1
|
Harbour K, Cappel Z, Baccei ML. Effects of Corticosterone on the Excitability of Glutamatergic and GABAergic Neurons of the Adolescent Mouse Superficial Dorsal Horn. Neuroscience 2023; 526:290-304. [PMID: 37437798 PMCID: PMC10530204 DOI: 10.1016/j.neuroscience.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Stress evokes age-dependent effects on pain sensitivity and commonly occurs during adolescence. However, the mechanisms linking adolescent stress and pain remain poorly understood, in part due to a lack of information regarding how stress hormones modulate the function of nociceptive circuits in the adolescent CNS. Here we investigate the short- and long-term effects of corticosterone (CORT) on the excitability of GABAergic and presumed glutamatergic neurons of the spinal superficial dorsal horn (SDH) in Gad1-GFP mice at postnatal days (P)21-P34. In situ hybridization revealed that glutamatergic SDH neurons expressed significantly higher mRNA levels of both glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) compared to adjacent GABAergic neurons. The incubation of spinal cord slices with CORT (90 min) evoked select long-term changes in spontaneous synaptic transmission across both cell types in a sex-dependent manner, without altering the intrinsic firing of either Gad1-GFP+ or GFP- neurons. Meanwhile, the acute bath application of CORT significantly decreased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as the frequency of miniature inhibitory postsynaptic currents (mIPSCs), in both cell types leading to a net reduction in the balance of spontaneous excitation vs. inhibition (E:I ratio). This CORT-induced reduction in the E:I ratio was not prevented by selective antagonists of either GR (mifepristone) or MR (eplerenone), although eplerenone blocked the effect on mEPSC amplitude. Collectively, these data suggest that corticosterone modulates synaptic function within the adolescent SDH which could influence the overall excitability and output of the spinal nociceptive network.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Zoe Cappel
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Korom M, Dozier M. The importance of responsive parenting for vulnerable infants. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 61:43-71. [PMID: 34266571 DOI: 10.1016/bs.acdb.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The quality of the early caregiving context sets the stage for the developing child's long term developmental trajectory. Infants are born highly dependent on parents and other caregivers for critical input for developing brain and behavioral systems. When infants experience early adversity, they are at risk for difficulties regulating behavior, emotions, and physiology. Parenting interventions have been developed to enhance parental responsiveness, thereby enhancing child outcomes. One such program, Attachment and Biobehavioral Catch-up (ABC), is a home visiting intervention designed to enhance parenting nurturance and sensitivity. In this paper, we will consider the importance of parental sensitivity and developmental consequences of sensitive and insensitive care. We will then describe interventions that target parental responsiveness and intervention effectiveness, focusing primarily on ABC. Public policy recommendations related to the importance of parental responsiveness will then be discussed.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Mary Dozier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
3
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Joëls M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol 2017. [PMID: 28634266 DOI: 10.1530/joe-16-0660] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In 1968, Bruce McEwen discovered that 3H-corticosterone administered to adrenalectomised rats is retained in neurons of hippocampus rather than those of hypothalamus. This discovery signalled the expansion of endocrinology into the science of higher brain regions. With this in mind, our contribution highlights the saga of the brain mineralocorticoid receptor (MR) in three episodes. First, the precloning era dominated by the conundrum of two types of corticosterone-binding receptors in the brain, which led to the identification of the high-affinity corticosterone receptor as the 'promiscuous' MR cloned in 1987 by Jeff Arriza and Ron Evans in addition to the classical glucocorticoid receptor (GR). Then, the post-cloning period aimed to disentangle the function of the brain MR from that of the closely related GR on different levels of biological complexity. Finally, the synthesis section that highlights the two faces of brain MR: Salt and Stress. 'Salt' refers to the regulation of salt appetite, and reciprocal arousal, motivation and reward, by a network of aldosterone-selective MR-expressing neurons projecting from nucleus tractus solitarii (NTS) and circumventricular organs. 'Stress' is about the limbic-forebrain nuclear and membrane MRs, which act as a switch in the selection of the best response to cope with a stressor. For this purpose, activation of the limbic MR promotes selective attention, memory retrieval and the appraisal process, while driving emotional expressions of fear and aggression. Subsequently, rising glucocorticoid concentrations activate GRs in limbic-forebrain circuitry underlying executive functions and memory storage, which contribute in balance with MR-mediated actions to homeostasis, excitability and behavioural adaptation.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center, Groningen, The Netherlands
| | - E Ronald de Kloet
- Division of EndocrinologyDepartment of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:293-310. [PMID: 25891248 DOI: 10.1016/j.pnpbp.2015.04.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 04/12/2015] [Indexed: 12/12/2022]
Abstract
Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field.
Collapse
|
6
|
Boleij H, Willems J, Leijten M, Klooster JV, Lesscher H, Kirchhoff S, Lavrijsen M, Arndt SS, Ohl F. Chronic social stress does not affect behavioural habituation in male CD1 mice. Behav Brain Res 2014; 273:34-44. [DOI: 10.1016/j.bbr.2014.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/29/2022]
|
7
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 2012; 64:901-38. [PMID: 23023031 DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Brain cells are continuously exposed to corticosteroid hormones, although the levels vary (e.g., after stress). Corticosteroids alter neural activity via two receptor types, mineralocorticoid (MR) and glucocorticoid receptors (GR). These receptors regulate gene transcription but also, as we now know, act nongenomically. Via nongenomic pathways, MRs enhance and GRs suppress neural activity. In the hypothalamus, inhibitory GR effects contribute to negative feedback regulation of the stress axis. Nongenomic MR actions are also important extrahypothalamically and help organisms to immediately select an appropriate response strategy. Via genomic mechanisms, corticosteroid actions in the basolateral amygdala and ventral-most part of the cornu ammonis 1 hippocampal area are generally excitatory, providing an extended window for encoding of emotional aspects of a stressful event. GRs in hippocampal and prefrontal pyramidal cells increase surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and strengthen glutamatergic signaling through pathways partly overlapping with those involved in long-term potentiation. This raises the threshold for subsequent induction of synaptic potentiation and promotes long-term depression. Synapses activated during stress are thus presumably strengthened but protected against excitatory inputs reaching the cells later. This restores higher cognitive control and promotes, for example, consolidation of stress-related contextual information. When an organism experiences stress early in life or repeatedly in adulthood, the ability to induce synaptic potentiation is strongly reduced and the likelihood to induce depression enhanced, even under rest. Treatment with antiglucocorticoids can ameliorate cellular effects after chronic stress and thus provide an interesting lead for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
8
|
Dranovsky A, Leonardo ED. Is there a role for young hippocampal neurons in adaptation to stress? Behav Brain Res 2011; 227:371-5. [PMID: 21621559 DOI: 10.1016/j.bbr.2011.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/11/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
The hippocampus has been implicated in many cognitive and emotional behaviors and in the physiology of the stress response. Within the hippocampus, the dentate gyrus has been implicated in the detection of novelty. The dentate is also a major target for stress hormones and modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Whether these functions of the dentate integrate or segregate remains unknown, as most investigations of its role in stress and learning are separate. Since the exciting discovery of adult neurogenesis in the dentate gyrus, adult-born neurons have been implicated in both novelty detection and the stress response. In this perspective we will discuss the literature that implicates the hippocampus, and potentially, adult-born neurons in these two functions. We will attempt to reconcile the seemingly contradictory behavioral results for the function of adult-born neurons. Finally, we will speculate that a key function of adult-born neurons within hippocampal function may be to modulate the stress response and perhaps assign stress salience to the sensory context.
Collapse
Affiliation(s)
- Alex Dranovsky
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032, USA.
| | | |
Collapse
|
9
|
Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 2010; 11:9-17. [DOI: 10.1038/nrn2754] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Kolber BJ, Wieczorek L, Muglia LJ. Hypothalamic-pituitary-adrenal axis dysregulation and behavioral analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function. Stress 2008; 11:321-38. [PMID: 18609295 PMCID: PMC2744095 DOI: 10.1080/10253890701821081] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Corticosteroid receptors are critical for the maintenance of homeostasis after both psychological and physiological stress. To understand the different roles and interactions of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) during stress, it is necessary to dissect the role of corticosteroid signaling at both the system and sub-system level. A variety of GR transgenic mouse lines have recently been used to characterize the role of GR in the CNS as a whole and particularly in the forebrain. We will describe both the behavioral and cellular/molecular implications of disrupting GR function in these animal models and describe the implications of this data for our understanding of normal endocrine function and stress adaptation. MRs in tight epithelia have a long established role in sodium homeostasis. Recently however, evidence has suggested that MRs in the limbic brain also play an important role in psychological stress. Just as with GR, targeted mutations in MR induce a variety of behavioral changes associated with stress adaptation. In this review, we will discuss the implications of this work on MR. Finally, we will discuss the possible interaction between MR and GR and how future work using double mutants (through conventional means or virus based gene alteration) will be needed to more fully understand how signaling through these two steroid receptors provides the adaptive mechanisms to deal with a variety of stressors.
Collapse
Affiliation(s)
- Benedict J. Kolber
- Departments of Pediatrics and Molecular Biology and Pharmacology and Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Lindsay Wieczorek
- Departments of Pediatrics and Molecular Biology and Pharmacology and Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Louis J. Muglia
- Departments of Pediatrics and Molecular Biology and Pharmacology and Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
- Corresponding Author: Louis J. Muglia, , Washington University in St. Louis, 660 S. Euclid, Box 8208, St. Louis, MO 63110
| |
Collapse
|
11
|
Revsin Y, van Wijk D, Saravia FE, Oitzl MS, De Nicola AF, de Kloet ER. Adrenal hypersensitivity precedes chronic hypercorticism in streptozotocin-induced diabetes mice. Endocrinology 2008; 149:3531-9. [PMID: 18420743 DOI: 10.1210/en.2007-1340] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that type 1 diabetes is characterized by hypercorticism and lack of periodicity in adrenal hormone secretion. In the present study, we tested the hypothesis that hypercorticism is initiated by an enhanced release of ACTH leading subsequently to adrenocortical growth and increased output of adrenocortical hormones. To test this hypothesis, we used the streptozotocin (STZ)-induced diabetes mouse model and measured hypothalamic-pituitary-adrenal axis activity at different time points. The results showed that the expected rise in blood glucose levels induced by STZ treatment preceded the surge in corticosterone secretion, which took place 1 d after diabetes onset. Surprisingly, circulating ACTH levels were not increased and even below control levels until 1 d after diabetes onset and remained low until d 11 during hypercorticism. In response to ACTH (but not vasopressin), cultures of adrenal gland cells from 11-d diabetic mice secreted higher amounts of corticosterone than control cells. Real-time quantitative PCR revealed increased expression of melanocortin 2 and melanocortin 5 receptors in the adrenal glands at 2 and 11 d of STZ-induced diabetes. AVP mRNA expression in the paraventricular nucleus of the hypothalamus was increased, whereas hippocampal MR mRNA was decreased in 11-d diabetic animals. GR and CRH mRNAs remained unchanged in hippocampus and paraventricular nucleus of diabetic mice at all time points studied. These results suggest that sensitization of the adrenal glands to ACTH rather than an increase in circulating ACTH level is the primary event leading to hypercorticism in the STZ-induced diabetes mouse model.
Collapse
Affiliation(s)
- Yanina Revsin
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Exposure of an organism to stress leads to activation of the sympatho-adrenomedullary system and the hypothalamo-pituitary-adrenal axis. Consequently, levels of noradrenaline, peptides like vasopressin and CRH, and corticosteroid hormones in the brain rise. These hormones affect brain function at those sites where receptors are enriched, like the hippocampus, lateral septum, amygdala nuclei, and prefrontal cortex. During the initial phase of the stress response, when hormone levels are high, these compounds mostly enhance excitability and promote long-term potentiation. Later on, when hormone levels have subsided but gene-mediated effects of corticosteroids start to appear, the excitability is normalized to the pre-stress level, in the CA1 hippocampal area, but possibly less so in the dentate gyrus and amygdala. A disturbed balance between these early and late phases of the stress response as well as a shift toward the relative contribution of the dentate/amygdala pathways may explain why the normal restorative capacity fails in vulnerable people experiencing a life-threatening situation, which could contribute to the development of PTSD.
Collapse
|
13
|
Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2005; 2:297-307. [PMID: 16271530 DOI: 10.1016/j.cmet.2005.09.009] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/17/2022]
Abstract
Light is a powerful synchronizer of the circadian rhythms, and bright light therapy is known to improve metabolic and hormonal status of circadian rhythm sleep disorders, although its mechanism is poorly understood. In the present study, we revealed that light induces gene expression in the adrenal gland via the suprachiasmatic nucleus (SCN)-sympathetic nervous system. Moreover, this gene expression accompanies the surge of plasma and brain corticosterone levels without accompanying activation of the hypothalamo-adenohypophysial axis. The abolishment after SCN lesioning, and the day-night difference of light-induced adrenal gene expression and corticosterone release, clearly indicate that this phenomenon is closely linked to the circadian clock. The magnitude of corticostereone response is dose dependently correlated with the light intensity. The light-induced clock-dependent secretion of glucocorticoids adjusts cellular metabolisms to the new light-on environment.
Collapse
Affiliation(s)
- Atsushi Ishida
- Division of Molecular Brain Science, Department of Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Grenier J, Trousson A, Chauchereau A, Cartaud J, Schumacher M, Massaad C. Differential recruitment of p160 coactivators by glucocorticoid receptor between Schwann cells and astrocytes. Mol Endocrinol 2005; 20:254-67. [PMID: 16179382 DOI: 10.1210/me.2005-0061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the nervous system, glucocorticoids can exert beneficial or noxious effects, depending on their concentration and the duration of hormonal stimulation. They exert their effects on neuronal and glial cells by means of their cognate receptor, the glucocorticoid receptor (GR), which recruits the p160 coactivator family members SRC-1 (steroid receptor coactivator 1), SRC-2, and SRC-3 after hormone binding. In this study, we investigated the molecular pathways used by the GR in cultured glial cells of the central and the peripheral nervous systems, astrocytes and Schwann cells (MSC80 cells), respectively. We performed functional studies based on transient transfection of a minimal glucocorticoid-sensitive reporter gene into the glial cells to test the influence of overexpression or selective inhibition by short interfering RNA of the three p160 coactivator family members on GR transactivation. We demonstrate that, depending on the glial cell type, GR differentially recruits p160 family members: in Schwann cells, GR recruited SRC-1a, SRC-1e, or SRC-3, whereas in astrocytes, SRC-1e and SRC-2, and to a lesser extent SRC-3, were active toward GR signaling. The C-terminal nuclear receptor-interacting domain of SRC-1a participates in its exclusion from the GR transcriptional complex in astrocytes. Immunolocalization experiments revealed a cell-specific intracellular distribution of the p160s, which was dependent on the duration of the hormonal induction. For example, within astrocytes, SRC-1 and SRC-2 were mainly nuclear, whereas SRC-3 unexpectedly localized to the lumen of the Golgi apparatus. In contrast, in Schwann cells, SRC-1 showed a nucleocytoplasmic shuttling depending on hormonal stimulation, whereas SRC-2 remained strictly nuclear and SRC-3 remained predominantly cytoplasmic. Altogether, these results highlight the cell specificity and the time dependence of p160s recruitment by the activated GR in glial cells, revealing the complexity of GR-p160 assembly in the nervous system.
Collapse
Affiliation(s)
- Julien Grenier
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 488, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Meijer OC, Topic B, Steenbergen PJ, Jocham G, Huston JP, Oitzl MS. Correlations between hypothalamus-pituitary-adrenal axis parameters depend on age and learning capacity. Endocrinology 2005; 146:1372-81. [PMID: 15564338 DOI: 10.1210/en.2004-0416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid hormones are released after activation of the hypothalamus-pituitary-adrenal (HPA) axis and in the brain can modulate synaptic plasticity and memory formation. Clear individual differences in spatial learning and memory in the water maze allowed classification of groups of young (3 months) and aged (24 months) male Wistar rats as superior and inferior learners. We tested 1) whether measures of HPA activity are associated with cognitive functions and aging and 2) whether correlations of these measures depend on age and learning performance. Basal ACTH, but not corticosterone, was increased in aged rats, with the stress-induced ACTH response exaggerated in aged-inferior learners. Aged-superior learners had lower expression of glucocorticoid receptor and CRH mRNA in the parvocellular paraventricular nucleus of the hypothalamus compared with all other groups. Hippocampal mineralocorticoid receptor and glucocorticoid receptor mRNAs differed modestly between groups, but steroid receptor coactivator and heat-shock-protein 90 mRNAs were not different. Strikingly, correlations between HPA axis markers were dependent on grouping animals according to learning performance or age. CRH mRNA correlated with ACTH only in aged animals. Parvocellular arginine vasopressin mRNA was negatively correlated to basal corticosterone, except in aged-inferior learners. Corticosteroid receptor mRNA expression showed a number of correlations with other HPA axis regulators specifically in superior learners. In summary, the relationships between HPA axis markers differ for subgroups of animals. These distinct interdependencies may reflect adjusted set-points of the HPA axis, resulting in adaptation (or maladaptation) to the environment and, possibly, an age-independent determination of learning ability.
Collapse
Affiliation(s)
- O C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Schiller L, Jähkel M, Kretzschmar M, Brust P, Oehler J. Autoradiographic analyses of 5-HT1A and 5-HT2A receptors after social isolation in mice. Brain Res 2003; 980:169-78. [PMID: 12867255 DOI: 10.1016/s0006-8993(03)02832-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Social isolation of rodents is used to model human psychopathological processes. In the present study, the effects of intermediate and long term isolation housing on postsynaptic 5-HT(1A) and 5-HT(2A) receptors were analyzed in male mice housed in groups or isolation for 4 and 12 weeks. [3H]8-OH-DPAT and [3H]ketanserin were used to label 5-HT(1A) and 5-HT(2A) receptors. Four representative sagittal sections (planes 1-4) were scored by in vitro autoradiography. Whereas after 4 weeks of housing both receptor densities were lowered significantly in isolated mice, after 12 weeks of housing only marginal isolation effects were seen. Intermediate isolation reduced 5-HT(1A) receptors especially in the lateral frontal, parietal and entorhinal cortex (-63%), in the lateral CA1-3 and dentate gyrus region of the hippocampus (-68%), in the basolateral, basomedial, central and medial amygdaloid nuclei (between -38 and -66%), and in the hypothalamus (-28%). 5-HT(2A) receptors were strongly reduced in the frontal cortex (between -47 and -74%), in the hippocampus (between -47 and -95%), in the striatum (between -66 and -76%), and in the accumbens nucleus (between -59 and -73%) in comparison to group housed control mice. After 12 weeks of isolation in the hippocampus continuously decreased 5-HT(1A) receptor densities were demonstrated (between -24 and -61%). But increased 5-HT(2A) receptor densities were seen in the lateral striatum (+86%) compared to control mice. Age-dependent effects were also found. After 12 weeks of group housing the 5-HT(1A) and 5-HT(2A) receptor densities were decreased (between -28 and -54%) in all analyzed brain regions in comparison to 4 weeks of group housing. Isolated animals showed diminished 5-HT(1A) receptor densities in the cortex (-14%) and hippocampus (-15%), but increased 5-HT(1A) receptor densities in the amygdala (+33%) after 12 weeks. The 5-HT(2A) receptor densities were increased in all analyzed regions (between +31 and +96%) after 12 weeks of isolation compared to 4 weeks. To explain these dynamic, time-dependent pattern of isolation-induced changes different regulation processes are supposed regarding 5-HT(1A) and 5-HT(2A) receptors. Besides metabolism-related adaptation processes also neurotransmitter and hormonal (e.g., glucocorticoid) interactions especially in limbic regions have to be considered.
Collapse
Affiliation(s)
- Lydia Schiller
- AG Neurobiologie, Klinik für Psychiatrie, TU, Dresden, Germany.
| | | | | | | | | |
Collapse
|
17
|
Alfarez DN, Joëls M, Krugers HJ. Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. Eur J Neurosci 2003; 17:1928-34. [PMID: 12752792 DOI: 10.1046/j.1460-9568.2003.02622.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rises in corticosteroid levels, e.g. after acute stress, impair synaptic plasticity in the rat hippocampus when compared with the situation where levels are basal, i.e. under rest. We here addressed the question whether basal and raised levels of corticosterone affect synaptic plasticity similarly in animals that experienced chronic stress prior to corticosterone application. To this end, rats were exposed to a 21-day variable stress paradigm. Synaptic plasticity was examined in vitro in the dentate gyrus and CA1 hippocampal region, 24 h after exposure to the last stressor, i.e. when corticosterone levels are basal (low). First we observed that long-term potentiation was greatly impaired in both CA1 and dentate gyrus after 3 weeks of exposure to variable stress, when recorded under conditions where plasma corticosterone levels are low. Second, administration of 100 nm corticosterone in vitro reduced synaptic plasticity in CA1 of control rats, but induced no further impairment of synaptic plasticity in chronically stressed rats. Third, in the dentate gyrus, corticosterone incubation did not affect synaptic plasticity in slices from both control and stressed animals. We conclude that: (i) exposure to chronic variable stress per se reduces synaptic plasticity both in CA1 and dentate gyrus; and (ii) acute rises in corticosterone level induce no additional impairment of synaptic plasticity in the CA1 region of chronically stressed rats. It is tempting to speculate that the stress-induced reduction of hippocampal efficacy provides a cellular substrate for cognitive deficits in hippocampus-dependent learning tasks seen after prolonged exposure to stressful events.
Collapse
Affiliation(s)
- Deborah N Alfarez
- Swammerdam Institute for Life Sciences, Section Neurobiology, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Müller M, Holsboer F, Keck ME. Genetic modification of corticosteroid receptor signalling: novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides 2002; 36:117-31. [PMID: 12359503 DOI: 10.1054/npep.2002.0896] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Every disturbance of the body, either real or imagined, evokes a stress response. Essential to this stress response is the activation of the hypothalamic-pituitary-adrenocortical (HPA) system, finally resulting in the release of glucocorticoid hormones from the adrenal cortex. Glucocorticoid hormones, in turn, feed back to this system by central activation of two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) which markedly differ in their neuroanatomical distribution and ligand affinity. Whereas a brief period of controllable stress, experienced with general arousal and excitement, can be a challenge and might thus be beneficial, chronically elevated levels of circulating corticosteroids are believed to enhance vulnerability to a variety of diseases, including affective disorders. Corticosteroids are known to influence emotions and cognitive processes, such as learning and memory. In addition, corticosteroids play extremely important roles in modulating fear and anxiety-related behaviour. The mechanisms by which corticosteroids exert their effects on behaviour are often indirect, by modulating particular sets of neurons or neurotransmitter systems. In addition, the timing of corticosteroid increase (before, during or after exposure to a stressor) determines whether and how behaviour is affected. The cumulative evidence makes a strong case implicating corticosteroid receptor dysfunction in the pathogenesis of affective disorders. Although definitive controlled trials remain to be conducted, there is evidence indicating that cortisol-lowering or corticosteroid receptor antagonist treatments may be of clinical benefit in selected individuals with major depression. A more detailed knowledge of the GR signalling pathways therefore opens up the possibility to specifically target GR function. In recent years, refined molecular technologies and the generation of genetically engineered mice (e.g. "conventional" and "conditional" knock-outs) have allowed to specifically target individual genes involved in corticosteroid receptor signalling and stress hormone regulation. Given the fundamental role of corticosteroid receptors in hippocampal integrity and mental performance during aging and psychiatric disorders, the identification and detailed characterization of these molecular pathways will ultimately lead to the development of novel neuropharmacological intervention strategies.
Collapse
Affiliation(s)
- Marianne Müller
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
| | | | | |
Collapse
|
19
|
Abstract
Short and long attack latency mice, which are selected based on their offensive behaviour in a resident-intruder model, differ in their neuroendocrine regulation as well as in aspects of their brain serotonin system. Previous studies showed that the binding capacity and expression of serotonin-1A receptors in the hippocampal CA1 field of long attack latency mice are significantly lower than that found in short attack latency mice. We tested whether the functional responses of CA1 hippocampal cells to serotonin are also reduced in long attack latency mice. To this end, serotonin-induced changes in the membrane potential and input resistance were recorded in vitro with microelectrodes in CA1 pyramidal neurones of long and short attack latency mice. The data show that in long attack latency mice, along with a reduction of the serotonin-1A receptor mRNA expression, the serotonin-induced membrane hyperpolarization and decrease in resistance are attenuated. Basal membrane properties of CA1 neurones in the two.mice lines were comparable. Plasma corticosterone levels in response to a novelty stress were elevated in long compared to short attack latency mice and inversely related to the serotonin-induced responses. We tentatively conclude that long attack latency mice show attenuated functional responses to serotonin in the hippocampus, possibly linked to a chronic perturbation of hormonal levels.
Collapse
Affiliation(s)
- E van Riel
- Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Kellendonk C, Gass P, Kretz O, Schütz G, Tronche F. Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull 2002; 57:73-83. [PMID: 11827739 DOI: 10.1016/s0361-9230(01)00638-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Corticosteroids are released by the adrenal cortex with a diurnal rhythm and in response to stressful environmental changes. They not only act on peripheral organs, but also regulate brain physiology, thereby affecting mental processes like emotion and cognition. Here, we discuss the role of the two known corticosteroid receptors--glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)--in the brain by summarizing the results obtained with various genetically modified mouse lines. In these lines, either the GR or the MR gene has been targeted or GR protein levels have been upregulated or downregulated. Analysis of the different lines confirms the importance of GR in the regulation of the hypothalamic pituitary adrenal (HPA) axis because interference with GR activity activates the HPA axis, whereas increased GR protein levels inhibit HPA axis activity. Genetic downregulation of GR protein levels and inactivation of the GR gene in the brain reduce anxiety-related behavior, which reveals a central role of GR in emotional behavior. Both HPA axis activity and anxiety are modulated by corticotropin releasing hormone (CRH); therefore, we include in the discussion results obtained with genetically modified CRH or CRH receptor mice. We further address the important role of corticosteroid receptors for hippocampal function and integrity. Cellular properties of CA1 neurons are changed, and hippocampal-dependent explicit memory is affected in GR mutant animals. Comparing MR and GR mutant animals suggests the requirement of MR but not GR for dentate gyrus granule cell maintenance. Because an imbalance in glucocorticoid levels is associated with cognitive impairments and mental disorders, the described mouse lines will aid in understanding the mechanisms involved in the pathology of these disorders.
Collapse
Affiliation(s)
- Christoph Kellendonk
- Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Corticosteroid hormones can enter the brain and bind to two intracellular receptor types that regulate transcription of responsive genes: (i) the high affinity mineralocorticoid receptors and (ii) the glucocorticoid receptors with approximately 10-fold lower affinity. Although most cells in the brain predominantly express glucocorticoid receptors, principal cells in limbic structures such as the hippocampus often contain glucocorticoid as well as mineralocorticoid receptors. Recent electrophysiological studies have examined the consequences of transcriptional regulation via the two receptor types for information transfer in the hippocampus. It was found that, under resting conditions, corticosteroids do not markedly alter electrical activity. However, if neurones are shifted towards more depolarized or hyperpolarized potentials due to the action of neurotransmitters, slow and adaptive effects of the corticosteroid hormones become apparent. In general, mineralocorticoid receptor occupation maintains steady electrical activity in hippocampal neurones. Brief activation of glucocorticoid receptors leads to increased influx of calcium, which normally helps to slowly reverse temporarily raised electrical activity. These slow and persistent corticosteroid actions will alter network function within the hippocampus, thus contributing to behavioural adaptation in response to stress. Modulation of hippocampal activity by corticosteroids also affects hippocampal output (e.g. to inhibitory interneurones which control hypothalamic-pituitary-adrenal axis activity). The enhanced calcium influx after glucocorticoid receptor activation can become a risk factor when cells are simultaneously exposed to strong depolarizing inputs, such as those occurring during ischaemia. Similarly, chronically elevated corticosteroid levels (or lack of corticosteroids) could endanger hippocampal cell function. The latter may contribute to the precipitation of clinical symptoms in diseases associated with chronically aberrant corticosteroid levels.
Collapse
Affiliation(s)
- M Joëls
- Swammerdam Institute for Life Sciences, Section of Neurobiology, University of Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Cole TJ, Myles K, Purton JF, Brereton PS, Solomon NM, Godfrey DI, Funder JW. GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant. Mol Cell Endocrinol 2001; 173:193-202. [PMID: 11223190 DOI: 10.1016/s0303-7207(00)00407-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The introduction of a targeted insertion mutation into exon 2 of the gene coding for the glucocorticoid receptor (GR) enabled production of glucocorticoid receptor knock-out (GRKO) mice. GRKO mice on a C57BL/6/129sv mixed genetic background show a variable phenotype, with 90% of -/- mice dying at birth with respiratory insufficiency but 10% of mutant mice surviving to maturity. To investigate the possibility of residual GR expression in surviving GRKO mice we have measured binding of the synthetic glucocorticoid dexamethasone in tissue extracts from adrenalectomized mice. High affinity binding of dexamethasone in protein extracts of liver, kidney, lung and brain from adult GRKO mice is found at levels 30-60% those in wild-type mice, with heterozygotes (+/-) having intermediate levels. PCR and ribonuclease protection analysis showed comparable levels of GR mRNA on the 3' side of the gene-targeted insertional mutation in exon 2 of the GR gene, with almost no GR mRNA detected from exons 1 and 2 on the 5' side of the gene-targeted insertional mutation. Western blot analysis using a C-terminal specific GR antibody detects a 39 kDa GR fragment in extracts from adult GRKO mice. Despite the evidence for expression of a ligand-binding domain fragment of the glucocorticoid receptor these mice are profoundly glucocorticoid resistant, with elevated levels of plasma ACTH and corticosterone. Thymocytes from adult and fetal GRKO mice are resistant to dexamethasone-induced apoptosis and cultured fetal hepatocytes from GRKO mice are completely refractory to glucocorticoid induction of the gluconeogenic enzyme glucose-6-phosphatase. Thus although the surviving adult homozygous GRKO mice express a dexamethasone-binding GR fragment, their classic target tissues remain profoundly glucocorticoid insensitive.
Collapse
Affiliation(s)
- T J Cole
- Baker Medical Research Institute, Commercial Road, Prahran, 3181, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Steckler T, Rammes G, Sauvage M, van Gaalen MM, Weis C, Zieglgänsberger W, Holsboer F. Effects of the monoamine oxidase A inhibitor moclobemide on hippocampal plasticity in GR-impaired transgenic mice. J Psychiatr Res 2001; 35:29-42. [PMID: 11287054 DOI: 10.1016/s0022-3956(00)00040-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A reduction in glucocorticoid receptor (GR) function leads to hippocampus-dependent allocentric spatial learning deficits, altered novelty exploration and disrupted hippocampal long-term potentiation (LTP) in transgenic mice expressing a GR antisense construct. After continuous long-term treatment of these mice with moclobemide (a reversible inhibitor of monoamine oxidase A), spatial navigation performance but not accuracy improved during initial acquisition. These changes were associated with a shift of the threshold for the induction of hippocampal LTP at low stimulation frequencies. Moreover, novel object exploration increased in both control and transgenic animals following long-term treatment with moclobemide. These findings open the possibility that antidepressants might improve hippocampal function under conditions of impaired stress hormone regulation, and that these drugs might in part act through this mechanism to attenuate cognitive deficiency in disorders such as depression.
Collapse
Affiliation(s)
- T Steckler
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Karst H, Karten YJ, Reichardt HM, de Kloet ER, Schütz G, Joëls M. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci 2000; 3:977-8. [PMID: 11017168 DOI: 10.1038/79910] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids are secreted from the adrenal gland in very high amounts after stress. In the brain, these stress hormones potently modulate ionic currents, monoaminergic transmission, synaptic plasticity and cellular viability, most notably in the hippocampus where corticosteroid receptors are highly enriched. Here we show that at least some of these actions require DNA binding of glucocorticoid receptor (GR) homodimers.
Collapse
Affiliation(s)
- H Karst
- Inst. Neurobiology, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Part I (first section) reports about research in the period 1964-1976, when the seminal observations were made on which today's concept of corticosteroid action on the brain is based. These key observations concern the discovery of nuclear corticosterone receptors in the limbic brain that mediate control over neuronal circuits underlying hypothalamic-pituitary-adrenal activity and behavioural adaptation. Part II (second section) covers the period of 1977-1989. It is about some aspects of the neuropeptide concept, the implementation of micro-neurochemistry using the "Palkovits punch", and the application of in vitro autoradiography. Vasopressin and oxytocin receptors were identified and their implication in behaviour was examined using the song control of the canary bird as a model system. Two distinct nuclear receptor types for corticosteroids were identified: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) which mediate in a coordinate manner the steroid control of hypothalamus-pituitary-adrenal activity and behaviour. Part III (third section) is from 1990 up to 2000. Focus is on the balance of MR- and GR-mediated actions in control of homeostasis as a determinant of health and disease. MR operates in pro-active mode to prevent homeostatic disturbance, while additional GR activation promotes in reactive fashion recovery after stress. An imbalance in MR and GR underlies behavioural deficits and neuroendocrine disturbances increasing vulnerability for stress-related brain disorders. The complete hippocampal genome is screened for corticosteroid responsive genes, which are potential targets for drugs promoting restorative capacity still present in the diseased brain.
Collapse
Affiliation(s)
- E R de Kloet
- Department of Medical Pharmacology and Physiology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden University, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
26
|
Joëls M. Modulatory actions of steroid hormones and neuropeptides on electrical activity in brain. Eur J Pharmacol 2000; 405:207-16. [PMID: 11033328 DOI: 10.1016/s0014-2999(00)00554-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrophysiological studies over the past decades have shown that many compounds in addition to 'classical' neurotransmitters affect electrical activity in the brain. These compounds include neuropeptides synthesized in brain as well as compounds which are released from peripheral sources and subsequently enter the brain compartment, such as corticosteroid hormones from the adrenal gland. In the present review, this principle is illustrated by describing the effects of two substances, i.e. vasopressin and corticosterone. Neuropeptides and corticosteroid hormones add at least two essential aspects to information processing in the brain. First, they both act conditional, i.e. they modulate the actions of 'classical' neurotransmitters, rather than changing basal neuronal activity by themselves. Second, the time-frame in which modulation of electrical properties takes place differs from that generally seen with 'classical' neurotransmitters. Neuropeptides modulate electrical activity over a period of minutes, while effects of corticosteroid hormones usually become apparent after at least an hour but then last for hours. In this way, neuropeptides and steroid hormones expand the repertoire of responses through which the brain reacts to environmental challenges.
Collapse
Affiliation(s)
- M Joëls
- Department of Experimental Zoology, Institute of Neurobiology, University of Amsterdam, Kruislaan 320, 1098 SM, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
de Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de Jong W. Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int 2000; 57:1329-36. [PMID: 10760063 DOI: 10.1046/j.1523-1755.2000.00971.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mineralocorticoid receptors (MRs) expressed in limbic neurons, notably of hippocampus, retain both aldosterone and corticosterone. Basal concentrations of corticosterone already substantially occupy the limbic MR type, suggesting that in hippocampal neurons, MR activity rather than ligand bioavailability is rate limiting. The periventricular region expresses MRs involved in the control of salt homeostasis, which are aldosterone selective because of the presence of 11beta-hydroxysteroid dehydrogenase. MR is in hippocampal CA1, CA2, and dentate gyrus colocalized with glucocorticoid receptors (GRs). Both receptor types mediate in a coordinate manner the corticosterone action on information processing critical for behavioral adaptation and associated neuroendocrine responses to stress. MRs operate in proactive mode determining the sensitivity of the stress response system, while GRs facilitate recovery from stress in reactive mode. On the neuronal level, MR-mediated action maintains a stable excitatory tone and attenuates the influence of modulatory signals. In contrast, GR-mediated effects suppress excitability transiently raised by excitatory stimuli. MR is also involved in control of autonomic outflow and volume regulation. This was demonstrated by the effect of an MR antagonist, which was administered centrally, because mdr P-glycoproteins hamper the access of synthetic steroids to the brain. The MR antagonist attenuates pressor responses to a stressor, such as experienced during tail sphygmography. Diuresis and urinary electrolyte excretion are increased after the MR antagonist, but this effect is abolished after bilateral denervation of the kidney. It is presently unknown in which brain cells the MR-mediated effects on these aspects of central cardiovascular regulation occur.
Collapse
Affiliation(s)
- E R de Kloet
- Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Reichardt HM, Tronche F, Berger S, Kellendonk C, Schütz G. New insights into glucocorticoid and mineralocorticoid signaling: lessons from gene targeting. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:1-21. [PMID: 10582083 DOI: 10.1016/s1054-3589(08)60108-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H M Reichardt
- Division Molecular Biology of the Cell 1, German Cancer Research Center Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Joëls M. Effects of corticosteriod hormones in the hippocampus. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:A3. [PMID: 10571556 DOI: 10.1046/j.1365-201x.1999.0600a.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M Joëls
- Address of presenting author: Inst. Neurobiology, University of Amsterdam Kruislaan 320, 1098 SM Amsterdam, The Netherlands Telephone: 31-20-5257626; Fax: 31-20-5257709
| |
Collapse
|
30
|
Abstract
Corticosteroid hormones secreted by the adrenal cortex protect the brain against adverse events and are essential for cognitive performance. However, in recent literature, the central action of corticosteroids has mostly been portrayed as damaging and disruptive to memory formation. We argue that this paradox can be explained by appreciating the specific role of both mineralocorticoid and glucocorticoid receptors in the various stages of information processing. In addition, the context in which corticosteroid-receptor activation takes place is crucial in determining steroid-mediated effects. These effects generally favour adaptive behaviour that is most relevant to the situation. Corticosteroid effects on cognition can, however, turn from adaptive into maladaptive, when actions via the two corticosteroid-receptor types are imbalanced for a prolonged period of time.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, 2300 RA Leiden, Netherlands
| | | | | |
Collapse
|
31
|
Cole TJ, Harris HJ, Hoong I, Solomon N, Smith R, Krozowski Z, Fullerton MJ. The glucocorticoid receptor is essential for maintaining basal and dexamethasone-induced repression of the murine corticosteroid-binding globulin gene. Mol Cell Endocrinol 1999; 154:29-36. [PMID: 10509797 DOI: 10.1016/s0303-7207(99)00105-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated hepatic expression and glucocorticoid regulation of the corticosteroid-binding globulin (CBG) gene in mice lacking a functional glucocorticoid receptor (GR). GR-/- mice show impaired negative feedback in the hypothalamic-pituitary-adrenal axis, resulting in elevated circulating levels of ACTH and corticosterone. This is seen in the neonatal period and continues into adulthood where ACTH and corticosterone levels are increased up to 4-5 fold. Despite high elevation of corticosterone we find no change in mean arterial blood pressure in GR-/- mice and no change in the renal activity of the glucocorticoid-metabolising enzymes 11beta-hydroxysteroid dehydrogenase type-1 (HSD1) and type-2 (HSD2). We do find markedly increased hepatic expression of CBG with a 50% increase in plasma CBG levels. Increased expression of CBG was detected in adult GR-/- mice and also at birth with a greater than 10-fold increase in CBG hepatic mRNA in day-18.5 embryonic GR-/- mice. Adult GR-/- mice were also resistant to dexamethasone-induced repression of CBG expression in the liver. These results indicate that in mice, GR is essential for maintaining the basal level of CBG gene expression in the liver, and is also required for dexamethasone-induced repression of the CBG gene in the adult.
Collapse
Affiliation(s)
- T J Cole
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Steckler T, Holsboer F. Enhanced conditioned approach responses in transgenic mice with impaired glucocorticoid receptor function. Behav Brain Res 1999; 102:151-63. [PMID: 10403023 DOI: 10.1016/s0166-4328(99)00003-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The long-term consequences of impaired glucocorticoid receptor (GR) function on reward-related learning were studied in transgenic mice with impaired GR function in a series of experiments taxing conditioned and unconditioned approach responses to stimuli predictive of food. There was a double-dissociation in that transgenic mice with impaired GR activity showed enhanced conditioned exploration in situations when stimuli predicted reward, while free-feeding food consumption over 24 h was reduced. Previous experiments have shown altered accumbens dopaminergic activity in these animals. In line with these findings, we observed an enhanced behavioural stimulation of transgenic mice following administration of d-amphetamine (2 mg/kg). This suggests that the increase in preparatory responses in transgenic mice may be mediated via an enhanced accumbens dopaminergic activity, possibly secondary to alterations in other brain systems.
Collapse
Affiliation(s)
- T Steckler
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | |
Collapse
|
33
|
Chew LJ, Gallo V. Regulation of ion channel expression in neural cells by hormones and growth factors. Mol Neurobiol 1998; 18:175-225. [PMID: 10206469 DOI: 10.1007/bf02741300] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Voltage-and ligand-gated ion channels are key players in synaptic transmission and neuron-glia communication in the nervous system. Expression of these proteins can be regulated at several levels (transcriptional, translational, or posttranslational) and by multiple extracellular factors in the developing and mature nervous system. A wide variety of hormones and growth factors have been identified as important in neural cell differentiation, which is a complex process involving the acquisition of cell-type-specific ion channel phenotypes. Much literature has already accumulated describing the structural and functional characteristics of ion channels, but relatively little is known about the factors that influence their synthesis and cell surface expression, although this area has generated considerable interest in the context of neural cell development. This article reviews several examples of regulated expression of these channels by cellular factors, namely peptide growth factors and steroid hormones, and discusses, where applicable, current understanding of molecular mechanisms underlying such regulation of voltage-and neurotransmitter-gated ion channels.
Collapse
Affiliation(s)
- L J Chew
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA
| | | |
Collapse
|
34
|
Oitzl MS, Fluttert M, Sutanto W, de Kloet ER. Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur J Neurosci 1998; 10:3759-66. [PMID: 9875354 DOI: 10.1046/j.1460-9568.1998.00381.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, a corticosterone surge associated with a learning task was shown to facilitate cognitive processes through brain glucocorticoid receptors (GR) while chronic overexposure to this stress hormone impaired cognition. In the present study we tested the hypothesis that opposing effects on learning and memory might also occur after either phasic or continuous blockade of brain GR by intracerebroventricular (i.c.v.) administration of the GR antagonist RU38486 (aGR). We used a Morris water maze procedure to assess spatial learning and memory abilities in male Wistar rats. The effect of phasic brain GR blockade was studied following daily pretraining administration of 10 and 100 ng/microL aGR i.c.v. on 3 consecutive days. This repetitive aGR treatment impaired spatial learning and memory dose-dependently in comparison with vehicle controls. For continuous brain GR blockade, animals received an i.c.v., infusion of aGR (10 and 100 ng/0.5 microL per h or vehicle) over 10 days. Infusion of 100 ng aGR per hour resulted in a long-lasting facilitation of spatial performance. The 10 ng aGR infusion also caused initially a facilitating effect, which was, however, transient and performance became impaired during retest. Possible anxiolytic properties of the drugs were excluded in view of the animals' behaviour in the elevated plus maze. Both doses of aGR infusion reduced the number of mineralocorticoid receptors in the hippocampus, but only the high dose of aGR resulted in a significant reduction of available GR sites. In conclusion, continuous administration of GR antagonist improves cognitive function, while phasic blockade of brain GR function causes a cognitive deficit.
Collapse
Affiliation(s)
- M S Oitzl
- Division of Medical Pharmacology, University of Leiden, The Netherlands. ofnl
| | | | | | | |
Collapse
|
35
|
Abstract
In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- E R De Kloet
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Nair SM, Werkman TR, Craig J, Finnell R, Joëls M, Eberwine JH. Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. J Neurosci 1998; 18:2685-96. [PMID: 9502826 PMCID: PMC6793106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overexposure to corticosteroid hormones is harmful to hippocampal neuronal integrity, likely by perturbation of calcium homeostasis. To identify molecular mechanisms at the single-cell level, we characterized mRNA expression corresponding to voltage- and ligand-gated Ca channels in individual dissociated CA1 neurons in response to long-term corticosterone (CORT) exposure. Predominant mineralocorticoid receptor occupation (ADC-LO group) resulted in low levels of P/Q- and L-type Ca channel mRNAs, high levels of GluR-2 versus GluR-1, and a high ratio of NMDAR-2A to NMDAR-2B mRNA. Corresponding alterations in protein expression were consistent with the restriction of Ca influx. In contrast, additional glucocorticoid receptor occupation (ADC-HI group) altered the expression of these mRNAs in a manner consistent with enhanced Ca influx; interestingly, qualitatively similar alterations were seen in control ADX neurons. Electrophysiological data from the same neurons indicate that Ca current amplitudes also are modulated by CORT, although on a shorter time scale. Finally, principal components analysis (PCA) suggests that neuronal AMPA and NMDA receptor composition may be regulated by MR and GR activation in a complex manner. Therefore, our data implicate molecular events by which CORT may regulate Ca influx into CA1 hippocampal neurons.
Collapse
Affiliation(s)
- S M Nair
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The rat adrenal hormone corticosterone reaches the brain and binds to intracellular receptors. These receptors comprise high-affinity mineralocorticoid and lower-affinity glucocorticoid receptors that, upon activation, affect the transcription rate of specific genes. The two receptor types are discretely localized in the brain, with particularly high expression levels in the hippocampus. Here we review recent studies showing that electrical properties and structural aspects of hippocampal principal neurons are specifically regulated by mineralocorticoid- or glucocorticoid-receptor activation. The molecular mechanisms by which these cellular effects could be accomplished are discussed.
Collapse
Affiliation(s)
- M Joëls
- Institute for Neurobiology, Graduate School Neurosciences Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Karst H, de Kloet ER, Joëls M. Effect of ORG 34116, a corticosteroid receptor antagonist, on hippocampal Ca2+ currents. Eur J Pharmacol 1997; 339:17-26. [PMID: 9450612 DOI: 10.1016/s0014-2999(97)01363-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ORG 34116, a substituted 11,21-bisarylsteroid compound, binds selectively and with high affinity to human and rat glucocorticoid receptors. At the level of the hypothalamus it attenuates the negative feedback action of corticosterone, suggesting that it acts as an antagonist. In the present study we examined the effect of in vitro and in vivo administered ORG 34116 on cell properties of higher brain areas, i.e. on Ca2+ current characteristics of CAI hippocampal neurons recorded with whole cell techniques in hippocampal slices. We observed that in vitro applied ORG 34116 antagonized corticosterone induced effects on Ca2+ currents. Data observed after in vivo application of ORG 34116 corroborate these findings. The results furthermore suggest that pretreatment with the glucocorticoid receptor antagonist ORG 34116 also prevents the development of mineralocorticoid receptor mediated effects on Ca2+ currents. If ORG 34116 should indeed prove to be a corticosterone rather than glucocorticoid receptor selective antagonist, this drug may turn out to be an important tool in the treatment of stress-related disorders.
Collapse
Affiliation(s)
- H Karst
- Leiden-Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | |
Collapse
|
39
|
Oitzl MS, de Kloet ER, Joëls M, Schmid W, Cole TJ. Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur J Neurosci 1997; 9:2284-96. [PMID: 9464923 DOI: 10.1111/j.1460-9568.1997.tb01646.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies in rats using the Morris water maze suggested that the processing of spatial information is modulated by corticosteroid hormones through mineralocorticoid and glucocorticoid receptors in the hippocampus. Mineralocorticoid receptors appear to be involved in the modulation of explorative behaviour, while additional activation of glucocorticoid receptors facilitates the storage of information. In the present study we used the water maze task to examine spatial learning and memory in mice homozygous and heterozygous for a targeted disruption of the glucocorticoid receptor gene. Compared with wild-type controls, homozygous and heterozygous mice were impaired in the processing of spatial but not visual information. Homozygous mutants performed variably during training, without specific platform-directed search strategies. The spatial learning disability was partly compensated for by increased motor activity. The deficits were indicative of a dysfunction of glucocorticoid receptors as well as of mineralocorticoid receptors. Although the heterozygous mice performed similarly to wild-type mice with respect to latency to find the platform, their strategy was more similar to that of the homozygous mice. Glucocorticoid receptor-related long-term spatial memory was impaired. The increased behavioural reactivity of the heterozygous mice in the open field points to a more prominent mineralocorticoid receptor-mediated function. The findings indicate that (i) the glucocorticoid receptor is of critical importance for the control of spatial behavioural functions, and (ii) mineralocorticoid receptor-mediated effects on this behaviour require interaction with functional glucocorticoid receptors. Until the development of site-specific, inducible glucocorticoid receptor mutants, glucocorticoid receptor-knockout mice present the only animal model for the study of corticosteroid-mediated effects in the complete absence of a functional receptor.
Collapse
Affiliation(s)
- M S Oitzl
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Abstract
Dexamethasone poorly penetrates in brain. A tracer amount of [3H]-dexamethasone administered to adrenalectomized rats or mice is poorly retained by glucocorticoid receptors in brain, while pituitary corticotrophs containing equivalent amounts of these receptors accumulate and retain large amounts of this synthetic steroid. However, adrenalectomized mice with a genetic disruption of the multiple drug resistance (mrd1a) gene have a tenfold increase of [3H]-dexamethasone uptake in brain glucocorticoid target sites reaching levels observed in the pituitary. These data demonstrate that dexamethasone is extruded from brain by the mrd1a-encoded P-glycoproteins. The data support the concept of a pituitary site of action of dexamethasone in blockade of stress-induced ACTH release, which implies that chronic dexamethasone treatment does not replace the endogenous corticosteroids depleted from brain mineralocorticoid (MRs) and glucocorticoid receptors (GRs). Dexamethasone, therefore, causes a profound disturbance in the balance of these two receptor types in hippocampus, which is an unfavourable condition threatening the neuronal integrity of this brain structure through the expression of noxious genes.
Collapse
|
41
|
Meijer OC, Van Oosten RV, De Kloet ER. Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine(1A) receptor expression in adrenally intact rats: implication for the pathogenesis of depression. Neuroscience 1997; 80:419-26. [PMID: 9284345 DOI: 10.1016/s0306-4522(97)00008-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several studies with adrenalectomized rats have shown that the suppressive effects of exogenous corticosteroids on 5-hydroxytryptamine(1A) receptor function are mediated by the high-affinity mineralocorticoid receptor, rather than the lower affinity glucocorticoid receptor. In the present study, adrenally intact rats were subcutaneously implanted for six days with pellets containing a small amount of corticosterone, which leads to a flattening of the circadian rhythm in the level of circulating hormone. The peak in daily corticosterone is suppressed, the basal trough is increased, and the hormone levels remain at a constant value equivalent to the daily average of about 5 microg/dl, which is usually observed in rats. Accordingly, this regime of corticosterone treatment did not enhance exclusively glucocorticoid receptor-controlled parameters, such as the weight of the thymus. Effects involving mineralocorticoid receptor activation were enhanced, since reductions were observed in stress-induced plasma corticosterone levels and adrenal weight. 5-Hydroxytryptamine(1A) receptor messenger RNA levels were found to be suppressed by approximately 25% in the dentate gyrus of the hippocampus of these corticosterone pellet-implanted rats. This suppression was reflected in significantly reduced [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding in the hippocampal region. We propose therefore that this suppressive effect on 5-hydroxytryptamine(1A) receptor expression involves enhanced occupation of mineralocorticoid receptors, under a condition of elevated basal trough corticosteroid levels as is commonly observed in human depression.
Collapse
Affiliation(s)
- O C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands
| | | | | |
Collapse
|
42
|
Werkman TR, Van der Linden S, Joëls M. Corticosteroid effects on sodium and calcium currents in acutely dissociated rat CA1 hippocampal neurons. Neuroscience 1997; 78:663-72. [PMID: 9153649 DOI: 10.1016/s0306-4522(96)00624-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Consequences of corticosteroid receptor activation on voltage-dependent Na+ conductances were studied in acutely dissociated CA1 hippocampal neurons. This preparation was selected because of the compact electrotonic properties of dissociated neurons, allowing reliable voltage-clamp of the large and fast Na+ currents. The Na+ currents were studied in (i) neurons of adrenalectomized animals (no steroid receptors occupied), (ii) neurons from tissue of adrenalectomized rats treated in vitro with corticosterone and the glucocorticoid receptor antagonist RU38486 (selectively occupying the mineralocorticoid receptor), (iii) corticosterone-treated neurons of adrenalectomized animals (occupying both the mineralocorticoid and glucocorticoid receptors) and (iv) neurons of sham-operated animals. Activation and steady-state inactivation properties of the Na+ current recorded in neurons of adrenalectomized animals were slightly shifted (3-5 mV) to hyperpolarized potentials as compared to the Na+ currents from neurons of the other experimental groups. Furthermore, the removal from inactivation of the Na+ current in the group of neurons of adrenalectomized animals was relatively slow. Although small, these effects could influence neuronal properties like action potential generation and accommodation. Under the present experimental conditions, no apparent differences were seen between cells with predominant mineralocorticoid receptor activation and cells where both mineralocorticoid and glucocorticoid receptors were occupied. In contrast to Na+ currents, voltage-dependent Ca2+ currents displayed no steroid-dependent shifts in voltage-dependent properties. However, Ca2+ current amplitudes were increased by approximately 160% in CA1 neurons of adrenalectomized animals as compared to Ca2+ currents from neurons of the other experimental groups. We conclude that corticosteroid receptor activation affects various properties of voltage-dependent Na+ and Ca2+ conductances in CA1 neurons, indicating that the steroid receptors are involved in the modulation of neuronal excitability in these cells.
Collapse
Affiliation(s)
- T R Werkman
- Department of Experimental Zoology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|