underlying healthy vision.
Collapse
|
26
|
Reese BE, Keeley PW. Genomic control of neuronal demographics in the retina. Prog Retin Eye Res 2016; 55:246-259. [PMID: 27492954 DOI: 10.1016/j.preteyeres.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
27
|
Menuchin-Lasowski Y, Oren-Giladi P, Xie Q, Ezra-Elia R, Ofri R, Peled-Hajaj S, Farhy C, Higashi Y, Van de Putte T, Kondoh H, Huylebroeck D, Cvekl A, Ashery-Padan R. Sip1 regulates the generation of the inner nuclear layer retinal cell lineages in mammals. Development 2016; 143:2829-41. [PMID: 27385012 DOI: 10.1242/dev.136101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
The transcription factor Sip1 (Zeb2) plays multiple roles during CNS development from early acquisition of neural fate to cortical neurogenesis and gliogenesis. In humans, SIP1 (ZEB2) haploinsufficiency leads to Mowat-Wilson syndrome, a complex congenital anomaly including intellectual disability, epilepsy and Hirschsprung disease. Here we uncover the role of Sip1 in retinogenesis. Somatic deletion of Sip1 from mouse retinal progenitors primarily affects the generation of inner nuclear layer cell types, resulting in complete loss of horizontal cells and reduced numbers of amacrine and bipolar cells, while the number of Muller glia is increased. Molecular analysis places Sip1 downstream of the eye field transcription factor Pax6 and upstream of Ptf1a in the gene network required for generating the horizontal and amacrine lineages. Intriguingly, characterization of differentiation dynamics reveals that Sip1 has a role in promoting the timely differentiation of retinal interneurons, assuring generation of the proper number of the diverse neuronal and glial cell subtypes that constitute the functional retina in mammals.
Collapse
Affiliation(s)
- Yotam Menuchin-Lasowski
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Pazit Oren-Giladi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qing Xie
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Shany Peled-Hajaj
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Chen Farhy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | - Tom Van de Putte
- Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Danny Huylebroeck
- Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ales Cvekl
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Li S, Mitchell J, Briggs DJ, Young JK, Long SS, Fuerst PG. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs. PLoS One 2016; 11:e0150024. [PMID: 26930660 PMCID: PMC4773090 DOI: 10.1371/journal.pone.0150024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
Collapse
Affiliation(s)
- Shuai Li
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Joe Mitchell
- North Idaho College, Natural Sciences Division, Coeur d’Alene, Idaho, 83814, United States of America
| | - Deidrie J. Briggs
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Jaime K. Young
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Samuel S. Long
- Lewis-Clark State College, Department of Computer Sciences, Lewiston, Idaho, 83501, United States of America
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
- WWAMI Medical Education Program, Moscow, Idaho, 83844, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rosa JM, Feller MB. Neurodevelopment: a novel role for activity in shaping retinal circuits. Curr Biol 2014; 24:R964-6. [PMID: 25291639 DOI: 10.1016/j.cub.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of synaptic inputs onto retinal bipolar cells is influenced by transmitter release from neighboring bipolar cells, implicating a new form of population-based retrograde plasticity in the development of these neural circuits.
Collapse
Affiliation(s)
- Juliana M Rosa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
30
|
Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci U S A 2014; 111:E4086-95. [PMID: 25228773 DOI: 10.1073/pnas.1405354111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general.
Collapse
|
31
|
D'Orazi FD, Suzuki SC, Wong RO. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 2014; 37:594-603. [PMID: 25156327 DOI: 10.1016/j.tins.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Developing neuronal circuits often undergo a period of refinement to eliminate aberrant synaptic connections. Inappropriate connections can also form among surviving neurons during neuronal degeneration. The laminar organization of the vertebrate retina enables synaptic reorganization to be readily identified. Synaptic rearrangements are shown to help sculpt developing retinal circuits, although the mechanisms involved remain debated. Structural changes in retinal diseases can also lead to functional rewiring. This poses a major challenge to retinal repair because it may be necessary to untangle the miswired connections before reconnecting with proper synaptic partners. Here, we review our current understanding of the mechanisms that underlie circuit remodeling during retinal development, and discuss how alterations in connectivity during damage could impede circuit repair.
Collapse
Affiliation(s)
- Florence D D'Orazi
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|
33
|
Hao H, Veleri S, Sun B, Kim DS, Keeley PW, Kim JW, Yang HJ, Yadav SP, Manjunath SH, Sood R, Liu P, Reese BE, Swaroop A. Regulation of a novel isoform of Receptor Expression Enhancing Protein REEP6 in rod photoreceptors by bZIP transcription factor NRL. Hum Mol Genet 2014; 23:4260-71. [PMID: 24691551 DOI: 10.1093/hmg/ddu143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bo Sun
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Patrick W Keeley
- Neuroscience Research Institute Department of Molecular, Cellular and Developmental Biology and
| | - Jung-Woong Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Jin Yang
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharda P Yadav
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souparnika H Manjunath
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raman Sood
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Liu
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Reese
- Neuroscience Research Institute Department of Psychological and Brain Sciences, University of California at Santa Barbara, CA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|