1
|
Zhang Y, Lin S, Yu L, Lin X, Qu S, Ye Q, Yu M, Chen W, Wu W. Gene therapy shines light on congenital stationary night blindness for future cures. J Transl Med 2025; 23:392. [PMID: 40181393 PMCID: PMC11969737 DOI: 10.1186/s12967-025-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Congenital Stationary Night Blindness (CSNB) is a non-progressive hereditary eye disease that primarily affects the retinal signal processing, resulting in significantly reduced vision under low-light conditions. CSNB encompasses various subtypes, each with distinct genetic patterns and pathogenic genes. Over the past few decades, gene therapy for retinal genetic disorders has made substantial progress; however, effective clinical therapies for CSNB are yet to be discovered. With the continuous advancement of gene-therapy tools, there is potential for these methods to become effective treatments for CSNB. Nonetheless, challenges remain in the treatment of CSNB, including issues related to delivery vectors, therapeutic efficacy, and possible side effects. This article reviews the clinical diagnosis, pathogenesis, and associated mutated genes of CSNB, discusses existing animal models, and explores the application of gene therapy technologies in retinal genetic disorders, as well as the current state of research on gene therapy for CSNB.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Siqi Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shuai Qu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingyang Ye
- Hangzhou Bipolar Biotechnology Co., Ltd., Hangzhou, 311199, China
| | - Mengting Yu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wenjie Wu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China.
| |
Collapse
|
2
|
Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Genomic changes underlying repeated niche shifts in an adaptive radiation. Evolution 2022; 76:1301-1319. [PMID: 35398888 PMCID: PMC9320971 DOI: 10.1111/evo.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
In adaptive radiations, single lineages rapidly diversify by adapting to many new niches. Little is known yet about the genomic mechanisms involved, that is, the source of genetic variation or genomic architecture facilitating or constraining adaptive radiation. Here, we investigate genomic changes associated with repeated invasion of many different freshwater niches by threespine stickleback in the Haida Gwaii archipelago, Canada, by resequencing single genomes from one marine and 28 freshwater populations. We find 89 likely targets of parallel selection in the genome that are enriched for old standing genetic variation. In contrast to theoretical expectations, their genomic architecture is highly dispersed with little clustering. Candidate genes and genotype-environment correlations match the three major environmental axes predation regime, light environment, and ecosystem size. In a niche space with these three dimensions, we find that the more divergent a new niche from the ancestral marine habitat, the more loci show signatures of parallel selection. Our findings suggest that the genomic architecture of parallel adaptation in adaptive radiation depends on the steepness of ecological gradients and the dimensionality of the niche space.
Collapse
Affiliation(s)
- David A. Marques
- Department of BiologyUniversity of VictoriaVictoriaBCV8W 3N5Canada
- Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernCH‐3012Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and BiogeochemistrySwiss Federal Institute of Aquatic Science and Technology (EAWAG), Eawag ‐ Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumCH‐6047Switzerland
- Natural History Museum BaselBaselCH‐4051Switzerland
| | - Felicity C. Jones
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingen72076Germany
| | - Federica Di Palma
- Earlham InstituteNorwichNR4 7UZUnited Kingdom
- Department of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - David M. Kingsley
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
| | | |
Collapse
|
3
|
Fina ME, Wang J, Vedula P, Tang HY, Kashina A, Dong DW. Arginylation Regulates G-protein Signaling in the Retina. Front Cell Dev Biol 2022; 9:807345. [PMID: 35127722 PMCID: PMC8815403 DOI: 10.3389/fcell.2021.807345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/03/2022] Open
Abstract
Arginylation is a post-translational modification mediated by the arginyltransferase (Ate1). We recently showed that conditional deletion of Ate1 in the nervous system leads to increased light-evoked response sensitivities of ON-bipolar cells in the retina, indicating that arginylation regulates the G-protein signaling complexes of those neurons and/or photoreceptors. However, none of the key players in the signaling pathway were previously shown to be arginylated. Here we show that Gαt1, Gβ1, RGS6, and RGS7 are arginylated in the retina and RGS6 and RGS7 protein levels are elevated in Ate1 knockout, suggesting that arginylation plays a direct role in regulating their protein level and the G-protein-mediated responses in the retina.
Collapse
Affiliation(s)
- Marie E. Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Pavan Vedula
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| | - Dawei W. Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Anna Kashina, ; Dawei W. Dong,
| |
Collapse
|
4
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
5
|
Ohno-Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, Lai TYY, Ikuno Y, Cohen SY, Gaudric A, Jonas JB. IMI Pathologic Myopia. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33909033 PMCID: PMC8083114 DOI: 10.1167/iovs.62.5.5] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathologic myopia is a major cause of visual impairment worldwide. Pathologic myopia is distinctly different from high myopia. High myopia is a high degree of myopic refractive error, whereas pathologic myopia is defined by a presence of typical complications in the fundus (posterior staphyloma or myopic maculopathy equal to or more serious than diffuse choroidal atrophy). Pathologic myopia often occurs in eyes with high myopia, however its complications especially posterior staphyloma can also occur in eyes without high myopia. Owing to a recent advance in ocular imaging, an objective and accurate diagnosis of pathologic myopia has become possible. Especially, optical coherence tomography has revealed novel lesions like dome-shaped macula and myopic traction maculopathy. Wide-field optical coherence tomography has succeeded in visualizing the entire extent of large staphylomas. The effectiveness of new therapies for complications have been shown, such as anti-VEGF therapies for myopic macular neovascularization and vitreoretinal surgery for myopic traction maculopathy. Myopia, especially childhood myopia, has been increasing rapidly in the world. In parallel with an increase in myopia, the prevalence of high myopia has also been increasing. However, it remains unclear whether or not pathologic myopia will increase in parallel with an increase of myopia itself. In addition, it has remained unclear whether genes responsible for pathologic myopia are the same as those for myopia in general, or whether pathologic myopia is genetically different from other myopia.
Collapse
Affiliation(s)
- Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan.,Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan
| | | | - Yuxin Fang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong
| | - Yasushi Ikuno
- Ikuno Eye Center, 2-9-10-3F Juso-Higashi, Yodogawa-Ku, Osaka 532-0023, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Salomon Yves Cohen
- Centre Ophtalmologique d'Imagerie et de Laser, Paris, France.,Department of Ophthalmology and University Paris Est, Creteil, France
| | - Alain Gaudric
- Department of Ophthalmology, APHP, Hôpital Lariboisière and Université de Paris, Paris, France.,Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE To analyze the hallmark features of pathologic myopia developed in animal models and compare them with those seen in patients. METHODS A literature review was performed to identify animal models that exhibited key features of pathologic myopia, namely posterior staphyloma, myopic maculopathy, lacquer cracks, and choroidal neovascularization, either spontaneously or induced by monocular deprivation. Using imaging modalities, such as optical coherence tomography, confocal scanning laser ophthalmoscopy, fluorescein angiography, and electron microscopy, these features were compared with those found in myopic maculopathy of patients. RESULTS Three types of animals were identified. The LRP2 knockout mice exhibited posterior staphylomas and chorioretinal atrophy at 21 and 60 days after birth, respectively. Retinopathy globe enlarged (rge) chicks and normal lid-sutured chicks developed lacquer cracks and chorioretinal atrophy. Lacquer cracks detected in rge chicks subsequently progressed to patchy chorioretinal atrophy, which is also commonly seen in patients with pathologic myopia. CONCLUSION The LRP2 knockout mice, retinopathy globe enlarged (rge) chicks, and normal lid-sutured chicks exhibit features typical for myopic maculopathy in patients and could serve to further elucidate the pathogenesis of myopic maculopathy.
Collapse
|
7
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Kinoshita J, Hasan N, Bell BA, Peachey NS. Reduced expression of the nob8 gene does not normalize the distribution or function of mGluR6 in the mouse retina. Mol Vis 2019; 25:890-901. [PMID: 32025181 PMCID: PMC6982428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose The Grm6nob8 mouse carries a missense mutation in the Grm6 gene (p.Met66Leu), and exhibits a reduced b-wave of the electroretinogram (ERG), abnormal localization of metabotropic glutamate receptor 6 (mGluR6) to the depolarizing bipolar cell (DBC) soma, and a reduced level of mGluR6 at the DBC dendritic tips. Although the underlying mechanism remains unknown, one possible explanation is that DBCs cannot efficiently traffic the mutant mGluR6. In that scenario, reducing the total amount of mutant mGluR6 protein might normalize localization, and thus, improve the ERG phenotype as well. The second purpose of this study was to determine whether the abnormal cellular distribution of mutant mGluR6 in Grm6nob8 retinas might induce late onset DBC degeneration. Methods We crossed Grm6nob8 animals with Grm6nob3 mice, which carry a null mutation in Grm6, to generate Grm6nob3/nob8 compound heterozygotes. We used western blotting to measure the total mGluR6 content, and immunohistochemistry to document mGluR6 localization within DBCs. In addition, we examined outer retinal function with ERG and retinal architecture in vivo with spectral domain optical coherence tomography (SD-OCT). Results The retinal content of mGluR6 was reduced in the retinas of the Grm6nob3/nob8 compound heterozygotes compared to the Grm6nob8 homozygotes. The cellular distribution of mGluR6 in the Grm6nob3/nob8 compound heterozygotes matched that of the Grm6nob8 homozygotes, with extensive expression throughout the DBC cell body and limited expression at the DBC dendritic tips. The dark-adapted ERG b-waves of the Grm6nob3/nob8 mice were reduced in comparison to those of the Grm6nob8 homozygotes at postnatal day 21 and 28. The overall ERG waveforms obtained from 4- through 68-week old Grm6nob8 mice were in general agreement for dark- and light-adapted conditions. The maximum response and sensitivity of the dark-adapted ERG b-wave did not change statistically significantly with age. SD-OCT revealed the maintained laminar structure of the retina, including a clear inner nuclear layer (INL) at each age examined (from 11 to 57 weeks old), although the INL in the mice older than 39 weeks of age was somewhat thinner than that seen at 11 weeks. Conclusions Mislocalization of mutant mGluR6 is not normalized by reducing the total mGluR6. Mislocalized mutant mGluR6 does not trigger substantial loss of DBCs.
Collapse
Affiliation(s)
| | - Nazarul Hasan
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY
| | | | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
9
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
10
|
Murphy DP, Hughes AEO, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type divergence in the vertebrate retina. eLife 2019; 8:e48216. [PMID: 31633482 PMCID: PMC6802965 DOI: 10.7554/elife.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Multicellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the evolutionary divergence of the bipolar transcriptome from that of photoreceptors.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Andrew EO Hughes
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Karen A Lawrence
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Connie A Myers
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| |
Collapse
|
11
|
Abstract
The transient receptor potential channel TRPM1 is required for synaptic transmission between photoreceptors and the ON subtype of bipolar cells (ON-BPC), mediating depolarization in response to light. TRPM1 is present in the somas and postsynaptic dendritic tips of ON-BPCs. Monoclonal antibodies generated against full-length TRPM1 were found to have differential labeling patterns when used to immunostain the mouse retina, with some yielding reduced labeling of dendritic tips relative to the labeling of cell bodies. Epitope mapping revealed that those antibodies that poorly label the dendritic tips share a binding site (N2d) in the N-terminal arm near the transmembrane domain. A major splice variant of TRPM1 lacking exon 19 does not contain the N2d binding site, but quantitative immunoblotting revealed no enrichment of this variant in synaptsomes. One explanation of the differential labeling is masking of the N2d epitope by formation of a synapse-specific multiprotein complex. Identifying the binding partners that are specific for the fraction of TRPM1 present at the synapses is an ongoing challenge for understanding TRPM1 function.
Collapse
|
12
|
Agosto MA, Anastassov IA, Robichaux MA, Wensel TG. A Large Endoplasmic Reticulum-Resident Pool of TRPM1 in Retinal ON-Bipolar Cells. eNeuro 2018; 5:ENEURO.0143-18.2018. [PMID: 30027108 PMCID: PMC6051591 DOI: 10.1523/eneuro.0143-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
The chemical signal of light onset, a decrease in glutamate release from rod and cone photoreceptors, is processed by a postsynaptic G protein signaling cascade in ON-bipolar cells (BPCs). The metabotropic glutamate receptor mGluR6, along with other cascade elements, is localized synaptically at the BPC dendritic tips. The effector ion channel protein transient receptor potential melastatin-1 (TRPM1), in contrast, is located not only at the dendritic tips but also in BPC bodies and axons. Little is known about the intracellular localization of TRPM1, or its trafficking route to the dendritic tip plasma membrane. Recombinant TRPM1 expressed in mammalian cells colocalized with endoplasmic reticulum (ER) markers, with little or none detected at the plasma membrane. In mouse retina, somatic TRPM1 was similarly intracellular, and not at the plasma membrane. Labeling of ER membranes by expression of a fluorescent marker showed that in BPCs the ER extends into axons and dendrites, but not dendritic tips. In cell bodies, TRPM1 colocalized with the ER, and not with the Golgi apparatus. Fluorescence protease protection (FPP) assays with TRPM1-GFP fusions in heterologous cells revealed that the N and C termini are both accessible to the cytoplasm, consistent with the transmembrane domain topology of related TRP channels. These results indicate that the majority of TRPM1 is present in the ER, from which it can potentially be transported to the dendritic tips as needed for ON light responses. The excess of ER-resident TRPM1 relative to the amount needed at the dendritic tips suggests a potential new function for TRPM1 in the ER.
Collapse
Affiliation(s)
- Melina A. Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ivan A. Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael A. Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
14
|
Lee BD, Gonzalez S, Villa E, Camarillo C, Rodriguez M, Yao Y, Guo W, Flores D, Jerez A, Raventos H, Ontiveros A, Nicolini H, Escamilla M. A genome-wide quantitative trait locus (QTL) linkage scan of NEO personality factors in Latino families segregating bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2017; 174:683-690. [PMID: 28556497 PMCID: PMC5597458 DOI: 10.1002/ajmg.b.32551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022]
Abstract
Personality traits have been suggested as potential endophenotypes for Bipolar Disorder (BP), as they can be quantitatively measured and show correlations with BP. The present study utilized data from 2,745 individuals from 686 extended pedigrees originally ascertained for having multiplex cases of BP (963 cases of BPI or schizoaffective BP). Subjects were assessed with the NEO Personality Inventory, Revised (NEO PI-R) and genotyped using the Illumina HumanLinkage-24 Bead Chip, with an average genetic coverage of 0.67 cM. Two point linkage scores were calculated for each trait as a quantitative variable using SOLAR (Sequential Oligogenic Linkage Analysis Routines). Suggestive evidence for linkage was found for neuroticism at 1q32.1 (LOD = 2.52), 6q23.3 (2.32), 16p12 (2.79), extraversion at 4p15.3 (2.33), agreeableness at 4q31.1 (2.37), 5q34 (2.80), 7q31.1 (2.56), 16q22 (2.52), and conscientiousness at 4q31.1 (2.50). Each of the above traits have been shown to be correlated with the broad BP phenotype in this same sample. In addition, for the trait of openness, we found significant evidence of linkage to chromosome 3p24.3 (rs336610, LOD = 4.75) and suggestive evidence at 1q43 (2.74), 5q35.1 (3.03), 11q14.3 (2.61), 11q21 (2.30), and 19q13.1 (2.52). These findings support previous linkage findings of the openness trait to chromosome 19q13 and the agreeableness trait to 4q31 and identify a number of new loci for personality endophenotypes related to bipolar disorder.
Collapse
Affiliation(s)
- Byung Dae Lee
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas,Department of Psychiatry, School of Medicine, Pusan National University, Busan, South Korea
| | - Suzanne Gonzalez
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Erika Villa
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Cynthia Camarillo
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Marco Rodriguez
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Yin Yao
- Unit on Statistical Genomics, National Institute of Mental Health, Bethesda, Maryland
| | - Wei Guo
- Unit on Statistical Genomics, National Institute of Mental Health, Bethesda, Maryland
| | - Deborah Flores
- Los Angeles Biomedical Research Center at Harbor, University of California Los Angeles Medical Center, Torrance, California
| | - Alvaro Jerez
- Centro Internacional de Trastornos Afectivos y de la Conducta Adictiva, Guatemala, Guatemala
| | - Henriette Raventos
- Centro de Investigacion en Biologia Celular y Molecular y Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Alfonso Ontiveros
- Instituto de Informacion e InvestigaciónenSalud Mental AC, Monterrey, Nuevo Leon, Mexico
| | - Humberto Nicolini
- Grupo de Estudios Medicos y Familiares Carracci, S.C., Mexico, D.F., Mexico,Instituto Nacional de Medicina Genomica, Mexico, D.F., Mexico
| | - Michael Escamilla
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas,Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas,Correspondence to: Michael Escamilla, MD, Department of Psychiatry Paul L. Foster School of Medicine Texas Tech University Health Science Center 4800 Alberta El Paso, TX 79905, USA,
| |
Collapse
|
15
|
Martemyanov KA, Sampath AP. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci 2017; 3:25-51. [PMID: 28715957 DOI: 10.1146/annurev-vision-102016-061338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our robust visual experience is based on the reliable transfer of information from our photoreceptor cells, the rods and cones, to higher brain centers. At the very first synapse of the visual system, information is split into two separate pathways, ON and OFF, which encode increments and decrements in light intensity, respectively. The importance of this segregation is borne out in the fact that receptive fields in higher visual centers maintain a separation between ON and OFF regions. In the past decade, the molecular mechanisms underlying the generation of ON signals have been identified, which are unique in their use of a G-protein signaling cascade. In this review, we consider advances in our understanding of G-protein signaling in ON-bipolar cell (BC) dendrites and how insights about signaling have emerged from visual deficits, mostly night blindness. Studies of G-protein signaling in ON-BCs reveal an intricate mechanism that permits the regulation of visual sensitivity over a wide dynamic range.
Collapse
Affiliation(s)
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
16
|
Neuillé M, Cao Y, Caplette R, Guerrero-Given D, Thomas C, Kamasawa N, Sahel JA, Hamel CP, Audo I, Picaud S, Martemyanov KA, Zeitz C. LRIT3 Differentially Affects Connectivity and Synaptic Transmission of Cones to ON- and OFF-Bipolar Cells. Invest Ophthalmol Vis Sci 2017; 58:1768-1778. [PMID: 28334377 PMCID: PMC5374884 DOI: 10.1167/iovs.16-20745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). Using a cCSNB mouse model lacking Lrit3 (nob6), we recently have shown that LRIT3 has a role in the correct localization of TRPM1 (transient receptor potential melastatin 1) to the dendritic tips of ON-bipolar cells (BCs), contacting both rod and cone photoreceptors. Furthermore, postsynaptic clustering of other mGluR6 cascade components is selectively eliminated at the dendritic tips of cone ON-BCs. The purpose of this study was to further define the role of LRIT3 in structural and functional organization of cone synapses. Methods Exhaustive electroretinogram analysis was performed in a patient with LRIT3 mutations. Multielectrode array recordings were performed at the level of retinal ganglion cells in nob6 mice. Targeting of GluR1 and GluR5 at the dendritic tips of OFF-BCs in nob6 retinas was assessed by immunostaining and confocal microscopy. The ultrastructure of photoreceptor synapses was evaluated by electron microscopy in nob6 mice. Results The patient with LRIT3 mutations had a selective ON-BC dysfunction with relatively preserved OFF-BC responses. In nob6 mice, complete lack of ON-pathway function with robust, yet altered signaling processing in OFF-pathways was detected. Consistent with these observations, molecules essential for the OFF-BC signaling were normally targeted to the synapse. Finally, synaptic contacts made by ON-BC but not OFF-BC neurons with the cone pedicles were disorganized without ultrastructural alterations in cone terminals, horizontal cell processes, or synaptic ribbons. Conclusions These results suggest that LRIT3 is likely involved in coordination of the transsynaptic communication between cones and ON-BCs during synapse formation and function.
Collapse
Affiliation(s)
- Marion Neuillé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida United States
| | - Romain Caplette
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | | | - Connon Thomas
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida United States
| | - Naomi Kamasawa
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida United States
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France 4CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France 5Institute of Ophthalmology, University College of London, London, United Kingdom 6Fondation Ophtalmologique Adolphe de Rothschild, Paris, France 8Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Christian P Hamel
- INSERM U583, Physiopathologie et thérapie des déficits sensoriels et moteurs, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Isabelle Audo
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France 4CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France 5Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida United States
| | - Christina Zeitz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| |
Collapse
|
17
|
Tummala SR, Dhingra A, Fina ME, Li JJ, Ramakrishnan H, Vardi N. Lack of mGluR6-related cascade elements leads to retrograde trans-synaptic effects on rod photoreceptor synapses via matrix-associated proteins. Eur J Neurosci 2016; 43:1509-22. [PMID: 27037829 DOI: 10.1111/ejn.13243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 12/23/2022]
Abstract
Heterotrimeric G-proteins couple metabotropic receptors to downstream effectors. In retinal ON bipolar cells, Go couples the metabotropic receptor mGluR6 to the TRPM1 channel and closes it in the dark, thus hyperpolarizing the cell. Light, via GTPase-activating proteins, deactivates Go , opens TRPM1 and depolarizes the cell. Go comprises Gαo1 , Gβ3 and Gγ13; all are necessary for efficient coupling. In addition, Gβ3 contributes to trafficking of certain cascade proteins and to maintaining the synaptic structure. The goal of this study was to determine the role of Gαo1 in maintaining the cascade and synaptic integrity. Using mice lacking Gαo1 , we quantified the immunostaining of certain mGluR6-related components. Deleting Gαo1 greatly reduced staining for Gβ3, Gγ13, Gβ5, RGS11, RGS7 and R9AP. Deletion of Gαo1 did not affect mGluR6, TRPM1 or PCP2. In addition, deleting Gαo1 reduced the number of rod bipolar dendrites that invaginate the rod terminal, similar to the effect seen in the absence of mGluR6, Gβ3 or the matrix-associated proteins, pikachurin, dystroglycan and dystrophin, which are localized presynaptically to the rod bipolar cell. We therefore tested mice lacking mGluR6, Gαo1 and Gβ3 for expression of these matrix-associated proteins. In all three genotypes, staining intensity for these proteins was lower than in wild type, suggesting a retrograde trans-synaptic effect. We propose that the mGluR6 macromolecular complex is connected to the presynaptic rod terminal via a protein chain that includes the matrix-associated proteins. When a component of the macromolecular chain is missing, the chain may fall apart and loosen the dendritic tip adherence within the invagination.
Collapse
Affiliation(s)
- Shanti R Tummala
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anuradha Dhingra
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marie E Fina
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian J Li
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Vincent A, Audo I, Tavares E, Maynes J, Tumber A, Wright T, Li S, Michiels C, Condroyer C, MacDonald H, Verdet R, Sahel JA, Hamel CP, Zeitz C, Héon E, Banin E, Bocquet B, De Baere E, Casteels I, Defoort-Dhellemmes S, Drumare I, Friedburg C, Gottlob I, Jacobson S, Kellner U, Koenekoop R, Kohl S, Leroy B, Lorenz B, McLean R, Meire F, Meunier I, Munier F, de Ravel T, Reiff C, Mohand-Saïd S, Sharon D, Schorderet D, Schwartz S, Zanlonghi X. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness. Am J Hum Genet 2016; 98:1011-1019. [PMID: 27063057 DOI: 10.1016/j.ajhg.2016.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 01/13/2023] Open
Abstract
Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling.
Collapse
|
19
|
McGlinchey JCP, Tummala H, Lester DH. Correction of the Pathogenic Alternative Splicing, Caused by the Common GNB3 c.825C>T Allele, Using a Novel, Antisense Morpholino. Nucleic Acid Ther 2016; 26:257-65. [PMID: 27028457 DOI: 10.1089/nat.2015.0571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The very common GNB3 c.825C>T polymorphism (rs5443) is present in approximately half of all human chromosomes. Significantly, the presence of the GNB3 825T allele has been strongly associated with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we, therefore, bioinformatically designed, using a Gene Tools(®) algorithm, a GNB3-specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ∼58% to ∼5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ∼42% to ∼95%). Our results demonstrate the potential use of a GNB3-specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension.
Collapse
Affiliation(s)
- Jonathan C P McGlinchey
- 1 School of Science, Engineering & Technology, Abertay University , Dundee, United Kingdom .,2 Blood Sciences Laboratory, Department of Haematology, Ninewells Hospital , Dundee, United Kingdom
| | - Hemanth Tummala
- 3 Centre for Paediatrics, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Barts and The London Children's Hospital, London, United Kingdom
| | - Douglas H Lester
- 1 School of Science, Engineering & Technology, Abertay University , Dundee, United Kingdom
| |
Collapse
|
20
|
The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci Rep 2016; 6:20940. [PMID: 26883481 PMCID: PMC4756708 DOI: 10.1038/srep20940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022] Open
Abstract
Transmission from photoreceptors to ON bipolar cells in mammalian retina is mediated by a sign-inverting cascade. Upon binding glutamate, the metabotropic glutamate receptor mGluR6 activates the heterotrimeric G-protein Gαoβ3γ13, and this leads to closure of the TRPM1 channel (melastatin). TRPM1 is thought to be constitutively open, but the mechanism that leads to its closure is unclear. We investigated this question in mouse rod bipolar cells by dialyzing reagents that modify the activity of either Gαo or Gβγ and then observing their effects on the basal holding current. After opening the TRPM1 channels with light, a constitutively active mutant of Gαo closed the channel, but wild-type Gαo did not. After closing the channels by dark adaptation, phosducin or inactive Gαo (both sequester Gβγ) opened the channel while the active mutant of Gαo did not. Co-immunoprecipitation showed that TRPM1 interacts with Gβ3 and with the active and inactive forms of Gαo. Furthermore, bioluminescent energy transfer assays indicated that while Gαo interacts with both the N- and the C- termini of TRPM1, Gβγ interacts only with the N-terminus. Our physiological and biochemical results suggest that both Gαo and Gβγ bind TRPM1 channels and cooperate to close them.
Collapse
|
21
|
Full-field electroretinogram in autism spectrum disorder. Doc Ophthalmol 2016; 132:83-99. [DOI: 10.1007/s10633-016-9529-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
22
|
Reinach PS, Mergler S, Okada Y, Saika S. Ocular transient receptor potential channel function in health and disease. BMC Ophthalmol 2015; 15 Suppl 1:153. [PMID: 26818117 PMCID: PMC4895786 DOI: 10.1186/s12886-015-0135-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca(2+) transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca(2+) selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression.
Collapse
Affiliation(s)
- Peter S Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xuejuan Road, Wenzhou, Zhejiang, 325027, P. R. China.
| | - Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|
23
|
Xie K, Masuho I, Shih CC, Cao Y, Sasaki K, Lai CWJ, Han PL, Ueda H, Dessauer CW, Ehrlich ME, Xu B, Willardson BM, Martemyanov KA. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. eLife 2015; 4. [PMID: 26613416 PMCID: PMC4728126 DOI: 10.7554/elife.10451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, United States
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chun Wan J Lai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, United States
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
24
|
A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness. PLoS One 2015; 10:e0137072. [PMID: 26368928 PMCID: PMC4569341 DOI: 10.1371/journal.pone.0137072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly, RGS11 showed no labeling in the affected retina. Our results indicate involvement of a yet unknown gene in this canine model of complete CSNB.
Collapse
|
25
|
Xiong WH, Pang JJ, Pennesi ME, Duvoisin RM, Wu SM, Morgans CW. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina. Invest Ophthalmol Vis Sci 2015; 56:4961-74. [PMID: 26230760 DOI: 10.1167/iovs.15-16622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. METHODS Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. RESULTS Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. CONCLUSIONS Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway.
Collapse
Affiliation(s)
- Wei-Hong Xiong
- Department of Physiology & Pharmacology Oregon Health & Science University, Portland, Oregon, United States
| | - Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Robert M Duvoisin
- Department of Physiology & Pharmacology Oregon Health & Science University, Portland, Oregon, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Catherine W Morgans
- Department of Physiology & Pharmacology Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
26
|
Schneider FM, Mohr F, Behrendt M, Oberwinkler J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur J Cell Biol 2015; 94:420-7. [PMID: 26111660 DOI: 10.1016/j.ejcb.2015.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
An increase in light intensity induces a depolarization in retinal ON-bipolar cells via a reduced glutamate release from presynaptic photoreceptor cells. The underlying transduction cascade in the dendritic tips of ON-bipolar cells involves mGluR6 glutamate receptors signaling to TRPM1 proteins that are an indispensable part of the transduction channel. Several other proteins are recognized to participate in the transduction machinery. Deficiency in many of these leads to congenital stationary night blindness, because rod bipolar cells, a subgroup of ON-bipolar cells, constitute the main route for sensory information under scotopic conditions. Here, we review the current knowledge about TRPM1 ion channels and how their activity is regulated within the postsynaptic compartment of ON-bipolar cells. The functional properties of TRPM1 channels in the dendritic compartment are not well understood as they differ substantially from those of recombinant TRPM1 channels. Critical evaluation of possible explanations of these discrepancies indicates that some key components of this transduction pathway might still not be known. The continued exploration of this pathway will yield further clinically useful insights.
Collapse
Affiliation(s)
- Franziska M Schneider
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Deutschhausstr. 1-2, D-35037 Marburg, Germany
| | - Florian Mohr
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Deutschhausstr. 1-2, D-35037 Marburg, Germany
| | - Marc Behrendt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Deutschhausstr. 1-2, D-35037 Marburg, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Deutschhausstr. 1-2, D-35037 Marburg, Germany.
| |
Collapse
|
27
|
Affiliation(s)
- Catherine W Morgans
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
28
|
Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling. PLoS One 2015; 10:e0117129. [PMID: 25659125 PMCID: PMC4319785 DOI: 10.1371/journal.pone.0117129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
G protein β subunits (Gβ) play essential roles in phototransduction as part of G protein βγ (Gβγ) and regulator of G protein signaling 9 (RGS9)-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2) and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.
Collapse
|
29
|
Effects of mGluR6-deficiency on photoreceptor ribbon synapse formation: comparison of electron microscopic analysis of serial sections with random sections. Vis Neurosci 2015; 31:39-46. [PMID: 24801622 DOI: 10.1017/s0952523813000473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the effects of metabotropic glutamate receptor 6 (mGluR6) deficiency on ribbon synapse formation in rod spherules and cone pedicles using serial-section electron microscopy. In a wild-type (WT) mouse, only 3% of spherules had one invaginating bipolar dendrite (1B-type) and 97% of spherules were 2B-type. In contrast, in an mGluR6-knockout (KO) mouse, 29% of spherules were 1B-type and 71% of spherules were 2B-type. Spherules without bipolar invagination were not observed in either genotype. The single invaginating dendrites in 1B-type spherules were larger and the surface areas of synaptic ribbons were 23% smaller in the mGluR6-KO mouse than in the WT mouse. In cones, the number of invaginating bipolar dendrites decreased from 12 in the WT mouse to 9.5 in the mGluR6-KO mouse. This decrease correlated with a decrease in the number of cone synaptic ribbons from 10 in the WT mouse to 8 in the mGluR6-KO mouse. The mGluR6-KO phenotype showed negative effects on ribbon synapse formation. This negativity was similar to those in mGluR6-nob4, Gβ3-KO, Gβ5-KO, and RGS-7:RGS-11 double-KO mice, but the detailed manners and degrees of alterations appeared to vary depending on different missing components. Two published morphological assessments of the RGS-7:RGS-11 double-KO phenotype reported conflicting data; therefore, we tested the statistical techniques used in the two analyses. One statistical evaluation measure was effective in identifying a significant difference in structure between the mutant and WT phenotypes, whereas the other measure was ineffective. Conventional random section analysis using the effective measure provided sufficient data for a statistical test of the occurrence of structural changes. However, serial section analysis was required to determine the absolute numbers of ribbons and invaginating dendrites and to estimate structural parameters such as ribbon surface area.
Collapse
|
30
|
Ramakrishnan H, Dhingra A, Tummala SR, Fina ME, Li JJ, Lyubarsky A, Vardi N. Differential function of Gγ13 in rod bipolar and ON cone bipolar cells. J Physiol 2015; 593:1531-50. [PMID: 25416620 DOI: 10.1113/jphysiol.2014.281196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023] Open
Abstract
Heterotrimeric G-proteins (comprising Gα and Gβγ subunits) are critical for coupling of metabotropic receptors to their downstream effectors. In the retina, glutamate released from photoreceptors in the dark activates metabotropic glutamate receptor 6 (mGluR6) receptors in ON bipolar cells; this leads to activation of Go , closure of transient receptor potential melastatin 1 channels and hyperpolarization of these cells. Go comprises Gαo , Gβ3 and a Gγ. The best Gγ candidate is Gγ13, although functional data to support this are lacking. Thus, we tested Gγ13 function by generating Gng13(-/-) knockout (KO) mice, recording electroretinograms (ERG) and performing immunocytochemical staining. The amplitude of scotopic ERG b-waves in KO mice was lower than in wild-type (WT) mice. Furthermore, in both KO and WT mice, the ERG b-wave decreased with age; this decrease was much more pronounced in KO mice. By contrast, the photopic ERG b-waves in KO mice were hardly affected at any age. In KO mice retinas, immunostaining for Gβ3 and for the GTPase activating proteins RGS7, RGS11, R9AP and Gβ5 decreased significantly in rod bipolar cells but not in ON cone bipolar cells. Staining for Gαo and certain other cascade elements decreased only slightly. Analysis of our ON bipolar cDNA library showed that these cells express mRNAs for Gγ5, Gγ10 and Gγ11. Quantitative RT-PCR of retinal cDNA showed greater values for these transcripts in retinas of KO mice, although the difference was not significant. Our results suggest that Gγ13 contributes to mGluR6 signalling in rod bipolar cells more than in ON cone bipolar cells, and that this contribution includes both coupling the receptor and maintaining a stable localization of the mGluR6-related cascade elements.
Collapse
Affiliation(s)
- Hariharasubramanian Ramakrishnan
- Department of Neuroscience, Department of Neurology and Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Martemyanov KA. G protein signaling in the retina and beyond: the Cogan lecture. Invest Ophthalmol Vis Sci 2014; 55:8201-7. [PMID: 25511392 PMCID: PMC4541486 DOI: 10.1167/iovs.14-15928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States
| |
Collapse
|
32
|
D'Orazi FD, Suzuki SC, Wong RO. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 2014; 37:594-603. [PMID: 25156327 DOI: 10.1016/j.tins.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Developing neuronal circuits often undergo a period of refinement to eliminate aberrant synaptic connections. Inappropriate connections can also form among surviving neurons during neuronal degeneration. The laminar organization of the vertebrate retina enables synaptic reorganization to be readily identified. Synaptic rearrangements are shown to help sculpt developing retinal circuits, although the mechanisms involved remain debated. Structural changes in retinal diseases can also lead to functional rewiring. This poses a major challenge to retinal repair because it may be necessary to untangle the miswired connections before reconnecting with proper synaptic partners. Here, we review our current understanding of the mechanisms that underlie circuit remodeling during retinal development, and discuss how alterations in connectivity during damage could impede circuit repair.
Collapse
Affiliation(s)
- Florence D D'Orazi
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Ye Y, Sun Z, Guo A, Song LS, Grobe JL, Chen S. Ablation of the GNB3 gene in mice does not affect body weight, metabolism or blood pressure, but causes bradycardia. Cell Signal 2014; 26:2514-20. [PMID: 25093805 DOI: 10.1016/j.cellsig.2014.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
G protein β3 (Gβ3) is an isoform of heterotrimeric G protein β subunits involved in transducing G protein coupled receptor (GPCR) signaling. Polymorphisms in Gβ3 (GNB3) are associated with many human disorders (e.g. hypertension, diabetes and obesity) but the role of GNB3 in these pathogeneses remains unclear. Here, Gβ3-null mice (GNB3(-/-)) were characterized to determine how Gβ3 functions to regulate blood pressure, body weight and metabolism. We found Gβ3 expression restricted to limited types of tissues, including the retina, several regions of the brain and heart ventricles. Gβ3-deficient mice were normal as judged by body weight gain by age or by feeding with high-fat diet (HFD); glucose tolerance and insulin sensitivity; baseline blood pressure and angiotensin II infusion-induced hypertension. During tail-cuff blood pressure measurements, however, Gβ3-null mice had slower heart rates (~450 vs ~500 beats/min). This bradycardia was not observed in isolated and perfused Gβ3-null mouse hearts. Moreover, mouse hearts isolated from GNB3(-/-) and controls responded equivalently to muscarinic receptor- and β-adrenergic receptor-stimulated bradycardia and tachycardia, respectively. Since no difference was seen in isolated hearts, Gβ3 is unlikely to be involved directly in the GPCR signaling activity that controls heart pacemaker activity. These results demonstrate that although Gβ3 appears dispensable in mice for the regulation of blood pressure, body weight and metabolic features associated with obesity and diabetes, Gβ3 may regulate heart rate.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhizeng Sun
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ang Guo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
34
|
GPR179 is required for high sensitivity of the mGluR6 signaling cascade in depolarizing bipolar cells. J Neurosci 2014; 34:6334-43. [PMID: 24790204 DOI: 10.1523/jneurosci.4044-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Parallel visual pathways are initiated at the first retinal synapse by signaling between the rod and cone photoreceptors and two general classes of bipolar cells. For normal function, ON or depolarizing bipolar cells (DBCs) require the G-protein-coupled receptor, mGluR6, an intact G-protein-coupled cascade and the transient receptor potential melastatin 1 (TRPM1) cation channel. In addition, another seven transmembrane protein, GPR179, is required for DBC function and recruits the regulators of G-protein signaling (RGS) proteins, RGS7 and RGS11, to the dendritic tips of the DBCs. Here we use the Gpr179(nob5) mouse, which lacks GPR179 and has a no b-wave electroretinogram (ERG) phenotype, to demonstrate that despite the absence of both GPR179 and RGS7/RGS11, a small dark-adapted ERG b-wave remains and can be enhanced with long duration flashes. Consistent with the ERG, the mGluR6-mediated gating of TRPM1 can be evoked pharmacologically in Gpr179(nob5) and RGS7(-/-)/RGS11(-/-) rod BCs if strong stimulation conditions are used. In contrast, direct gating of TRPM1 by capsaicin in RGS7(-/-)/RGS11(-/-) and WT rod BCs is similar, but severely compromised in Gpr179(nob5) rod BCs. Noise and standing current analyses indicate that the remaining channels in Gpr179(nob5) and RGS7(-/-)/RGS11(-/-) rod BCs have a very low open probability. We propose that GPR179 along with RGS7 and RGS11 controls the ability of the mGluR6 cascade to gate TRPM1. In addition to its role in localizing RGS7 and RGS11 to the dendritic tips, GPR179 via a direct interaction with the TRPM1 channel alters its ability to be gated directly by capsaicin.
Collapse
|
35
|
Tummala SR, Neinstein A, Fina ME, Dhingra A, Vardi N. Localization of Cacna1s to ON bipolar dendritic tips requires mGluR6-related cascade elements. Invest Ophthalmol Vis Sci 2014; 55:1483-92. [PMID: 24519419 DOI: 10.1167/iovs.13-13766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE L-type voltage gated calcium channels in retina localize primarily at the presynaptic active zones of photoreceptors and bipolar cells where they modulate glutamate release. However, the pore forming subunit Cacna1s of certain L-type channels is also expressed postsynaptically at the tips of ON bipolar cell dendrites where it colocalizes with mGluR6, but has an unknown function. At these dendritic tips, the components of the mGluR6 signaling cascade cluster together in a macromolecular complex, and each one's localization often depends on that of the others. Thus, we explored if Cacna1s is part of the mGluR6 complex. METHODS We determined Cacna1s expression by PCR using an ON bipolar library, by Western blotting, and by standard immunohistochemistry. RESULTS The PCR amplification confirmed expression of the transcript in ON bipolar cells, and Western blotting showed the expected bands. Immunostaining for Cacna1s was stronger in the dendritic tips of rod bipolar cells than in those of ON cone bipolar cells. This staining severely decreased in mice missing various mGluR6 cascade elements (Grm6(-/-), Gnao1(-/-), Gnb3(-/-), Gng13(-/-), and Trpm1(-/-)). During development, the ratio of the number of Cacna1s puncta to the number of presynaptic ribbons followed a sigmoidal pattern, rising rapidly from P13 to P17. The mGluR6 expression preceded that of Cacna1s and RGS11. CONCLUSIONS Our results show that the localization and stability of Cacna1s depend on the expression of mGluR6 and its cascade components, and they suggest that Cacna1s is part of the mGluR6 complex. We hypothesize that Cacna1s contributes to light adaptation by permeating calcium.
Collapse
Affiliation(s)
- Shanti R Tummala
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
36
|
Dagar S, Nagar S, Goel M, Cherukuri P, Dhingra NK. Loss of photoreceptors results in upregulation of synaptic proteins in bipolar cells and amacrine cells. PLoS One 2014; 9:e90250. [PMID: 24595229 PMCID: PMC3942420 DOI: 10.1371/journal.pone.0090250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Deafferentation is known to cause significant changes in the postsynaptic neurons in the central nervous system. Loss of photoreceptors, for instance, results in remarkable morphological and physiological changes in bipolar cells and horizontal cells. Retinal ganglion cells (RGCs), which send visual information to the brain, are relatively preserved, but show aberrant firing patterns, including spontaneous bursts of spikes in the absence of photoreceptors. To understand how loss of photoreceptors affects the circuitry presynaptic to the ganglion cells, we measured specific synaptic proteins in two mouse models of retinal degeneration. We found that despite the nearly total loss of photoreceptors, the synaptophysin protein and mRNA levels in retina were largely unaltered. Interestingly, the levels of synaptophysin in the inner plexiform layer (IPL) were higher, implying that photoreceptor loss results in increased synaptophysin in bipolar and/or amacrine cells. The levels of SV2B, a synaptic protein expressed by photoreceptors and bipolar cells, were reduced in whole retina, but increased in the IPL of rd1 mouse. Similarly, the levels of syntaxin-I and synapsin-I, synaptic proteins expressed selectively by amacrine cells, were higher after loss of photoreceptors. The upregulation of syntaxin-I was evident as early as one day after the onset of photoreceptor loss, suggesting that it did not require any massive or structural remodeling, and therefore is possibly reversible. Together, these data show that loss of photoreceptors results in increased synaptic protein levels in bipolar and amacrine cells. Combined with previous reports of increased excitatory and inhibitory synaptic currents in RGCs, these results provide clues to understand the mechanism underlying the aberrant spiking in RGCs.
Collapse
Affiliation(s)
- Sushma Dagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Saumya Nagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Manvi Goel
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | | | | |
Collapse
|
37
|
Abstract
The b-wave is a major component of the electroretinogram that reflects the activity of depolarizing bipolar cells (DBCs). The b-wave is used diagnostically to identify patients with defects in DBC signaling or in transmission from photoreceptors to DBCs. In mouse models, an abnormal b-wave has been used to demonstrate a critical role of a particular protein in the release of glutamate from photoreceptor terminals, in establishing the structure of the photoreceptor-to-DBC synapse, in DBC signal transduction, and also in DBC development, survival, or metabolic support. The purpose of this review is to summarize these models and how they have advanced our understanding of outer retinal function.
Collapse
|
38
|
Abstract
The transient receptor potential (TRP) channels play a wide variety of essential roles in the sensory systems of various species, both invertebrates and vertebrates. The TRP channel was first identified as a molecule required for proper light response in Drosophila melanogaster. We and another group recently revealed that TRPM1, the founding member of the melanoma-related transient receptor potential (TRPM) subfamily, is required for the photoresponse in mouse retinal ON-bipolar cells. We further demonstrated that Trpm1 is a component of the transduction cation channel negatively regulated by the metabotropic glutamate receptor 6 (mGulR6) cascade in ON-bipolar cells through a reconstitution experiment using CHO cells expressing Trpm1, mGluR6, and Goα. Furthermore, human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function and suffer from night blindness starting in early childhood. In addition to the function of transduction cation channel, TRPM1 is one of the retinal autoantigens in some paraneoplastic retinopathy (PR) associated with retinal ON-bipolar cell dysfunction. In this chapter, we describe physiological functions of the TRPM1 channel and its underlying biochemical mechanisms in retinal ON-bipolar cells in association with CSNB and PR.
Collapse
Affiliation(s)
- Shoichi Irie
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
39
|
Membrane channels as integrators of G-protein-mediated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:521-31. [PMID: 24028827 DOI: 10.1016/j.bbamem.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 01/03/2023]
Abstract
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca(2+) concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
40
|
Abstract
Mammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gβ3 and Gγt2 subunits. The function of Gβγ in this cascade has not been examined. Here, we investigate the role of Gβ3 by assessing cone structure and function in Gβ3-null mouse (Gnb3(-/-)). We found that Gβ3 is required for the normal expression of its partners, because in the Gnb3(-/-) cone outer segments, the levels of Gαt2 and Gγt2 are reduced by fourfold to sixfold, whereas other components of the cascade remain unaltered. Surprisingly, Gnb3(-/-) cones produce stable responses with normal kinetics and saturating response amplitudes similar to that of the wild-type, suggesting that cone phototransduction can function efficiently without a Gβ subunit. However, light sensitivity was reduced by approximately fourfold in the knock-out cones. Because the reduction in sensitivity was similar in magnitude to the reduction in Gαt2 level in the cone outer segment, we conclude that activation of Gαt2 in Gnb3(-/-) cones proceeds at a rate approximately proportional to its outer segment concentration, and that activation of phosphodiesterase and downstream cascade components is normal. These results suggest that the main role of Gβ3 in cones is to establish optimal levels of transducin heteromer in the outer segment, thereby indirectly contributing to robust response properties.
Collapse
|
41
|
Devi S, Markandeya Y, Maddodi N, Dhingra A, Vardi N, Balijepalli RC, Setaluri V. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res 2013; 26:348-56. [PMID: 23452348 DOI: 10.1111/pcmr.12083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/19/2013] [Indexed: 12/23/2022]
Abstract
Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca(2+) uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca(2+) influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi /Go proteins, did not affect basal or mGluR6-induced Ca(2+) uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.
Collapse
Affiliation(s)
- Sulochana Devi
- Department of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sulaiman P, Xu Y, Fina ME, Tummala SR, Ramakrishnan H, Dhingra A, Vardi N. Kir2.4 surface expression and basal current are affected by heterotrimeric G-proteins. J Biol Chem 2013; 288:7420-9. [PMID: 23339194 DOI: 10.1074/jbc.m112.412791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kir2.4, a strongly rectifying potassium channel that is localized to neurons and is especially abundant in retina, was fished with yeast two-hybrid screen using a constitutively active Gαo1. Here, we wished to determine whether and how Gαo affects this channel. Using transfected HEK 293 cells and retinal tissue, we showed that Kir2.4 interacts with Gαo, and this interaction is stronger with the GDP-bound form of Gαo. Using two-electrode voltage clamp, we recorded from oocytes that were injected with Kir2.4 mRNA and a combination of G-protein subunit mRNAs. We found that the wild type and the inactive mutant of Gαo reduce the Kir2.4 basal current, whereas the active mutant has little effect. Other pertussis-sensitive Gα subunits also reduce this current, whereas Gαs increases it. Gβγ increases the current, whereas m-phosducin, which binds Gβγ without affecting the state of Gα, reduces it. We then tested the effect of G-protein subunits on the surface expression of the channel fused to cerulean by imaging the plasma membranes of the oocytes. We found that the surface expression is affected, with effects paralleling those seen with the basal current. This suggests that the observed effects on the current are mainly indirect and are due to surface expression. Similar results were obtained in transfected HEK cells. Moreover, we show that in retinal ON bipolar cells lacking Gβ3, localization of Kir2.4 in the dendritic tips is reduced. We conclude that Gβγ targets Kir2.4 to the plasma membrane, and Gαo slows this down by binding Gβγ.
Collapse
Affiliation(s)
- Pyroja Sulaiman
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|