1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. Proc Natl Acad Sci U S A 2024; 121:e2411459121. [PMID: 39374383 PMCID: PMC11494333 DOI: 10.1073/pnas.2411459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that for declarative memories, medial temporal lobe (MTL) structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that for sensorimotor memories, the cerebellum may play an analogous role. Here, we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15 to 20 s and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 s or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically worsens with memory window duration over shorter memory windows (<12 s) and near-complete impairment of memory maintenance over longer memory windows (>25 s). This dissociation uncovers a unique role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the MTL for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both the trial-to-trial differences identified in this study and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability.
Collapse
Affiliation(s)
- Alkis M. Hadjiosif
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Tricia L. Gibo
- Philips Medical Systems, Best, Noord-Brabant5684, The Netherlands
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maurice A. Smith
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Bhasin BJ, Raymond JL, Goldman MS. Synaptic weight dynamics underlying memory consolidation: Implications for learning rules, circuit organization, and circuit function. Proc Natl Acad Sci U S A 2024; 121:e2406010121. [PMID: 39365821 PMCID: PMC11474072 DOI: 10.1073/pnas.2406010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site, neural activity in the early-learning area must be reset to its baseline activity. We provide two biologically plausible implementations for this reset that propose functional roles in stabilizing consolidation for core elements of the cerebellar circuit.
Collapse
Affiliation(s)
- Brandon J. Bhasin
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Center for Neuroscience, University of California, Davis, CA95616
| | - Jennifer L. Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA94305
| | - Mark S. Goldman
- Center for Neuroscience, University of California, Davis, CA95616
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA95616
- Department of Ophthalmology and Vision Science, University of California, Davis, CA95616
| |
Collapse
|
4
|
Bhasin BJ, Raymond JL, Goldman MS. Synaptic weight dynamics underlying memory consolidation: implications for learning rules, circuit organization, and circuit function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586036. [PMID: 38585936 PMCID: PMC10996481 DOI: 10.1101/2024.03.20.586036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site, neural activity in the early-learning area must be reset to its baseline activity. We propose two biologically plausible implementations for this reset that suggest novel roles for core elements of the cerebellar circuit. Significance Statement How are memories transformed over time? We propose a simple organizing principle for how long term memories are moved from an initial to a final site of storage. We show that successful transfer occurs when the late site of memory storage is endowed with synaptic plasticity rules that stably accumulate changes in activity occurring at the early site of memory storage. We instantiate this principle in a simple computational model that is representative of brain circuits underlying a variety of behaviors. The model suggests how a neural circuit can store new memories while preserving core features of older ones, and suggests novel roles for core elements of the cerebellar circuit.
Collapse
|
5
|
Shakhawat AMD, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. eLife 2024; 12:RP92543. [PMID: 38953282 PMCID: PMC11219043 DOI: 10.7554/elife.92543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin MD Shakhawat
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | | - Adam B Nance
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Jaydev Bhateja
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | |
Collapse
|
6
|
Gu P, Ding Y, Ruchi M, Feng J, Fan H, Fayyaz A, Geng X. Post-stroke dizziness, depression and anxiety. Neurol Res 2024; 46:466-478. [PMID: 38488118 DOI: 10.1080/01616412.2024.2328490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/03/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Vestibular and psychiatric disorders are very closely related. Previous research shows that the discomfort and dysfunction caused by dizziness in patients can affect psychological processes, leading to anxiety and depression, and the irritation of anxiety and depression can aggravate the discomfort of dizziness. But the causal relationship between dizziness in the recovery period of stroke and Post-stroke depression (PSD) / Post-stroke anxiety (PSA) is not clear. Identifying the causal relationship between them can enable us to conduct more targeted treatments. METHODS We review the epidemiology and relationship of dizziness, anxiety, and depression, along with the related neuroanatomical basis. We also review the pathophysiology of dizziness after stroke, vestibular function of patients experiencing dizziness, and the causes and mechanisms of PSD and PSA. We attempt to explore the possible relationship between post-stroke dizziness and PSD and PSA. CONCLUSION The treatment approach for post-stroke dizziness depends on its underlying cause. If the dizziness is a result of PSD and PSA, addressing these psychological factors may alleviate the dizziness. This can be achieved through targeted treatments for PSD and PSA, such as psychotherapy, antidepressants, or anxiolytics, which could indirectly improve dizziness symptoms. Conversely, if PSA and PSD are secondary to vestibular dysfunction caused by stroke, a thorough vestibular function assessment is crucial. Identifying the extent of vestibular impairment allows for tailored interventions. These could include vestibular rehabilitation therapy and medication aimed at vestibular restoration. By improving vestibular function, secondary symptoms like anxiety and depression may also be mitigated.
Collapse
Affiliation(s)
- Pan Gu
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mangal Ruchi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Feng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huimin Fan
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Aminan Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
8
|
Sinha AS, Shibata S, Takamatsu Y, Akita T, Fukuda A, Mima T. Static Magnetic Field Stimulation Enhances Shunting Inhibition via a SLC26 Family Cl - Channel, Inducing Intrinsic Plasticity. J Neurosci 2024; 44:e1324222024. [PMID: 38302440 PMCID: PMC10904086 DOI: 10.1523/jneurosci.1324-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Magnetic fields are being used for detailed anatomical and functional examination of the human brain. In addition, evidence for their efficacy in treatment of brain dysfunctions is accumulating. Transcranial static magnetic field stimulation (tSMS) is a recently developed technique for noninvasively modifying brain functions. In tSMS, a strong and small magnet when placed over the skull can temporarily suppress brain functions. Its modulatory effects persist beyond the time of stimulation. However, the neurophysiological mechanisms underlying tSMS-induced plasticity remain unclear. Here, using acute motor cortical slice preparation obtained from male C57BL/6N mice, we show that tSMS alters the intrinsic electrical properties of neurons by altering the activity of chloride (Cl-) channels in neurons. Exposure of mouse pyramidal neurons to a static magnetic field (SMF) at a strength similar to human tSMS temporarily decreased their excitability and induced transient neuronal swelling. The effects of SMF were blocked by DIDS and GlyH-101, but not by NPPB, consistent with the pharmacological profile of SLC26A11, a transporter protein with Cl- channel activity. Whole-cell voltage-clamp recordings of the GlyH-101-sensitive Cl- current component showed significant enhancement of the component at both subthreshold and depolarized membrane potentials after SMF application, resulting in shunting inhibition and reduced repetitive action potential (AP) firing at the respective potentials. Thus, this study provides the first neurophysiological evidence for the inhibitory effect of tSMS on neuronal activity and advances our mechanistic understanding of noninvasive human neuromodulation.
Collapse
Affiliation(s)
- Adya Saran Sinha
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu-shi 431-3192, Shizuoka, Japan
| | - Sumiya Shibata
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata-shi 950-3198, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-shi 950-3198, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo-shi 060-0812, Hokkaido, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu-shi 431-3192, Shizuoka, Japan
- Division of Health Science, Department of Basic Nursing, Hamamatsu University School of Medicine, Hamamatsu-shi 431-3192, Shizuoka, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu-shi 431-3192, Shizuoka, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto-shi 603-8577, Kyoto, Japan
| |
Collapse
|
9
|
Lee J, Kim SH, Jang DC, Jang M, Bak MS, Shim HG, Lee YS, Kim SJ. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory. Mol Psychiatry 2024; 29:247-256. [PMID: 38017229 DOI: 10.1038/s41380-023-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.
Collapse
Affiliation(s)
- Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
10
|
Schenberg L, Palou A, Simon F, Bonnard T, Barton CE, Fricker D, Tagliabue M, Llorens J, Beraneck M. Multisensory gaze stabilization in response to subchronic alteration of vestibular type I hair cells. eLife 2023; 12:RP88819. [PMID: 38019267 PMCID: PMC10686621 DOI: 10.7554/elife.88819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.
Collapse
Affiliation(s)
- Louise Schenberg
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de BarcelonaBarcelonaSpain
- Institut de Neurociènces, Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)l’Hospitalet de LlobregatSpain
| | - François Simon
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
- Department of Paediatric Otolaryngology, Hôpital Necker-Enfants MaladesParisFrance
| | - Tess Bonnard
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Charles-Elliot Barton
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Desdemona Fricker
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Michele Tagliabue
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de BarcelonaBarcelonaSpain
- Institut de Neurociènces, Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)l’Hospitalet de LlobregatSpain
| | - Mathieu Beraneck
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| |
Collapse
|
11
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Li L, Jiang J, Wu B, Lin J, Roberts N, Sweeney JA, Gong Q, Jia Z. Distinct gray matter abnormalities in children/adolescents and adults with history of childhood maltreatment. Neurosci Biobehav Rev 2023; 153:105376. [PMID: 37643682 DOI: 10.1016/j.neubiorev.2023.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Gray matter (GM) abnormalities have been reported in both adults and children/adolescents with histories of childhood maltreatment (CM). A comparison of effects in youth and adulthood may be informative regarding life-span effects of CM. Voxel-wise meta-analyses of whole-brain voxel-based morphometry studies were conducted in all datasets and age-based subgroups respectively, followed by a quantitative comparison of the subgroups. Thirty VBM studies (31 datasets) were included. The pooled meta-analysis revealed increased GM in left supplementary motor area, and reduced GM in bilateral cingulate/paracingulate gyri, left occipital lobe, and right middle frontal gyrus in maltreated individuals compared to the controls. Maltreatment-exposed youth showed less GM in the cerebellum, and greater GM in bilateral middle cingulate/paracingulate gyri and bilateral visual cortex than maltreated adults. Opposite GM alterations in bilateral middle cingulate/paracingulate gyri were found in maltreatment-exposed adults (decreased) and children/adolescents (increased). Our findings demonstrate different patterns of GM changes in youth closer to maltreatment events than those seen later in life, suggesting detrimental effects of CM on the developmental trajectory of brain structure.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jing Jiang
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Radiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Jang DC, Chung G, Kim SK, Kim SJ. Dynamic alteration of intrinsic properties of the cerebellar Purkinje cell during the motor memory consolidation. Mol Brain 2023; 16:58. [PMID: 37430311 DOI: 10.1186/s13041-023-01043-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.
Collapse
Affiliation(s)
- Dong Cheol Jang
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
14
|
Pham NC, Kim YG, Kim SJ, Kim CH. Effect of a differential training paradigm with varying frequencies and amplitudes on adaptation of vestibulo-ocular reflex in mice. Exp Brain Res 2023; 241:1299-1308. [PMID: 37000203 DOI: 10.1007/s00221-023-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The vestibulo-ocular reflex (VOR) functions to maintain eye stability during head movement, and VOR gain can be dynamically increased or decreased by gain-up or gain-down adaptation. In this study, we investigated the impact of a differential training paradigm with varying frequencies and amplitudes on the level of VOR adaptation in mice. Training for gain-up (out of phase) or gain-down (in phase) VOR adaptation was applied for 60 min using two protocols: (1) oscillation of a drum and turntable with fixed frequency and differing amplitudes (0.5 Hz/2.5°, 0.5 Hz/5° and 0.5 Hz/10°). (2) Oscillation of a drum and turntable with fixed amplitude and a differing frequency (0.25 Hz/5°, 0.5 Hz/5° and 1 Hz/5°). VOR adaptation occurred distinctively in gain-up and gain-down learning. In gain-up VOR adaptation, the learned increase in VOR gain was greatest when trained with the same frequency and amplitude as the test stimulation, and VOR gain decreased after gain-up training with too high a frequency or amplitude. In gain-down VOR adaptation, the decrease in VOR gain increased as the training frequency or amplitude increased. These results suggest that different mechanisms are, at least in part, involved in gain-up and gain-down VOR adaptation.
Collapse
Affiliation(s)
- Ngoc Chien Pham
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
15
|
Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev 2022; 311:187-204. [PMID: 35656941 PMCID: PMC10120860 DOI: 10.1111/imr.13092] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023]
Abstract
The IFN-γ/STAT1 immune signaling pathway impacts many homeostatic and pathological aspects of neurons, beyond its canonical role in controlling intracellular pathogens. Well known for its potent pro-inflammatory and anti-viral functions in the periphery, the IFN-γ/STAT1 pathway is rapidly activated then deactivated to prevent excessive inflammation; however, neurons utilize unique IFN-γ/STAT1 activation patterns, which may contribute to the non-canonical neuron-specific downstream effects. Though it is now well-established that the immune system interacts and supports the CNS in health and disease, many aspects regarding IFN-γ production in the CNS and how neurons respond to IFN-γ are unclear. Additionally, it is not well understood how the diversity of the IFN-γ/STAT1 pathway is regulated in neurons to control homeostatic functions, support immune surveillance, and prevent pathologies. In this review, we discuss the neuron-specific mechanisms and kinetics of IFN-γ/STAT1 activation, the potential sources and entry sites of IFN-γ in the CNS, and the diverse set of homeostatic and pathological effects IFN-γ/STAT1 signaling in neurons has on CNS health and disease. We will also highlight the different contexts and conditions under which IFN-γ-induced STAT1 activation has been studied in neurons, and how various factors might contribute to the vast array of downstream effects observed.
Collapse
Affiliation(s)
- Danielle N. Clark
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Lauren R. Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anthony J. Filiano
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Zhang S, Liu D, Tian E, Wang J, Guo Z, Kong W. Central vestibular dysfunction: don't forget vestibular rehabilitation. Expert Rev Neurother 2022; 22:669-680. [PMID: 35912850 DOI: 10.1080/14737175.2022.2106129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vestibular rehabilitation (VR) is now a subject of active studies and has been shown to be effective for multiple vestibular disorders, peripheral or central. VR is a physical therapy that helps train the central nervous system to compensate for vestibular dysfunction. There is moderate to strong evidence that VR is safe and effective for the management of peripheral vestibular dysfunction. Nonetheless, the studies on how VR works on central vestibular dysfunction remains scanty. AREAS COVERED This article addressed the rehabilitation strategies and possible mechanisms, including how central vestibular function might improve upon rehabilitation. In addition, it provides some examples concerning the effect of VR on central vestibular dysfunction. EXPERT OPINION VR works on the vestibular system through repetition of specific physical exercises that activate central neuroplastic mechanisms to achieve adaptive compensation of the impaired functions. VR has become a mainstay in the management of patients with dizziness and balance dysfunction. Individualized VR programs are a safe and effective treatment option for a large percentage of patients with central vestibular disease reporting imbalance and dizziness. Exploration of various treatment strategies and possible mechanisms will help develop the best and personalized VR treatment for patients with central vestibular dysfunction.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
17
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
18
|
Plasticity and repair of the vestibulo-ocular reflex. PROGRESS IN BRAIN RESEARCH 2022; 267:183-214. [PMID: 35074054 DOI: 10.1016/bs.pbr.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is self-evident, once one thinks about it, that the vestibulo-ocular reflex must have caretaker systems that keep it operating correctly over the span of a lifetime. When a movement is not correct (e.g., in position, speed, direction) it is said to be dysmetric. For the vestibulo-ocular reflex (VOR), if eye velocity is not equal and opposite to head velocity within reasonable limits, one has vestibulo-ocular dysmetria. Consequently, the function of the caretaker systems is to eliminate vestibulo-ocular dysmetria. These systems are first required to act just after birth when the gain of the reflex is usually not normal, and must be initially calibrated; and then maintained as the animal grows older; and then in adult life an important function of the caretaker systems is the compensation required after damage. The mechanisms of this caretaker system and ensuring motor learning is the focus of this chapter.
Collapse
|
19
|
Computational epidemiology study of homeostatic compensation during sensorimotor aging. Neural Netw 2021; 146:316-333. [PMID: 34923219 DOI: 10.1016/j.neunet.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/26/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The vestibulo-ocular reflex (VOR) stabilizes vision during head motion. Age-related changes of vestibular neuroanatomical properties predict a linear decay of VOR function. Nonetheless, human epidemiological data show a stable VOR function across the life span. In this study, we model cerebellum-dependent VOR adaptation to relate structural and functional changes throughout aging. We consider three neurosynaptic factors that may codetermine VOR adaptation during aging: the electrical coupling of inferior olive neurons, the long-term spike timing-dependent plasticity at parallel fiber - Purkinje cell synapses and mossy fiber - medial vestibular nuclei synapses, and the intrinsic plasticity of Purkinje cell synapses Our cross-sectional aging analyses suggest that long-term plasticity acts as a global homeostatic mechanism that underpins the stable temporal profile of VOR function. The results also suggest that the intrinsic plasticity of Purkinje cell synapses operates as a local homeostatic mechanism that further sustains the VOR at older ages. Importantly, the computational epidemiology approach presented in this study allows discrepancies among human cross-sectional studies to be understood in terms of interindividual variability in older individuals. Finally, our longitudinal aging simulations show that the amount of residual fibers coding for the peak and trough of the VOR cycle constitutes a predictive hallmark of VOR trajectories over a lifetime.
Collapse
|
20
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
21
|
Ramesh G, Jarzembowski L, Schwarz Y, Poth V, Konrad M, Knapp ML, Schwär G, Lauer AA, Grimm MOW, Alansary D, Bruns D, Niemeyer BA. A short isoform of STIM1 confers frequency-dependent synaptic enhancement. Cell Rep 2021; 34:108844. [PMID: 33730587 DOI: 10.1016/j.celrep.2021.108844] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Store-operated Ca2+-entry (SOCE) regulates basal and receptor-triggered Ca2+ signaling with STIM proteins sensing the endoplasmic reticulum (ER) Ca2+ content and triggering Ca2+ entry by gating Orai channels. Although crucial for immune cells, STIM1's role in neuronal Ca2+ homeostasis is controversial. Here, we characterize a splice variant, STIM1B, which shows exclusive neuronal expression and protein content surpassing conventional STIM1 in cerebellum and of significant abundance in other brain regions. STIM1B expression results in a truncated protein with slower kinetics of ER-plasma membrane (PM) cluster formation and ICRAC, as well as reduced inactivation. In primary wild-type neurons, STIM1B is targeted by its spliced-in domain B to presynaptic sites where it converts classic synaptic depression into Ca2+- and Orai-dependent short-term synaptic enhancement (STE) at high-frequency stimulation (HFS). In conjunction with altered STIM1 splicing in human Alzheimer disease, our findings highlight STIM1 splicing as an important regulator of neuronal calcium homeostasis and of synaptic plasticity.
Collapse
Affiliation(s)
- Girish Ramesh
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | | | - Yvonne Schwarz
- Molecular Neurophysiology, Saarland University, 66421 Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Maik Konrad
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Mona L Knapp
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Bld. 48, Saarland University, 66421 Homburg, Germany
| | - Anna A Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany
| | - Marcus O W Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, Saarland University, 66421 Homburg, Germany
| | | |
Collapse
|
22
|
De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci 2021; 24:160-167. [PMID: 33288911 DOI: 10.1038/s41593-020-00754-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
The past several years have brought revelations and paradigm shifts in research on the cerebellum. Historically viewed as a simple sensorimotor controller with homogeneous architecture, the cerebellum is increasingly implicated in cognitive functions. It possesses an impressive diversity of molecular, cellular and circuit mechanisms, embedded in a dynamic, recurrent circuit architecture. Recent insights about the diversity and dynamism of the cerebellum provide a roadmap for the next decade of cerebellar research, challenging some old concepts, reinvigorating others and defining major new research directions.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences (KNAW), Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Solanki D, Rezaee Z, Dutta A, Lahiri U. Investigating the feasibility of cerebellar transcranial direct current stimulation to facilitate post-stroke overground gait performance in chronic stroke: a partial least-squares regression approach. J Neuroeng Rehabil 2021; 18:18. [PMID: 33509192 PMCID: PMC7842063 DOI: 10.1186/s12984-021-00817-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Investigation of lobule-specific electric field effects of cerebellar transcranial direct current stimulation (ctDCS) on overground gait performance has not been performed, so this study aimed to investigate the feasibility of two lobule-specific bilateral ctDCS montages to facilitate overground walking in chronic stroke. Methods Ten chronic post-stroke male subjects participated in this repeated-measure single-blind crossover study, where we evaluated the single-session effects of two bilateral ctDCS montages that applied 2 mA via 3.14 cm2 disc electrodes for 15 min targeting (a) dentate nuclei (also, anterior and posterior lobes), and (b) lower-limb representations (lobules VIIb-IX). A two-sided Wilcoxon rank-sum test was performed at a 5% significance level on the percent normalized change measures in the overground gait performance. Partial least squares regression (PLSR) analysis was performed on the quantitative gait parameters as response variables to the mean lobular electric field strength as the predictors. Clinical assessments were performed with the Ten-Meter walk test (TMWT), Timed Up & Go (TUG), and the Berg Balance Scale based on minimal clinically important differences (MCID). Results The ctDCS montage specific effect was found significant using a two-sided Wilcoxon rank-sum test at a 5% significance level for 'Step Time Affected Leg' (p = 0.0257) and '%Stance Time Unaffected Leg' (p = 0.0376). The changes in the quantitative gait parameters were found to be correlated to the mean electric field strength in the lobules based on PLSR analysis (R2 statistic = 0.6574). Here, the mean electric field strength at the cerebellar lobules, Vermis VIIIb, Ipsi-lesional IX, Vermis IX, Ipsi-lesional X, had the most loading and were positively related to the 'Step Time Affected Leg' and '%Stance Time Unaffected Leg,' and negatively related to the '%Swing Time Unaffected Leg,' '%Single Support Time Affected Leg.' Clinical assessments found similar improvement in the TMWT (MCID: 0.10 m/s), TUG (MCID: 8 s), and BBS score (MCID: 12.5 points) for both the ctDCS montages. Conclusion Our feasibility study found an association between the lobular mean electric field strength and the changes in the quantitative gait parameters following a single ctDCS session in chronic stroke. Both the ctDCS montages improved the clinical outcome measures that should be investigated with a larger sample size for clinical validation. Trial registration: Being retrospectively registered.
Collapse
Affiliation(s)
- Dhaval Solanki
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Zeynab Rezaee
- Biomedical Engineering, University at Buffalo SUNY, New York, USA
| | - Anirban Dutta
- Biomedical Engineering, University at Buffalo SUNY, New York, USA.
| | - Uttama Lahiri
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
25
|
França de Barros F, Schenberg L, Tagliabue M, Beraneck M. Long term visuo-vestibular mismatch in freely behaving mice differentially affects gaze stabilizing reflexes. Sci Rep 2020; 10:20018. [PMID: 33208812 PMCID: PMC7674424 DOI: 10.1038/s41598-020-77026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
The vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) work synergistically to stabilize gaze in response to head movements. We previously demonstrated that a 14-day visuo-vestibular mismatch (VVM) protocol applied in freely behaving mice decreased the VOR gain. Here, we show for the first time that the OKR gain is also reduced and report on the recovery dynamics of both VOR and OKR after the end of the VVM protocol. Using sinusoidally-modulated stimulations, the decreases in VOR and OKR were found to be frequency-selective with larger reductions for frequencies < 0.5 Hz. Constant-velocity OKR stimulation tests demonstrated that the persistent components of the OKR were not modified while the transient, initial responses were. To identify the signals driving VOR and OKR reductions, we compared the responses of mice exposed to a high-contrast and no-contrast VVM. Despite being more robust in the high-contrast conditions, reductions were largely comparable and recovered with a similar time course. An analysis that directly compared VOR and OKR responses revealed that, alterations in the VOR were of significantly larger amplitude with significantly slower dynamics of recovery. Our findings are evidence for a frequency-selective influence of visual signals in the tuning of gaze stabilizing reflexes in normal mice.
Collapse
Affiliation(s)
- Filipa França de Barros
- Integrative Neuroscience and Cognition Center, CNRS, Université de Paris, 75006, Paris, France.
| | - Louise Schenberg
- Integrative Neuroscience and Cognition Center, CNRS, Université de Paris, 75006, Paris, France
| | - Michele Tagliabue
- Integrative Neuroscience and Cognition Center, CNRS, Université de Paris, 75006, Paris, France
| | - Mathieu Beraneck
- Integrative Neuroscience and Cognition Center, CNRS, Université de Paris, 75006, Paris, France.
| |
Collapse
|
26
|
Decreased intrinsic excitability of cerebellar Purkinje cells following optokinetic learning in mice. Mol Brain 2020; 13:136. [PMID: 33028375 PMCID: PMC7542746 DOI: 10.1186/s13041-020-00678-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 01/28/2023] Open
Abstract
The optokinetic response (OKR), a reflexive eye movement evoked by a motion of the visual field, is known to adapt its strength to cope with an environmental change throughout life, which is a type of cerebellum-dependent learning. Previous studies suggested that OKR learning induces changes in in-vivo spiking activity and synaptic transmission of the cerebellar Purkinje cell (PC). Despite the recent emphasis on the importance of the intrinsic excitability related to learning and memory, the direct correlation between the intrinsic excitability of PCs and OKR learning has not been tested. In the present study, by utilizing the whole-cell patch-clamp recording, we compared the responses of cerebellar PCs to somatic current injection between the control and learned groups. We found that the neurons from the learned group showed a significant reduction in mean firing rate compared with neurons in the control group. In the analysis of single action potential (AP), we revealed that the rheobase current for the generation of single AP was increased by OKR learning, while AP threshold, AP amplitude, and afterhyperpolarization amplitude were not altered. Taken together, our result suggests that the decrease in the intrinsic excitability was induced in the cerebellar PC of learned group by an increase in the current threshold for generating AP.
Collapse
|
27
|
Herzfeld DJ, Hall NJ, Tringides M, Lisberger SG. Principles of operation of a cerebellar learning circuit. eLife 2020; 9:e55217. [PMID: 32352914 PMCID: PMC7255800 DOI: 10.7554/elife.55217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
We provide behavioral evidence using monkey smooth pursuit eye movements for four principles of cerebellar learning. Using a circuit-level model of the cerebellum, we link behavioral data to learning's neural implementation. The four principles are: (1) early, fast, acquisition driven by climbing fiber inputs to the cerebellar cortex, with poor retention; (2) learned responses of Purkinje cells guide transfer of learning from the cerebellar cortex to the deep cerebellar nucleus, with excellent retention; (3) functionally different neural signals are subject to learning in the cerebellar cortex versus the deep cerebellar nuclei; and (4) negative feedback from the cerebellum to the inferior olive reduces the magnitude of the teaching signal in climbing fibers and limits learning. Our circuit-level model, based on these four principles, explains behavioral data obtained by strategically manipulating the signals responsible for acquisition and recall of direction learning in smooth pursuit eye movements across multiple timescales.
Collapse
Affiliation(s)
- David J Herzfeld
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Nathan J Hall
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Marios Tringides
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|