1
|
Mora N, Slot EJ, Lewandowski V, Menafra M, Mallik M, van Lith P, Sijlmans C, van Bakel N, Ignatova Z, Storkebaum E. Glycyl-tRNA sequestration is a unifying mechanism underlying GARS1-associated peripheral neuropathy. Nucleic Acids Res 2025; 53:gkaf201. [PMID: 40119731 PMCID: PMC11928938 DOI: 10.1093/nar/gkaf201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Dominantly inherited mutations in eight cytosolic aminoacyl-tRNA synthetase genes cause hereditary motor and sensory neuropathy, characterized by degeneration of peripheral motor and sensory axons. We previously identified a pathogenic gain-of-toxic function mechanism underlying peripheral neuropathy (PN) caused by heterozygous mutations in the GARS1 gene, encoding glycyl-tRNA synthetase (GlyRS). Specifically, PN-mutant GlyRS variants sequester tRNAGly, which depletes the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly available to the ribosome and consequently ribosome stalling at glycine codons. Given that GlyRS functions as a homodimer, a subset of PN-GlyRS mutations might alternatively cause peripheral neuropathy through a dominant negative loss-of-function mechanism. To explore this possibility, we here generated three novel PN-GlyRS Drosophila models expressing human PN-GlyRS (hGlyRS) variants that do not alter the overall GlyRS protein charge (S211F and H418R) or the single reported PN-GlyRS variant that renders the GlyRS protein charge more negative (K456Q). High-level expression of hGlyRS-K456Q did not induce peripheral neuropathy and the K456Q variant does not affect aminoacylation activity, suggesting that K456Q is not a pathogenic mutation. Expression of hGlyRS-S211F or hGlyRS-H418R in Drosophila did induce peripheral neuropathy and de novo protein synthesis defects. Genetic and biochemical evidence indicates that these phenotypes were attributable to tRNAGly sequestration rather than a dominant negative mechanism. Our data identify tRNAGly sequestration as a unifying pathogenic mechanism underlying PN-GlyRS. Thus, elevating tRNAGly levels may constitute a therapeutic approach for all PN-GlyRS patients, irrespective of their disease-causing mutation.
Collapse
Affiliation(s)
- Natalia Mora
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Erik F J Slot
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Vanessa Lewandowski
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Maria P Menafra
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Pascal van Lith
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Céline Sijlmans
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Nick van Bakel
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Zoya Ignatova
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| |
Collapse
|
2
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
3
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Cui Q, Bi H, Lv Z, Wu Q, Hua J, Gu B, Huo C, Tang M, Chen Y, Chen C, Chen S, Zhang X, Wu Z, Lao Z, Sheng N, Shen C, Zhang Y, Wu ZY, Jin Z, Yang P, Liu H, Li J, Bai G. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 2023; 186:803-820.e25. [PMID: 36738734 DOI: 10.1016/j.cell.2022.12.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Bi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhanyun Lv
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qigui Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Huo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingmin Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yanqin Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chongjiu Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinrui Zhang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhangrui Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengkai Lao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming 650201, China
| | - Chengyong Shen
- Department of Neurobiology, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhi-Ying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Andreev DE, Niepmann M, Shatsky IN. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int J Mol Sci 2022; 23:ijms232415497. [PMID: 36555135 PMCID: PMC9778869 DOI: 10.3390/ijms232415497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.
Collapse
Affiliation(s)
- Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Forrest ME, Meyer AP, Laureano Figueroa SM, Antonellis A. A missense, loss-of-function YARS1 variant in a patient with proximal-predominant motor neuropathy. Cold Spring Harb Mol Case Stud 2022; 8:a006246. [PMID: 36307205 PMCID: PMC9808560 DOI: 10.1101/mcs.a006246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes with a critical role in protein synthesis: charging tRNA molecules with cognate amino acids. Heterozygosity for variants in five genes (AARS1, GARS1, HARS1, WARS1, and YARS1) encoding cytoplasmic, dimeric ARSs have been associated with autosomal dominant neurological phenotypes, including axonal Charcot-Marie-Tooth disease (CMT). Missense variants in the catalytic domain of YARS1 were previously linked to dominant intermediate CMT type C (DI-CMTC). Here, we report a patient with a missense variant of unknown significance predicted to modify residue 308 in the anticodon binding domain of YARS1 (p.Asp308Tyr). Interestingly, p.Asp308Tyr is associated with proximal-predominant motor neuropathy, which has not been reported in patients with pathogenic YARS1 variants. We demonstrate that this allele causes a loss-of-function effect in yeast complementation assays when modeled in YARS1 and the yeast ortholog TYS1; structural modeling of this variant further supports a loss-of-function effect. Taken together, this study raises the possibility that certain YARS1 variants cause proximal-prominent motor neuropathy and indicates that patients with this phenotype should be screened for genetic lesions in YARS1.
Collapse
Affiliation(s)
- Megan E Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Meyer AP, Forrest ME, Nicolau S, Wiszniewski W, Bland MP, Tsao CY, Antonellis A, Abreu NJ. Pathogenic missense variants altering codon 336 of GARS1 lead to divergent dominant phenotypes. Hum Mutat 2022; 43:869-876. [PMID: 35332613 PMCID: PMC9247498 DOI: 10.1002/humu.24372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/03/2023]
Abstract
Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.
Collapse
Affiliation(s)
- Alayne P. Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Megan E. Forrest
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Stefan Nicolau
- The Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wojciech Wiszniewski
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Mary Pat Bland
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Chang-Yong Tsao
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Child Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Neurology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Nicolas J. Abreu
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Division of Child Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
8
|
Jeong HS, Kim HJ, Kim DH, Chung KW, Choi BO, Lee JE. Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders. Mol Cells 2022; 45:231-242. [PMID: 35356895 PMCID: PMC9001154 DOI: 10.14348/molcells.2022.5005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/25/2021] [Indexed: 11/27/2022] Open
Abstract
The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.
Collapse
Affiliation(s)
- Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
9
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
10
|
Mendonsa S, von Kuegelgen N, Bujanic L, Chekulaeva M. Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Res 2021; 49:10007-10017. [PMID: 34403468 PMCID: PMC8464049 DOI: 10.1093/nar/gkab730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.
Collapse
Affiliation(s)
- Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Nicolai von Kuegelgen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Lucija Bujanic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
11
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
13
|
Zhao Y, Xie L, Shen C, Qi Q, Qin Y, Xing J, Zhou D, Qi Y, Yan Z, Lin X, Dai R, Lin J, Yu W. SIRT2-knockdown rescues GARS-induced Charcot-Marie-Tooth neuropathy. Aging Cell 2021; 20:e13391. [PMID: 34053152 PMCID: PMC8208790 DOI: 10.1111/acel.13391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Charcot‐Marie‐Tooth disease is the most common inherited peripheral neuropathy. Dominant mutations in the glycyl‐tRNA synthetase (GARS) gene cause peripheral nerve degeneration and lead to CMT disease type 2D. The underlying mechanisms of mutations in GARS (GARSCMT2D) in disease pathogenesis are not fully understood. In this study, we report that wild‐type GARS binds the NAD+‐dependent deacetylase SIRT2 and inhibits its deacetylation activity, resulting in the acetylated α‐tubulin, the major substrate of SIRT2. The catalytic domain of GARS tightly interacts with SIRT2, which is the most CMT2D mutation localization. However, CMT2D mutations in GARS cannot inhibit SIRT2 deacetylation, which leads to a decrease of acetylated α‐tubulin. Genetic reduction of SIRT2 in the Drosophila model rescues the GARS‐induced axonal CMT neuropathy and extends the life span. Our findings demonstrate the pathogenic role of SIRT2‐dependent α‐tubulin deacetylation in mutant GARS‐induced neuropathies and provide new perspectives for targeting SIRT2 as a potential therapy against hereditary axonopathies.
Collapse
Affiliation(s)
- Yingying Zhao
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Liangguo Xie
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Chao Shen
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Qian Qi
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Yicai Qin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Juan Xing
- School of Basic Medical Science Southwest Medical University Luzhou China
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Zhiqiang Yan
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Rongyang Dai
- School of Basic Medical Science Southwest Medical University Luzhou China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
- School of Basic Medical Science Southwest Medical University Luzhou China
| |
Collapse
|
14
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
15
|
Sun L, Wei N, Kuhle B, Blocquel D, Novick S, Matuszek Z, Zhou H, He W, Zhang J, Weber T, Horvath R, Latour P, Pan T, Schimmel P, Griffin PR, Yang XL. CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proc Natl Acad Sci U S A 2021; 118:e2012898118. [PMID: 33753480 PMCID: PMC8020758 DOI: 10.1073/pnas.2012898118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
Affiliation(s)
- Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David Blocquel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Scott Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Zaneta Matuszek
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Huihao Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Thomas Weber
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Philippe Latour
- Biology and Pathology Department, Hospices Civils, 68500 Lyon, France
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
16
|
Structural analyses of a human lysyl-tRNA synthetase mutant associated with autosomal recessive nonsyndromic hearing impairment. Biochem Biophys Res Commun 2021; 554:83-88. [PMID: 33784510 DOI: 10.1016/j.bbrc.2021.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.
Collapse
|
17
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
18
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
19
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Forrester N, Rattihalli R, Horvath R, Maggi L, Manzur A, Fuller G, Gutowski N, Rankin J, Dick D, Buxton C, Greenslade M, Majumdar A. Clinical and Genetic Features in a Series of Eight Unrelated Patients with Neuropathy Due to Glycyl-tRNA Synthetase (GARS) Variants. J Neuromuscul Dis 2020; 7:137-143. [PMID: 31985473 DOI: 10.3233/jnd-200472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathogenic variants in the Glycyl-tRNA synthetase gene cause the allelic disorders Charcot-Marie-Tooth disease type 2D and distal hereditary motor neuropathy type V. We describe clinical features in 8 unrelated patients found to have Glycyl-tRNA synthetase variants by Next Generation Sequencing. In addition to upper limb predominant symptoms, other presentations included failure to thrive, feeding difficulties and lower limb dominant symptoms. Variability in the age at testing ranged from 14 months to 59 years. The youngest being symptomatic from 3 months and ventilator-dependent. Sequence variants were reported as pathogenic, p.(Glu125Lys), p.(His472Arg); likely pathogenic, p.(His216Arg), p.(Gly327Arg), p.(Lys510Gln), p.(Met555Val); and of uncertain significance, p.(Arg27Pro). Our case series describes novel Glycyl-tRNA synthetase variants and demonstrates the clinical utility of Next Generation Sequencing testing for patients with hereditary neuropathy. Identification of novel variants by Next Generation Sequencing illustrates that there exists a wide spectrum of clinical features and supports the newer simplified classification of neuropathies.
Collapse
Affiliation(s)
| | - Rohini Rattihalli
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Adnan Manzur
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Geraint Fuller
- Gloucester Royal Infirmary, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - Nicholas Gutowski
- Peninsula Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Julia Rankin
- Peninsula Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - David Dick
- Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Mark Greenslade
- Bristol Genetics Laboratory, North Bristol Trust, Bristol, UK
| | | |
Collapse
|
21
|
Sleigh JN, Mech AM, Aktar T, Zhang Y, Schiavo G. Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Front Cell Neurosci 2020; 14:232. [PMID: 32848623 PMCID: PMC7431706 DOI: 10.3389/fncel.2020.00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: (1) sensory pathology is restricted to neurons innervating the hindlimbs; (2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; (3) in vitro axonal transport of signaling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and (4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - Aleksandra M. Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tahmina Aktar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yuxin Zhang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, United Kingdom
| |
Collapse
|
22
|
Morelli KH, Griffin LB, Pyne NK, Wallace LM, Fowler AM, Oprescu SN, Takase R, Wei N, Meyer-Schuman R, Mellacheruvu D, Kitzman JO, Kocen SG, Hines TJ, Spaulding EL, Lupski JR, Nesvizhskii A, Mancias P, Butler IJ, Yang XL, Hou YM, Antonellis A, Harper SQ, Burgess RW. Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models. J Clin Invest 2020; 129:5568-5583. [PMID: 31557132 DOI: 10.1172/jci130600] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.
Collapse
Affiliation(s)
- Kathryn H Morelli
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Laurie B Griffin
- Program in Cellular and Molecular Biology, and.,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nettie K Pyne
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephanie N Oprescu
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Dattatreya Mellacheruvu
- Department of Pathology, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Alexey Nesvizhskii
- Department of Pathology, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Pedro Mancias
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Ian J Butler
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony Antonellis
- Program in Cellular and Molecular Biology, and.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
23
|
Marcos AT, Martín‐Doncel E, Morejón‐García P, Marcos‐Alcalde I, Gómez‐Puertas P, Segura‐Puimedon M, Armengol L, Navarro‐Pando JM, Lazo PA. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol 2020; 7:808-818. [PMID: 32365420 PMCID: PMC7261760 DOI: 10.1002/acn3.51050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. PATIENT AND METHODS In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. RESULTS A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. CONCLUSION The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
| | - Elena Martín‐Doncel
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Patricia Morejón‐García
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Iñigo Marcos‐Alcalde
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
- School of Experimental SciencesBiosciences Research InstituteUniversidad Francisco de VitoriaPozuelo de Alarcón, MadridSpain
| | - Paulino Gómez‐Puertas
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
| | - María Segura‐Puimedon
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - José M. Navarro‐Pando
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
- Cátedra de Reproducción y Genética HumanaFacultad de Ciencias de la SaludUniversidad Europea del AtlánticoSantanderSpain
- Fundación Universitaria Iberoamericana (FUNIBER)BarcelonaSpain
| | - Pedro A. Lazo
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| |
Collapse
|
24
|
Markovitz R, Ghosh R, Kuo ME, Hong W, Lim J, Bernes S, Manberg S, Crosby K, Tanpaiboon P, Bharucha-Goebel D, Bonnemann C, Mohila CA, Mizerik E, Woodbury S, Bi W, Lotze T, Antonellis A, Xiao R, Potocki L. GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment. Am J Med Genet A 2020; 182:1167-1176. [PMID: 32181591 PMCID: PMC8297662 DOI: 10.1002/ajmg.a.61544] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA-like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl-tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile-onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease-associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss-of-function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients' clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot-Marie-Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS-associated disease and support that severe early-onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.
Collapse
Affiliation(s)
- Rebecca Markovitz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rajarshi Ghosh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Molly E. Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan
| | - William Hong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Jaehyung Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Saunder Bernes
- Division of Child Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
| | - Stephanie Manberg
- Division of Child Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
| | - Kathleen Crosby
- Division of Genetics and Metabolism, Children’s National Hospital, Rare Disease Institute, Washington, District of Columbia
| | - Pranoot Tanpaiboon
- Division of Genetics and Metabolism, Children’s National Hospital, Rare Disease Institute, Washington, District of Columbia
| | - Diana Bharucha-Goebel
- Division of Neurology, Children’s National Hospital, Washington, District of Columbia
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, Maryland
| | - Carsten Bonnemann
- Division of Neurology, Children’s National Hospital, Washington, District of Columbia
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, Maryland
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Suzanne Woodbury
- Texas Children’s Hospital, Houston, Texas
- Baylor College of Medicine, Department of Physical Medicine and Rehabilitation, Houston, Texas
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Timothy Lotze
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
25
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
26
|
Corcia P, Brulard C, Beltran S, Marouillat S, Bakkouche SE, Andres CR, Blasco H, Vourc'h P. Typical bulbar ALS can be linked to GARS mutation. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:275-277. [PMID: 30661401 DOI: 10.1080/21678421.2018.1556699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Amyotrophic lateral sclerosis is the most frequent motor neuron disorders (MND) in adults. The role of genetic factors is worldwide accepted, and currently, more than 30 genes have been linked to this disease. Genetics was also the matter of numerous studies in distal hereditary motor neuropathies (dHMN). GARS is classically linked to a predominant dHMN and, until now, no mutation has been described in GARS in other MND. Case Report: We report the case of a 70-year-old woman who developed a classical bulbar ALS phenotype. Owing to his familial history of ALS, a genetic screening was performed excluding the main genes linked to ALS and revealing a heterozygous missense mutation in GARS gene with a high probability of pathogenicity. Conclusion: This first description of mutation in GARS in ALS, extends once more the genetic overlap between ALS and other MND.
Collapse
Affiliation(s)
- P Corcia
- a ALS Reference Centre, CHU de Tours.,b Federation of the ALS Center of Tours and Limoges.,c Inserm Unit U1253, Tours University , Inserm , Tours , France and
| | - C Brulard
- c Inserm Unit U1253, Tours University , Inserm , Tours , France and
| | - S Beltran
- a ALS Reference Centre, CHU de Tours.,b Federation of the ALS Center of Tours and Limoges.,c Inserm Unit U1253, Tours University , Inserm , Tours , France and
| | - S Marouillat
- c Inserm Unit U1253, Tours University , Inserm , Tours , France and
| | | | - C R Andres
- c Inserm Unit U1253, Tours University , Inserm , Tours , France and.,d Department of Biochemistry and Molecular Biology , CHU de Tours , France
| | - H Blasco
- c Inserm Unit U1253, Tours University , Inserm , Tours , France and.,d Department of Biochemistry and Molecular Biology , CHU de Tours , France
| | - P Vourc'h
- c Inserm Unit U1253, Tours University , Inserm , Tours , France and.,d Department of Biochemistry and Molecular Biology , CHU de Tours , France
| |
Collapse
|
27
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
28
|
Nan H, Takaki R, Hata T, Ichinose Y, Tsuchiya M, Koh K, Takiyama Y. Novel GARS mutation presenting as autosomal dominant intermediate Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2018; 24:156-160. [PMID: 30394614 DOI: 10.1111/jns.12289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
We report the first family with a glycyl-tRNA synthetase (GARS) mutation with autosomal dominant intermediate Charcot-Marie-Tooth disease (DI-CMT). The proband and the proband's father presented with gait disturbance and hand weakness. Both patients displayed moderately decreased conduction velocities (MNCV) (ranging from 29.2 to 37.8 m/s). A sural nerve biopsy of the father revealed evidence of both axonal loss and demyelination. On exome sequencing, in both the proband and his father, we identified a novel missense mutation (c.643G > C, p.Asp215His) in the GARS gene in a heterozygous state, which is considered to be pathogenic for this DI-CMT family. The present study broadens current knowledge about intermediate CMT and the phenotypic spectrum of defects associated with GARS.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ryusuke Takaki
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,Department of Neurology, Iida Hospital, Nagano, Japan
| | - Takanori Hata
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yuta Ichinose
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mai Tsuchiya
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
29
|
Yu X, Chen B, Tang H, Li W, Fu Y, Zhang Z, Yan Y. A Novel Mutation of GARS in a Chinese Family With Distal Hereditary Motor Neuropathy Type V. Front Neurol 2018; 9:571. [PMID: 30083128 PMCID: PMC6064823 DOI: 10.3389/fneur.2018.00571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Glycyl-tRNA synthetase (GARS) gene mutations have been reported to be associated with Charcot-Marie-Tooth disease 2D and distal hereditary motor neuropathy type V (dHMN-V). In this study, we report a novel GARS mutation in a Chinese family with dHMN-V. Clinical, electromyogram, genetic, and functional data were explored. The proband was an 11-year-old girl presented with progressive distal limb muscle weakness and atrophy due to peripheral motor neuropathy for 1 year. Another five members from three successive generations of the family showed similar symptoms during their first to second decades and demonstrated an autosomal dominant inheritance. The results of genetic testing revealed a novel c.383T>G mutation in the GARS gene in the affected individuals, showing apparent genetic cosegregation. Further bioinformatic analyses showed that the c.383T > G mutation resulted in L128R alteration in the second functional protein domain, and the mutation site was well conserved among different species. In silico analysis predicted that this mutation probably affected protein function. In vitro, this GARS mutation led to a different protein localization pattern than that of the wild-type enzyme. The study found a novel GARS mutation of c.383T > G causing dHMN-V with subcellular localization abnormity in a genetic cosegregation family. These findings broaden the mutational spectrum of GARS.
Collapse
Affiliation(s)
- Xueying Yu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hefei Tang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Fu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
30
|
Boczonadi V, Meyer K, Gonczarowska-Jorge H, Griffin H, Roos A, Bartsakoulia M, Bansagi B, Ricci G, Palinkas F, Zahedi RP, Bruni F, Kaspar B, Lochmüller H, Boycott KM, Müller JS, Horvath R. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum Mol Genet 2018; 27:2187-2204. [PMID: 29648643 PMCID: PMC5985729 DOI: 10.1093/hmg/ddy127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Kathrin Meyer
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany,CAPES Foundation, Ministry of Education of Brazil, Brazil
| | - Helen Griffin
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Andreas Roos
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Marina Bartsakoulia
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Giulia Ricci
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Fanni Palinkas
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Francesco Bruni
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, NE2 4HH Newcastle upon Tyne, UK,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Brian Kaspar
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Neuroscience, Molecular, Cellular, and Developmental Biology Graduate Program and Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Hanns Lochmüller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg 79160, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kym M Boycott
- Department of Genetics, CHEO Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Juliane S Müller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,To whom correspondence should be addressed at: Institute of Genetic Medicine, Newcastle University, Central Parkway, NE1 3BZ Newcastle upon Tyne, UK. Tel: +44 1912418855; Fax: +44 1912418666;
| |
Collapse
|
31
|
Mo Z, Zhao X, Liu H, Hu Q, Chen XQ, Pham J, Wei N, Liu Z, Zhou J, Burgess RW, Pfaff SL, Caskey CT, Wu C, Bai G, Yang XL. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 2018. [PMID: 29520015 PMCID: PMC5843656 DOI: 10.1038/s41467-018-03461-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease’s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D. Mutations in glycyl-tRNA synthetase (GlyRS) cause Charcot-Marie-Tooth disease, a neuromuscular disorder characterized by axonal degeneration. Here the authors show that mutant GlyRS interacts with histone deacetylase 6, resulting in increased deacetylation of α-tubulin and axonal transport deficits.
Collapse
Affiliation(s)
- Zhongying Mo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaobei Zhao
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Huaqing Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Qinghua Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu-Qiao Chen
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jessica Pham
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ze Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Samuel L Pfaff
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.,Veterans Affairs San Diego Healthcare System, San Diego, 92161, CA, USA
| | - Ge Bai
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
32
|
Boczonadi V, Jennings MJ, Horvath R. The role of tRNA synthetases in neurological and neuromuscular disorders. FEBS Lett 2018; 592:703-717. [PMID: 29288497 PMCID: PMC5873386 DOI: 10.1002/1873-3468.12962] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNAs with their cognate amino acids, therefore essential for the first step in protein synthesis. Although the majority of protein synthesis happens in the cytosol, an additional translation apparatus is required to translate the 13 mitochondrial DNA‐encoded proteins important for oxidative phosphorylation. Most ARS genes in these cellular compartments are distinct, but two genes are common, encoding aminoacyl‐tRNA synthetases of glycine (GARS) and lysine (KARS) in both mitochondria and the cytosol. Mutations in the majority of the 37 nuclear‐encoded human ARS genes have been linked to a variety of recessive and dominant tissue‐specific disorders. Current data indicate that impaired enzyme function could explain the pathogenicity, however not all pathogenic ARSs mutations result in deficient catalytic function; thus, the consequences of mutations may arise from other molecular mechanisms. The peripheral nerves are frequently affected, as illustrated by the high number of mutations in cytosolic and bifunctional tRNA synthetases causing Charcot–Marie–Tooth disease (CMT). Here we provide insights on the pathomechanisms of CMT‐causing tRNA synthetases with specific focus on the two bifunctional tRNA synthetases (GARS, KARS).
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Jennings
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Meyer-Schuman R, Antonellis A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Hum Mol Genet 2017; 26:R114-R127. [PMID: 28633377 PMCID: PMC5886470 DOI: 10.1093/hmg/ddx231] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are responsible for charging amino acids to cognate tRNA molecules, which is the essential first step of protein translation. Interestingly, mutations in genes encoding ARS enzymes have been implicated in a broad spectrum of human inherited diseases. Bi-allelic mutations in ARSs typically cause severe, early-onset, recessive diseases that affect a wide range of tissues. The vast majority of these mutations show loss-of-function effects and impair protein translation. However, it is not clear how a subset cause tissue-specific phenotypes. In contrast, dominant ARS-mediated diseases specifically affect the peripheral nervous system-most commonly causing axonal peripheral neuropathy-and usually manifest later in life. These neuropathies are linked to heterozygosity for missense mutations in five ARS genes, which points to a shared mechanism of disease. However, it is not clear if a loss-of-function mechanism or a toxic gain-of-function mechanism is responsible for ARS-mediated neuropathy, or if a combination of these mechanisms operate on a mutation-specific basis. Here, we review our current understanding of recessive and dominant ARS-mediated disease. We also propose future directions for defining the molecular mechanisms of ARS mutations toward designing therapies for affected patient populations.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat 2017; 38:1412-1420. [PMID: 28675565 DOI: 10.1002/humu.23287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.
Collapse
Affiliation(s)
| | - Xenia Chepa-Lotrea
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gretchen Golas
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas C Markello
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David R Adams
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Camilo Toro
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - May Christine V Malicdan
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Cynthia J Tifft
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
Abbott JA, Guth E, Kim C, Regan C, Siu VM, Rupar CA, Demeler B, Francklyn CS, Robey-Bond SM. The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity. Biochemistry 2017. [PMID: 28632987 DOI: 10.1021/acs.biochem.7b00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| | - Ethan Guth
- Chemistry & Biochemistry Department, Norwich University , Northfield, Vermont 05663, United States
| | | | | | | | | | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - Christopher S Francklyn
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| | - Susan M Robey-Bond
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| |
Collapse
|
37
|
Ognjenović J, Simonović M. Human aminoacyl-tRNA synthetases in diseases of the nervous system. RNA Biol 2017; 15:623-634. [PMID: 28534666 PMCID: PMC6103678 DOI: 10.1080/15476286.2017.1330245] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are ubiquitously expressed enzymes that ensure accurate translation of the genetic information into functional proteins. These enzymes also execute a variety of non-canonical functions that are significant for regulation of diverse cellular processes and that reside outside the realm of protein synthesis. Associations between faults in AaRS-mediated processes and human diseases have been long recognized. Most recent research findings strongly argue that 10 cytosolic and 14 mitochondrial AaRSs are implicated in some form of pathology of the human nervous system. The advent of modern whole-exome sequencing makes it all but certain that similar associations between the remaining 15 ARS genes and neurologic illnesses will be defined in future. It is not surprising that an intense scientific debate about the role of translational machinery, in general, and AaRSs, in particular, in the development and maintenance of the healthy human neural cell types and the brain is sparked. Herein, we summarize the current knowledge about causative links between mutations in human AaRSs and diseases of the nervous system and briefly discuss future directions.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Oprescu SN, Griffin LB, Beg AA, Antonellis A. Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations. Methods 2016; 113:139-151. [PMID: 27876679 DOI: 10.1016/j.ymeth.2016.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 10/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids-the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data indicate that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States; Medical Scientist Training Program, and University of Michigan Medical School, Ann Arbor, MI, United States
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
39
|
Alexandrova J, Paulus C, Rudinger-Thirion J, Jossinet F, Frugier M. Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase. RNA Biol 2016; 12:1301-13. [PMID: 26327585 DOI: 10.1080/15476286.2015.1086866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified. Using immunolocalization assays, in vitro translation assays and bicistronic constructs we provide experimental evidence that one of these mRNAs tightly controls expression and localization of human GARS. An intricate regulatory domain was found in its 5'-UTR which displays a functional Internal Ribosome Entry Site and an upstream Open Reading Frame. Together, these elements hinder the synthesis of the mitochondrial GARS and target the translation of the cytosolic enzyme to ER-bound ribosomes. This finding reveals a complex picture of GARS translation and localization in mammals. In this context, we discuss how human GARS expression could influence its moonlighting activities and its involvement in diseases.
Collapse
Affiliation(s)
- Jana Alexandrova
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Caroline Paulus
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Joëlle Rudinger-Thirion
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Fabrice Jossinet
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| | - Magali Frugier
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS ; IBMC ; 15 rue René Descartes; Strasbourg Cedex , France
| |
Collapse
|
40
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Holloway MP, DeNardo BD, Phornphutkul C, Nguyen K, Davis C, Jackson C, Richendrfer H, Creton R, Altura RA. An asymptomatic mutation complicating severe chemotherapy-induced peripheral neuropathy (CIPN): a case for personalised medicine and a zebrafish model of CIPN. NPJ Genom Med 2016; 1:16016. [PMID: 29263815 PMCID: PMC5685301 DOI: 10.1038/npjgenmed.2016.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Targeted next-generation sequencing (NGS) identified a novel loss of function mutation in GARS, a gene linked to Charcot-Marie-Tooth disease (CMT), in a paediatric acute lymphoblastic leukaemia patient with severe chemotherapy-induced peripheral neuropathy (CIPN) due to vincristine. The patient was clinically asymptomatic, and lacked a family history of neuropathy. The effect of the mutation was modelled in a zebrafish knockdown system that recapitulated the symptoms of the patient both prior to and after treatment with vincristine. Confocal microscopy of pre- and post-synaptic markers revealed that the GARS knockdown results in changes to peripheral motor neurons, acetylcholine receptors and their co-localisation in neuromuscular junctions (NMJs), whereas a sensitive and reproducible stimulus-response assay demonstrated that the changes correlating with the GARS mutation in themselves fail to produce peripheral neuropathy symptoms. However, with vincristine treatment the GARS knockdown exacerbates decreased stimulus response and NMJ lesions. We propose that there is substantial benefit in the use of a targeted NGS screen of cancer patients who are to be treated with microtubule targeting agents for deleterious mutations in CMT linked genes, and for the screening in zebrafish of reagents that might inhibit CIPN.
Collapse
Affiliation(s)
- Michael P Holloway
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Bradley D DeNardo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Kevin Nguyen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Colby Davis
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Cynthia Jackson
- Departments of Pathology and Clinical Molecular Biology, Rhode Island Hospital and Brown University School of Medicine, Providence, RI, USA
| | - Holly Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Rachel A Altura
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
42
|
Malissovas N, Griffin LB, Antonellis A, Beis D. Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease. Hum Mol Genet 2016; 25:1528-42. [PMID: 27008886 DOI: 10.1093/hmg/ddw031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of peripheral neuropathies. Mutations in several aminoacyl-tRNA synthetase (ARS) genes have been implicated in inherited CMT disease. There are 12 reported CMT-causing mutations dispersed throughout the primary sequence of the human glycyl-tRNA synthetase (GARS). While there is strong genetic evidence linking GARS mutations to CMT disease, the molecular pathology underlying the neuromuscular and sensory phenotypes is still not fully understood. In particular, it is unclear whether the mutations result in a toxic gain of function, a partial loss of activity related to translation, or a combination of these mechanisms. We identified a zebrafish allele of gars (gars(s266)). Homozygous mutant embryos carry a C->A transversion, that changes a threonine to a lysine, in a residue next to a CMT-associated human mutation. We show that the neuromuscular phenotype observed in animals homozygous for T209K Gars (T130K in GARS) is due to a loss of dimerization of the mutated protein. Furthermore, we show that the loss of function, dimer-deficient and human disease-associated G319R Gars (G240R in GARS) mutant protein is unable to rescue the above phenotype. Finally, we demonstrate that another human disease-associated mutant G605R Gars (G526 in GARS) dimerizes with the remaining wild-type protein in animals heterozygous for the T209K Gars and reduces the function enough to elicit a neuromuscular phenotype. Our data indicate that dimerization is required for the dominant neurotoxicity of disease-associated GARS mutations and provide a rapid, tractable model for studying newly identified GARS variants for a role in human disease.
Collapse
Affiliation(s)
- Nikos Malissovas
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece, Medical School, University of Crete, Greece
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, Medical Scientist Training Program
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, Department of Human Genetics, and Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece,
| |
Collapse
|
43
|
Jeong NY, Song IO, Um HS, Jung J, Huh Y. Novel animal models of GARS-associated neuropathy by overexpression of mutant GARS using an adenoviral vector. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, Wagner M, Schäfer K, Wang G, Koerdt SN, Stum M, Jaiswal S, RajBhandary UL, Thomas U, Aberle H, Burgess RW, Yang XL, Dieterich D, Storkebaum E. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 2015; 6:7520. [PMID: 26138142 PMCID: PMC4506996 DOI: 10.1038/ncomms8520] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/16/2015] [Indexed: 01/06/2023] Open
Abstract
Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
Collapse
Affiliation(s)
- Sven Niehues
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Julia Bussmann
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Georg Steffes
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Ines Erdmann
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Litao Sun
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Marina Wagner
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Kerstin Schäfer
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Guangxia Wang
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Sophia N Koerdt
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Morgane Stum
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hermann Aberle
- Functional Cell Morphology Lab, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Xiang-Lei Yang
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Daniela Dieterich
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Erik Storkebaum
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
45
|
Griffin LB, Sakaguchi R, McGuigan D, Gonzalez MA, Searby C, Züchner S, Hou YM, Antonellis A. Impaired function is a common feature of neuropathy-associated glycyl-tRNA synthetase mutations. Hum Mutat 2015; 35:1363-71. [PMID: 25168514 DOI: 10.1002/humu.22681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 11/09/2022]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal-dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.
Collapse
Affiliation(s)
- Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Safka Brozkova D, Deconinck T, Griffin LB, Ferbert A, Haberlova J, Mazanec R, Lassuthova P, Roth C, Pilunthanakul T, Rautenstrauss B, Janecke AR, Zavadakova P, Chrast R, Rivolta C, Zuchner S, Antonellis A, Beg AA, De Jonghe P, Senderek J, Seeman P, Baets J. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain 2015; 138:2161-72. [PMID: 26072516 DOI: 10.1093/brain/awv158] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022] Open
Abstract
Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease.
Collapse
Affiliation(s)
- Dana Safka Brozkova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Tine Deconinck
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Laurie Beth Griffin
- 4 Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA 5 Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Andreas Ferbert
- 6 Department of Neurology, Klinikum Kassel, Kassel 34125, Germany
| | - Jana Haberlova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Radim Mazanec
- 7 Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Petra Lassuthova
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Christian Roth
- 6 Department of Neurology, Klinikum Kassel, Kassel 34125, Germany
| | - Thanita Pilunthanakul
- 8 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Bernd Rautenstrauss
- 9 Medizinisch Genetisches Zentrum, Munich 80335, Germany 10 Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Andreas R Janecke
- 11 Division of Human Genetics and Department of Pediatrics I, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Petra Zavadakova
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Roman Chrast
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Carlo Rivolta
- 12 Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Stephan Zuchner
- 13 Dr John T McDonald Foundation Department of Human Genetics, John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL-33136, USA
| | - Anthony Antonellis
- 4 Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI-48109, USA 14 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI-48109, USA 15 Department of Neurology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Asim A Beg
- 8 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI-48109, USA
| | - Peter De Jonghe
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 16 Department of Neurology, Antwerp University Hospital, Antwerpen 2610, Belgium
| | - Jan Senderek
- 10 Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Pavel Seeman
- 1 DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 150 06, Czech Republic
| | - Jonathan Baets
- 2 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium 3 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 16 Department of Neurology, Antwerp University Hospital, Antwerpen 2610, Belgium
| |
Collapse
|
47
|
Sun A, Liu X, Zheng M, Sun Q, Huang Y, Fan D. A novel mutation of the glycyl-tRNA synthetase (GARS) gene associated with Charcot-Marie-Tooth type 2D in a Chinese family. Neurol Res 2015; 37:782-7. [PMID: 26000875 DOI: 10.1179/1743132815y.0000000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To explore the clinical features of a novel glycyl-tRNA synthetase (GARS) gene mutation in a family with Charcot-Marie-Tooth disease type 2D (CMT2D). METHODS Exome capture with the next-generation sequencing technique was used to detect gene mutations. The mutations were verified by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique combined with DNA sequencing. RESULTS In this pedigree, eight members were affected; seven males and one female. The affected members initially manifested with the onset of hand muscle weakness and atrophy in adolescence followed by gradual development of distal lower limb involvement and minor sensory involvement. Electrophysiological studies revealed that this disease mainly involves axonal damage. Genetic detection showed that all affected family members had a heterozygous missense mutation, c.999G>T (p.E333D), of the GARS gene. CONCLUSIONS The c.999G>T mutation is a novel mutation of the GARS gene that has not been previously reported. The phenotype of this family is CMT2D, which is first reported in Chinese population.
Collapse
|
48
|
Ekins S, Litterman NK, Arnold RJG, Burgess RW, Freundlich JS, Gray SJ, Higgins JJ, Langley B, Willis DE, Notterpek L, Pleasure D, Sereda MW, Moore A. A brief review of recent Charcot-Marie-Tooth research and priorities. F1000Res 2015; 4:53. [PMID: 25901280 PMCID: PMC4392824 DOI: 10.12688/f1000research.6160.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
This brief review of current research progress on Charcot-Marie-Tooth (CMT) disease is a summary of discussions initiated at the Hereditary Neuropathy Foundation (HNF) scientific advisory board meeting on November 7, 2014. It covers recent published and unpublished
in vitro and
in vivo research. We discuss recent promising preclinical work for CMT1A, the development of new biomarkers, the characterization of different animal models, and the analysis of the frequency of gene mutations in patients with CMT. We also describe how progress in related fields may benefit CMT therapeutic development, including the potential of gene therapy and stem cell research. We also discuss the potential to assess and improve the quality of life of CMT patients. This summary of CMT research identifies some of the gaps which may have an impact on upcoming clinical trials. We provide some priorities for CMT research and areas which HNF can support. The goal of this review is to inform the scientific community about ongoing research and to avoid unnecessary overlap, while also highlighting areas ripe for further investigation. The general collaborative approach we have taken may be useful for other rare neurological diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA ; Collaborations in Chemistry, Fuquay Varina, NC, 27526, USA ; Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | | | - Renée J G Arnold
- Arnold Consultancy & Technology LLC, New York, NY, 10023, USA ; Master of Public Health Program, Mount Sinai School of Medicine, New York, NY, 10029, USA ; Quorum Consulting, Inc, San Francisco, CA, 94104, USA
| | - Robert W Burgess
- The Jackson Laboratory in Bar Harbor, Bar Harbour, ME, 04609, USA
| | - Joel S Freundlich
- Department of Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Steven J Gray
- Gene Therapy Center and Dept. of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7352, USA
| | | | - Brett Langley
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA ; Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Dianna E Willis
- Burke-Cornell Medical Research Institute, White Plains, NY, 10605, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA ; Department of Neurology, University of California, Davis, School of Medicine, c/o Shriners Hospital, Sacramento, CA, 95817, USA
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute (MPI) of Experimental Medicine, Göttingen, 37075, Germany ; Department of Clinical Neurophysiology, University Medical Center (UMG), Göttingen, D-37075, Germany
| | - Allison Moore
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA
| |
Collapse
|
49
|
Seo AJ, Park BS, Jung J. GRS defective axonal distribution as a potential contributor to distal spinal muscular atrophy type V pathogenesis in a new model of GRS-associated neuropathy. J Chem Neuroanat 2014; 61-62:132-9. [PMID: 25218976 DOI: 10.1016/j.jchemneu.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
Distal spinal muscular atrophy type V (dSMA-V), a hereditary axonal neuropathy, is a glycyl-tRNA synthetase (GRS)-associated neuropathy caused by a mutation in GRS. In this study, using an adenovirus vector system equipped with a neuron-specific promoter, we constructed a new GRS-associated neuropathy mouse model. We found that wild-type GRS (WT) is distributed in peripheral axons, dorsal root ganglion (DRG) cell bodies, central axon terminals and motor neuron cell bodies in the mouse model. In contrast, the L129P mutant GRS was localized in DRG and motor neuron cell bodies. Thus, we propose that the disease-causing L129P mutant is linked to a distribution defect in peripheral nerves in vivo.
Collapse
Affiliation(s)
- Ah Jung Seo
- Department of Anatomy and Neurobiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Byung Sun Park
- Department of Anatomy and Neurobiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
50
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|