1
|
Kann O, Söder L, Khodaie B. Lactate is a potentially harmful substitute for brain glucose fuel: consequences for metabolic restoration of neurotransmission. Neural Regen Res 2025; 20:1403-1404. [PMID: 39075904 PMCID: PMC11624877 DOI: 10.4103/nrr.nrr-d-24-00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Lennart Söder
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Babak Khodaie
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Braga A, Chiacchiaretta M, Pellerin L, Kong D, Haydon PG. Astrocytic metabolic control of orexinergic activity in the lateral hypothalamus regulates sleep and wake architecture. Nat Commun 2024; 15:5979. [PMID: 39013907 PMCID: PMC11252394 DOI: 10.1038/s41467-024-50166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.
Collapse
Affiliation(s)
- Alice Braga
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Luc Pellerin
- Inserm U1313, University and CHU of Poitiers, 86021, Poitiers, France
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
3
|
Babenko VA, Varlamova EG, Saidova AA, Turovsky EA, Plotnikov EY. Lactate protects neurons and astrocytes against ischemic injury by modulating Ca 2+ homeostasis and inflammatory response. FEBS J 2024; 291:1684-1698. [PMID: 38226425 DOI: 10.1111/febs.17051] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Lactate is now considered an additional fuel or signaling molecule in the brain. In this study, using an oxygen-glucose deprivation (OGD) model, we found that treatment with lactate inhibited the global increase in intracellular calcium ion concentration ([Ca2+]) in neurons and astrocytes, decreased the percentage of dying cells, and caused a metabolic shift in astrocytes and neurons toward aerobic oxidation of substrates. OGD resulted in proinflammatory changes and increased expression of cytokines and chemokines, whereas incubation with lactate reduced these changes. Pure astrocyte cultures were less sensitive than neuroglia cultures during OGD. Astrocytes exposed to lipopolysaccharide (LPS) also showed pro-inflammatory changes that were reduced by incubation with lactate. Our study suggests that lactate may have neuroprotective effects under ischemic and inflammatory conditions.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Aleena A Saidova
- Cell Biology and Histology Department, School of Biology, Lomonosov Moscow State University, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
4
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
5
|
Rossetti T, Jackvony S, Buck J, Levin LR. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus 2021; 11:20200034. [PMID: 33633833 PMCID: PMC7898154 DOI: 10.1098/rsfs.2020.0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3 -)-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO3 -, protons and carbon dioxide (CO2); because of the ubiquitous presence of CAs within cells, HCO3 --regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO3 -/CO2/pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO3 -, CO2 or pH to regulate diverse physiological functions.
Collapse
Affiliation(s)
- Tom Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Jackvony
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Lundquist AJ, Gallagher TJ, Petzinger GM, Jakowec MW. Exogenous l-lactate promotes astrocyte plasticity but is not sufficient for enhancing striatal synaptogenesis or motor behavior in mice. J Neurosci Res 2021; 99:1433-1447. [PMID: 33629362 DOI: 10.1002/jnr.24804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
l-Lactate is an energetic and signaling molecule that may be produced through astrocyte-specific aerobic glycolysis and is elevated in striatal muscle during intensive exercise. l-Lactate has been shown to promote neurotrophic gene expression through astrocytes within the hippocampus, however, its role in neuroplasticity within the striatum remains unknown. This study sought to investigate the role of peripheral sources of l-lactate in promoting astrocyte-specific gene expression and morphology as well as its role in neuroplasticity within the striatum of healthy animals. Using in vitro primary astrocyte cell culture, administration of l-lactate increased the expression of the neurotrophic factors Bdnf, Gdnf, Cntf, and the immediate early gene cFos. l-Lactate's promotion of neurotrophic factor expression was mediated through the lactate receptor HCAR1 since application of the HCAR1 agonist 3,5-DHBA also increased expression of Bdnf in primary astrocytes. Similar to our previous report demonstrating exercise-induced changes in astrocytic structure within the striatum, l-lactate administration to healthy mice led to increased astrocyte morphological complexity as well as astrocyte-specific neurotrophic expression within the striatum. Our study failed to demonstrate an effect of peripheral l-lactate on synaptogenesis or motor behavior. Insufficient levels and/or inadequate delivery of l-lactate through regional cerebral blood flow within the striatum may account for the lack of these benefits. Taken together, these novel findings suggest a potential framework that links peripheral l-lactate production within muscle and intensive exercise with neuroplasticity of specific brain regions through astrocytic function.
Collapse
Affiliation(s)
- Adam J Lundquist
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Tyler J Gallagher
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Bhusal A, Rahman MH, Lee WH, Lee IK, Suk K. Satellite glia as a critical component of diabetic neuropathy: Role of lipocalin-2 and pyruvate dehydrogenase kinase-2 axis in the dorsal root ganglion. Glia 2020; 69:971-996. [PMID: 33251681 DOI: 10.1002/glia.23942] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARβ/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARβ/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS One 2020; 15:e0242309. [PMID: 33180836 PMCID: PMC7660554 DOI: 10.1371/journal.pone.0242309] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity within the physiologic range stimulates lactate production that, via metabolic pathways or operating through an array of G-protein-coupled receptors, regulates intrinsic excitability and synaptic transmission. The recent discovery that lactate exerts a tight control of ion channels, neurotransmitter release, and synaptic plasticity-related intracellular signaling cascades opens up the possibility that lactate regulates synaptic potentiation at central synapses. Here, we demonstrate that extracellular lactate (1–2 mM) induces glutamatergic potentiation on the recurrent collateral synapses of hippocampal CA3 pyramidal cells. This potentiation is independent of lactate transport and further metabolism, but requires activation of NMDA receptors, postsynaptic calcium accumulation, and activation of a G-protein-coupled receptor sensitive to cholera toxin. Furthermore, perfusion of 3,5- dihydroxybenzoic acid, a lactate receptor agonist, mimics this form of synaptic potentiation. The transduction mechanism underlying this novel form of synaptic plasticity requires G-protein βγ subunits, inositol-1,4,5-trisphosphate 3-kinase, PKC, and CaMKII. Activation of these signaling cascades is compartmentalized in a synapse-specific manner since lactate does not induce potentiation at the mossy fiber synapses of CA3 pyramidal cells. Consistent with this synapse-specific potentiation, lactate increases the output discharge of CA3 neurons when recurrent collaterals are repeatedly activated during lactate perfusion. This study provides new insights into the cellular mechanisms by which lactate, acting via a membrane receptor, contributes to the memory formation process.
Collapse
|
9
|
Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience 2020; 23:101316. [PMID: 32653807 PMCID: PMC7350153 DOI: 10.1016/j.isci.2020.101316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. Lactate fuels network oscillations featuring low energy expenditure Lactate can disturb the neuronal excitation-inhibition balance Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses Lactate increases oxygen consumption, whereas neural activity can even decrease
Collapse
Affiliation(s)
- Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Alina Vazetdinova
- OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | | | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andrei Rozov
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Camberos-Luna L, Massieu L. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Int 2019; 133:104614. [PMID: 31785349 DOI: 10.1016/j.neuint.2019.104614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The therapeutic use of ketone bodies (KB) against acute brain injury and neurodegenerative disorders has lately been suggested by many studies. Several mechanisms responsible for the protective action of KB have been described, including metabolic, anti-inflammatory and epigenetic. However, it is still not clear whether a specific mechanism of action can be associated with a particular neurological disorder. Different strategies to induce ketosis including the ketogenic diet (KD), caloric restriction (CR), intermittent fasting (IF), as well as the administration of medium chain triglycerides (MCTs), exogenous ketones or KB derivatives, have been used in animal models of brain injury and in humans. They have shown different degrees of success to prevent neuronal damage, motor alterations and cognitive decline. However, more investigation is needed in order to establish safe protocols for clinical application. Throughout the present review, we describe the different approaches that have been used to elevate blood KB and discuss their effectiveness considering their advantages and limitations, as tested in models of brain injury, neurodegeneration and clinical research. We also describe the mechanisms of action of KB in non-pathologic conditions and in association with their protective effect against neuronal damage in acute neurological disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucy Camberos-Luna
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| |
Collapse
|
11
|
Kobayashi R, Maruoka J, Norimoto H, Ikegaya Y, Kume K, Ohsawa M. Involvement of l-lactate in hippocampal dysfunction of type I diabetes. J Pharmacol Sci 2019; 141:79-82. [PMID: 31586517 DOI: 10.1016/j.jphs.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022] Open
Abstract
Hippocampal neurons play a crucial role in memory formation. Accumulating evidence raises the possibility that hippocampal sharp-wave ripples (SW-Rs) are involved in memory consolidation. Here, we examined in an animal model of diabetes and found the amplitude of SW-Rs in diabetic mice were smaller than control group and were rescued by acute application of l-lactate, a major neural energy source. The cognitive impairment in diabetic mice was alleviated by intracerebroventricular l-lactate treatment. Our results suggested that l-lactate is important for hippocampal dysfunction in diabetes.
Collapse
Affiliation(s)
- Riho Kobayashi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Junya Maruoka
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
12
|
Tourigny DS, Karim MKA, Echeveste R, Kotter MRN, O’Neill JS. Energetic substrate availability regulates synchronous activity in an excitatory neural network. PLoS One 2019; 14:e0220937. [PMID: 31408504 PMCID: PMC6692003 DOI: 10.1371/journal.pone.0220937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Neural networks are required to meet significant metabolic demands associated with performing sophisticated computational tasks in the brain. The necessity for efficient transmission of information imposes stringent constraints on the metabolic pathways that can be used for energy generation at the synapse, and thus low availability of energetic substrates can reduce the efficacy of synaptic function. Here we study the effects of energetic substrate availability on global neural network behavior and find that glucose alone can sustain excitatory neurotransmission required to generate high-frequency synchronous bursting that emerges in culture. In contrast, obligatory oxidative energetic substrates such as lactate and pyruvate are unable to substitute for glucose, indicating that processes involving glucose metabolism form the primary energy-generating pathways supporting coordinated network activity. Our experimental results are discussed in the context of the role that metabolism plays in supporting the performance of individual synapses, including the relative contributions from postsynaptic responses, astrocytes, and presynaptic vesicle cycling. We propose a simple computational model for our excitatory cultures that accurately captures the inability of metabolically compromised synapses to sustain synchronous bursting when extracellular glucose is depleted.
Collapse
Affiliation(s)
- David S. Tourigny
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail: (DST); (MRNK); (JSO)
| | - Muhammad Kaiser Abdul Karim
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rodrigo Echeveste
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. N. Kotter
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| | - John S. O’Neill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| |
Collapse
|
13
|
Johnson SC, Pan A, Sun GX, Freed A, Stokes JC, Bornstein R, Witkowski M, Li L, Ford JM, Howard CRA, Sedensky MM, Morgan PG. Relevance of experimental paradigms of anesthesia induced neurotoxicity in the mouse. PLoS One 2019; 14:e0213543. [PMID: 30897103 PMCID: PMC6428290 DOI: 10.1371/journal.pone.0213543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/24/2019] [Indexed: 11/30/2022] Open
Abstract
Routine general anesthesia is considered to be safe in healthy individuals. However, pre-clinical studies in mice, rats, and monkeys have repeatedly demonstrated that exposure to anesthetic agents during early post-natal periods can lead to acute neurotoxicity. More concerning, later-life defects in cognition, assessed by behavioral assays for learning and memory, have been reported. Although the potential for anesthetics to damage the neonatal brain is well-documented, the clinical significance of the pre-clinical models in which damage is induced remains quite unclear. Here, we systematically evaluate critical physiological parameters in post-natal day 7 neonatal mice exposed to 1.5% isoflurane for 2–4 hours, the most common anesthesia induced neurotoxicity paradigm in this animal model. We find that 2 or more hours of anesthesia exposure results in dramatic respiratory and metabolic changes that may limit interpretation of this paradigm to the clinical situation. Our data indicate that neonatal mouse models of AIN are not necessarily appropriate representations of human exposures.
Collapse
Affiliation(s)
- Simon C. Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Grace X. Sun
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Arielle Freed
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- University of Washington School of Dentistry, Seattle, WA, United States of America
| | - Julia C. Stokes
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Michael Witkowski
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Jeremy M. Ford
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Seattle Children's Imagination Lab, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Christopher R. A. Howard
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Seattle Children's Imagination Lab, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Margaret M. Sedensky
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Philip G. Morgan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
14
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
15
|
Miyamoto K, Ishikura KI, Kume K, Ohsawa M. Astrocyte-neuron lactate shuttle sensitizes nociceptive transmission in the spinal cord. Glia 2018; 67:27-36. [DOI: 10.1002/glia.23474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Keisuke Miyamoto
- Department of Neuropharmacology; Graduate School of Pharmaceutical Sciences, Nagoya City University; Nagoya Japan
| | - Kei-ichiro Ishikura
- Department of Neuropharmacology; Graduate School of Pharmaceutical Sciences, Nagoya City University; Nagoya Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology; Graduate School of Pharmaceutical Sciences, Nagoya City University; Nagoya Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology; Graduate School of Pharmaceutical Sciences, Nagoya City University; Nagoya Japan
| |
Collapse
|
16
|
Herrera-López G, Galván EJ. Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 2018; 28:557-567. [PMID: 29704292 DOI: 10.1002/hipo.22958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 01/15/2023]
Abstract
In addition to its prominent role as an energetic substrate in the brain, lactate is emerging as a signaling molecule capable of controlling neuronal excitability. The finding that the lactate-activated receptor (hydroxycarboxylic acid receptor 1; HCA1) is widely expressed in the brain opened up the possibility that lactate exerts modulation of neuronal activity via a transmembranal receptor-linked mechanism. Here, we show that lactate causes biphasic modulation of the intrinsic excitability of CA1 pyramidal cells. In the low millimolar range, lactate or the HCA1 agonist 3,5-DHBA reduced the input resistance and membrane time constant. In addition, activation of HCA1 significantly blocked the fast inactivating sodium current and increased the delay from inactivation to a conducting state of the sodium channel. As the observed actions occurred in the presence of 4-CIN, a blocker of the neuronal monocarboxylate transporter, the possibility that lactate acted via neuronal metabolism is unlikely. Consistently, modulation of the intrinsic excitability was abolished when CA1 pyramidal cells were dialyzed with pertussis toxin, indicating the dependency of a Gαi/o -protein-coupled receptor. The activation of HCA1 appears to serve as a restraining mechanism during enhanced network activity and may function as a negative feedback for the astrocytic production of lactate.
Collapse
Affiliation(s)
- Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| |
Collapse
|
17
|
Lucas SJ, Michel CB, Marra V, Smalley JL, Hennig MH, Graham BP, Forsythe ID. Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse. J Physiol 2018; 596:1699-1721. [PMID: 29430661 PMCID: PMC5924824 DOI: 10.1113/jp275107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. ABSTRACT The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low.
Collapse
Affiliation(s)
- Sarah J. Lucas
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Christophe B. Michel
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Vincenzo Marra
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Joshua L. Smalley
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Matthias H. Hennig
- Institute for Adaptive and Neural Computation, School of InformaticsUniversity of EdinburghEdinburghEH8 9ABUK
| | - Bruce P. Graham
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Ian D. Forsythe
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| |
Collapse
|
18
|
Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation. PLoS One 2018; 13:e0195520. [PMID: 29617444 PMCID: PMC5884621 DOI: 10.1371/journal.pone.0195520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022] Open
Abstract
Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations.
Collapse
|
19
|
Abstract
Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
Collapse
|
20
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
21
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
22
|
AMP-activated protein kinase protects against anoxia in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:30-39. [DOI: 10.1016/j.cbpa.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023]
|
23
|
Stein LR, Zorumski CF, Izumi Y. Hippocampal slice preparation in rats acutely suppresses immunoreactivity of microtubule-associated protein (Map2) and glycogen levels without affecting numbers of glia or levels of the glutamate transporter VGlut1. Brain Behav 2017; 7:e00736. [PMID: 28729941 PMCID: PMC5516609 DOI: 10.1002/brb3.736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION With its preservation of cytoarchitecture and synaptic circuitry, the hippocampal slice preparation has been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. To analyze the maximum number of slices or readouts per dissection, long incubation times postslice preparation are commonly used. We were interested in how slice integrity is affected by incubation postslice preparation. METHODS Hippocampal slices were prepared by three different methods: a chopper, a vibratome, and a rotary slicer. To test slice integrity, we compared glycogen levels and immunohistochemistry of selected proteins in rat hippocampal slices immediately after dissection and following 2 and 4 hr of incubation. RESULTS We found that immunoreactivity of the dendritic marker microtubule-associated protein 2 (Map2) drastically decreased during this incubation period, whereas immunoreactivity of the glutamate transporter VGlut1 did not significantly change with incubation time. Astrocytic and microglial cell numbers also did not significantly change with incubation time whereas glycogen levels markedly increased during incubation. CONCLUSION Immunoreactivity of the dendritic marker Map2 quickly decreased after dissection with all the slicing methods. This work highlights a need for caution when using long incubation periods following slice preparation.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA
| | - Charles F Zorumski
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| | - Yukitoshi Izumi
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
24
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
25
|
Griffith CM, Macklin LN, Bartke A, Patrylo PR. Differential Fasting Plasma Glucose and Ketone Body Levels in GHRKO versus 3xTg-AD Mice: A Potential Contributor to Aging-Related Cognitive Status? Int J Endocrinol 2017; 2017:9684061. [PMID: 28638409 PMCID: PMC5468562 DOI: 10.1155/2017/9684061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cognitive function declines with age and appears to correlate with decreased cerebral metabolic rate (CMR). Caloric restriction, an antiaging manipulation that extends life-span and can preserve cognitive function, is associated with decreased glucose uptake, decreased lactate levels, and increased ketone body (KB) levels in the brain. Since the majority of brain nutrients come from the periphery, this study examined whether the capacity to regulate peripheral glucose levels and KB production differs in animals with successful cognitive aging (growth hormone receptor knockouts, GHRKOs) versus unsuccessful cognitive aging (the 3xTg-AD mouse model of Alzheimer's disease). Animals were fasted for 5 hours with their plasma glucose and KB levels subsequently measured. Intriguingly, in GHRKO mice, compared to those in controls, fasting plasma glucose levels were significantly decreased while their KB levels were significantly increased. Conversely, 3xTg-AD mice, compared to controls, exhibited significantly elevated plasma glucose levels and significantly reduced plasma KB levels. Taken together, these results suggest that the capacity to provide the brain with KBs versus glucose throughout an animal's life could somehow help preserve cognitive function with age, potentially through minimizing overall brain exposure to reactive oxygen species and advanced glycation end products and improving mitochondrial function.
Collapse
Affiliation(s)
- Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Lauren N. Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- *Peter R. Patrylo:
| |
Collapse
|
26
|
Kann O, Hollnagel JO, Elzoheiry S, Schneider J. Energy and Potassium Ion Homeostasis during Gamma Oscillations. Front Mol Neurosci 2016; 9:47. [PMID: 27378847 PMCID: PMC4909733 DOI: 10.3389/fnmol.2016.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Fast neuronal network oscillations in the gamma frequency band (30-100 Hz) occur in various cortex regions, require timed synaptic excitation and inhibition with glutamate and GABA, respectively, and are associated with higher brain functions such as sensory perception, attentional selection and memory formation. However, little is known about energy and ion homeostasis during the gamma oscillation. Recent studies addressed this topic in slices of the rodent hippocampus using cholinergic and glutamatergic receptor models of gamma oscillations (GAM). Methods with high spatial and temporal resolution were applied in vitro, such as electrophysiological recordings of local field potential (LFP) and extracellular potassium concentration ([K(+)]o), live-cell fluorescence imaging of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide [NAD(P)H and FAD, respectively] (cellular redox state), and monitoring of the interstitial partial oxygen pressure (pO2) in depth profiles with microsensor electrodes, including mathematical modeling. The main findings are: (i) GAM are associated with high oxygen consumption rate and significant changes in the cellular redox state, indicating rapid adaptations in glycolysis and oxidative phosphorylation; (ii) GAM are accompanied by fluctuating elevations in [K(+)]o of less than 0.5 mmol/L from baseline, likely reflecting effective K(+)-uptake mechanisms of neuron and astrocyte compartments; and (iii) GAM are exquisitely sensitive to metabolic stress induced by lowering oxygen availability or by pharmacological inhibition of the mitochondrial respiratory chain. These findings reflect precise cellular adaptations to maintain adenosine-5'-triphosphate (ATP), ion and neurotransmitter homeostasis and thus neural excitability and synaptic signaling during GAM. Conversely, the exquisite sensitivity of GAM to metabolic stress might significantly contribute the exceptional vulnerability of higher brain functions in brain disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| |
Collapse
|
27
|
Steinman MQ, Gao V, Alberini CM. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation. Front Integr Neurosci 2016; 10:10. [PMID: 26973477 PMCID: PMC4776217 DOI: 10.3389/fnint.2016.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual's identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation.
Collapse
Affiliation(s)
| | - Virginia Gao
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
28
|
The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons. Neurochem Res 2015; 41:600-9. [PMID: 26303508 DOI: 10.1007/s11064-015-1700-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022]
Abstract
Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.
Collapse
|
29
|
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86:883-901. [PMID: 25996133 DOI: 10.1016/j.neuron.2015.03.035] [Citation(s) in RCA: 816] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.
Collapse
Affiliation(s)
- Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; Center for Psychiatric Neurosciences, Department of Psychiatry, University of Lausanne, Lausanne 1008, Switzerland.
| | - Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
30
|
Karus C, Ziemens D, Rose CR. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism. Channels (Austin) 2015; 9:200-8. [PMID: 26039160 PMCID: PMC4594511 DOI: 10.1080/19336950.2015.1050163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.
Collapse
Affiliation(s)
- Claudia Karus
- a Institute of Neurobiology; Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf ; Düsseldorf , Germany
| | | | | |
Collapse
|
31
|
Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 2015; 347:1362-7. [PMID: 25792327 DOI: 10.1126/science.aaa1299] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs.
Collapse
Affiliation(s)
- Nagisa Sada
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takashi Katsu
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Tsuyoshi Inoue
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
32
|
Funk GD, Rajani V, Alvares TS, Revill AL, Zhang Y, Chu NY, Biancardi V, Linhares-Taxini C, Katzell A, Reklow R. Neuroglia and their roles in central respiratory control; an overview. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:83-95. [PMID: 25634606 DOI: 10.1016/j.cbpa.2015.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
Abstract
While once viewed as mere housekeepers, providing structural and metabolic support for neurons, it is now clear that neuroglia do much more. Phylogenetically, they have undergone enormous proliferation and diversification as central nervous systems grew in their complexity. In addition, they: i) are morphologically and functionally diverse; ii) play numerous, vital roles in maintaining CNS homeostasis; iii) are key players in brain development and responses to injury; and, iv) via gliotransmission, are likely participants in information processing. In this review, we discuss the diverse roles of neuroglia in maintaining homeostasis in the CNS, their evolutionary origins, the different types of neuroglia and their functional significance for respiratory control, and finally consider evidence that they contribute to the processing of chemosensory information in the respiratory network and the homeostatic control of blood gases.
Collapse
Affiliation(s)
- Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Vishaal Rajani
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tucaauê S Alvares
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ann L Revill
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yong Zhang
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan Y Chu
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian Biancardi
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Animal Morphology and Physiology, Fac. de Ciências Agrárias e Veterinárias/UNESP, Via de Acesso Paulo Donato Castellane km 05, Jaboticabal, SP 14884-900, Brazil
| | - Camila Linhares-Taxini
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Animal Morphology and Physiology, Fac. de Ciências Agrárias e Veterinárias/UNESP, Via de Acesso Paulo Donato Castellane km 05, Jaboticabal, SP 14884-900, Brazil
| | - Alexis Katzell
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Reklow
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Deitmer JW, Theparambil SM, Ruminot I, Becker HM. The role of membrane acid/base transporters and carbonic anhydrases for cellular pH and metabolic processes. Front Neurosci 2015; 8:430. [PMID: 25601823 PMCID: PMC4283522 DOI: 10.3389/fnins.2014.00430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| | | | - Iván Ruminot
- General Zoology, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Holger M Becker
- Zoology/Membrane Transport, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
34
|
Role of energy metabolic deficits and oxidative stress in excitotoxic spinal motor neuron degeneration in vivo. ASN Neuro 2014; 6:AN20130046. [PMID: 24524836 PMCID: PMC3950966 DOI: 10.1042/an20130046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MN (motor neuron) death in amyotrophic lateral sclerosis may be mediated by glutamatergic excitotoxicity. Previously, our group showed that the microdialysis perfusion of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) in the rat lumbar spinal cord induced MN death and permanent paralysis within 12 h after the experiment. Here, we studied the involvement of energy metabolic deficiencies and of oxidative stress in this MN degeneration, by testing the neuroprotective effect of various energy metabolic substrates and antioxidants. Pyruvate, lactate, β-hydroxybutyrate, α-ketobutyrate and creatine reduced MN loss by 50–65%, preserved motor function and completely prevented the paralysis. Ascorbate, glutathione and glutathione ethyl ester weakly protected against motor deficits and reduced MN death by only 30–40%. Reactive oxygen species formation and 3-nitrotyrosine immunoreactivity were studied 1.5–2 h after AMPA perfusion, during the initial MN degenerating process, and no changes were observed. We conclude that mitochondrial energy deficiency plays a crucial role in this excitotoxic spinal MN degeneration, whereas oxidative stress seems a less relevant mechanism. Interestingly, we observed a clear correlation between the alterations of motor function and the number of damaged MNs, suggesting that there is a threshold of about 50% in the number of healthy MNs necessary to preserve motor function. Mitochondrial energy substrates protect against in vivo excitotoxic spinal motor neuron degeneration and the consequent paralysis, whereas antioxidants are less efficient. These results allowed to establish a minimal threshold number of spinal motor neurons necessary to preserve motor function.
Collapse
|
35
|
Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy. Mol Neurobiol 2014; 50:327-38. [PMID: 24464262 DOI: 10.1007/s12035-013-8619-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.
Collapse
|
36
|
Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view. Neurochem Int 2013; 63:331-43. [PMID: 23876631 DOI: 10.1016/j.neuint.2013.06.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 01/01/2023]
Abstract
The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gabriela Languren
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, AP 70-253, México, D.F., Mexico
| | | | | | | |
Collapse
|
37
|
Omlin T, Weber JM. Exhausting exercise and tissue-specific expression of monocarboxylate transporters in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1036-43. [PMID: 23535457 DOI: 10.1152/ajpregu.00516.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transmembrane lactate movements are mediated by monocarboxylate transporters (MCTs), but these proteins have never been characterized in rainbow trout. Our goals were to clone potential trout MCTs, determine tissue distribution, and quantify the effects of exhausting exercise on MCT expression. Such information could prove important to understand the mechanisms underlying the classic "lactate retention" seen in trout white muscle after intense exercise. Four isoforms were identified and partially characterized in rainbow trout: MCT1a, MCT1b, MCT2, and MCT4. MCT1b was the most abundant in heart and red muscle but poorly expressed in the gill and brain where MCT1a and MCT2 were prevalent. MCT expression was strongly stimulated by exhausting exercise in brain (MCT2: +260%) and heart (MCT1a: +90% and MCT1b: +50%), possibly to increase capacity for lactate uptake in these highly oxidative tissues. By contrast, the MCTs of gill, liver, and muscle remained unaffected by exercise. This study provides a possible functional explanation for postexercise "lactate retention" in trout white muscle. Rainbow trout may be unable to release large lactate loads rapidly during recovery because: 1) they only poorly express MCT4, the main lactate exporter found in mammalian glycolytic muscles; 2) the combined expression of all trout MCTs is much lower in white muscle than in any other tissue; and 3) exhausting exercise fails to upregulate white muscle MCT expression. In this tissue, carbohydrates act as an "energy spring" that alternates between explosive power release during intense swimming (glycogen to lactate) and recoil during protracted recovery (slow glycogen resynthesis from local lactate).
Collapse
Affiliation(s)
- Teye Omlin
- Biology Department and Center for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
38
|
Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens Bioelectron 2013; 41:511-8. [DOI: 10.1016/j.bios.2012.09.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 11/21/2022]
|
39
|
Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 2012; 75:1094-104. [PMID: 22998876 DOI: 10.1016/j.neuron.2012.08.032] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons.
Collapse
Affiliation(s)
- Hyun B Choi
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab 2012; 32:1152-66. [PMID: 22027938 PMCID: PMC3390819 DOI: 10.1038/jcbfm.2011.149] [Citation(s) in RCA: 523] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 02/03/2023]
Abstract
Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
Collapse
Affiliation(s)
- Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Pierre J Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, and Center for Psychiatric Neuroscience UNIL-CHUV, Lausanne, Switzerland
| |
Collapse
|
41
|
Carrasco DI, Bichler EK, Rich MM, Wang X, Seburn KL, Pinter MJ. Motor terminal degeneration unaffected by activity changes in SOD1(G93A) mice; a possible role for glycolysis. Neurobiol Dis 2012; 48:132-40. [PMID: 22750521 DOI: 10.1016/j.nbd.2012.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/22/2012] [Indexed: 12/13/2022] Open
Abstract
This study examined whether activity is a contributing factor to motor terminal degeneration in mice that overexpress the G93A mutation of the SOD1 enzyme found in humans with inherited motor neuron disease. Previously, we showed that overload of muscles accomplished by synergist denervation accelerated motor terminal degeneration in dogs with hereditary canine spinal muscular atrophy (HCSMA). In the present study, we found that SOD1 plantaris muscles overloaded for 2months showed no differences of neuromuscular junction innervation status when compared with normally loaded, contralateral plantaris muscles. Complete elimination of motor terminal activity using blockade of sciatic nerve conduction with tetrodotoxin cuffs for 1month also produced no change of plantaris innervation status. To assess possible effects of activity on motor terminal function, we examined the synaptic properties of SOD1 soleus neuromuscular junctions at a time when significant denervation of close synergists had occurred as a result of natural disease progression. When examined in glucose media, SOD1 soleus synaptic properties were similar to wildtype. When glycolysis was inhibited and ATP production limited to mitochondria, however, blocking of evoked synaptic transmission occurred and a large increase in the frequency of spontaneous mEPCs was observed. Similar effects were observed at neuromuscular junctions in muscle from dogs with inherited motor neuron disease (HCSMA), although significant defects of synaptic transmission exist at these neuromuscular junctions when examined in glucose media, as reported previously. These results suggest that glycolysis compensates for mitochondrial dysfunction at motor terminals of SOD1 mice and HCSMA dogs. This compensatory mechanism may help to support resting and activity-related metabolism in the presence of dysfunctional mitochondria and prolong the survival of SOD1 motor terminals.
Collapse
Affiliation(s)
- Dario I Carrasco
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hedskog L, Zhang S, Ankarcrona M. Strategic role for mitochondria in Alzheimer's disease and cancer. Antioxid Redox Signal 2012; 16:1476-91. [PMID: 21902456 DOI: 10.1089/ars.2011.4259] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Detailed knowledge about cell death and cell survival mechanisms and how these pathways are impaired in neurodegenerative disorders and cancer forms the basis for future drug development for these diseases that affect millions of people around the world. RECENT ADVANCES In neurodegenerative disorders such as Alzheimer's disease (AD), cell death pathways are inappropriately activated, resulting in neuronal cell death. In contrast, cancer cells develop resistance to apoptosis by regulating anti-apoptotic proteins signaling via mitochondria. Mounting evidence shows that mitochondrial function is central in both cancer and AD. Cancer cells typically shut down oxidative phosphorylation (OXPHOS) in mitochondria and switch to glycolysis for ATP production, making them resistant to hypoxia. In AD, for example, amyloid-β peptide (Aβ) and reactive oxygen species impair mitochondrial function. Neurons therefore also switch to glycolysis to maintain ATP production and to produce molecules involved in antioxidant metabolism in an attempt to survive. CRITICAL ISSUES One critical difference between cancer cells and neurons is that cancer cells can survive without OXPHOS, while neurons are dependent on OXPHOS for long-term survival. FUTURE DIRECTIONS This review will focus on these abnormalities of mitochondrial function shared in AD and cancer and discuss the potential mechanisms underlying links that may be key steps in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Louise Hedskog
- Department of Neurobiology, Care Sciences and Society (NVS), KI-Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Cherian AK, Briski KP. Quantitative RT-PCR and immunoblot analyses reveal acclimated A2 noradrenergic neuron substrate fuel transporter, glucokinase, phospho-AMPK, and dopamine-β-hydroxylase responses to hypoglycemia. J Neurosci Res 2011; 89:1114-24. [PMID: 21488089 DOI: 10.1002/jnr.22632] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 11/10/2022]
Abstract
Cellular metabolic stasis is monitored in discrete brain sites, including the dorsal vagal complex (DVC), where A2 noradrenergic neurons perform this sensory function. Single-cell qPCR and high-sensitivity immunoblotting were used to determine if A2 neurons adapt to chronic hypoglycemia by increasing substrate fuel transporter expression, and whether such adjustments coincide with decreased cellular energy instability during this systemic metabolic stress. Tyrosine hydroxylase-immunolabeled neurons were laser-microdissected from the caudal DVC 2 hr after single or serial neutral protamine Hagedorn insulin (NPH) dosing. Preceding hypoglycemia suppressed basal A2 MCT2, GLUT3, and GLUT4 profiles and diminished MCT2, GLUT4, and glucokinase responses to recurring hypoglycemia. Acute NPH caused a robust increase in A2 phospho-AMPK protein levels; baseline phospho-AMPK expression was elevated after 3 days of insulin treatment but only slight augmented after a fourth NPH injection. Transcripts encoding the catecholamine biosynthetic enzyme dopamine-β-hydroxylase were unaffected by acute NPH but were diminished by serial insulin dosing. This evidence for diminished basal A2 glucose and lactate uptake and attenuated phospho-AMPK-mediated detection of hypoglycemia-associated energy deficits suggests that these cells acclimate to chronic hypoglycemia by adopting a new metabolic steady state characterized by energy paucity and reduced sensitivity to hypoglycemia. Because dopamine-β-hydroxylase mRNA was reduced after serial, but not single NPH dosing, A2 neurotransmitter biosynthesis may be impervious to acute hypoglycemia but inhibited when posthypoglycemic metabolic deficiency is exacerbated by recurring hypoglycemia. This research suggests that chronic hypoglycemia-associated adjustments in A2-sensory neurotransmission may reflect cellular energetic debilitation rather than adaptive attenuation of cellular metabolic imbalance.
Collapse
Affiliation(s)
- Ajeesh Koshy Cherian
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | |
Collapse
|
44
|
Park BH, Lee SB, Stolz DB, Lee YJ, Lee BC. Synergistic interactions between heregulin and peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist in breast cancer cells. J Biol Chem 2011; 286:20087-99. [PMID: 21467033 DOI: 10.1074/jbc.m110.191718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here, we demonstrate that troglitazone (Rezulin), a peroxisome proliferator-activated receptor agonist, acted in synergy with heregulin to induce massive cell death in breast cancer cells. Although the combination of heregulin and troglitazone (HRG/TGZ) induced both apoptosis and necrosis, the main mode of cell death was caspase-independent and occurred via necrosis. This combination increased generation of superoxide in mitochondria, which in turn destabilized mitochondria potential. Pretreatment with N-acetyl-l-cysteine and catalase expression ameliorated cell death induced by the combination treatment, indicating a role of oxidative stress in mediating HRG/TGZ-induced cell death. Notably, pretreatment with pyruvate significantly prevented the cell death, suggesting a potential mechanistic link between metabolic stress and HRG/TGZ-induced cell death. The activation of the HRG signaling axis has been considered as a poor prognostic factor in breast cancer and confers resistance to gefitinib (Iressa) and tamoxifen. However, our data presented here paradoxically suggest that HRG expression can actually be beneficial when it comes to treating breast cancer with peroxisome proliferator-activated receptor-γ ligands. Taken together, the combination of HRG and TGZ may provide a basis for the development of a novel strategy in the treatment of apoptosis-resistant and/or hormone-refractory breast cancer.
Collapse
Affiliation(s)
- Bae-Hang Park
- University of Pittsburgh Cancer Institute, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
45
|
Glucose and lactate supply to the synapse. ACTA ACUST UNITED AC 2009; 63:149-59. [PMID: 19879896 DOI: 10.1016/j.brainresrev.2009.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/19/2009] [Accepted: 10/25/2009] [Indexed: 11/23/2022]
Abstract
The main source of energy for the mammalian brain is glucose, and the main sink of energy in the mammalian brain is the neuron, so the conventional view of brain energy metabolism is that glucose is consumed preferentially in neurons. But between glucose and the production of energy are several steps that do not necessarily take place in the same cell. An alternative model has been proposed that states that glucose preferentially taken by astrocytes, is degraded to lactate and then exported into neurons to be oxidized. Short of definitive data, opinions about the relative merits of these competing models are divided, making it a very exciting field of research. Furthermore, growing evidence suggests that lactate acts as a signaling molecule, involved in Na(+) sensing, glucosensing, and in coupling neuronal and glial activity to the modulation of vascular tone. In the present review, we discuss possible dynamics of glucose and lactate in excitatory synaptic regions, focusing on the transporters that catalyze the movement of these molecules.
Collapse
|
46
|
Castro MA, Beltrán FA, Brauchi S, Concha II. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 2009; 110:423-40. [PMID: 19457103 DOI: 10.1111/j.1471-4159.2009.06151.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.
Collapse
Affiliation(s)
- Maite A Castro
- Instituto de Bioquímica, Universidad Austral de Chile, Valdivia, Chile.
| | | | | | | |
Collapse
|
47
|
Rae C, Nasrallah FA, Bröer S. Metabolic effects of blocking lactate transport in brain cortical tissue slices using an inhibitor specific to MCT1 and MCT2. Neurochem Res 2009; 34:1783-91. [PMID: 19404741 DOI: 10.1007/s11064-009-9973-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
A novel inhibitor of lactate transport, AR-C122982, was used to study the effect of inhibiting the monocarboxylate transporters MCT1 and MCT2 on cortical brain slice metabolism. We studied metabolism of L-[3-13C]lactate, and D-[1-13C]glucose under a range of conditions. Experiments using L-[3-13C]lactate showed that the inhibitor AR-C122982 altered exchange of lactate. Under depolarizing conditions, net flux of label from D-[1-13C]glucose was barely altered by 10 or 100 nM AR-C122982. In the presence of AMPA or glutamate there were increases in net flux of label and metabolic pool sizes. These data suggest lactate may supply compartments in the brain not usually directly accessed by glucose. In general, it would appear that movement of lactate between cell types is not essential for metabolic activity, with the heavy metabolic workloads imposed being unaffected by inhibition of MCT1 and MCT2. Further experiments investigating the mechanism of operation of AR-C122982 are necessary to corroborate this finding.
Collapse
Affiliation(s)
- Caroline Rae
- Prince of Wales Medical Research Institute, Barker St., Randwick, NSW 2031, Australia.
| | | | | |
Collapse
|
48
|
Izumi Y, Zorumski CF. Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. Neuroscience 2009; 161:847-54. [PMID: 19362122 DOI: 10.1016/j.neuroscience.2009.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/18/2009] [Accepted: 04/04/2009] [Indexed: 12/21/2022]
Abstract
Although fructose is commonly used as a sweetener, its effects on brain function are unclear. Using rat hippocampal slices, we found that fructose and mannose, like pyruvate, preserve ATP levels during 3-h of glucose deprivation. Similarly, fructose and mannose restored synaptic potentials (excitatory postsynaptic potential, EPSPs) depressed during glucose deprivation. However, restoration of synaptic responses was slow and only partial with fructose. EPSPs supported by mannose were inhibited by cytochalasin B (CCB), a glucose transport inhibitor, but were not inhibited by alpha-cyano-4-hydroxycinnamate (4-CIN), a monocarboxylate transport inhibitor, indicating that neurons use mannose via glucose transporters. In contrast, both CCB and 4-CIN depressed EPSPs supported by fructose, suggesting that fructose may be taken up by non-neuronal cells through CCB sensitive hexose transporters and metabolized to a monocarboxylate for subsequent use during neuronal respiration. Supporting this possibility, 20 minutes of oxygen deprivation in the presence of fructose resulted in functional and morphological deterioration whereas oxygen deprivation in the presence of glucose or mannose had minimal toxic effects. These results indicate that neuronal fructose utilization differs from glucose and mannose and likely involves release of monocarboxylates from glia.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
49
|
Alessandri B, Gugliotta M, Levasseur JE, Bullock MR. Lactate and glucose as energy substrates and their role in traumatic brain injury and therapy. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.2.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury is a leading cause of disability and mortality worldwide, but no new pharmacological treatments are clinically available. A key pathophysiological development in the understanding of traumatic brain injury is the energy crisis derived from decreased cerebral blood flow, increased energy demand and mitochondrial dysfunction. Although still controversial, new findings suggest that brain cells try to cope in these conditions by metabolizing lactate as an energy substrate ‘on-demand’ in lieu of glucose. Experimental and clinical data suggest that lactate, at least when exogenously administered, is transported from astrocytes to neurons for neuronal utilization, essentially bypassing the slow, catabolizing glycolysis process to quickly and efficiently produce ATP. Treatment strategies using systemically applied lactate have proved to be protective in various experimental traumatic brain injury studies. However, lactate has the potential to elevate oxygen consumption to high levels and, therefore, could potentially impose a danger for tissue-at-risk with low cerebral blood flow. The present review outlines the experimental basis of lactate in energy metabolism under physiological and pathophysiological conditions and presents arguments for lactate as a new therapeutical tool in human head injury.
Collapse
Affiliation(s)
- Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Marinella Gugliotta
- Department of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Joseph E Levasseur
- Department of Neurosurgery, VCU Medical Center, PO Box 980631, Richmond, VA 23298, USA
| | - M Ross Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Room 3–20, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
50
|
Mitochondria andl-lactate metabolism. FEBS Lett 2008; 582:3569-76. [DOI: 10.1016/j.febslet.2008.09.042] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/16/2008] [Accepted: 09/22/2008] [Indexed: 11/18/2022]
|