1
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Wang DX, Huang WT, Shi JF, Liu F, Jiang WY, Chen KY, Zhang SY, Li XK, Lin L. FGF21, a modulator of astrocyte reactivity, protects against ischemic brain injury through anti-inflammatory and neurotrophic pathways. Acta Pharmacol Sin 2025:10.1038/s41401-024-01462-x. [PMID: 40021824 DOI: 10.1038/s41401-024-01462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 03/03/2025]
Abstract
Ischemic stroke is a frequent cause of mortality and disability, and astrocyte reactivity is closely associated with injury outcomes. Fibroblast growth factor 21 (FGF21), an endogenous regulator, has been shown to perform pleiotropic functions in central nervous system (CNS) disorders. However, studies on neurological diseases have paid little attention to the effects and detailed mechanisms of FGF21 in astrocytes. Here, we found elevated serum levels of FGF21 in stroke patients and transient middle cerebral artery occlusion (tMCAO) mice. In the peri-infarct cortex, microglia and astrocytes serve as sources of FGF21 in addition to neurons. MRI and neurobehavioral assessments of wild-type (WT) and FGF21-/- tMCAO model mice revealed a deteriorated consequence of the loss of FGF21, with exacerbated brain infarction and neurological deficits. Additionally, combined with the pharmacological treatment of WT mice with recombinant human FGF21 (rhFGF21) after tMCAO, FGF21 was identified to suppress astrocytic activation and astrocyte-mediated inflammatory responses after brain ischemia and participated in controlling the infiltration of peripheral inflammatory cells (including macrophages, neutrophils, monocytes, and T cells) by modulating chemokines expression (such as Ccl3, Cxcl1, and Cxcl2) in astrocytes. Furthermore, rhFGF21 was shown to boost the production of neurotrophic factors (BDNF and NGF) in astrocytes, and by which rescued neuronal survival and promoted synaptic protein expression (postsynaptic density protein-95 (PSD-95), synaptotagmin 1 (SYT1), and synaptophysin) in neurons after ischemic injury. Overall, our findings implicate that FGF21 acts as a suppressor of astrocyte activation, and exerts anti-inflammatory and neurotrophic effects after ischemic brain injury through its action on astrocytes, offering an alternative therapeutic target.
Collapse
Affiliation(s)
- Dong-Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yi Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ke-Yang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2025; 603:685-721. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies comports more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Zhou Z, Han B, Wang Y, Lin N, Zhou Z, Zhang Y, Bai Y, Shen L, Shen Y, Zhang Y, Yao H. Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection. Nat Commun 2024; 15:10900. [PMID: 39738128 PMCID: PMC11685481 DOI: 10.1038/s41467-024-55364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs. The signal output of TDF sensor occurs only when multivalent spatial pattern-recognition of a circRNA in unamplified samples. Using this sensor, we visualize the real-time response of endogenous circRNA expression in vitro neuronal cells and in vivo brain between pre-stroke and post-stroke male mice, identify the patients with acute ischemic stroke in clinical samples, as well as track the delivery of circRNA in photochromic stroked animal model. Thus, the TDF sensor provides a fast and sensitive tool for the detection of circRNA abundance in both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Zhixin Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Nina Lin
- School of Chemistry and Chemical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yanfei Shen
- School of Medicine, Southeast University, Nanjing, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China.
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Wang Y, Bai Y, Cai Y, Zhang Y, Shen L, Xi W, Zhou Z, Xu L, Liu X, Han B, Yao H. Circular RNA SCMH1 suppresses KMO expression to inhibit mitophagy and promote functional recovery following stroke. Theranostics 2024; 14:7292-7308. [PMID: 39659575 PMCID: PMC11626939 DOI: 10.7150/thno.99323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/29/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Metabolic dysfunction is one of the key pathological events after ischemic stroke. Disruption of cerebral blood flow impairs oxygen and energy substrate delivery, leading to mitochondrial oxidative phosphorylation dysfunction and cellular bioenergetic stress. Investigating the effects of circSCMH1, a brain repair-related circular RNA, on metabolism may identify novel therapeutic targets for stroke treatment. Methods: CircSCMH1 was encapsulated into brain-targeting extracellular vesicles (EVs) mediated by rabies virus glycoprotein (RVG). Using a mouse model of photothrombotic (PT) stroke, we employed metabolomics and transcriptomics, combined with western blotting and behavioral experiments, to identify the metabolic targets regulated in RVG-circSCMH1-EV-treated mice. Additionally, immunofluorescence staining, chromatin immunoprecipitation (ChIP), pull-down, and western blotting were utilized to elucidate the underlying mechanisms. Results: The targeted delivery of circSCMH1 via RVG-EVs was found to promote post-stroke brain repair by enhancing mitochondrial fusion and inhibiting mitophagy through suppression of kynurenine 3-monooxygenase (KMO) expression. Mechanistically, circSCMH1 exerted its inhibitory effect on KMO expression by binding to the transcription activator STAT5B, thereby impeding its nuclear translocation. Conclusions: Our study reveals a novel mechanism by which circSCMH1 downregulates KMO expression, thereby enhancing mitochondrial fusion and inhibiting mitophagy, ultimately facilitating post-stroke brain repair. These findings shed new light on the role of circSCMH1 in promoting stroke recovery and underscore its potential as a therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yang Cai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Wen Xi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Zhongqiu Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Lian Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Xue Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Honghong Yao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Anwar F, Mosley MT, Jasbi P, Chi J, Gu H, Jadavji NM. Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke. Metabolites 2024; 14:552. [PMID: 39452933 PMCID: PMC11509810 DOI: 10.3390/metabo14100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring after ischemic stroke. Methods: A total of 32 mice (17 males and 15 females) were used to analyze sex-specific differences in response to these deficiencies. Results: At 1-week post-stroke, female offspring from the FADD group showed the greatest number of altered metabolites, including pathways involved in cholesterol metabolism and neuroprotection. At 4 weeks post-stroke, both FADD and ChDD groups exhibited significant disruptions in metabolites linked to inflammation, oxidative stress, and neurotransmission. Conclusions: These alterations were more pronounced in females compared to males, suggesting sex-dependent responses to maternal dietary deficiencies. The practical implications of these findings suggest that ensuring adequate maternal nutrition during pregnancy may be crucial for reducing stroke susceptibility and improving post-stroke recovery in offspring. Nutritional supplementation strategies targeting folic acid and choline intake could potentially mitigate the long-term adverse effects on metabolic pathways and promote better neurological outcomes. Future research should explore these dietary interventions in clinical settings to develop comprehensive guidelines for maternal nutrition and stroke prevention.
Collapse
Affiliation(s)
- Faizan Anwar
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
| | - Mary-Tyler Mosley
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
- Department of Human Biology, Stanford University, Stanford, CA 94305, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Child Health, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
7
|
Saijilafu, Ye LC, Zhang JY, Xu RJ. The top 100 most cited articles on axon regeneration from 2003 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1410988. [PMID: 38988773 PMCID: PMC11233811 DOI: 10.3389/fnins.2024.1410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Objective In this study, we used a bibliometric and visual analysis to evaluate the characteristics of the 100 most cited articles on axon regeneration. Methods The 100 most cited papers on axon regeneration published between 2003 and 2023 were identified by searching the Web of Science Core Collection database. The extracted data included the title, author, keywords, journal, publication year, country, and institution. A bibliometric analysis was subsequently undertaken. Results The examined set of 100 papers collectively accumulated a total of 39,548 citations. The number of citations for each of the top 100 articles ranged from 215 to 1,604, with a median value of 326. The author with the most contributions to this collection was He, Zhigang, having authored eight papers. Most articles originated in the United States (n = 72), while Harvard University was the institution with the most cited manuscripts (n = 19). Keyword analysis unveiled several research hotspots, such as chondroitin sulfate proteoglycan, alternative activation, exosome, Schwann cells, axonal protein synthesis, electrical stimulation, therapeutic factors, and remyelination. Examination of keywords in the articles indicated that the most recent prominent keyword was "local delivery." Conclusion This study offers bibliometric insights into axon regeneration, underscoring that the United States is a prominent leader in this field. Our analysis highlights the growing relevance of local delivery systems in axon regeneration. Although these systems have shown promise in preclinical models, challenges associated with long-term optimization, agent selection, and clinical translation remain. Nevertheless, the continued development of local delivery technologies represents a promising pathway for achieving axon regeneration; however, additional research is essential to fully realize their potential and thereby enhance patient outcomes.
Collapse
Affiliation(s)
- Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jing-Yu Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Mbs GBY, Wasek B, Bottiglieri T, Malysheva O, Caudill MA, Jadavji NM. Dietary vitamin B12 deficiency impairs motor function and changes neuronal survival and choline metabolism after ischemic stroke in middle-aged male and female mice. Nutr Neurosci 2024; 27:300-309. [PMID: 36932327 DOI: 10.1080/1028415x.2023.2188639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.
Collapse
Affiliation(s)
- Gyllian B Yahn Mbs
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
9
|
Han B, Zhou S, Zhang Y, Chen S, Xi W, Liu C, Zhou X, Yuan M, Yu X, Li L, Wang Y, Ren H, Xie J, Li B, Ju M, Zhou Y, Liu Z, Xiong Z, Shen L, Zhang Y, Bai Y, Chen J, Jiang W, Yao H. Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci Transl Med 2024; 16:eadg1323. [PMID: 38324639 DOI: 10.1126/scitranslmed.adg1323] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Neuroinflammation is acknowledged as a pivotal pathological event after cerebral ischemia. However, there is limited knowledge of the molecular and spatial characteristics of nonneuronal cells, as well as of the interactions between cell types in the ischemic brain. Here, we used spatial transcriptomics to study the ischemic hemisphere in mice after stroke and sequenced the transcriptomes of 19,777 spots, allowing us to both visualize the transcriptional landscape within the tissue and identify gene expression profiles linked to specific histologic entities. Cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of ischemia-associated gene expression in the peri-infarct area of the ischemic hemisphere. Analysis of ligand-receptor interactions in cell communication revealed galectin-9 to cell-surface glycoprotein CD44 (LGALS9-CD44) as a critical signaling pathway after ischemic injury and identified microglia and macrophages as the main source of galectins after stroke. Extracellular vesicle-mediated Lgals9 delivery improved the long-term functional recovery in photothrombotic stroke mice. Knockdown of Cd44 partially reversed these therapeutic effects, inhibiting oligodendrocyte differentiation and remyelination. In summary, our study provides a detailed molecular and cellular characterization of the peri-infact area in a murine stroke model and revealed Lgals9 as potential treatment target that warrants further investigation.
Collapse
Affiliation(s)
- Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Sina Chen
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chenchen Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaoyu Yu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
11
|
Clementson M, Hurley L, Coonrod S, Bennett C, Marella P, Pascual AS, Pull K, Wasek B, Bottiglieri T, Malysheva O, Caudill MA, Jadavji NM. Maternal dietary deficiencies in folic acid or choline worsen stroke outcomes in adult male and female mouse offspring. Neural Regen Res 2023; 18:2443-2448. [PMID: 37282475 PMCID: PMC10360112 DOI: 10.4103/1673-5374.371375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.
Collapse
Affiliation(s)
- McCoy Clementson
- Department of Biomedical Sciences; College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Lauren Hurley
- Department of Biomedical Sciences; College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Sarah Coonrod
- Department of Biomedical Sciences; College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Calli Bennett
- Department of Biomedical Sciences; College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Purvaja Marella
- Department of Biomedical Sciences; College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Agnes S Pascual
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Kasey Pull
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences; College of Osteopathic Medicine; College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA; Department of Neuroscience, Carleton University, Ottawa, ON, Canada; Department of Child Health, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
12
|
Glotfelty EJ, Hsueh SC, Claybourne Q, Bedolla A, Kopp KO, Wallace T, Zheng B, Luo Y, Karlsson TE, McDevitt RA, Olson L, Greig NH. Microglial Nogo delays recovery following traumatic brain injury in mice. Glia 2023; 71:2473-2494. [PMID: 37401784 PMCID: PMC10528455 DOI: 10.1002/glia.24436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Quia Claybourne
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Alicia Bedolla
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Katherine O. Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Tonya Wallace
- Flow Cytometry Unit, National Institute on Aging, Baltimore, MD, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yu Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Ross A. McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Powers BE, Ton ST, Farrer RG, Chaudhary S, Nockels RP, Kartje GL, Tsai SY. Anti-Nogo-A Antibody Therapy Improves Functional Outcome Following Traumatic Brain Injury. Neurorehabil Neural Repair 2023; 37:682-693. [PMID: 37837331 PMCID: PMC10843026 DOI: 10.1177/15459683231203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause sensorimotor deficits, and recovery is slow and incomplete. There are no effective pharmacological treatments for recovery from TBI, but research indicates potential for anti-Nogo-A antibody (Ab) therapy. This Ab neutralizes Nogo-A, an endogenous transmembrane protein that inhibits neuronal plasticity and regeneration. OBJECTIVE We hypothesized that anti-Nogo-A Ab treatment following TBI results in disinhibited axonal growth from the contralesional cortex, the establishment of new compensatory neuronal connections, and improved function. METHODS We modeled TBI in rats using the controlled cortical impact method, resulting in focal brain damage and motor deficits like those observed in humans with a moderate cortical TBI. Rats were trained on the skilled forelimb reaching task and the horizontal ladder rung walking task. They were then given a TBI, targeting the caudal forelimb motor cortex, and randomly divided into 3 groups: TBI-only, TBI + Anti-Nogo-A Ab, and TBI + Control Ab. Testing resumed 3 days after TBI and continued for 8 weeks, when rats received an injection of the anterograde neuronal tracer, biotinylated dextran amine (BDA), into the corresponding area contralateral to the TBI. RESULTS We observed significant improvement in rats that received anti-Nogo-A Ab treatment post-TBI compared to controls. Analysis of BDA-positive axons revealed that anti-Nogo-A Ab treatment resulted in cortico-rubral plasticity to the deafferented red nucleus. Conclusions. Anti-Nogo-A Ab treatment may improve functional recovery via neuronal plasticity to brain areas important for skilled movements, and this treatment shows promise to improve outcomes in humans who have suffered a TBI.
Collapse
Affiliation(s)
- Brian E Powers
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | | | | | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Health Sciences Division, Maywood, IL, USA
| | - Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| |
Collapse
|
14
|
Freitas-Andrade M, Comin CH, Van Dyken P, Ouellette J, Raman-Nair J, Blakeley N, Liu QY, Leclerc S, Pan Y, Liu Z, Carrier M, Thakur K, Savard A, Rurak GM, Tremblay MÈ, Salmaso N, da F Costa L, Coppola G, Lacoste B. Astroglial Hmgb1 regulates postnatal astrocyte morphogenesis and cerebrovascular maturation. Nat Commun 2023; 14:4965. [PMID: 37587100 PMCID: PMC10432480 DOI: 10.1038/s41467-023-40682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Astrocytes are intimately linked with brain blood vessels, an essential relationship for neuronal function. However, astroglial factors driving these physical and functional associations during postnatal brain development have yet to be identified. By characterizing structural and transcriptional changes in mouse cortical astrocytes during the first two postnatal weeks, we find that high-mobility group box 1 (Hmgb1), normally upregulated with injury and involved in adult cerebrovascular repair, is highly expressed in astrocytes at birth and then decreases rapidly. Astrocyte-selective ablation of Hmgb1 at birth affects astrocyte morphology and endfoot placement, alters distribution of endfoot proteins connexin43 and aquaporin-4, induces transcriptional changes in astrocytes related to cytoskeleton remodeling, and profoundly disrupts endothelial ultrastructure. While lack of astroglial Hmgb1 does not affect the blood-brain barrier or angiogenesis postnatally, it impairs neurovascular coupling and behavior in adult mice. These findings identify astroglial Hmgb1 as an important player in postnatal gliovascular maturation.
Collapse
Affiliation(s)
| | - Cesar H Comin
- Federal University of São Carlos, Department of Computer Science, São Carlos, Brazil
| | - Peter Van Dyken
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joanna Raman-Nair
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qing Yan Liu
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sonia Leclerc
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
| | - Youlian Pan
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Ziying Liu
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Karan Thakur
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alexandre Savard
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Luciano da F Costa
- University of São Paulo, São Carlos Institute of Physics, FCM-USP, São Paulo, Brazil
| | | | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Maynard G, Kannan R, Liu J, Wang W, Lam TKT, Wang X, Adamson C, Hackett C, Schwab JM, Liu C, Leslie DP, Chen D, Marino R, Zafonte R, Flanders A, Block G, Smith E, Strittmatter SM. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol 2023; 22:672-684. [PMID: 37479373 PMCID: PMC10410101 DOI: 10.1016/s1474-4422(23)00215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery. METHODS We conducted a two-part study in adults (aged 18-65 years) with chronic (>1 year) cervical traumatic SCI at six rehabilitation centres in the USA. In part 1, AXER-204 was delivered open label as single intrathecal doses of 3 mg, 30 mg, 90 mg, or 200 mg, with primary outcomes of safety and pharmacokinetics. Part 2 was a randomised, parallel, double-blind comparison of six intrathecal doses of 200 mg AXER-204 over 104 days versus placebo. Participants were randomly allocated (1:1) by investigators using a central electronic system, stratified in blocks of four by American Spinal Injury Association Impairment Scale grade and receipt of AXER-204 in part 1. All investigators and patients were masked to treatment allocation until at least day 169. The part 2 primary objectives were safety and pharmacokinetics, with a key secondary objective to assess change in International Standards for Neurological Classification of SCI (ISNCSCI) Upper Extremity Motor Score (UEMS) at day 169 for all enrolled participants. This trial is registered with ClinicalTrials.gov, NCT03989440, and is completed. FINDINGS We treated 24 participants in part 1 (six per dose; 18 men, six women), and 27 participants in part 2 (13 placebo, 14 AXER-204; 23 men, four women), between June 20, 2019, and June 21, 2022. There were no deaths and no discontinuations from the study due to an adverse event in part 1 and 2. In part 2, treatment-related adverse events were of similar incidence in AXER-204 and placebo groups (ten [71%] vs nine [69%]). Headache was the most common treatment-related adverse event (five [21%] in part 1, 11 [41%] in part 2). In part 1, AXER-204 reached mean maximal CSF concentration 1 day after dosing with 200 mg of 412 000 ng/mL (SD 129 000), exceeding those concentrations that were efficacious in animal studies. In part 2, mean changes from baseline to day 169 in ISNCSCI UEMS were 1·5 (SD 3·3) for AXER-204 and 0·9 (2·3) for placebo (mean difference 0·54, 95% CI -1·48 to 2·55; p=0·59). INTERPRETATION This study delivers the first, to our knowledge, clinical trial of a rationally designed pharmacological treatment intended to promote neural repair in chronic SCI. AXER-204 appeared safe and reached target CSF concentrations; exploratory biomarker results were consistent with target engagement and synaptic stabilisation. Post-hoc subgroup analyses suggest that future trials could investigate efficacy in patients with moderately severe SCI without prior AXER-204 exposure. FUNDING Wings for Life Foundation, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Sciences, National Institute on Drug Abuse, and ReNetX Bio.
Collapse
Affiliation(s)
| | - Ramakrishnan Kannan
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jian Liu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA
| | - Tu Kiet T Lam
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Xingxing Wang
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Charles Liu
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Ralph Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Flanders
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
16
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
17
|
Wang J, Cai Y, Sun J, Feng H, Zhu X, Chen Q, Gao F, Ni Q, Mao L, Yang M, Sun B. Administration of intramuscular AAV-BDNF and intranasal AAV-TrkB promotes neurological recovery via enhancing corticospinal synaptic connections in stroke rats. Exp Neurol 2023; 359:114236. [PMID: 36183811 DOI: 10.1016/j.expneurol.2022.114236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022]
Abstract
Stroke causes long-term disability in survivors. BDNF/TrkB plays an important role in synaptic plasticity and synaptic transmission in the central nervous system (CNS), promoting neurological recovery. In this study, we performed non-invasive treatment methods focused on intramuscular injection into stroke-injured forelimb muscles, or intranasal administration using adeno-associated virus (AAV) vectors carrying genes encoding BDNF or TrkB. In a permanent rat middle cerebral artery occlusion (MCAO) model, we assessed the effects of combination therapy with AAV-BDNF and AAV-TrkB on motor functional recovery and synaptic plasticity of the corticospinal connections. Our results showed that BDNF or TrkB gene transduced in the spinal anterior horn neurons and cerebral cortical neurons. Compared to AAV vector treatment alone, behavioral and electrophysiological results showed that the combination therapy significantly improved upper limb motor functional recovery and neurotransmission efficiency after stroke. BDA tracing, immunofluorescence staining, qRT-PCR, and transmission electron microscopy of synaptic ultrastructure results revealed that the combination therapy not only potently increased the expression of Synapsin I, PSD-95, and GAP-43, but also promoted the axonal remodeling and restoration of abnormal synaptic structures. These findings provide a new strategy for enhancing neural plasticity and a potential means to treat stroke clinically.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Yichen Cai
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hua Feng
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Xiaoyu Zhu
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qian Chen
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Feng Gao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian 271000, Shandong, China
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
18
|
Lin H, Li W, Shen Z, Bei Y, Wei T, Yu Z, Dai Y, Dai H. Annexin A2 promotes angiogenesis after ischemic stroke via annexin A2 receptor - AKT/ERK pathways. Neurosci Lett 2023; 792:136941. [PMID: 36367512 DOI: 10.1016/j.neulet.2022.136941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Promoting angiogenesis to restore circulation to the ischemic tissue is still an important therapeutic target in stroke. Our group and others previously reported that the Ca2+-regulated, phospholipid-and membrane-binding protein-Annexin A2 (ANXA2) functions in cerebrovascular integrity and retinal neoangiogenesis. Here, we hypothesized that ANXA2 may regulate angiogenesis after stroke, ultimately improve neurological outcomes. Compared with wild type (WT) mice, the density of microvessels in brain and the number of new vessels sprouting from aortic ring were significantly increased in Anxa2 knock-in (Anxa2 KI) mice. After focal cerebral ischemia, proliferation of brain endothelial cells in Anxa2 KI mice was significantly elevated at 7 days post-stroke, which further improved behavioral recovery. To assess the pro-angiogenic mechanisms of ANXA2, we used brain endothelial cells cultures to investigate its effects on cell tube-numbers and migration. Recombinant ANXA2 increased tube-numbers and migration of brain endothelial cells either under normal condition or after oxygen glucose deprivation (OGD) injury. Co-immunoprecipitation experiments demonstrated that these protective effects of recombinant ANXA2 were regulated by interaction with ANXA2 receptor (A2R), a protein found in cancer cells that can interact with ANXA2 to promote cell migration and proliferation, and the ability of ANXA2-A2R to activate AKT/ERK pathways. Inhibition of AKT/ERK diminished recombinant ANXA2-induced angiogenesis in vitro. Taken together, our study indicates that ANXA2 might be involved in angiogenesis after ischemic stroke. Further investigation of ANXA2-A2R will provide a new therapeutic target for stroke.
Collapse
Affiliation(s)
- Haoran Lin
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Wenlu Li
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zexu Shen
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Bei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Taofeng Wei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02148, United States
| | - Yunjian Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Haibin Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
19
|
Calderazzo S, Covert M, Alba DD, Bowley BE, Pessina MA, Rosene DL, Buller B, Medalla M, Moore TL. Neural recovery after cortical injury: Effects of MSC derived extracellular vesicles on motor circuit remodeling in rhesus monkeys. IBRO Neurosci Rep 2022; 13:243-254. [PMID: 36590089 PMCID: PMC9795302 DOI: 10.1016/j.ibneur.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/01/2022] [Accepted: 08/07/2022] [Indexed: 01/04/2023] Open
Abstract
Reorganization of motor circuits in the cortex and corticospinal tract are thought to underlie functional recovery after cortical injury, but the mechanisms of neural plasticity that could be therapeutic targets remain unclear. Recent work from our group have shown that systemic treatment with mesenchymal stem cell derived (MSCd) extracellular vesicles (EVs) administered after cortical damage to the primary motor cortex (M1) of rhesus monkeys resulted in a robust recovery of fine motor function and reduced chronic inflammation. Here, we used immunohistochemistry for cfos, an activity-dependent intermediate early gene, to label task-related neurons in the surviving primary motor and premotor cortices, and markers of axonal and synaptic plasticity in the spinal cord. Compared to vehicle, EV treatment was associated with a greater density of cfos+ pyramidal neurons in the deep layers of M1, greater density of cfos+ inhibitory interneurons in premotor areas, and lower density of synapses on MAP2+ lower motor neurons in the cervical spinal cord. These data suggest that the anti-inflammatory effects of EVs may reduce injury-related upper motor neuron damage and hyperexcitability, as well as aberrant compensatory re-organization in the cervical spinal cord to improve motor function.
Collapse
Key Words
- CB, Calbindin
- CR, Calretinin
- CSC, Cervical Spinal Cord
- Circuit Remodeling
- Cortical Injury
- DH, Dorsal Horn
- EVs, Extracellular Vesicles
- Extracellular Vesicles
- Ischemia
- LCST, Lateral Corticospinal Tract
- M1, Primary Motor Cortex
- MAP2, Microtubule Associated Protein 2
- MSCd, Mesenchymal Stem Cell derived
- Motor Cortex
- NHP, Non-Human Primate
- PV, Parvalbumin
- Plasticity
- ROS, Reactive Oxygen Species
- SYN, Synaptophysin
- Stem Cell-Based Treatments
- VH, Ventral Horn
- dPMC, dorsal Premotor Cortex
- miRNA, Micro RNA
- periM1, Perilesional Primary Motor Cortex
Collapse
Affiliation(s)
| | | | | | | | | | - Douglas L. Rosene
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| | | | - Maria Medalla
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| | - Tara L. Moore
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| |
Collapse
|
20
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
21
|
Tedeschi A, Larson MJE, Zouridakis A, Mo L, Bordbar A, Myers JM, Qin HY, Rodocker HI, Fan F, Lannutti JJ, McElroy CA, Nimjee SM, Peng J, Arnold WD, Moon LDF, Sun W. Harnessing cortical plasticity via gabapentinoid administration promotes recovery after stroke. Brain 2022; 145:2378-2393. [PMID: 35905466 PMCID: PMC9890504 DOI: 10.1093/brain/awac103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke causes devastating sensory-motor deficits and long-term disability due to disruption of descending motor pathways. Restoration of these functions enables independent living and therefore represents a high priority for those afflicted by stroke. Here, we report that daily administration of gabapentin, a clinically approved drug already used to treat various neurological disorders, promotes structural and functional plasticity of the corticospinal pathway after photothrombotic cortical stroke in adult mice. We found that gabapentin administration had no effects on vascular occlusion, haemodynamic changes nor survival of corticospinal neurons within the ipsilateral sensory-motor cortex in the acute stages of stroke. Instead, using a combination of tract tracing, electrical stimulation and functional connectivity mapping, we demonstrated that corticospinal axons originating from the contralateral side of the brain in mice administered gabapentin extend numerous collaterals, form new synaptic contacts and better integrate within spinal circuits that control forelimb muscles. Not only does gabapentin daily administration promote neuroplasticity, but it also dampens maladaptive plasticity by reducing the excitability of spinal motor circuitry. In turn, mice administered gabapentin starting 1 h or 1 day after stroke recovered skilled upper extremity function. Functional recovery persists even after stopping the treatment at 6 weeks following a stroke. Finally, chemogenetic silencing of cortical projections originating from the contralateral side of the brain transiently abrogated recovery in mice administered gabapentin, further supporting the conclusion that gabapentin-dependent reorganization of spared cortical pathways drives functional recovery after stroke. These observations highlight the strong potential for repurposing gabapentinoids as a promising treatment strategy for stroke repair.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Molly J E Larson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Antonia Zouridakis
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lujia Mo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Arman Bordbar
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Julia M Myers
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah Y Qin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Haven I Rodocker
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Fan Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - John J Lannutti
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA
| | - Shahid M Nimjee
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurosurgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Juan Peng
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Division of Neuromuscular Diseases, Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Poole J, Jasbi P, Pascual AS, North S, Kwatra N, Weissig V, Gu H, Bottiglieri T, Jadavji NM. Ischemic Stroke and Dietary Vitamin B12 Deficiency in Old-Aged Females: Impaired Motor Function, Increased Ischemic Damage Size, and Changed Metabolite Profiles in Brain and Cecum Tissue. Nutrients 2022; 14:2960. [PMID: 35889916 PMCID: PMC9318046 DOI: 10.3390/nu14142960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
A vitamin B12 deficiency (vit. B12 def.) is common in the elderly, because of changes in metabolism. Clinical studies have reported that a vit. B12 def. results in worse outcome after stroke, and the mechanisms through which a vit. B12 def. changes the brain requires further investigation. This study investigated the role of vit. B12 def. on stroke outcome and mechanisms using aged female mice. Eighteen-month-old females were put on a control or vit. B12 def. diet for 4 weeks, after which an ischemic stroke was induced in the sensorimotor cortex. After damage, motor function was measured, the animals were euthanized, and tissues were collected for analysis. Vit. B12 def. animals had increased levels of total homocysteine in plasma and liver, and choline levels were also increased in the liver. Vit. B12 def. animals had larger damage volume in brain tissue and more apoptosis. The cecum tissue pathway analysis showed dysfunction in B12 transport. The analysis of mitochondrial metabolomics in brain tissue showed reduced levels of metabolites involved in the TCA cycle in vit. B12 def. animals. Motor function after stroke was impaired in vit. B12 def. animals. A dietary vit. B12 def. impairs motor function through increased apoptosis and changes in mitochondrial metabolism in brain tissue.
Collapse
Affiliation(s)
- Joshua Poole
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (J.P.); (S.N.)
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85281, USA; (P.J.); (H.G.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85308, USA
| | - Agnes S. Pascual
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
| | - Sean North
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (J.P.); (S.N.)
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
| | - Neha Kwatra
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
- College of Dental Medicine Arizona, Midwestern University, Glendale, AZ 85308, USA
| | - Volkmar Weissig
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
- Department of Pharmaceutical Sciences, College of Graduate Students, Midwestern University, Glendale, AZ 85308, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85281, USA; (P.J.); (H.G.)
- Department of Environmental Health Sciences, The Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Center for Translational Science, Cellular Biology and Pharmacology Department, The Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 33199, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA;
| | - Nafisa M. Jadavji
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (J.P.); (S.N.)
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (A.S.P.); (N.K.); (V.W.)
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
23
|
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Exp Neurol 2022; 353:114070. [PMID: 35398339 PMCID: PMC9555232 DOI: 10.1016/j.expneurol.2022.114070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
Neural repair after traumatic spinal cord injury depends upon the restoration of neural networks via axonal sprouting and regeneration. Our previous genome wide loss-of-function screen identified Rab GTPases as playing a prominent role in preventing successful axon sprouting and regeneration. Here, we searched for Rab27b interactors and identified Rabphilin3A as an effector within regenerating axons. Growth cone Rabphilin3a colocalized and physically associated with integrins at puncta in the proximal body of the axonal growth cone. In regenerating axons, loss of Rabphilin3a increased integrin enrichment in the growth cone periphery, enhanced focal adhesion kinase activation, increased F-actin-rich filopodial density and stimulated axon extension. Compared to wild type, mice lacking Rabphilin3a exhibited greater regeneration of retinal ganglion cell axons after optic nerve crush as well as greater corticospinal axon regeneration after complete thoracic spinal cord crush injury. After moderate spinal cord contusion injury, there was greater corticospinal regrowth in the absence of Rph3a. Thus, an endogenous Rab27b - Raphilin3a pathway limits integrin action in the growth cone, and deletion of this monomeric GTPase pathway permits reparative axon growth in the injured adult mammalian central nervous system.
Collapse
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ramakrishnan Kannan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
24
|
Muraoka T, Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem Res 2022; 47:2488-2498. [PMID: 35666393 PMCID: PMC9463329 DOI: 10.1007/s11064-022-03638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain. This review introduces the rational design of artificial extracellular matrix (ECM) mimics using supramolecular peptidic scaffolds, which self-assemble via non-covalent bonds and form hydrogels. The facile customizability of the peptide structures allows tuning the hydrogels' physical and biochemical properties, such as charge states, hydrophobicity, cell adhesiveness, stiffness, and stimuli responses. Supramolecular peptidic materials can create safer and more economical drugs than polymer materials and cell transplantation. We also discuss the importance of activating developmental programs for the recovery at the subacute phase of ischemic stroke. Self-assembling molecular medicine mimicking the ECMs and activating developmental programs may stand as a new drug modality of regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.
| | - Itsuki Ajioka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan. .,Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
25
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
26
|
Co-Expression of Nogo-A in Dopaminergic Neurons of the Human Substantia Nigra Pars Compacta Is Reduced in Parkinson’s Disease. Cells 2021; 10:cells10123368. [PMID: 34943877 PMCID: PMC8699585 DOI: 10.3390/cells10123368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease is mainly characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Together with the small number, the high vulnerability of the dopaminergic neurons is a major pathogenic culprit of Parkinson’s disease. Our previous findings of a higher survival of dopaminergic neurons in the substantia nigra co-expressing Nogo-A in an animal model of Parkinson’s disease suggested that Nogo-A may be associated with dopaminergic neurons resilience against Parkinson’s disease neurodegeneration. In the present study, we have addressed the expression of Nogo-A in the dopaminergic neurons in the substantia nigra in postmortem specimens of diseased and non-diseased subjects of different ages. For this purpose, in a collaborative effort we developed a tissue micro array (TMA) that allows for simultaneous staining of many samples in a single run. Interestingly, and in contrast to the observations gathered during normal aging and in the animal model of Parkinson’s disease, increasing age was significantly associated with a lower co-expression of Nogo-A in nigral dopaminergic neurons of patients with Parkinson’s disease. In sum, while Nogo-A expression in dopaminergic neurons is higher with increasing age, the opposite is the case in Parkinson’s disease. These observations suggest that Nogo-A might play a substantial role in the vulnerability of dopaminergic neurons in Parkinson’s disease.
Collapse
|
27
|
NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nat Commun 2021; 12:6906. [PMID: 34824275 PMCID: PMC8617297 DOI: 10.1038/s41467-021-27245-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.
Collapse
|
28
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
29
|
Sato T, Nakamura Y, Takeda A, Ueno M. Lesion Area in the Cerebral Cortex Determines the Patterns of Axon Rewiring of Motor and Sensory Corticospinal Tracts After Stroke. Front Neurosci 2021; 15:737034. [PMID: 34707476 PMCID: PMC8542932 DOI: 10.3389/fnins.2021.737034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
The corticospinal tract (CST) is an essential neural pathway for reorganization that recovers motor functions after brain injuries such as stroke. CST comprises multiple pathways derived from different sensorimotor areas of the cerebral cortex; however, the patterns of reorganization in such complex pathways postinjury are largely unknown. Here we comprehensively examined the rewiring patterns of the CST pathways of multiple cerebral origins in a mouse stroke model that varied in size and location in the sensorimotor cortex. We found that spared contralesional motor and sensory CST axons crossed the midline and sprouted into the denervated side of the cervical spinal cord after stroke in a large cortical area. In contrast, the contralesional CST fibers did not sprout in a small stroke, whereas the ipsilesional axons from the spared motor area grew on the denervated side. We further showed that motor and sensory CST axons did not innervate the projecting areas mutually when either one was injured. The present results reveal the basic principles that generate the patterns of CST rewiring, which depend on stroke location and CST subtype. Our data indicate the importance of targeting different neural substrates to restore function among the types of injury.
Collapse
Affiliation(s)
| | | | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
30
|
Lu J, Li Z, Zhao Q, Liu D, Mei YA. Neuritin improves the neurological functional recovery after experimental intracerebral hemorrhage in mice. Neurobiol Dis 2021; 156:105407. [PMID: 34058347 DOI: 10.1016/j.nbd.2021.105407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide, with intracerebral hemorrhage (ICH) being the most lethal subtype. Neuritin (Nrn) is a neurotropic factor that has been reported to have neuroprotective effects in acute brain and spinal cord injury. However, whether Nrn has a protective role in ICH has not been investigated. In this study, ICH was induced in C57BL/6 J mice by injection of collagenase VII, while the overexpression of Nrn in the striatum was induced by an adeno-associated virus serotype 9 (AAV9) vector. We found that compared with GFP-ICH mice, Nrn-ICH mice showed improved performance in the corner, cylinder and forelimb tests after ICH, and showed less weight loss and more rapid weight recovery. Overexpression of Nrn reduced brain lesions, edema, neuronal death and white matter and synaptic integrity dysfunction caused by ICH. Western blot results showed that phosphorylated PERK and ATF4 were significantly inhibited, while phosphorylation of Akt/mammalian target of rapamycin was increased in the Nrn-ICH group, compared with the GFP-ICH group. Whole cell recording from motor neurons indicated that overexpression of Nrn reversed the decrease of spontaneous excitatory postsynaptic currents (sEPSCs) and action potential frequencies induced by ICH. These data show that Nrn improves neurological deficits in mice with ICH by reducing brain lesions and edema, inhibiting neuronal death, and possibly by increasing neuronal connections.
Collapse
Affiliation(s)
- Junmei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhaoyang Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qianru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dongdong Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
31
|
Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep 2021; 35:109048. [PMID: 33910014 PMCID: PMC8142687 DOI: 10.1016/j.celrep.2021.109048] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Brain injury causes astrocytes to assume a reactive state that is essential for early tissue protection, but how reactive astrocytes affect later reparative processes is incompletely understood. In this study, we show that reactive astrocytes are crucial for vascular repair and remodeling after ischemic stroke in mice. Analysis of astrocytic gene expression data reveals substantial activation of transcriptional programs related to vascular remodeling after stroke. In vivo two-photon imaging provides evidence of astrocytes contacting newly formed vessels in cortex surrounding photothrombotic infarcts. Chemogenetic ablation of a subset of reactive astrocytes after stroke dramatically impairs vascular and extracellular matrix remodeling. This disruption of vascular repair is accompanied by prolonged blood flow deficits, exacerbated vascular permeability, ongoing cell death, and worsened motor recovery. In contrast, vascular structure in the non-ischemic brain is unaffected by focal astrocyte ablation. These findings position reactive astrocytes as critical cellular mediators of functionally important vascular remodeling during neural repair.
Collapse
Affiliation(s)
- Michael R Williamson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Andrew K Dunn
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
32
|
Martínez-Torres N, González-Tapia D, Flores-Soto M, Vázquez-Hernández N, Salgado-Ceballos H, González-Burgos I. Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2017.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Liu Z, Xin H, Chopp M. Axonal remodeling of the corticospinal tract during neurological recovery after stroke. Neural Regen Res 2021; 16:939-943. [PMID: 33229733 PMCID: PMC8178784 DOI: 10.4103/1673-5374.297060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stroke remains the leading cause of long-term disability. Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex. As the only direct descending motor pathway, the corticospinal tract (CST) is the primary pathway to innervate spinal motor neurons, and thus, forms the neuroanatomical basis to control the peripheral muscles for voluntary movements. Here, we review evidence from both experimental animals and stroke patients, regarding CST axonal damage, functional contribution of CST axonal integrity and remodeling to neurological recovery, and therapeutic approaches aimed to enhance CST axonal remodeling after stroke. The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation, which will significantly impact the current clinical needs of subacute and chronic stroke treatment.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
34
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Savidan J, Beaud ML, Rouiller EM. Cutaneous Inputs to Dorsal Column Nuclei in Adult Macaque Monkeys Subjected to Unilateral Lesion of the Primary Motor Cortex or of the Cervical Spinal Cord and Treatments Promoting Axonal Growth. Neurosci Insights 2020; 15:2633105520973991. [PMID: 33283186 PMCID: PMC7683840 DOI: 10.1177/2633105520973991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The highly interconnected somatosensory and motor systems are subjected to connectivity changes at close or remote locations following a central nervous system injury. What is the impact of unilateral injury of the primary motor cortex (hand area; MCI) or of the cervical cord (hemisection at C7-C8 level; SCI) on the primary somatosensory (cutaneous) inputs to the dorsal column nuclei (DCN) in adult macaque monkeys? The effects of treatments promoting axonal growth were assessed. In the SCI group (n = 4), 1 monkey received a control antibody and 3 monkeys a combination treatment of anti-Nogo-A antibody and brain-derived neurotrophic factor (BDNF). In the MCI group (n = 4), 2 monkeys were untreated and 2 were treated with the anti-Nogo-A antibody. Using trans-ganglionic transport of cholera toxin B subunit injected in the first 2 fingers and toes on both sides, the areas of axonal terminal fields in the cuneate and gracile nuclei were bilaterally compared. Unilateral SCI at C7-C8 level, encroaching partially on the dorsal funiculus, resulted in an ipsilesional lower extent of the inputs from the toes in the gracile nuclei, not modified by the combined treatment. SCI at C7-C8 level did not affect the bilateral balance of primary inputs to the cuneate nuclei, neither in absence nor in presence of the combined treatment. MCI targeted to the hand area did not impact on the primary inputs to the cuneate nuclei in 2 untreated monkeys. After MCI, the administration of anti-Nogo-A antibody resulted in a slight bilateral asymmetrical extent of cutaneous inputs to the cuneate nuclei, with a larger extent ipsilesionally. Overall, remote effects following MCI or SCI have not been observed at the DCN level, except possibly after MCI and anti-Nogo-A antibody treatment.
Collapse
Affiliation(s)
- Julie Savidan
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marie-Laure Beaud
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Allegra Mascaro AL, Conti E, Lai S, Di Giovanna AP, Spalletti C, Alia C, Panarese A, Scaglione A, Sacconi L, Micera S, Caleo M, Pavone FS. Combined Rehabilitation Promotes the Recovery of Structural and Functional Features of Healthy Neuronal Networks after Stroke. Cell Rep 2020; 28:3474-3485.e6. [PMID: 31553915 DOI: 10.1016/j.celrep.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
Rehabilitation is considered the most effective treatment for promoting the recovery of motor deficits after stroke. One of the most challenging experimental goals is to unambiguously link brain rewiring to motor improvement prompted by rehabilitative therapy. Previous work showed that robotic training combined with transient inactivation of the contralesional cortex promotes a generalized recovery in a mouse model of stroke. Here, we use advanced optical imaging and manipulation tools to study cortical remodeling induced by this rehabilitation paradigm. We show that the stabilization of peri-infarct synaptic contacts accompanies increased vascular density induced by angiogenesis. Furthermore, temporal and spatial features of cortical activation recover toward pre-stroke conditions through the progressive formation of a new motor representation in the peri-infarct area. In the same animals, we observe reinforcement of inter-hemispheric connectivity. Our results provide evidence that combined rehabilitation promotes the restoration of structural and functional features distinctive of healthy neuronal networks.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy.
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Stefano Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | | | | | - Claudia Alia
- Neuroscience Institute, National Research Council, Pisa 56124, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; Department of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
37
|
Williamson MR, Franzen RL, Fuertes CJA, Dunn AK, Drew MR, Jones TA. A Window of Vascular Plasticity Coupled to Behavioral Recovery after Stroke. J Neurosci 2020; 40:7651-7667. [PMID: 32873722 PMCID: PMC7531554 DOI: 10.1523/jneurosci.1464-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke causes remodeling of vasculature surrounding the infarct, but whether and how vascular remodeling contributes to recovery are unclear. We established an approach to monitor and compare changes in vascular structure and blood flow with high spatiotemporal precision after photothrombotic infarcts in motor cortex using longitudinal 2-photon and multiexposure speckle imaging in mice of both sexes. A spatially graded pattern of vascular structural remodeling in peri-infarct cortex unfolded over the first 2 weeks after stroke, characterized by vessel loss and formation, and selective stabilization of a subset of new vessels. This vascular structural plasticity was coincident with transient activation of transcriptional programs relevant for vascular remodeling, reestablishment of peri-infarct blood flow, and large improvements in motor performance. Local vascular plasticity was strongly predictive of restoration of blood flow, which was in turn predictive of behavioral recovery. These findings reveal the spatiotemporal evolution of vascular remodeling after stroke and demonstrate that a window of heightened vascular plasticity is coupled to the reestablishment of blood flow and behavioral recovery. Our findings support that neovascularization contributes to behavioral recovery after stroke by restoring blood flow to peri-infarct regions. These findings may inform strategies for enhancing recovery from stroke and other types of brain injury.SIGNIFICANCE STATEMENT An improved understanding of neural repair could inform strategies for enhancing recovery from stroke and other types of brain injury. Stroke causes remodeling of vasculature surrounding the lesion, but whether and how the process of vascular remodeling contributes to recovery of behavioral function have been unclear. Here we used longitudinal in vivo imaging to track vascular structure and blood flow in residual peri-infarct cortex after ischemic stroke in mice. We found that stroke created a restricted period of heightened vascular plasticity that was associated with restoration of blood flow, which was in turn predictive of recovery of motor function. Therefore, our findings support that vascular remodeling facilitates behavioral recovery after stroke by restoring blood flow to peri-infarct cortex.
Collapse
Affiliation(s)
| | | | | | - Andrew K Dunn
- Institute for Neuroscience
- Department of Biomedical Engineering
| | - Michael R Drew
- Institute for Neuroscience
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
38
|
Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis 2020; 11:655. [PMID: 32811822 PMCID: PMC7434917 DOI: 10.1038/s41419-020-02897-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Brain injury causes serious motor, sensory, and cognitive disabilities. Accumulating evidence has demonstrated that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults to the central nervous system (CNS). In this study, we investigated the effects of the HDAC inhibition on the expression of brain-derived neurotrophic factor (BDNF) and functional recovery after traumatic brain injury (TBI) in mice. Administration of class I HDAC inhibitor increased the number of synaptic boutons in rewiring corticospinal fibers and improved the recovery of motor functions after TBI. Immunohistochemistry results showed that HDAC2 is mainly expressed in the neurons of the mouse spinal cord under normal conditions. After TBI, HDAC2 expression was increased in the spinal cord after 35 days, whereas BDNF expression was decreased after 42 days. Administration of CI-994 increased BDNF expression after TBI. Knockdown of HDAC2 elevated H4K5ac enrichment at the BDNF promoter, which was decreased following TBI. Together, our findings suggest that HDAC inhibition increases expression of neurotrophic factors, and promote neuronal rewiring and functional recovery following TBI.
Collapse
|
39
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Abato JE, Moftah M, Cron GO, Smith PD, Jadavji NM. Methylenetetrahydrofolate reductase deficiency alters cellular response after ischemic stroke in male mice. Nutr Neurosci 2020; 25:558-566. [PMID: 32448097 DOI: 10.1080/1028415x.2020.1769412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: Elevated homocysteine concentrations are a risk factor for stroke. A common genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR 677 C→T) results in elevated levels of homocysteine. MTHFR plays a critical role in the synthesis of S-adenosylmethionine (SAM), a global methyl donor. Our previous work has demonstrated that Mthfr+/- mice, which model the MTHFR polymorphism in humans, are more vulnerable to ischemic damage. The aim of this study was to investigate the cellular mechanisms by which the MTHFR-deficiency changes the brain in the context of ischemic stroke injury.Methods: In the present study, three-month-old male Mthfr+/- and wild-type littermate mice were subjected to photothrombosis (PT) damage. Four weeks after PT damage, animals were tested on behavioral tasks, in vivo imaging was performed using T2-weighted MRI, and brain tissue was collected for histological analysis.Results: Mthfr+/- animals used their non-impaired forepaw more to explore the cylinder and had a larger damage volume compared to wild-type littermates. In brain tissue of Mthfr+/- mice methionine adenosyltransferase II alpha (MAT2A) protein levels were decreased within the damage hemisphere and increased levels in hypoxia-induced factor 1 alpha (HIF-1α) in non-damage hemisphere. There was an increased antioxidant response in the damage site as indicated by higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in neurons and astrocytes and neuronal superoxide dismutase 2 (SOD2) levels.Conclusions: Our results suggest that Mthfr+/- mice are more vulnerable to PT-induced stroke damage through the regulation of the cellular response. The increased antioxidant response we observed may be compensatory to the damage amount.
Collapse
Affiliation(s)
- Jamie E Abato
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Mahira Moftah
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Greg O Cron
- Department of Radiology, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medical Imaging, The Ottawa Hospital, Ottawa, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
41
|
Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, Zuo L, Chen X, Lin Y, Liu K, Ye Q, Chen B, Li B, Tang T, Wang Y, Shen L, Wang G, Ju M, Yuan M, Jiang W, Zhang JH, Hu G, Wang J, Yao H. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020; 142:556-574. [PMID: 32441115 DOI: 10.1161/circulationaha.120.045765] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stroke is a leading cause of adult disability that can severely compromise the quality of life of patients, yet no effective medication currently exists to accelerate rehabilitation. A variety of circular RNA (circRNA) molecules are known to function in ischemic brain injury. Lentivirus-based expression systems have been widely used in basic studies of circRNAs, but safety issues with such delivery systems have limited exploration of the potential therapeutic roles for circRNAs. METHODS Circular RNA SCMH1 (circSCMH1) was screened from the plasma of patients with acute ischemic stroke by using circRNA microarrays. Engineered rabies virus glycoprotein-circSCMH1-extracellular vesicles were generated to selectively deliver circSCMH1 to the brain. Nissl staining was used to examine infarct size. Behavioral tasks were performed to evaluate motor functions in both rodent and nonhuman primate ischemic stroke models. Golgi staining and immunostaining were used to examine neuroplasticity and glial activation. Proteomic assays and RNA-sequencing data combined with transcriptional profiling were used to identify downstream targets of circSCMH1. RESULTS CircSCMH1 levels were significantly decreased in the plasma of patients with acute ischemic stroke, offering significant power in predicting stroke outcomes. The decreased levels of circSCMH1 were further confirmed in the plasma and peri-infarct cortex of photothrombotic stroke mice. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that circSCMH1 treatment improved functional recovery after stroke in both mice and monkeys, and we discovered that circSCMH1 enhanced the neuronal plasticity and inhibited glial activation and peripheral immune cell infiltration. CircSCMH1 binds mechanistically to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription. CONCLUSIONS Rabies virus glycoprotein-circSCMH1-extracellular vesicles afford protection by promoting functional recovery in the rodent and the nonhuman primate ischemic stroke models. Our study presents a potentially widely applicable nucleotide drug delivery technology and demonstrates the basic mechanism of how circRNAs can be therapeutically exploited to improve poststroke outcomes.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Zhiting Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.Z.)
| | - Shuguo Wang
- Department of Neurosurgery, First Affiliation Hospital of Kunming Medical University, Kunming, China (S.W.)
| | - Ying Bai
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ying Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lingli Du
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Xu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lei Zuo
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry of Southeast University (L.Z.), Southeast University, Nanjing, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China (X.C.)
| | - Yu Lin
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Kezhong Liu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qingqing Ye
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Biling Chen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bin Li
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Tianci Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Guangtian Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Minzi Ju
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Mengqin Yuan
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - John H Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA (J.H.Z.)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China (G.H.)
| | - Jianhong Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates (Kunming Primate Research Center) (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science & Yunnan Province, (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China.,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease (H.Y.), Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China (H.Y.)
| |
Collapse
|
42
|
Pénzes M, Túrós D, Máthé D, Szigeti K, Hegedűs N, Rauscher AÁ, Tóth P, Ivic I, Padmanabhan P, Pál G, Dobolyi Á, Gyimesi M, Málnási-Csizmadia A. Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics 2020; 10:5341-5356. [PMID: 32373216 PMCID: PMC7196296 DOI: 10.7150/thno.42077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Acute ischemic stroke treatment faces an unresolved obstacle as capillary reperfusion remains insufficient after thrombolysis and thrombectomy causing neuronal damage and poor prognosis. Hypoxia-induced capillary constriction is mediated by actomyosin contraction in precapillary smooth muscle cells (SMCs) therefore smooth muscle myosin-2 could be an ideal target with potentially high impact on reperfusion of capillaries. Methods: The myosin-2 inhibitor para-aminoblebbistatin (AmBleb) was tested on isolated human and rat arterioles to assess the effect of AmBleb on vasodilatation. Transient middle cerebral artery occlusion (MCAO) was performed on 38 male Wistar rats followed by local administration of AmBleb into the ischemic brain area. Development of brain edema and changes in cerebrovascular blood flow were assessed using MRI and SPECT. We also tested the neurological deficit scores and locomotor asymmetry of the animals for 3 weeks after the MCAO operation. Results: Our results demonstrate that AmBleb could achieve full relaxation of isolated cerebral arterioles. In living animals AmBleb recovered cerebral blood flow in 32 out of the 65 affected functional brain areas in MCAO operated rats, whereas only 8 out of the 67 affected areas were recovered in the control animals. Animals treated with AmBleb also showed significantly improved general and focal deficit scores in neurological functional tests and showed significantly ameliorated locomotor asymmetry. Conclusion: Direct inhibition of smooth muscle myosin by AmBleb in pre-capillary SMCs significantly contribute to the improvement of cerebral blood reperfusion and brain functions suggesting that smooth muscle myosin inhibition may have promising potential in stroke therapies as a follow-up treatment of physical or chemical removal of the occluding thrombus.
Collapse
|
43
|
Shahidi SH, Kordi MR, Rajabi H, Malm C, Shah F, Quchan ASK. Exercise modulates the levels of growth inhibitor genes before and after multiple sclerosis. J Neuroimmunol 2020; 341:577172. [DOI: 10.1016/j.jneuroim.2020.577172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/09/2023]
|
44
|
Sartori AM, Hofer AS, Schwab ME. Recovery after spinal cord injury is enhanced by anti-Nogo-A antibody therapy — from animal models to clinical trials. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Krucoff MO, Miller JP, Saxena T, Bellamkonda R, Rahimpour S, Harward SC, Lad SP, Turner DA. Toward Functional Restoration of the Central Nervous System: A Review of Translational Neuroscience Principles. Neurosurgery 2020; 84:30-40. [PMID: 29800461 DOI: 10.1093/neuros/nyy128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Injury to the central nervous system (CNS) can leave patients with devastating neurological deficits that may permanently impair independence and diminish quality of life. Recent insights into how the CNS responds to injury and reacts to critically timed interventions are being translated into clinical applications that have the capacity to drastically improve outcomes for patients suffering from permanent neurological deficits due to spinal cord injury, stroke, or other CNS disorders. The translation of such knowledge into practical and impactful treatments involves the strategic collaboration between neurosurgeons, clinicians, therapists, scientists, and industry. Therefore, a common understanding of key neuroscientific principles is crucial. Conceptually, current approaches to CNS revitalization can be divided by scale into macroscopic (systems-circuitry) and microscopic (cellular-molecular). Here we review both emerging and well-established tenets that are being utilized to enhance CNS recovery on both levels, and we explore the role of neurosurgeons in developing therapies moving forward. Key principles include plasticity-driven functional recovery, cellular signaling mechanisms in axonal sprouting, critical timing for recovery after injury, and mechanisms of action underlying cellular replacement strategies. We then discuss integrative approaches aimed at synergizing interventions across scales, and we make recommendations for the basis of future clinical trial design. Ultimately, we argue that strategic modulation of microscopic cellular behavior within a macroscopic framework of functional circuitry re-establishment should provide the foundation for most neural restoration strategies, and the early involvement of neurosurgeons in the process will be crucial to successful clinical translation.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Jonathan P Miller
- Department of Neurosurgery, Case Western Reserve University, Cleve-land, Ohio
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen C Harward
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Mechan-ical Engineering and Material Sciences, Pratt School of Engineering, Duke Uni-versity, Durham, North Carolina.,Duke Institute for Brain Sciences, Duke Univer-sity, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Depart-ment of Neurobiology, Duke University, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
46
|
Li H, Liang W, Zhou L. The experimental research on neuroplasticity in rats' hippocampus subjected to chronic cerebral hypoperfusion and interfered by Modified Dioscorea Pills. Heliyon 2019; 6:e02897. [PMID: 31909235 PMCID: PMC6938820 DOI: 10.1016/j.heliyon.2019.e02897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/17/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Background Chronic Cerebral Hypoperfusion (CCH) is a common, crucial and tough problem for old people. It easily leads to Lacunar Infarction and even Vascular Dementia (VD). Western medicine has the advantage to relieve some VD symptoms but fails to cure it. Some classic Chinese medicines have good efficacies to treat and delay the cerebral functional decline resulted from CCH. Among them Modified Dioscorea Pills (MDP) has been proven to have a convincing effect in curing VD. So far the knowledge about neuroplasticity in CCH is little known and the underlying interfered mechanism by MDP on neuroplasticity has not yet been explored. This study explores the changes of neuroplasticity involving neurogenesis, angiogenesis and synaptogenesis in CCH and interfered by MDP. Methods 40 male SD rats were divided into the Sham operated Group, the Model Group and the MDP Group according to a Random Number Table. Bilateral Common Carotid Arteries Occlusion (BCCAO) was adopted to prepare CCH models. MDP condense decoction had been administered by gavage to rats in the MDP Group (10g·Kg-1·d-1) for 45 days; Rats in the other two groups were accepted normal salts as substitution with same dosage and course. Through Morris Water Maze (MWM) test, pathological observation of hippocampus, ultrastructural study on synapse, Real Time Polymerase Chain Reaction (RT-PCR) and immunohistochemistry detection, the capacities of intelligence of rats, the morphological character of hippocampus CA1 zone and the synapse associated protein and gene such as Growth Associated Protein (GAP-43) mRNA, Vascular Endothelial Growth Factor (VEGF) mRNA, Microtubule-associated Protein (MAP)-2, Synaptophysin (SYP), Postsynaptic Density protein (PSD)-95 and Micro Vessel Density (MVD) were determined. Through one-way ANOVA the data was analyzed and when P<0.05 the result was considered significant. Results Compared to the Model Group, rats in the MDP Group achieved much better behavioral performance (P<0.05); more neurons and more synapses regenerated; the expression of SYP, PSD-95and MAP-2 up-regulated (P<0.05); The expressions of GAP-43 mRNA and VEGF mRNA in the Model Group were higher than those in the Sham operated Group (P<0.05), but they reached the highest in the MDP Group (P<0.05); The count of MVD in the Sham operated Group is the lowest, it is higher in the MDP Group and it reaches highest in the Model Group (P<0.05). Conclusions Some key genes promoting neuroplasticity such as GAP-43 mRNA and VEGF mRNA remarkably up-regulated in CCH, they only boost angiogenesis but fail to facilitate neurogenesis and synaptogenesis in CCH. However, accompanied by furtherly up-regulation of these two key genes, MDP obviously improves neurogenesis, synaptogenesis and temperate angiogenesis in CCH which may be underlying its good efficacy.
Collapse
Affiliation(s)
- H.B. Li
- Emergency Department of the First People's Hospital of Guiyang, Guiyang, Guizhou Province, People's Republic of China
| | - W.B. Liang
- Surgery Department of Wudong Hospital of Wuhan City. Wuhan, Hubei Province, People's Republic of China
- Corresponding author.
| | - L. Zhou
- Emergency Department of the First People's Hospital of Guiyang, Guiyang, Guizhou Province, People's Republic of China
| |
Collapse
|
47
|
Jadavji NM, Mosnier H, Kelly E, Lawrence K, Cruickshank S, Stacey S, McCall A, Dhatt S, Arning E, Bottiglieri T, Smith PD. One-carbon metabolism supplementation improves outcome after stroke in aged male MTHFR-deficient mice. Neurobiol Dis 2019; 132:104613. [DOI: 10.1016/j.nbd.2019.104613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/01/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022] Open
|
48
|
Batty NJ, Torres-Espín A, Vavrek R, Raposo P, Fouad K. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Exp Neurol 2019; 324:113136. [PMID: 31786212 DOI: 10.1016/j.expneurol.2019.113136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abel Torres-Espín
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
49
|
PKCγ promotes axonal remodeling in the cortico-spinal tract via GSK3β/β-catenin signaling after traumatic brain injury. Sci Rep 2019; 9:17078. [PMID: 31745212 PMCID: PMC6863826 DOI: 10.1038/s41598-019-53225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability. Enhancing the midline-crossing of the contralateral corticospinal tract (CST) to the denervated side of spinal cord facilitates functional recovery after TBI. Activation of the gamma isoform of PKC (PKCγ) in contralateral CST implicates its roles in promoting CST remodeling after TBI. In this study, we deployed loss and gain of function strategies in N2a cells and primary cortical neurons in vitro, and demonstrated that PKCγ is not only important but necessary for neuronal differentiation, neurite outgrowth and axonal branching but not for axonal extension. Mechanically, through the phosphorylation of GSK3β, PKCγ stabilizes the expression of cytosolic β-catenin and increase GAP43 expression, thus promoting axonal outgrowth. Further, rAAV2/9-mediated delivery of constitutive PKCγ in the corticospinal tract after unilateral TBI in vivo additionally showed that specifically delivery of active PKCγ mutant to cortical neuron promotes midline crossing of corticospinal fibers from the uninjured side to the denervated cervical spinal cord. This PKCγ-mediated injury response promoted sensorimotor functional recovery. In conclusion, PKCγ mediates stability of β-catenin through the phosphorylation of GSK3β to facilitate neuronal differentiation, neurite outgrowth and axonal branching, and PKCγ maybe a novel therapeutic target for physiological and functional recovery after TBI.
Collapse
|
50
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|