1
|
Mills EG, Tsoutsouki J, Pierret ACS, Comninos AN, Dhillo WS. The Neuroendocrine Regulation of Reproductive Behavior and Emotional Control by Kisspeptin. J Clin Endocrinol Metab 2025; 110:e1747-e1758. [PMID: 39880372 DOI: 10.1210/clinem/dgaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025]
Abstract
Reproductive success and ultimately species survival at a population level is contingent on a plethora of neuroendocrine signals working in concert to regulate gonadal function and reproductive behavior. Among these, the neuropeptide kisspeptin (encoded by the KISS1/Kiss1 gene) has emerged as the master regulator of the hypothalamic-pituitary-gonadal axis. Besides the hypothalamus, both kisspeptin and its cognate receptor are extensively expressed throughout cortico-limbic brain structures in rodents and humans, which are regions traditionally implicated in behavioral and emotional responses. Thus, there exists a neuroanatomical framework through which kisspeptin can integrate reproductive behavior and emotional regulation with the reproductive axis. Accordingly, this sets the scene for recent findings derived from an assortment of species, including humans, unveiling kisspeptin as an important gatekeeper of reproductive behavior and emotional control. Herein, we summarize the major preclinical animal and human experimental evidence identifying kisspeptin as a key neuromodulator of reproductive behavior and emotional state. Such findings have laid the foundations for clinical applications of kisspeptin-based therapies for patients with related reproductive and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Jovanna Tsoutsouki
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Aureliane C S Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| |
Collapse
|
2
|
Muhammad A, Muhammad M, Chao X, Zhang C, Chen J, Yang H, Liu S, Ding Y, Wang Z, Bi H, Guo W, Fan J, Zhou B. Estradiol Reverses Ovariectomy-Induced Disruption of Hypothalamic Gene Expression and Behavior via Modulation of Gonadotropin Releasing Hormone and Calcium Signaling Pathways. Animals (Basel) 2025; 15:1467. [PMID: 40427344 PMCID: PMC12108420 DOI: 10.3390/ani15101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/02/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Estrogen plays a crucial role in regulating reproductive and neuroendocrine functions, yet the molecular mechanisms underlying its effects on the hypothalamus remain incompletely understood. This study investigates the transcriptional and behavioral changes induced by ovariectomy (OVX) and estradiol (E2) supplementation in female C57BL/6J mice. RNA sequencing was performed to identify differentially expressed genes (DEGs) across control (CK), E2, OVX, and OVX+E2 groups, followed by functional enrichment and pathway analyses. Behavioral assessments, including open field, Y-maze, and elevated plus maze tests, were conducted to evaluate anxiety-like and cognitive behaviors. Results revealed significant alterations in GnRH signaling, neurotransmission, and inflammatory pathways, with key genes such as Elk1, Prkcb, and Camk2a differentially expressed in response to estrogen modulation. OVX-induced neuroendocrine disruptions were partially reversed by E2 treatment, as evidenced by transcriptomic and behavioral outcomes. Pearson correlation analysis further linked gene expression patterns with phenotypic traits, providing insights into estrogen's regulatory mechanisms in the hypothalamus. These findings enhance our understanding of estrogen-mediated neuroendocrine regulation and may have implications for hormone replacement therapies in postmenopausal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (M.M.); (X.C.); (C.Z.); (J.C.); (H.Y.); (S.L.); (Y.D.); (Z.W.); (H.B.); (W.G.); (J.F.)
| |
Collapse
|
3
|
Hernández VS, Zetter MA, Hernández‐Pérez OR, Hernández‐González R, Camacho‐Arroyo I, Millar RP, Eiden LE, Zhang L. Comprehensive chemoanatomical mapping, and the gonadal regulation, of seven kisspeptin neuronal populations in the mouse brain. J Neuroendocrinol 2025; 37:e70019. [PMID: 40102056 PMCID: PMC12045674 DOI: 10.1111/jne.70019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Kisspeptinergic signaling is well-established as crucial for the regulation of reproduction, but its potential broader role in brain function is less understood. This study investigates the distribution and chemotyping of kisspeptin-expressing neurons within the mouse brain. RNAscope single, dual, and multiplex in situ hybridization methods were used to assess kisspeptin mRNA (Kiss1) expression and its co-expression with other neuropeptides, excitatory and inhibitory neurotransmitter markers, and sex steroid receptors in wild-type intact and gonadectomized young adult mice. Seven distinct kisspeptin neuronal chemotypes were characterized, including two novel kisspeptin-expressing groups described for the first time, that is, the Kiss1 population in the ventral premammillary nucleus and the nucleus of the solitary tract. Kiss1 mRNA was also observed to localize in both somatic and dendritic compartments of hypothalamic neurons. High androgen receptor expression and changes in medial amygdala and septo-hypothalamic Kiss1 expression following GDX in males, but not in females, suggest a role for androgen receptors in regulating kisspeptin signaling. This study provides a detailed chemoanatomical map of kisspeptin-expressing neurons, highlighting their potential functional diversity. The discovery of a new kisspeptin-expressing group and gonadectomy-induced changes in Kiss1 expression patterns suggest broader roles for kisspeptin in brain functions beyond those of reproduction.
Collapse
Affiliation(s)
- Vito S. Hernández
- Department of Physiology, School of MedicineNational Autonomous University of Mexico (UNAM)Mexico CityMexico
- Section on Molecular NeuroscienceNIMH‐IRP, NIHBethesdaMarylandUSA
| | - Mario A. Zetter
- Department of Physiology, School of MedicineNational Autonomous University of Mexico (UNAM)Mexico CityMexico
- Department of Medicine and HealthUniversity of La SalleMexico CityMexico
| | - Oscar R. Hernández‐Pérez
- Department of Physiology, School of MedicineNational Autonomous University of Mexico (UNAM)Mexico CityMexico
| | | | - Ignacio Camacho‐Arroyo
- Research Unit in Human ReproductionNational Institute of Perinatology‐Faculty of Chemistry, UNAMMexico CityMexico
| | - Robert P. Millar
- Department of Physiology, School of MedicineNational Autonomous University of Mexico (UNAM)Mexico CityMexico
- Centre for NeuroendocrinologyUniversity of PretoriaPretoriaSouth Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Lee E. Eiden
- Section on Molecular NeuroscienceNIMH‐IRP, NIHBethesdaMarylandUSA
| | - Limei Zhang
- Department of Physiology, School of MedicineNational Autonomous University of Mexico (UNAM)Mexico CityMexico
- Section on Molecular NeuroscienceNIMH‐IRP, NIHBethesdaMarylandUSA
| |
Collapse
|
4
|
Gombert-Labedens M, Vesterdorf K, Fuller A, Maloney SK, Baker FC. Effects of menopause on temperature regulation. Temperature (Austin) 2025; 12:92-132. [PMID: 40330614 PMCID: PMC12051537 DOI: 10.1080/23328940.2025.2484499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/08/2025] Open
Abstract
Changes in thermoregulation, notably the emergence of hot flashes, occur during the menopause transition in association with reproductive hormonal changes. Hot flashes constitute the most characteristic symptom of menopause (prevalence of 50-80%), and have a substantial negative effect on quality of life. Here, we review the endocrine changes associated with menopause and the thermoregulatory system and its sensitivity to female sex hormones. We then review current knowledge on the underlying neural mechanisms of hot flashes and how the reproductive and thermoregulatory systems interact in females. We consider the kisspeptin-neurokinin B-dynorphin (KNDy) neuron complex, which becomes hyperactive when estradiol levels decrease. KNDy neurons project from the arcuate nucleus to thermoregulatory areas within the hypothalamic preoptic area, where heat loss mechanisms are triggered, including cutaneous vasodilation and sweating - characteristics of the hot flash. We describe the physiology and measurement of hot flashes and discuss the mixed research findings about thresholds for sweating in symptomatic individuals. We consider the unique situation of hot flashes that arise during sleep, and discuss the relationships between the environment, exercise, and body mass index with hot flashes. We also discuss the unique situation of surgical menopause (with oophorectomy) and cancer therapy, conditions that are associated with frequent, severe, hot flashes. We then provide an overview of treatments of hot flashes, including hormone therapy and targeted neurokinin B-antagonists, recently developed to target the neural mechanism of hot flashes. Finally, we highlight gaps in knowledge about menopausal thermoregulation and hot flashes and suggest future directions for research.
Collapse
Affiliation(s)
| | - Kristine Vesterdorf
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane K. Maloney
- School of Human Sciences, The University of Western Australia, Perth, Australia
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Takizawa M, Miyazaki S, Tsuchida H, Nagae M, Seki S, Hirabayashi M, Osakada F, Inoue N, Tsukamura H, Uenoyama Y. Involvement of nuclear receptor corepressor 2 (NCOR2) in estrogen-induced repression of arcuate Kiss1 expression in female rats. J Reprod Dev 2025; 71:71-84. [PMID: 39864859 PMCID: PMC11999826 DOI: 10.1262/jrd.2024-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Hypothalamic arcuate (ARC) kisspeptin neurons are considered the gonadotropin-releasing hormone pulse generator in rats. In virgin rats, the expression of the ARC kisspeptin gene (Kiss1) is repressed by proestrous levels of estradiol-17β (high E2) but not by diestrous levels of E2 (low E2). In lactating rats, ARC Kiss1 expression is repressed by low E2 during late lactation. This study aimed to investigate whether nuclear receptor corepressor 2 (NCOR2, encoded by Ncor2), an estrogen receptor α corepressor, is involved in the estrogen-induced repression of ARC Kiss1 expression in rats. Double in situ hybridization for Kiss1 and Ncor2 revealed that approximately 80% of ARC Kiss1-expressing cells co-expressed Ncor2 in ovariectomized (OVX) + low E2 virgin rats, while approximately 90% of ARC Kiss1-expressing cells co-expressed Ncor2 in OVX + low E2 lactating rats. To further examine the role of Ncor2, we studied the effects of Kiss1-dependent Ncor2 knockdown on ARC Kiss1 expression and luteinizing hormone (LH) pulses. An adeno-associated virus vector carrying Cre-activated short hairpin RNA (shRNA) for Ncor2 was administered to the ARC in two Kiss1-Cre rat models: OVX + high E2 Kiss1-Cre virgin rats and OVX + low E2 Kiss1-Cre lactating rats. Ncor2-shRNA treatment significantly increased the number of ARC Kiss1-expressing cells and the intensity of Kiss1 signals in OVX + high E2 virgin rats but failed to fully restore low E2-induced Kiss1 repression in lactating rats. The Ncor2-shRNA treatment failed to affect LH pulses in both models. These findings suggest that NCOR2 in ARC kisspeptin neurons mediates high E2-induced repression of ARC Kiss1 expression in virgin rats.
Collapse
Affiliation(s)
- Marina Takizawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sae Miyazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shunsuke Seki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444‑8787, Japan
| | - Fumitaka Osakada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
7
|
Amodei R, Jonker SS, Lazen E, Nestor CC, Estill CT, Roselli CE. KNDy Neurons and the Control of the Gonadotropic Axis in the Midgestation Fetal Sheep. Endocrinology 2025; 166:bqaf049. [PMID: 40048705 DOI: 10.1210/endocr/bqaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 03/25/2025]
Abstract
KNDy neurons, located in the hypothalamic arcuate nucleus, coexpress kisspeptin (Kiss), neurokinin B, and dynorphin and play a crucial role in regulating GnRH/LH secretion in midgestation sheep fetuses. We hypothesize that KNDy-GnRH signaling is established during midgestation, with negative feedback acting through KNDy neurons regulating testosterone levels needed for brain masculinization in male fetuses. We used immunofluorescence histochemistry to assess the effect of chemical castration with the GnRH antagonist degarelix on arcuate KNDy neurons in fetal sheep. Fluorescent in situ hybridization demonstrated the presence of steroid receptors in untreated midgestation fetal kisspeptin neurons. Additionally, unanesthetized cannulated midgestation fetal sheep were used to examine the effects of KNDy peptides on LH secretion and characterize receptor specificity. Treatment of male lamb fetuses with degarelix on day 62 of gestation resulted in significantly decreased plasma LH and testosterone concentrations (P < .05), accompanied by a significant increase in arcuate Kiss neurons (P < .05). In unanesthetized cannulated fetuses, bolus administration of KP-10 (a Kiss receptor agonist) and senktide (NK3 receptor agonist) elicited robust LH release within 15 minutes. Pretreatment with the NK3 receptor antagonist SB222200 blocked the LH response to senktide, whereas P271 (Kiss receptor antagonist) did not affect basal LH or block the LH response to KP-10. Blocking κ-opiate receptor with PF4455242 significantly increased LH release. These results support the hypothesis that KNDy neurons regulate GnRH and gonadotropin secretion in midgestation sheep fetuses, acting as targets for negative feedback to maintain a stable androgen environment crucial for brain masculinization.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Evelyn Lazen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Casey C Nestor
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4501, USA
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
8
|
Phillips CD, DeFazio RA, Moenter SM. Sex and Time of Day Alter the Interactions Between Hypothalamic Glia and the Neural Circuits Controlling Reproduction. Endocrinology 2025; 166:bqaf057. [PMID: 40111184 PMCID: PMC11968336 DOI: 10.1210/endocr/bqaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
An upstream network, including glia and arcuate nucleus (ARC) kisspeptin neurons, controls hormone secretion from preoptic area (POA) gonadotropin-releasing hormone (GnRH) neurons, which form the final common pathway for the central control of fertility. In males, chemogenetic activation of Gq-mediated signaling in POA glia activated GnRH neurons and downstream luteinizing hormone (LH) release, while chemogenetic activation of ARC glia had no effect on ARC kisspeptin neurons. We characterized sex differences and time-of-day effects in these critical circuits to understand their effects on reproduction. Chemogenetic activation of glial fibrillary acidic protein (GFAP)-expressing cells increased intracellular calcium concentrations regardless of sex, brain region, or time of day. Activation of POA glia or treatment with the gliotransmitter analog dimethyl prostaglandin E2 (dmPGE2) increased GnRH neuron firing rate, and these responses were dependent upon sex and time of day. In contrast, ARC kisspeptin neuron firing rate was unresponsive to ARC glia activation or dmPGE2 regardless of sex or time of day. POA glial activation increased LH levels in males and females but the response in males was more rapid. ARC glia activation had no effect on LH in females and the response in males was delayed compared to POA glia activation. A similar LH response persisted after ARC kisspeptin neuron ablation, suggesting it is not mediated by those neurons. GnRH neurons, rather than arcuate kisspeptin neurons, are thus the main target of glial regulation of reproductive neuroendocrine output and this regulation is dependent on sex and time of day.
Collapse
Affiliation(s)
- Chrystian D Phillips
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - R Anthony DeFazio
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M Moenter
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Erten F, Er B, Ozmen R, Tokmak M, Gokdere E, Orhan C, Morde AA, Padigaru M, Sahin K. Effects of Integrated Extracts of Trigonella foenum-graecum and Asparagus racemosus on Hot Flash-like Symptoms in Ovariectomized Rats. Antioxidants (Basel) 2025; 14:355. [PMID: 40227409 PMCID: PMC11939183 DOI: 10.3390/antiox14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Vasomotor symptoms, such as hot flashes (HFs), commonly affect women during menopause, leading to a reduced quality of life. The current study evaluates the combined effect of active components Asparagus racemosus (AR) and Trigonella foenum-graecum (TFG) in a single oral formulation (IAT) for alleviating menopausal symptoms in ovariectomized rats. Following bilateral ovariectomy, the animals were randomly assigned to nine groups: (1) Control, (2) Ovariectomy (OVX), (3) OVX+TA1 (TA: Combination of Trigonella and Asparagus; TFG 30 mg/kg + AR 30 mg/kg), (4) OVX+TA2 (TFG 30 mg/kg + AR 15 mg/kg), (5) OVX+TA3 (TFG 15 mg/kg + AR 30 mg/kg), (6) OVX+TA4 (TFG 40 mg/kg + AR 30 mg/kg), (7) OVX+TA5 (TFG 30 mg/kg + AR 40 mg/kg), (8) OVX+IAT1 (IAT: Integrated Asparagus and Trigonella; TFG+AR integrated extract, 30 mg/kg), and (9) OVX+IAT2 (TFG+AR integrated extract, 60 mg/kg). On the 8th day of treatment, tail and skin temperatures were recorded every 30 min for 24 h. Ovariectomized rats exhibited menopausal symptoms, such as hormonal imbalances and elevated skin temperature. Administration of AR, TFG, and IAT significantly decreased serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and cortisol while increasing estradiol, progesterone, and dopamine (p < 0.0001), effectively alleviating hot flash-like symptoms. Additionally, they mitigated ovariectomy-induced oxidative stress by lowering malondialdehyde (MDA) levels and restoring antioxidant enzyme activity. Ovariectomized rats exhibited increased expression of a proto-oncogene (c-FOS), gonadotropin-releasing hormone (GnRH), Kisspeptin, Neurokinin B (NKB), and Transient receptor potential vanilloid 1 (TRPV1), along with reduced expressing brain-derived neurotrophic factor (BDNF) levels, which were reversed by treatment, especially with the IAT2 combination. The AR and TFG combination, particularly in IAT formulations, showed strong potential in alleviating menopausal symptoms in ovariectomized rats. These findings suggest that the combination of AR and TFG extracts could be a natural alternative for managing postmenopausal symptoms by restoring reproductive hormone levels, regulating lipid profiles, and enhancing antioxidant defense systems.
Collapse
Affiliation(s)
- Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Türkiye;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Türkiye;
| | - Ramazan Ozmen
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye; (R.O.); (M.T.); (C.O.)
| | - Muhammed Tokmak
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye; (R.O.); (M.T.); (C.O.)
| | - Ebru Gokdere
- Department of Physiology, Faculty of Medicine, Firat University, Elazig 23119, Türkiye;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye; (R.O.); (M.T.); (C.O.)
| | - Abhijeet A. Morde
- Research and Development, OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (A.A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (A.A.M.); (M.P.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Türkiye; (R.O.); (M.T.); (C.O.)
| |
Collapse
|
10
|
Tinano FR, Machado IFR, Latronico AC, Gomes LG. Shared Pathophysiological Mechanisms and Genetic Factors in Early Menarche and Polycystic Ovary Syndrome. J Neurosci 2025; 45:e1681242024. [PMID: 40074331 PMCID: PMC11905354 DOI: 10.1523/jneurosci.1681-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders. Genetic and epigenetic factors influence the onset of puberty and reproductive outcomes. Genome-wide association studies have identified common genetic variants associated with AAM and PCOS, particularly in genes related to the neuroendocrine axis (e.g., FSHB) and obesity (e.g., FTO). In addition, high-throughput sequencing has revealed rare loss-of-function variants in the DLK1 gene in women with central precocious puberty (CPP), early menarche, and PCOS, who experienced adverse metabolic outcomes in adulthood. This review explores the shared pathophysiological mechanisms between CPP/early AAM and PCOS, examines potential genetic and epigenetic factors that may link these neuroendocrine reproductive conditions, and offers insights into future research and treatment strategies. Understanding these connections may provide new targets for therapeutic interventions and improve outcomes for individuals with these reproductive disorders.
Collapse
Affiliation(s)
- Flavia Rezende Tinano
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Iza Franklin Roza Machado
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Larissa Garcia Gomes
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
11
|
Szysiak N, Kosior-Korzecka U, Longo V, Patkowski K, Greguła-Kania M, Nowakiewicz A, Bochniarz M, Junkuszew A. Influence of neurokinin B, dynorphin A and kisspeptin-10 on in vitro gonadotropin secretion by anterior pituitary cells isolated from pubescent ewes. J Vet Res 2025; 69:121-129. [PMID: 40144066 PMCID: PMC11936093 DOI: 10.2478/jvetres-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/23/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction The hypothalamic neuropeptides kisspeptin-10 (KiSS-10), neurokinin B (NKB), and dynorphin A (Dyn A) play roles in the endocrine regulation of the hypothalamic-pituitary-ovarian (HPO) axis in puberty. Livestock's timely attainment of sexual maturity increases reproductive efficiency and raises profitability. The pituitary relationship between these neuropeptides and gonadotropins in puberty in ewes being undercharacterised. The aim of the study was to analyse their direct effect on gonadotropin secretion by pituitary cells isolated from pubescent ewes. Material and Methods Cells were incubated in McCoy's 5A medium, either without neuropeptides (as the control) or with 10-11, 10-10, 10-9, 10-8 and 10-7 M of KiSS-10, NKB and Dyn A. After 4, 12 and 24 h, the luteinising hormone (LH) and follicle-stimulating hormone (FSH) concentrations were analysed by ELISA using species-specific antibodies. Results Greater LH and FSH secretion was observed after the 4-24 h exposure to respective 10-11-10-8 M and 10-11-10-7 M concentrations of KiSS-10. Moreover, NKB and Dyn A applied in the concentration range elevated the secretion of both LH and FSH throughout the experiment. Dynorphin A had the most significant effect on gonadotropin secretion at all the concentrations used. In contrast, the most pronounced dose-dependent neuropeptide effect throughout the experiment on the FSH secretion was attributed to NKB. Conclusion Kisspeptin-10, NKB and Dyn A had a direct impact on gonadotropin secretion by ovine pituitary cells. However, a detailed explanation of their role in gonadotropin secretion by the anterior pituitary gland in sheep and of their impact on the regulation of the HPO axis during sexual maturation or in the pathomechanism of delayed puberty require further studies.
Collapse
Affiliation(s)
| | | | - Vincenzo Longo
- National Research Council, Institute of Agricultural Biology and Biotechnology, Research Unit of Pisa, 56124Pisa, Italy
| | - Krzysztof Patkowski
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Monika Greguła-Kania
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, Lublin, Poland
| | - Mariola Bochniarz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, Lublin, Poland
| | - Andrzej Junkuszew
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
12
|
Ganeyan A, Ganesh CB. The role of the opioid peptide dynorphin during the seasonal and gonadotropin-induced ovarian recrudescence in the gecko. Gen Comp Endocrinol 2025; 363:114684. [PMID: 39961516 DOI: 10.1016/j.ygcen.2025.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The aim of the current investigation was to elucidate the influence of the opioid peptide dynorphin-A (DYN) on the reproductive axis during breeding and non-breeding phases of the ovarian cycle in the gecko Hemidactylus frenatus. During the recrudescence phase, administration of a high dose of DYN (10 µg/0.1 ml saline) caused a significant reduction in the numbers of oogonia and primary oocytes in the germinal bed, compared to those of the initial controls or experimental controls. Administration of a low (2 µg DYN/0.1 ml saline) or high dose of DYN did not affect the follicular development up to stage IV, but there were no stage V (vitellogenic) follicles in the ovary in contrast to their presence in the experimental controls. Furthermore, there was a significant reduction in gonadotropin-releasing hormone-immunoreactive (GnRH-ir) content in the median eminence (ME) and pars distalis of the pituitary gland (PD) in low or high doses of DYN-treated lizards. During the regression phase, treatment with follicle-stimulating hormone (FSH) resulted in the appearance of stage IV and V follicles, in contrast to their absence in initial controls and treatment controls. However, treatment with 10 µg DYN + FSH did not promote the development of these follicles. In addition, in vitro treatment of DYN significantly inhibited ovarian levels of estradiol. Collectively, these findings reveal an inhibitory influence of DYN on the seasonal ovarian recrudescence, possibly mediated through the suppression of GnRH release into the ME and PD and directly at the level of the ovary by impairment in steroidogenesis and vitellogenic follicular growth in the gecko.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003. India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003. India.
| |
Collapse
|
13
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Qiu J, Talbi R, Bosch MA, Medve E, Zweifel LS, Rønnekleiv OK, Navarro VM, Kelly MJ. Glutamatergic Input From Arcuate Nucleus Kiss1 Neurons to Preoptic Kiss1 Neurons Is Required for LH Surge in Female Mice. Endocrinology 2025; 166:bqaf015. [PMID: 39865886 PMCID: PMC11788511 DOI: 10.1210/endocr/bqaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (also known as KNDy neurons since they coexpress neurokinin B and dynorphin) are considered the "pulse-generator" neurons that presynaptically excite gonadotropin-releasing hormone (GnRH) axons in the median eminence, whereas the Kiss1AVPV/PeN neurons are the "surge-generator" neurons that depolarize preoptic GnRH neurons directly to drive ovulation. Traditionally, it is believed that Kiss1ARH neurons are relatively quiet during the late follicular, preovulatory stage of the reproductive cycle due to the 17β-estradiol (E2)-mediated downregulation of the expression of the KNDy peptides. However, based on our single-cell, quantitative polymerase chain reaction and whole-cell electrophysiological recordings, we found that the messenger RNA (mRNA) expression of vesicular glutamate transporter 2 (Vglut2) mRNA and excitatory cation channels in Kiss1ARH neurons were significantly upregulated by E2, which increased the excitability and glutamate release from these "pulse-generator" neurons. Presently, we demonstrate that optogenetic stimulation of Kiss1ARH neurons releases glutamate to excite Kiss1AVPV/PeN neurons via activation of both ionotropic and metabotropic glutamate receptors. CRISPR mutagenesis of Vglut2 in Kiss1ARH neurons abolished glutamatergic neurotransmission, which significantly reduced the overall glutamatergic input to Kiss1AVPV/PeN neurons. The mutagenesis of Vglut2 in Kiss1ARH neurons abrogated the E2-induced luteinizing hormone surge and reduced the formation of corpus lutea, indicative of a reduced ovulatory drive in these Vglut2-mutated Kiss1ARH mice. Therefore, Kiss1ARH neurons appear to play a critical role in augmenting the GnRH surge through glutamatergic neurotransmission to Kiss1AVPV/PeN neurons.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajae Talbi
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Martha A Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth Medve
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Depatment of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Víctor M Navarro
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Program in Neuroscience, Boston, MA 02115, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
15
|
Zhou Z, Han SY, Pardo-Navarro M, Wall EG, Desai R, Vas S, Handelsman DJ, Herbison AE. GnRH pulse generator activity in mouse models of polycystic ovary syndrome. eLife 2025; 13:RP97179. [PMID: 39761106 DOI: 10.7554/elife.97179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified 'diestrous stage' PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Ziyue Zhou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Su Young Han
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Pardo-Navarro
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ellen G Wall
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Qiu J, Voliotis M, Bosch MA, Li XF, Zweifel LS, Tsaneva-Atanasova K, O'Byrne KT, Rønnekleiv OK, Kelly MJ. Estradiol elicits distinct firing patterns in arcuate nucleus kisspeptin neurons of females through altering ion channel conductances. eLife 2024; 13:RP96691. [PMID: 39671233 PMCID: PMC11643640 DOI: 10.7554/elife.96691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Martha A Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Xiao Feng Li
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College LondonLondonUnited Kingdom
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Depatment of Pharmacology, University of WashingtonSeattleUnited States
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Kevin T O'Byrne
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College LondonLondonUnited Kingdom
| | - Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| |
Collapse
|
17
|
Camon C, Garratt M, Correa SM. Exploring the effects of estrogen deficiency and aging on organismal homeostasis during menopause. NATURE AGING 2024; 4:1731-1744. [PMID: 39672893 PMCID: PMC11785355 DOI: 10.1038/s43587-024-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Sex hormone signaling declines during aging, from early midlife through menopause, as a consequence of reduced circulating estrogens and decreased receptiveness to these hormones in target tissues. Estrogens preserve energy homeostasis and promote metabolic health via coordinated and simultaneous effects throughout the brain and body. Age-associated loss of estrogen production during menopause has been implicated in a higher risk for metabolic diseases and increased mortality. However, it remains unclear whether age-associated changes in homeostasis are dependent on reduced estrogen signaling during menopause. Although menopausal hormone therapies containing estrogens can alleviate symptoms, concerns about the risks involved have contributed to a broad decline in the use of these approaches. Non-hormonal therapies have emerged that target tissues or pathways with varying levels of selectivity, reducing risk. We summarize here the broad effects of estrogen loss on homeostasis during menopause, current and emerging therapies and opportunities for understanding homeostatic disruptions associated with menopause.
Collapse
Affiliation(s)
- Celine Camon
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Garratt
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Hernandez VS, Zetter MA, Hernandez-Perez OR, Hernandez-Gonzalez R, Camacho-Arroyo IS, Millar RP, Eiden LE, Zhang L. Comprehensive chemotyping, and the gonadal regulation, of seven kisspeptinergic neuronal populations in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604881. [PMID: 39211104 PMCID: PMC11361108 DOI: 10.1101/2024.07.23.604881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Kisspeptinergic signaling is well-established as crucial for regulation of reproduction, but its potential broader role in brain function is less understood. This study investigates the distribution and chemotyping of kisspeptin-expressing neurons within the mouse brain. METHODS RNAscope singleplex, duplex and multiplex in situ hybridization methods were used to assess kisspeptin mRNA (Kiss1) expression and its co-expression with other neuropeptides, excitatory and inhibitory neurotransmitter markers, and sex steroid receptors in intact and gonadectomized young adult mice. RESULTS Seven distinct kisspeptin neuronal chemotypes were characterized, including within two novel Kiss1-expressing groups described here for the first time: the ventral premammillary nucleus, and the nucleus of the solitary tract. Kiss1 mRNA was also localized in the soma, and within the dendritic compartment, of hypothalamic neurons. Altered Kiss1 expression following gonadectomy suggests a previously unappreciated role for androgen receptors in regulating kisspeptin signaling. CONCLUSION This study provides a detailed chemoanatomical map of kisspeptin-expressing neurons in the brain, highlighting their potential functional diversity. The discovery of new kisspeptin-expressing neuronal populations, and gonadectomy-induced changes in Kiss1 expression patterns, provide a basis for further exploration of non-endocrine roles for kisspeptin in brain function.
Collapse
|
19
|
Streifer M, Thompson LM, Mendez SA, Gore AC. Neuroendocrine and Developmental Impacts of Early Life Exposure to EDCs. J Endocr Soc 2024; 9:bvae195. [PMID: 39659541 PMCID: PMC11631349 DOI: 10.1210/jendso/bvae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) pose a global challenge to environmental and human health. Although toxic and carcinogenic at higher exposure levels, at lower concentrations they can act as endocrine-disrupting chemicals. Individuals are more vulnerable to endocrine-disrupting effects of PCB exposures during the perinatal period, when the neuroendocrine system is developing, although assessing the full impact of PCB exposure is difficult because of the often-latent onset of adverse effects. The goal of this study was to determine developmental effects of an estrogenic PCB mixture, Aroclor 1221 (A1221), on KNDy and kisspeptin neuron numbers in the hypothalamic arcuate nucleus and anteroventral periventricular nucleus (AVPV), together with measures of hypothalamic-pituitary-gonadal hormones and postnatal development. We conducted RNAscope of kisspeptin, prodynorphin, neurokinin B, and estrogen receptor alpha genes in the P30 hypothalamus. Early-life PCBs caused small but significant changes in development (body weight and anogenital index) but had no effect on puberty. We found sex-specific effects of treatment on serum LH, FSH, and estradiol in a sex- and developmental age-dependent manner. RNAscope results revealed increased prodynorphin in the AVPV of male rats, but no effects on kisspeptin or neurokinin B in AVPV or arcuate nucleus. An unexpected species difference was found: we were unable to detect prodynorphin coexpression with kisspeptin within KNDy neurons in rats, unlike mice, sheep, and primates. These data show that early-life PCBs can induce developmental and hormonal changes that together with other reports showing latent effects on behavior and the hypothalamic-pituitary-gonadal axis, indicate adverse endocrine and neurobehavioral outcomes.
Collapse
Affiliation(s)
- Madeline Streifer
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Skylar A Mendez
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Ahern DF, Martins K, Flórez JM, Ross CE, Huisman A, Cushman RA, Shuping SL, Nestor CC, Desaulniers AT, White BR, Sonstegard TS, Lents CA. Development of KISS1 knockout pigs is characterized by hypogonadotropic hypogonadism, normal growth, and reduced skatole†. Biol Reprod 2024; 111:1082-1096. [PMID: 39375014 DOI: 10.1093/biolre/ioae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Kisspeptin is a major regulator of gonadotropin secretion in pigs. Previously, CRISPR/Cas9 knockout of KISS1 was used to develop a mosaic parental line of pigs to generate offspring that would not need castration due to loss of kisspeptin. The current goal was to characterize growth and reproductive development of F1 pigs from this parental line. Body weights, gonadotropin concentrations and gonadal development were measured from birth through development (boars to 220 days of age, n = 42; gilts to 160 days of age, n = 36). Testosterone, skatole, and androstenone were also measured in boars. Blood samples were collected by jugular venipuncture for quantification of serum hormones, gonadal tissues were collected for gross morphology and histology, and a fat biopsy was collected (boars) for skatole and androstenone analysis. Body weight did not differ with genotype. There were no differences between KISS1+/+ and heterozygote KISS1+/- animals for most parameters measured. Gonadotropin concentrations were reduced in KISS1-/- boars and gilts compared with KISS1+/+ and KISS1+/- animals (P < 0.05). Concentrations of testosterone in serum and both androstenone and skatole in adipose were less in KISS1-/- boars than in KISS1+/+ and KISS1+/- boars (P < 0.05). Hypogonadism was present in all KISS1-/- gilts and boars. These data indicate that knocking out KISS1 causes hypogonadotropic hypogonadism but does not negatively affect growth in pigs. Only one KISS1 allele is needed for normal gonadotropin secretion and gonadal development, and accumulation of compounds in adipose leading to boar taint.
Collapse
Affiliation(s)
- Daniel F Ahern
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Kyra Martins
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Julio M Flórez
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, Brazil
| | - Caitlin E Ross
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Abe Huisman
- Hypor, Hendrix Genetics, Villa `de Körver', Spoorstraat 69, 5831 CK Boxmeer, Netherlands
| | - Robert A Cushman
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), U.S. Meat Animal Research Center, Livestock Bio-systems Research Unit, Clay Center, NE 68933-0165, USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Amy T Desaulniers
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | - Brett R White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | | | - Clay A Lents
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), U.S. Meat Animal Research Center, Livestock Bio-systems Research Unit, Clay Center, NE 68933-0165, USA
| |
Collapse
|
21
|
Kelly MJ, Wagner EJ. Canonical transient receptor potential channels and hypothalamic control of homeostatic functions. J Neuroendocrinol 2024; 36:e13392. [PMID: 38631680 PMCID: PMC11444909 DOI: 10.1111/jne.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Recent molecular biological and electrophysiological studies have identified multiple transient receptor potential (TRP) channels in hypothalamic neurons as critical modulators of homeostatic functions. In particular, the canonical transient receptor potential channels (TRPCs) are expressed in hypothalamic neurons that are vital for the control of fertility and energy homeostasis. Classical neurotransmitters such as serotonin and glutamate and peptide neurotransmitters such as kisspeptin, neurokinin B and pituitary adenylyl cyclase-activating polypeptide signal through their cognate G protein-coupled receptors to activate TPRC 4, 5 channels, which are essentially ligand-gated calcium channels. In addition to neurotransmitters, circulating hormones like insulin and leptin signal through insulin receptor (InsR) and leptin receptor (LRb), respectively, to activate TRPC 5 channels in hypothalamic arcuate nucleus pro-opiomelanocortin (POMC) and kisspeptin (arcuate Kiss1 [Kiss1ARH]) neurons to have profound physiological (excitatory) effects. Besides its overt depolarizing effects, TRPC channels conduct calcium ions into the cytoplasm, which has a plethora of downstream effects. Moreover, not only the expression of Trpc5 mRNA but also the coupling of receptors to TRPC 5 channel opening are regulated in different physiological states. In particular, the mRNA expression of Trpc5 is highly regulated in kisspeptin neurons by circulating estrogens, which ultimately dictates the firing pattern of kisspeptin neurons. In obesity states, InsRs are "uncoupled" from opening TRPC 5 channels in POMC neurons, rendering them less excitable. Therefore, in this review, we will focus on the critical role of TRPC 5 channels in regulating the excitability of Kiss1ARH and POMC neurons in different physiological and pathological states.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97001, USA
| | - Edward J. Wagner
- Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Pomona, CA 91766, USA
| |
Collapse
|
22
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
23
|
Hu R, Geng Y, Huang Y, Liu Z, Li F, Song K, Ma W, Dong H, Zhang M, Lei T, Song Y, Zhang Z. Jiawei Buzhong Yiqi Decoction attenuates polycystic ovary syndrome through regulating kisspeptin-GPR54-AKT-SHBG system. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155931. [PMID: 39116604 DOI: 10.1016/j.phymed.2024.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders. Accumulated evidence has suggested the indispensable role of kisspeptin-G protein-coupled receptor (GPR54) system and SHBG in development of PCOS. However, potential mechanisms and their relationship are unclear. Jiawei Buzhong Yiqi Decoction (JWBZYQ) has been reported to ameliorate obese PCOS. Whereas, potential mechanisms remain elusive. PURPOSE To determine whether JWBZYQ attenuates PCOS by regulating the kisspeptin-GPR54 system and SHBG production. And to explore potential mechanisms. METHODS An overweight PCOS rat model was developed with testosterone propionate (TP) and high-fat diet (HFD). The efficacy of JWBZYQ was assessed by tracking changes in weight, estrous cycle, ovarian morphology, and serum sex hormone levels. Additionally, kisspeptin-GPR54 system expression in multiple organs and PI3K-AKT pathway activity in liver of different rats were detected. Modifications in SHBG production were also measured. Kisspeptin54 was administered to establish a cellular model. The levels of AKT phosphorylation and SHBG protein within HepG2 cells were analyzed. Finally, confirmatory studies were performed using AKT phosphorylation activator and inhibitor. RESULTS JWBZYQ effectively attenuated the overweight, disrupted estrous cycle, altered sex hormone levels, and aberrant ovarian morphology in PCOS rats. Meanwhile, PCOS rats exhibited elevated levels of kisspeptin and GPR54, along with reduced SHBG levels, which could be reversed by JWBZYQ. These alterations might be connected with the activation of AKT phosphorylation. In vitro experiment identified that JWBZYQ could rectify the hyperactivated AKT phosphorylation and deficient production of SHBG caused by kisspeptin54. CONCLUSIONS Overexpressed kisspeptin-GPR54 system inhibited SHBG synthesis in PCOS. JWBZYQ curtailed the exorbitant expression of kisspeptin and GPR54, which moderated the rise in AKT phosphorylation and subsequently promoted the production of SHBG.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Qiu J, Voliotis M, Bosch MA, Li XF, Zweifel LS, Tsaneva-Atanasova K, O’Byrne KT, Rønnekleiv OK, Kelly MJ. Estradiol elicits distinct firing patterns in arcuate nucleus kisspeptin neurons of females through altering ion channel conductances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581121. [PMID: 38915596 PMCID: PMC11195100 DOI: 10.1101/2024.02.20.581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Vglut2 mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current and that contribute to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of Canonical Transient Receptor Potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When TRPC5 channels in Kiss1ARH neurons were deleted using CRISPR, the slow excitatory postsynaptic potential (sEPSP) was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of the Kiss1ARH neuron, suggesting that E2 modifies ionic conductances in Kiss1ARH neurons, enabling the transition from high frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science U., Portland, OR 97239, USA
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Stocker Rd, Exeter, EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Rd, Exeter, EX4 4PY, UK
| | - Martha A. Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science U., Portland, OR 97239, USA
| | - Xiao Feng Li
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Depatment of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Stocker Rd, Exeter, EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Rd, Exeter, EX4 4PY, UK
| | - Kevin T. O’Byrne
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Oline K. Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science U., Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Martin J. Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science U., Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
26
|
Kauffman AS. Androgen Inhibition of Reproductive Neuroendocrine Function in Females and Transgender Males. Endocrinology 2024; 165:bqae113. [PMID: 39207217 PMCID: PMC11393496 DOI: 10.1210/endocr/bqae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ovarian function is controlled by pituitary secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH), which in turn are governed by gonadotropin releasing hormone (GnRH) secreted from the brain. A fundamental principle of reproductive axis regulation is negative feedback signaling by gonadal sex steroids back to the brain to fine-tune GnRH and gonadotropin secretion. Endogenous negative feedback effects can be mimicked by exogenous steroid treatments, including androgens, in both sexes. Indeed, a growing number of clinical and animal studies indicate that high levels of exogenous androgens, in the typically male physiological range, can inhibit LH secretion in females, as occurs in males. However, the mechanisms by which male-level androgens inhibit GnRH and LH secretion still remain poorly understood, and this knowledge gap is particularly pronounced in transgender men (individuals designated female at birth but identifying as male). Indeed, many transgender men take long-term gender-affirming hormone therapy that mimics male-level testosterone levels. The impact of such gender-affirming testosterone on the reproductive axis, both at the ovarian and neuroendocrine level, is a long-understudied area that still requires further investigation. Importantly, the few concepts of androgen actions in females mostly come from studies of polycystic ovary syndrome, which does not recapitulate a similar androgen milieu or a pathophysiology of inhibited LH secretion as occurs in testosterone-treated transgender men. This review summarizes clinical evidence indicating that exogenous androgens can impair neuroendocrine reproductive function in both female individuals and transgender men and highlights emerging experimental data supporting this in recently developed transgender rodent models.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Dillon KM, Lohr DB, Novak AG, Petriv AMV, Neifert NT, Moore AM. Deletion of Nuclear Progesterone Receptors From Kisspeptin Cells Does Not Impair Negative Feedback in Female Mice. Endocrinology 2024; 165:bqae121. [PMID: 39253941 DOI: 10.1210/endocr/bqae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.
Collapse
Affiliation(s)
- Kendra M Dillon
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Dayanara B Lohr
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Alyssa G Novak
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Anna-Maria V Petriv
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Nicole T Neifert
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| | - Aleisha M Moore
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242-0001, USA
| |
Collapse
|
28
|
Pinkerton JV, Simon JA, Joffe H, Maki PM, Nappi RE, Panay N, Soares CN, Thurston RC, Caetano C, Haberland C, Haseli Mashhadi N, Krahn U, Mellinger U, Parke S, Seitz C, Zuurman L. Elinzanetant for the Treatment of Vasomotor Symptoms Associated With Menopause: OASIS 1 and 2 Randomized Clinical Trials. JAMA 2024; 332:2822766. [PMID: 39172446 PMCID: PMC11342219 DOI: 10.1001/jama.2024.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Importance Safe and effective nonhormonal treatments for menopausal vasomotor symptoms (VMS) are needed. Objective To evaluate the efficacy and safety of elinzanetant, a selective neurokinin-1,3 receptor antagonist, for the treatment of moderate to severe menopausal vasomotor symptoms. Design, Setting, and Participants Two randomized double-blind phase 3 trials (OASIS 1 and 2) included postmenopausal participants aged 40 to 65 years experiencing moderate to severe vasomotor symptoms (OASIS 1: 77 sites in the US, Europe, and Israel from August 27, 2021, to November 27, 2023, and OASIS 2: 77 sites in the US, Canada, and Europe from October 29, 2021, to October 10, 2023). Intervention Once daily oral elinzanetant, 120 mg, for 26 weeks or matching placebo for 12 weeks followed by elinzanetant, 120 mg, for 14 weeks. Main Outcomes and Measures Primary end points included mean change in frequency and severity of moderate to severe vasomotor symptoms from baseline to weeks 4 and 12, measured by the electronic hot flash daily diary. Secondary end points included Patient-Reported Outcomes Measurement Information System Sleep Disturbance Short Form 8b total T score and Menopause-Specific Quality of Life questionnaire total score from baseline to week 12. Results Eligible participants (mean [SD] age, OASIS 1: 54.6 [4.9] years; OASIS 2: 54.6 [4.8] years) were randomized to elinzanetant (OASIS 1: n = 199; OASIS 2: n = 200) or placebo (OASIS 1: n = 197; OASIS 2: n = 200). A total of 309 (78.0%) and 324 (81.0%) completed OASIS 1 and 2, respectively. For the elinzanetant and placebo groups, the baseline mean (SD) VMS per 24 hours were 13.4 (6.6) vs 14.3 (13.9) (OASIS 1) and 14.7 (11.1) v 16.2 (11.2) (OASIS 2). Baseline VMS severity was 2.6 (0.2) vs 2.5 (0.2) (OASIS 1) and 2.5 (0.2) vs 2.5 (0.2) (OASIS 2). Elinzanetant significantly reduced VMS frequency at week 4 (OASIS 1: -3.3 [95% CI, -4.5 to -2.1], P < .001; OASIS 2: -3.0 [95% CI, -4.4 to -1.7], P < .001) and at week 12 (OASIS 1: -3.2 [95% CI, -4.8 to -1.6], P < .001; OASIS 2: -3.2 [95% CI, -4.6 to -1.9], P < .001). Elinzanetant also improved VMS severity at week 4 (OASIS 1: -0.3 [95% CI, -0.4 to -0.2], P < .001; OASIS 2: -0.2 [95 CI, -0.3 to -0.1], P < .001) and week 12 (OASIS 1: -0.4 [95% CI, -0.5 to -0.3], P < .001; OASIS 2: -0.3 [95% CI, -0.4 to -0.1], P < .001). Elinzanetant improved sleep disturbances and menopause-related quality of life at week 12, and the safety profile was favorable. Conclusions and Relevance Elinzanetant was well tolerated and efficacious for moderate to severe menopausal VMS. Trial Registration ClinicalTrials.gov Identifier: OASIS 1: NCT05042362, OASIS 2: NCT05099159.
Collapse
Affiliation(s)
- JoAnn V. Pinkerton
- Department of Obstetrics and Gynecology, Division Midlife Health, University of Virginia Health, Charlottesville
| | - James A. Simon
- IntimMedicine Specialists, George Washington University, Washington, DC
| | - Hadine Joffe
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pauline M. Maki
- Department of Psychiatry, Psychology, and OB/GYN, University of Illinois at Chicago
| | - Rossella E. Nappi
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology, and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Nick Panay
- Queen Charlotte’s and Chelsea Hospital, Imperial College London, London, United Kingdom
| | - Claudio N. Soares
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, Ontario, Canada
| | - Rebecca C. Thurston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | - Christian Seitz
- Bayer AG, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Germany
| | | |
Collapse
|
29
|
Matsuda F, Ito D, Wakabayashi Y, Yamamura T, Okamura H, Ohkura S. Peripheral administration of a κ-opioid receptor agonist nalfurafine inactivates gonadotropin-releasing hormone pulse generator activity in goats. Neurosci Lett 2024; 837:137918. [PMID: 39096756 DOI: 10.1016/j.neulet.2024.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 μg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 μg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 μg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 μg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Daisuke Ito
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihiro Wakabayashi
- Livestock Reproduction Group, Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Takashi Yamamura
- Livestock Reproduction Group, Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Hiroaki Okamura
- Livestock Reproduction Group, Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
30
|
Joy KP, Chaube R. Kisspeptin control of hypothalamus-pituitary-ovarian functions. VITAMINS AND HORMONES 2024; 127:153-206. [PMID: 39864941 DOI: 10.1016/bs.vh.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals. However, only a single form of the ligand (KISS1/Kiss1) and receptor (KISS1R/Kiss1r) is retained in higher mammals. Kiss1 is distributed in the hypothalamus-pituitary-gonadal (HPG) axis and its primary function is to stimulate gonadotropin-releasing hormone (GnRH) secretion. Kiss1 neurons are distributed in the rostral periventricular area of the third ventricle (RP3V) and arcuate/infundibular nucleus (ARN/IFN). The ARN/IFN is considered the GnRH pulse generator controlled by steroid negative feedback, and the RP3V neurons is concerned with GnRH surge induced by steroid positive feedback in females. The Kiss1-Kiss1r signaling is important in all aspects of reproduction: puberty onset, maintenance of adult gonadal functions and reproductive aging, and hence assumes therapeutic potentials in the treatment of reproductive dysfunctions and induction of artificial reproduction. This chapter reviews involvement of Kiss1 in the control of the HPG axis functions in female mammals.
Collapse
Affiliation(s)
- K P Joy
- Retired Professor, Department of Zoology, Banaras Hindu University, Varanasi, Uttar pradesh, India.
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India
| |
Collapse
|
31
|
Wu X, Zhang Z, Li Y, Zhao Y, Ren Y, Tian Y, Hou M, Guo Y, Li Q, Tian W, Jiang R, Zhang Y, Gong Y, Li H, Li G, Liu X, Kang X, Li D, Tian Y. Estrogen promotes gonadotropin-releasing hormone expression by regulating tachykinin 3 and prodynorphin systems in chicken. Poult Sci 2024; 103:103820. [PMID: 38759565 PMCID: PMC11127269 DOI: 10.1016/j.psj.2024.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qi Li
- Henan zhumadian agricultural school, zhumadian, 463000, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Blanco W, Tabak J, Bertram R. Population bursts in a modular neural network as a mechanism for synchronized activity in KNDy neurons. PLoS Comput Biol 2024; 20:e1011820. [PMID: 39083544 PMCID: PMC11318907 DOI: 10.1371/journal.pcbi.1011820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/12/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a network of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin (KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We show in this computational study that the features of coordinated KNDy neuron activity can be explained by a neural network in which connectivity among neurons is modular. That is, a network structure consisting of clusters of highly-connected neurons with sparse coupling among the clusters. This modular structure, with distinct parameters for intracluster and intercluster coupling, also yields predictions for the differential effects on synchronization of changes in the coupling strength within clusters versus between clusters.
Collapse
Affiliation(s)
- Wilfredo Blanco
- Department of Computer Science, State University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Joel Tabak
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
33
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
34
|
Dorfman VB. Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus. VITAMINS AND HORMONES 2024; 127:51-78. [PMID: 39864946 DOI: 10.1016/bs.vh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins. Its expression has been described in the hypothalamus as well as in the whole reproductive axis and several extra reproductive tissues of mammals as well as fish and amphibians, but not in birds. KISS1 plays an essential role as a regulator of the reproductive axis by inducing the synthesis and release of GnRH, acting through specific receptors. The study of the kisspeptin system and its relation with reproduction in wild and non-classical laboratory species is extremely useful to understand and become aware of the role of KISS1 in the wide variety of possible different reproductive strategies. In this chapter, KISS1 involvement in non-classical laboratory rodents, fishes, and birds is discussed.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
35
|
Torres T, Adam N, Mhaouty-Kodja S, Naulé L. Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta. Front Endocrinol (Lausanne) 2024; 15:1408677. [PMID: 38978624 PMCID: PMC11228153 DOI: 10.3389/fendo.2024.1408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
Collapse
Affiliation(s)
| | | | | | - Lydie Naulé
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
36
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
37
|
Nakamura S, Sasaki T, Uenoyama Y, Inoue N, Nakanishi M, Yamada K, Morishima A, Suzumura R, Kitagawa Y, Morita Y, Ohkura S, Tsukamura H. Raphe glucose-sensing serotonergic neurons stimulate KNDy neurons to enhance LH pulses via 5HT2CR: rat and goat studies. Sci Rep 2024; 14:10190. [PMID: 38702366 PMCID: PMC11068885 DOI: 10.1038/s41598-024-58470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.
Collapse
Affiliation(s)
- Sho Nakamura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Takuya Sasaki
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Marina Nakanishi
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ai Morishima
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Reika Suzumura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yuri Kitagawa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yasuhiro Morita
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
38
|
Ivanova D, Voliotis M, Tsaneva-Atanasova K, O'Byrne KT, Li XF. NK3R signalling in the posterodorsal medial amygdala is involved in stress-induced suppression of pulsatile LH secretion in female mice. J Neuroendocrinol 2024; 36:e13384. [PMID: 38516965 PMCID: PMC11411622 DOI: 10.1111/jne.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin T O'Byrne
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Xiao-Feng Li
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
39
|
Wu W, Ren J, Wang J, Wang J, Yu D, Zhang Y, Zeng F, Huang B. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118321. [PMID: 38307186 DOI: 10.1016/j.envres.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiamei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Deshui Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, 230092, Anhui, China.
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, Guangdong, China.
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
40
|
Przybył BJ, Szlis M, Wysoczański B, Wójcik-Gładysz A. The role of QRFP43 in the secretory activity of the gonadotrophic axis in female sheep. Sci Rep 2024; 14:8989. [PMID: 38637687 PMCID: PMC11026372 DOI: 10.1038/s41598-024-59801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 μg per day and 50 μg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartłomiej Wysoczański
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
41
|
Cotellessa L, Giacobini P. Role of Anti-Müllerian Hormone in the Central Regulation of Fertility. Semin Reprod Med 2024; 42:34-40. [PMID: 38608673 DOI: 10.1055/s-0044-1786050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In recent years, the expanding roles of anti-Müllerian hormone (AMH) in various aspects of reproductive health have attracted significant attention. Initially recognized for its classical role in male sexual differentiation, AMH is produced postnatally by the Sertoli cells in the male testes and by the granulosa cells in the female ovaries. Traditionally, it was believed to primarily influence gonadal development and function. However, research over the last decade has unveiled novel actions of AMH beyond the gonads, specifically all along the hypothalamic-pituitary-gonadal axis. This review will focus on the emerging roles of AMH within the hypothalamus and discusses its potential implications in reproductive physiology. Additionally, recent preclinical and clinical studies have suggested that elevated levels of AMH may disrupt the hypothalamic network regulating reproduction, which could contribute to the central pathophysiology of polycystic ovary syndrome. These findings underscore the intricate interplay between AMH and the neuroendocrine system, offering new avenues for understanding the mechanisms underlying fertility and reproductive disorders.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Inserm, CHU Lille, Unit 1172, Lille Neuroscience & Cognition (LilNCog), University of Lille, Lille, France
| | - Paolo Giacobini
- Inserm, CHU Lille, Unit 1172, Lille Neuroscience & Cognition (LilNCog), University of Lille, Lille, France
| |
Collapse
|
42
|
Hoskyns RB, Howard SR. Effects of the COVID-19 pandemic on the incidence of central precocious puberty; a narrative review. J Pediatr Endocrinol Metab 2024; 37:102-109. [PMID: 38097507 DOI: 10.1515/jpem-2023-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
Central precocious puberty (CPP) is the premature activation of the hypothalamus-pituitary-gonadal axis, resulting in the early development of secondary sexual characteristics. CPP classically occurs before the age of 8 years in girls and 9 years in boys. The aetiology of this precocious onset of puberty is governed by complex mechanistic interactions between genetic and environmental factors. The rates of CPP have been documented to have been rising before the COVID-19 pandemic; despite this, the incidence of CPP has increased exponentially since the start of the pandemic. There are multiple theories potentially explaining this change in incidence of CPP over COVID-19. These include the direct effect of SARS-coV-2 infection, increasing body mass index of adolescents over sequential lockdowns, changes in sleep patterns, increased use of electronic devices and levels of stress, and additionally potential earlier detection of signs of CPP by parents and carers. Whilst there is evidence from observational cohorts, case studies and animal models for each of these factors, it is difficult to definitively prove which has had the greatest impact due to the mainly retrospective nature of the human research that has been conducted. Moreover, studies set in diverse settings with varying population make comparison complex. Additionally, each country responded differently to the COVID-19 pandemic and the lockdowns varied between locations, hence the effect of lockdown was not equal or universal. Despite this, similar trends have been identified, with various lifestyle changes that occurred over the pandemic being potentially influential factors on the development of CPP.
Collapse
Affiliation(s)
- Rebecca B Hoskyns
- Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
43
|
Banerjee AA, Bhanarkar SR, Keshwani R, Pande S, Modi DN, Mehta A, Bombe S, Pathak BR, Joshi B, Tandon D, Patil A, Begum S, Chauhan S, Mahale SD, Rao S, Surve SV. Relevance of augmented kisspeptin signaling through H 364 KISS1R in central precocious puberty. Gene 2024; 895:148016. [PMID: 37981083 DOI: 10.1016/j.gene.2023.148016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Understanding the pathophysiology of idiopathic central precocious puberty (ICPP) is essential, in view of its consequences on reproductive health and metabolic disorders in later life. Towards this, estimation of circulating levels of the neuropeptides, viz; Kisspeptin (Kp-10), Neurokinin B (NKB) and Neuropeptide Y (NPY), acting upstream to Gonadotropin-Releasing Hormone (GnRH), has shown promise. Insights can also be gained from functional studies on genetic variations implicated in ICPP. This study investigated the pathophysiology of ICPP in a girl by exploring the therapeutic relevance of the circulating levels of Kp-10, NKB, NPY and characterizing the nonsynonymous KISS1R variant, L364H, that she harbours, in a homozygous condition. Plasma levels of Kp-10, NKB and NPY before and after GnRH analog (GnRHa) treatment, were determined by ELISA. It was observed that GnRHa treatment resulted in suppression of circulating levels of Kp-10, NKB and NPY. Further, the H364 variant in KISS1R was generated by site directed mutagenesis. Post transient transfection of either L364 or H364 KISS1R variant in CHO cells, receptor expression was ascertained by western blotting, indirect immunofluorescence and flow cytometry. Kp-10 stimulated signalling response was also determined by phospho-ERK and inositol phosphate production. Structure-function studies revealed that, although the receptor expression in H364 KISS1R was comparable to L364 KISS1R, there was an enhanced signalling response through this variant at high doses of Kp-10. Thus, elevated levels of Kp-10, acting through H364 KISS1R, contributed to the manifestation of ICPP, providing further evidence that dysregulation of Kp-10/KISS1R axis impacts the onset of puberty.
Collapse
Affiliation(s)
- Antara A Banerjee
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Shital R Bhanarkar
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Rachna Keshwani
- Bai Jerbai Wadia Hospital For Children, Acharya Donde Marg, Parel, Mumbai 400 012, India
| | - Shailesh Pande
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Deepak N Modi
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Amrita Mehta
- Bai Jerbai Wadia Hospital For Children, Acharya Donde Marg, Parel, Mumbai 400 012, India
| | - Shweta Bombe
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Bhakti R Pathak
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Beena Joshi
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Deepti Tandon
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Anushree Patil
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Shahina Begum
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sanjay Chauhan
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Smita D Mahale
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sudha Rao
- Bai Jerbai Wadia Hospital For Children, Acharya Donde Marg, Parel, Mumbai 400 012, India.
| | - Suchitra V Surve
- ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India.
| |
Collapse
|
44
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Meng F, Li J, Han X, Li L, Li T, Du X, Cao X, Liang Q, Huang A, Kong F, Zeng X, Bu G. TAC3 regulates GnRH/gonadotropin synthesis in female chickens. Theriogenology 2024; 215:302-311. [PMID: 38128223 DOI: 10.1016/j.theriogenology.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHβ and cLHβ expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHβ and cFSHβ expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.
Collapse
Affiliation(s)
- Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Lingyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tianyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
46
|
Agus S, Yavuz Y, Atasoy D, Yilmaz B. Postweaning Social Isolation Alters Puberty Onset by Suppressing Electrical Activity of Arcuate Kisspeptin Neurons. Neuroendocrinology 2024; 114:439-452. [PMID: 38271999 PMCID: PMC11098025 DOI: 10.1159/000535721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Postweaning social isolation (PWSI) in rodents is an advanced psychosocial stress model in early life. Some psychosocial stress, such as restrain and isolation, disrupts reproductive physiology in young and adult periods. Mechanisms of early-life stress effects on central regulation of reproduction need to be elucidated. We have investigated the effects of PWSI on function of arcuate kisspeptin (ARCKISS1) neurons by using electrophysiological techniques combining with monitoring of puberty onset and estrous cycle in male and female Kiss1-Cre mice. METHODS Female mice were monitored for puberty onset with vaginal opening examination during social isolation. After isolation, the estrous cycle of female mice was monitored with vaginal cytology. Anxiety-like behavior of mice was determined by an elevated plus maze test. Effects of PWSI on electrophysiology of ARCKISS1 neurons were investigated by the patch clamp method after intracranial injection of AAV-GFP virus into arcuate nucleus of Kiss1-Cre mice after the isolation period. RESULTS We found that both male and female isolated mice showed anxiety-like behavior. PWSI caused delay in vaginal opening and extension in estrous cycle length. Spontaneous-firing rates of ARCKISS1 neurons were significantly lower in the isolated male and female mice. The peak amplitude of inhibitory postsynaptic currents to ARCKISS1 neurons was higher in the isolated mice, while frequency of excitatory postsynaptic currents was higher in group-housed mice. CONCLUSION These findings demonstrate that PWSI alters pre- and postpubertal reproductive physiology through metabolic and electrophysiological pathways.
Collapse
Affiliation(s)
- Sami Agus
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, IA, USA
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
47
|
Koysombat K, McGown P, Nyunt S, Abbara A, Dhillo WS. New advances in menopause symptom management. Best Pract Res Clin Endocrinol Metab 2024; 38:101774. [PMID: 37076317 DOI: 10.1016/j.beem.2023.101774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Vasomotor symptoms (VMS) are characteristic of menopause experienced by over 75% of postmenopausal women with significant health and socioeconomic implications. Although the average duration of symptoms is seven years, 10% of women experience symptoms for more than a decade. Although menopausal hormone therapy (MHT) remains an efficacious and cost-effective treatment, its use may not be suitable in all women, such as those at an increased risk of breast cancer or gynaecological malignancy. The neurokinin B (NKB) signaling pathway, together with its intricate connection to the median preoptic nucleus (MnPO), has been postulated to provide integrated reproductive and thermoregulatory responses, with a central role in mediating postmenopausal VMS. This review describes the physiological hypothalamo-pituitary-ovary (HPO) axis, and subsequently the neuroendocrine changes that occur with menopause using evidence derived from animal and human studies. Finally, data from the latest clinical trials using novel therapeutic agents that antagonise NKB signaling are reviewed.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Patrick McGown
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Sandhi Nyunt
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
48
|
Moore AM, Novak AG, Lehman MN. KNDy Neurons of the Hypothalamus and Their Role in GnRH Pulse Generation: an Update. Endocrinology 2023; 165:bqad194. [PMID: 38170643 PMCID: PMC10768882 DOI: 10.1210/endocr/bqad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
There is considerable evidence that synchronized activity within a reciprocally connected population of cells in the arcuate nucleus (ARC) coexpressing kisspeptin, neurokinin B (NKB), and dynorphin (KNDy cells) is crucial for the generation of gonadotrophin-releasing hormone (GnRH) pulses in mammals. The initial "KNDy hypothesis" proposed that pulsatile GnRH secretion is elicited by episodic kisspeptin release from KNDy cells following synchronized activation and termination of the population by NKB and dynorphin, respectively. Since then, the role of KNDy cells as a critical component of the pulse generator has been further supported by studies at the single-cell level, demonstrating that the population is both necessary and sufficient for pulsatility. In addition, there have been considerable modifications and expansion of the original hypothesis, including work demonstrating the critical role of glutamate in synchronization of the KNDy cell network, functional interactions with other ARC subpopulations, and the existence of species differences in the role of dynorphin in pulse generation. Here we review these recent changes and discuss how the translation of these findings has led to the development of new therapies for disorders related to pulse generation. We also outline critical gaps in knowledge that are currently limiting the application of KNDy research in the clinic, particularly regarding the role of dynorphin in pulse generation in primates.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Alyssa G Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
49
|
Nagae M, Yamada K, Enomoto Y, Kometani M, Tsuchida H, Panthee A, Nonogaki M, Matsunaga N, Takizawa M, Matsuzaki S, Hirabayashi M, Inoue N, Tsukamura H, Uenoyama Y. Conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons caused estrogen-dependent LH pulse disruption and LH surge attenuation in female rats. Sci Rep 2023; 13:20495. [PMID: 37993510 PMCID: PMC10665460 DOI: 10.1038/s41598-023-47222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.
Collapse
Affiliation(s)
- Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yuki Enomoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Mari Kometani
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Arvinda Panthee
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Nao Matsunaga
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Sena Matsuzaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
50
|
Morris PG, Herbison AE. Mechanism of Arcuate Kisspeptin Neuron Synchronization in Acute Brain Slices From Female Mice. Endocrinology 2023; 164:bqad167. [PMID: 37936337 PMCID: PMC10652333 DOI: 10.1210/endocr/bqad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mechanism by which arcuate kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to drive pulsatile hormone secretion remains unclear in females. In order to study spontaneous synchronization within the ARNKISS neuron network, acute brain slices were prepared from adult female Kiss1-GCaMP6 mice. Analysis of both spontaneous synchronizations and those driven by high frequency stimulation of individual ARNKISS neurons revealed that the network exhibits semi-random emergent excitation dependent upon glutamate signaling through AMPA receptors. No role for NMDA receptors was identified. In contrast to male mice, ongoing tachykinin receptor tone within the slice operated to promote spontaneous synchronizations in females. As previously observed in males, we found that ongoing dynorphin transmission in the slice did not contribute to synchronization events. These observations indicate that a very similar AMPA receptor-dependent mechanism underlies ARNKISS neuron synchronizations in the female mouse supporting the "glutamate two-transition" model for kisspeptin neuron synchronization. However, a potentially important sex difference appears to exist with a more prominent facilitatory role for tachykinin transmission in the female.
Collapse
Affiliation(s)
- Paul G Morris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|