1
|
Subramani M, Lambrecht B, Ahmad I. Human microglia-derived proinflammatory cytokines facilitate human retinal ganglion cell development and regeneration. Stem Cell Reports 2024; 19:1092-1106. [PMID: 39059376 PMCID: PMC11368696 DOI: 10.1016/j.stemcr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia (μG), the resident immune cells in the central nervous system, surveil the parenchyma to maintain the structural and functional homeostasis of neurons. Besides, they influence neurogenesis and synaptogenesis through complement-mediated phagocytosis. Emerging evidence suggests that μG may also influence development through proinflammatory cytokines. Here, we examined the premise that tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), the two most prominent components of the μG secretome, influence retinal development, specifically the morphological and functional differentiation of human retinal ganglion cells (hRGCs). Using controlled generation of hRGCs and human μG (hμG) from pluripotent stem cells, we demonstrate that TNF-α and IL-1β secreted by unchallenged hμG did not influence hRGC generation. However, their presence significantly facilitated neuritogenesis along with the basal function of hRGCs, which involved the recruitment of the AKT/mTOR pathway. We present ex vivo evidence that proinflammatory cytokines may play an important role in the morphological and physiological maturation of hRGCs, which may be recapitulated for regeneration.
Collapse
Affiliation(s)
- Murali Subramani
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brandon Lambrecht
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Agbo J, Ibrahim ZG, Magaji SY, Mutalub YB, Mshelia PP, Mhya DH. Therapeutic efficacy of voltage-gated sodium channel inhibitors in epilepsy. ACTA EPILEPTOLOGICA 2023; 5:16. [PMID: 40217485 PMCID: PMC11960332 DOI: 10.1186/s42494-023-00127-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a neurological disease characterized by excessive and abnormal hyper-synchrony of electrical discharges of the brain and a predisposition to generate epileptic seizures resulting in a broad spectrum of neurobiological insults, imposing psychological, cognitive, social and also economic burdens to the sufferer. Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials throughout the central nervous system. Dysfunction of these channels has been implicated in the pathogenesis of epilepsy. VGSC inhibitors have been demonstrated to act as anticonvulsants to suppress the abnormal neuronal firing underlying epileptic seizures, and are used for the management and treatment of both genetic-idiopathic and acquired epilepsies. We discuss the forms of idiopathic and acquired epilepsies caused by VGSC mutations and the therapeutic efficacy of VGSC blockers in idiopathic, acquired and pharmacoresistant forms of epilepsy in this review. We conclude that there is a need for better alternative therapies that can be used alone or in combination with VGSC inhibitors in the management of epilepsies. The current anti-seizure medications (ASMs) especially for pharmacoresistant epilepsies and some other types of epilepsy have not yielded expected therapeutic efficacy partly because they do not show subtype-selectivity in blocking sodium channels while also bringing side effects. Therefore, there is a need to develop novel drug cocktails with enhanced selectivity for specific VGSC isoforms, to achieve better treatment of pharmacoresistant epilepsies and other types of epileptic seizures.
Collapse
Affiliation(s)
- John Agbo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria.
| | - Zainab G Ibrahim
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Shehu Y Magaji
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Yahkub Babatunde Mutalub
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Philemon Paul Mshelia
- Department of Physiology, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Daniel H Mhya
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| |
Collapse
|
3
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
4
|
Arribas-Blázquez M, Piniella D, Olivos-Oré LA, Bartolomé-Martín D, Leite C, Giménez C, Artalejo AR, Zafra F. Regulation of the voltage-dependent sodium channel Na V1.1 by AKT1. Neuropharmacology 2021; 197:108745. [PMID: 34375627 DOI: 10.1016/j.neuropharm.2021.108745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Leite
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Sun XD, Wang A, Ma P, Gong S, Tao J, Yu XM, Jiang X. Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus. J Neurosci Res 2019; 98:384-403. [PMID: 31407399 PMCID: PMC6916362 DOI: 10.1002/jnr.24516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
The cAMP‐dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up‐regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application‐induced up‐regulation of AP firing activity could be blocked by pre‐application of the SFK inhibitor PP2. SFK activation also up‐regulated the AP firing activity and this effect could be prevented by pre‐application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/βII at T638/641, but also in SFKs at Y416. The forskolin or PMA application‐induced increase in the phosphorylation of PKAs or PKCs was not affected by pre‐treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCβII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up‐regulate the AP firing activity in hypothalamic ARC neurons.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Anqi Wang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018; 558:435-439. [PMID: 29899451 DOI: 10.1038/s41586-018-0218-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.
Collapse
|
8
|
Li Y, Zhu T, Yang H, Dib-Hajj SD, Waxman SG, Yu Y, Xu TL, Cheng X. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Mol Pain 2018; 14:1744806918782229. [PMID: 29790812 PMCID: PMC6024516 DOI: 10.1177/1744806918782229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Voltage-gated sodium channel Nav1.7 is a key molecule in nociception, and its dysfunction has been associated with various pain disorders. Here, we investigated the regulation of Nav1.7 biophysical properties by Fyn, an Src family tyrosine kinase. Nav1.7 was coexpressed with either constitutively active (FynCA) or dominant negative (FynDN) variants of Fyn kinase. FynCA elevated protein expression and tyrosine phosphorylation of Nav1.7 channels. Site-directed mutagenesis analysis identified two tyrosine residues (Y1470 and Y1471) located within the Nav1.7 DIII-DIV linker (L3) as phosphorylation sites of Fyn. Whole-cell recordings revealed that FynCA evoked larger changes in Nav1.7 biophysical properties when expressed in ND7/23 cells than in Human Embryonic Kidney (HEK) 293 cells, suggesting a cell type-specific modulation of Nav1.7 by Fyn kinase. In HEK 293 cells, substitution of both tyrosine residues with phenylalanine dramatically reduced current amplitude of mutant channels, which was partially rescued by expressing mutant channels in ND7/23 cells. Phenylalanine substitution showed little effect on FynCA-induced changes in Nav1.7 activation and inactivation, suggesting additional modifications in the channel or modulation by interaction with extrinsic factor(s). Our study demonstrates that Nav1.7 is a substrate for Fyn kinase, and the effect of the channel phosphorylation depends on the cell background. Fyn-mediated modulation of Nav1.7 may regulate DRG neuron excitability and contribute to pain perception. Whether this interaction could serve as a target for developing new pain therapeutics requires future study.
Collapse
Affiliation(s)
- Yangyang Li
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengteng Zhu
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yang
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sulayman D Dib-Hajj
- 2 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- 2 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Ye Yu
- 4 Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Cheng
- 1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Iqbal SM, Aufy M, Shabbir W, Lemmens-Gruber R. Identification of phosphorylation sites and binding pockets for modulation of Na V 1.5 channel by Fyn tyrosine kinase. FEBS J 2018; 285:2520-2530. [PMID: 29734505 DOI: 10.1111/febs.14496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022]
Abstract
Cardiac sodium channel NaV 1.5 is the predominant form of sodium channels in cardiomyocytes, which exists as a macromolecular complex and interacts with multiple protein partners. Fyn kinase is one of the interacting proteins which colocalize, phosphorylate and modulate the NaV 1.5 channel. To elaborate this interaction we created expression vectors for the N-terminal, intracellular loop, and C-terminal regions of the NaV 1.5 channel, to express in HEK-293 cells. By co-immunoprecipitation and anti-phosphotyrosine blotting, we identified proline-rich binding sites for Fyn kinase in the N-terminal, IC-loopi-ii and C-terminal. After binding, Fyn kinase phosphorylates tyrosine residues present in the N- and C-terminal, which produce a depolarizing shift of 7 mV in fast inactivation. The functional relevance of these binding and phosphorylation sites was further underpinned by creating full length mutants masking these sites sequentially. An activation and inactivation curves were recorded with or without co-expressed Fyn kinase which indicates that phosphorylation of tyrosine residues at positions 68, 87, 112 in the N-terminal and at positions 1811 and 1889 in the C-terminal creates a depolarizing shift in fast inactivation of NaV 1.5 channel.
Collapse
Affiliation(s)
- Shahid Muhammad Iqbal
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,Drugs Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D. c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS One 2018; 13:e0196230. [PMID: 29723216 PMCID: PMC5933793 DOI: 10.1371/journal.pone.0196230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Studies have demonstrated that the solute carrier family 11 member 1 (SLC11A1) is heavily glycosylated and phosphorylated in macrophages. However, the mechanisms of SLC11A1 phosphorylation, and the effects of phosphorylation on SLC11A1 activity remain largely unknown. Here, the tyrosine phosphorylation of SLC11A1 is observed in SLC11A1-expressing U937 cells when differentiated into macrophages by phorbol myristate acetate (PMA). The phosphorylation of SLC11A1 is almost completely blocked by treatment with PP2, a selective inhibitor of Src family kinases. Furthermore, we found that SLC11A1 is a direct substrate for active c-Src kinase and siRNA-mediated knockdown of cellular Src (c-Src) expression results in a significant decrease in tyrosine phosphorylation. We found that PMA induces the interaction of SLC11A1 with c-Src kinase. We demonstrated that SLC11A1 is phosphorylated by Src family kinases at tyrosine 15 and this type of phosphorylation is required for SLC11A1-mediated modulation of NF-κB activation and nitric oxide (NO) production induced by LPS. Our results demonstrate important roles for c-Src tyrosine kinase in phosphorylation and activation of SLC11A1 in macrophages.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shao Tao
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
11
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Onwuli DO, Beltran-Alvarez P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2015; 48:641-651. [PMID: 26503606 PMCID: PMC4752963 DOI: 10.1007/s00726-015-2122-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.
Collapse
Affiliation(s)
- Donatus O Onwuli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
13
|
Cesca F, Satapathy A, Ferrea E, Nieus T, Benfenati F, Scholz-Starke J. Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+ Channels. J Biol Chem 2015; 290:18045-18055. [PMID: 26037926 DOI: 10.1074/jbc.m115.654699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability.
Collapse
Affiliation(s)
- Fabrizia Cesca
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Annyesha Satapathy
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Sensorimotor Group, German Primate Center, 37077 Göttingen, Germany
| | - Thierry Nieus
- Neuro Technology Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Joachim Scholz-Starke
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
14
|
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol 2015; 82:36-47. [PMID: 25748040 DOI: 10.1016/j.yjmcc.2015.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.
Collapse
|
15
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|
16
|
Baek JH, Rubinstein M, Scheuer T, Trimmer JS. Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures. J Biol Chem 2014; 289:15363-73. [PMID: 24737319 PMCID: PMC4140893 DOI: 10.1074/jbc.m114.562785] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels initiate action potentials in brain neurons and are primary therapeutic targets for anti-epileptic drugs controlling neuronal hyperexcitability in epilepsy. The molecular mechanisms underlying abnormal Nav channel expression, localization, and function during development of epilepsy are poorly understood but can potentially result from altered posttranslational modifications (PTMs). For example, phosphorylation regulates Nav channel gating, and has been proposed to contribute to acquired insensitivity to anti-epileptic drugs exhibited by Nav channels in epileptic neurons. However, whether changes in specific brain Nav channel PTMs occur acutely in response to seizures has not been established. Here, we show changes in PTMs of the major brain Nav channel, Nav1.2, after acute kainate-induced seizures. Mass spectrometry-based proteomic analyses of Nav1.2 purified from the brains of control and seizure animals revealed a significant down-regulation of phosphorylation at nine sites, primarily located in the interdomain I-II linker, the region of Nav1.2 crucial for phosphorylation-dependent regulation of activity. Interestingly, Nav1.2 in the seizure samples contained methylated arginine (MeArg) at three sites. These MeArgs were adjacent to down-regulated sites of phosphorylation, and Nav1.2 methylation increased after seizure. Phosphorylation and MeArg were not found together on the same tryptic peptide, suggesting reciprocal regulation of these two PTMs. Coexpression of Nav1.2 with the primary brain arginine methyltransferase PRMT8 led to a surprising 3-fold increase in Nav1.2 current. Reciprocal regulation of phosphorylation and MeArg of Nav1.2 may underlie changes in neuronal Nav channel function in response to seizures and also contribute to physiological modulation of neuronal excitability.
Collapse
Affiliation(s)
- Je-Hyun Baek
- From the Department of Neurobiology, Physiology, and Behavior and
| | - Moran Rubinstein
- the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280
| | - Todd Scheuer
- the Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280
| | - James S Trimmer
- From the Department of Neurobiology, Physiology, and Behavior and the Department of Physiology and Membrane Biology, University of California, Davis, California 95616 and
| |
Collapse
|
17
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
18
|
Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 2013; 110:17534-9. [PMID: 24082113 DOI: 10.1073/pnas.1306285110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in the human voltage-gated sodium channel NaV1.7 result in a congenital indifference to pain. Selective inhibitors of NaV1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of µ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits NaV1.7 with an IC50 of ∼25 nM. µ-SLPTX-Ssm6a has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes, with the exception of NaV1.2, for which the selectivity is 32-fold. µ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. µ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemical-induced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes µ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting NaV1.7, which might be suitable for treating a wide range of human pain pathologies.
Collapse
|
19
|
Westenbroek RE, Bischoff S, Fu Y, Maier SKG, Catterall WA, Scheuer T. Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry. J Mol Cell Cardiol 2013; 64:69-78. [PMID: 23982034 DOI: 10.1016/j.yjmcc.2013.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/22/2013] [Accepted: 08/15/2013] [Indexed: 01/16/2023]
Abstract
Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
Collapse
Affiliation(s)
- Ruth E Westenbroek
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Feng S, Pflueger M, Lin SX, Groveman BR, Su J, Yu XM. Regulation of voltage-gated sodium current by endogenous Src family kinases in cochlear spiral ganglion neurons in culture. Pflugers Arch 2012; 463:571-84. [PMID: 22297656 DOI: 10.1007/s00424-012-1072-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 12/09/2011] [Accepted: 01/02/2012] [Indexed: 01/28/2023]
Abstract
Voltage-gated sodium (Na+) and potassium (K+)channels have been found to be regulated by Src family kinases(SFKs).However, how these channels are regulated by SFKs in cochlear spiral ganglion neurons (SGNs) remains unknown.Here, we report that altering the activity of endogenous SFKs modulated voltage-gated Na+, but not K+, currents recorded in embryonic SGNs in culture. Voltage-gated Na+ current was suppressed by inhibition of endogenous SFKs or just Src and potentiated by the activation of these enzymes. Detailed investigations showed that under basal conditions, SFK inhibitor application did not significantly affect the voltage-dependent activation, but shifted the steady-state inactivation curves of Na+ currents and delayed the recovery of Na+ currents from inactivation. Application of Src specific inhibitor, Src40–58,not only shifted the inactivation curve but also delayed the recovery of Na+ currents and moved the voltage-dependent activation curve towards the left. The pre-inhibition of SFKs occluded all the effects induced by Src40–58 application, except the left shift of the activation curve. The activation of SFKs did not change either steady-state inactivation or recovery of Na+ currents, but caused the left shift of the activation curve.SFK inhibitor application effectively prevented all the effects induced by SFK activation, suggesting that both the voltage-dependent activation and steady-state inactivation of Na+ current are subjects of SFK regulation. The different effects induced by activation versus inhibition of SFKs implied that under basal conditions, endogenously active and inactive SFKs might be differentially involved in the regulation of voltage-gated Na+ channels in SGNs.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Otolaryngology—Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Tzeng WY, Chang WT, Chuang JY, Lin KY, Cherng CG, Yu L. Disruption of memory reconsolidation impairs storage of other, non-reactivated memory. Neurobiol Learn Mem 2012; 97:241-9. [PMID: 22252051 DOI: 10.1016/j.nlm.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
Two hypotheses were tested in this study. First, blockade of neural activity by lidocaine immediately following the retrieval of a memory may impair the reconsolidation and subsequent expression of that memory. Second, a non-retrieved memory would not be affected by this lidocaine treatment. Since the basolateral nucleus of the amygdala (BLA) is involved in emotion-related memory, an intra-BLA lidocaine infusion was used immediately after the retrieval of two emotion-related memories, the step-through passive avoidance response (PA) and cocaine-induced conditioned place preference (CPP). Intra-BLA lidocaine infusion immediately after cocaine-induced CPP retrieval diminished CPP magnitude in retests. However, intra-BLA lidocaine infusion alone did not affect cocaine-induced CPP performance. Intra-BLA lidocaine infusion immediately after PA retrieval decreased PA performance in retests. Omission of PA retrieval procedure, intra-BLA lidocaine infusion did not affect subsequent PA performance. Surprisingly, intra-BLA lidocaine infusion immediately following the retrieval of PA or cocaine-induced CPP diminished both PA and cocaine-induced CPP performance in the retests. Finally, Fos-staining results revealed that a number of BLA neurons were activated by the retrieval of both cocaine-induced CPP and PA. We conclude that inactivation of neural activity in BLA immediately following retrieval of a fear or cocaine-conditioned memory can impair subsequent expression of both memories. More importantly, retrieval of a memory does not seem to be an absolute condition for rapidly changing the memory.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Marini C, Mantegazza M. Na+ channelopathies and epilepsy: recent advances and new perspectives. Expert Rev Clin Pharmacol 2012; 3:371-84. [PMID: 22111617 DOI: 10.1586/ecp.10.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations of ion channel genes have a major role in the pathogenesis of several epilepsies, confirming that some epilepsies are disorders due to the impairment of ion channel function (channelopathies). Voltage-gated Na(+) channels (VGSCs) play an essential role in neuronal excitability; it is, therefore, not surprising that most mutations associated with epilepsy have been identified in genes coding for VGSCs subunits. Epilepsies linked to VGSCs mutations range in severity from mild disorders, such as benign neonatal-infantile familial seizures and febrile seizures, to severe and drug-resistant epileptic encephalopathies. SCN1A is the most clinically relevant of all of the known epilepsy genes, several hundred mutations have been identified in this gene. This review will summarize recent advances and new perspectives on Na(+) channels and epilepsy. A better understanding of the genetic basis and of how gene defects cause seizures is mandatory to direct future research for newer selective and more efficacious treatments.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology Unit, Pediatric Hospital A. Meyer, University of Firenze, Viale Pieraccini, Florence, Italy.
| | | |
Collapse
|
23
|
Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 2011; 279:20-8. [PMID: 22060915 DOI: 10.1111/j.1742-4658.2011.08413.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.
Collapse
Affiliation(s)
- Bradley R Groveman
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 2011; 108:15426-31. [PMID: 21876146 DOI: 10.1073/pnas.1112320108] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na(+) channels and reveals its mode of interaction with a gating modifier toxin.
Collapse
|
25
|
Boucher CA, Ward HH, Case RL, Thurston KS, Li X, Needham A, Romero E, Hyink D, Qamar S, Roitbak T, Powell S, Ward C, Wilson PD, Wandinger-Ness A, Sandford RN. Receptor protein tyrosine phosphatases are novel components of a polycystin complex. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1225-38. [PMID: 21126580 DOI: 10.1016/j.bbadis.2010.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, and the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions. The first extracellular PKD1 domain of polycystin-1 interacts with the first Ig domain of RPTPσ, while the polycystin-1 C-terminus of polycystin-1 interacts with the regulatory D2 phosphatase domain of RPTPγ. Additional homo- and heterotypic interactions between RPTPs recruit RPTPδ. The multimeric polycystin protein complex is found localised in cilia. RPTPσ and RPTPδ are also part of a polycystin-1/E-cadherin complex known to be important for early events in adherens junction stabilisation. The interaction between polycystin-1 and RPTPγ is disrupted in ADPKD cells, while RPTPσ and RPTPδ remain closely associated with E-cadherin, largely in an intracellular location. The polycystin-1 C-terminus is an in vitro substrate of RPTPγ, which dephosphorylates the c-Src phosphorylated Y4237 residue and activates AP1-mediated transcription. The data identify RPTPs as novel interacting partners of the polycystins both in cilia and at adhesion complexes and demonstrate RPTPγ phosphatase activity is central to the molecular mechanisms governing polycystin-dependent signaling. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Catherine A Boucher
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Scheuer T. Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 2010; 22:160-5. [PMID: 20950703 DOI: 10.1016/j.semcdb.2010.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/24/2022]
Abstract
Voltage-gated sodium channels carry the major inward current responsible for action potential depolarization in excitable cells as well as providing additional inward current that modulates overall excitability. Both their expression and function is under tight control of protein phosphorylation by specific kinases and phosphatases and this control is particular to each type of sodium channel. This article examines the impact and mechanism of phosphorylation for isoforms where it has been studied in detail in an attempt to delineate common features as well as differences.
Collapse
Affiliation(s)
- Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280, United States.
| |
Collapse
|
27
|
Catterall WA. Signaling complexes of voltage-gated sodium and calcium channels. Neurosci Lett 2010; 486:107-16. [PMID: 20816922 DOI: 10.1016/j.neulet.2010.08.085] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 08/27/2010] [Accepted: 08/29/2010] [Indexed: 01/09/2023]
Abstract
Membrane depolarization and intracellular Ca(2+) transients generated by activation of voltage-gated Na+ and Ca(2+) channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. This article reviews experimental results showing that Na+ and Ca(2+) channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for regulation of cellular plasticity through modulation of Na+ channel function in brain neurons, for short-term synaptic plasticity through modulation of presynaptic Ca(V)2 channels, and for the fight-or-flight response through regulation of postsynaptic Ca(V)1 channels in skeletal and cardiac muscle. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, United States.
| |
Collapse
|
28
|
Berendt FJ, Park KS, Trimmer JS. Multisite phosphorylation of voltage-gated sodium channel alpha subunits from rat brain. J Proteome Res 2010; 9:1976-84. [PMID: 20131913 DOI: 10.1021/pr901171q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible phosphorylation of ion channels underlies cellular plasticity in mammalian neurons. Voltage-gated sodium or Nav channels underlie action potential initiation and propagation, dendritic excitability, and many other aspects of neuronal excitability. Various protein kinases have been suggested to phosphorylate the primary or alpha subunit of Nav channels, affecting diverse aspects of channel function. Previous studies of Nav alpha subunit phosphorylation have led to the identification of a small set of phosphorylation sites important in mediating diverse aspects of Nav channel function. Here we use nanoflow liquid chromatography tandem mass spectrometry (nano-LC MS/MS) on Nav alpha subunits affinity-purified from rat brain with two distinct monoclonal antibodies to identify 15 phosphorylation sites on Nav1.2, 12 of which have not been previously reported. We also found 3 novel phosphorylation sites on Nav1.1. In general, commonly used phosphorylation site prediction algorithms did not accurately predict these novel in vivo phosphorylation sites. Our results demonstrate that specific Nav alpha subunits isolated from rat brain are highly phosphorylated, and suggest extensive modulation of Nav channel activity in mammalian brain. Identification of phosphorylation sites using monoclonal antibody-based immunopurification and mass spectrometry is an effective approach to define the phosphorylation status of Nav channels and other important membrane proteins in mammalian brain.
Collapse
Affiliation(s)
- Frank J Berendt
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, School of Medicine, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
29
|
Abstract
Alterations in the expression, molecular composition, and localization of voltage-gated sodium channels play major roles in a broad range of neurological disorders. Recent evidence identifies sodium channel proteolysis as a key early event after ischemia and traumatic brain injury, further expanding the role of the sodium channel in neurological diseases. In this study, we investigate the protease responsible for proteolytic cleavage of voltage-gated sodium channels (NaChs). NaCh proteolysis occurs after protease activation in rat brain homogenates, pharmacological disruption of ionic homeostasis in cortical cultures, and mechanical injury using an in vitro model of traumatic brain injury. Proteolysis requires Ca(2+) and calpain activation but is not influenced by caspase-3 or cathepsin inhibition. Proteolysis results in loss of the full-length alpha-subunits, and the creation of fragments comprising all domains of the channel that retain interaction even after proteolysis. Cell surface biotinylation after mechanical injury indicates that proteolyzed NaChs remain in the membrane before noticeable evidence of neuronal death, providing a mechanism for altered action potential initiation, propagation, and downstream signaling events after Ca(2+) elevation.
Collapse
|
30
|
Lai YT, Fan HY, Cherng CG, Chiang CY, Kao GS, Yu L. Activation of amygdaloid PKC pathway is necessary for conditioned cues-provoked cocaine memory performance. Neurobiol Learn Mem 2008; 90:164-70. [PMID: 18442936 DOI: 10.1016/j.nlm.2008.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/07/2008] [Accepted: 03/16/2008] [Indexed: 01/23/2023]
Abstract
Drug-associated cues are critical in reinstating the drug taking behavior even during prolonged abstinence and thus are thought to be a key factor to induce drug craving and to cause relapse. Amygdaloid complex has been known for its physiological function in mediating emotional experience storage and emotional cues-regulated memory retrieval. This study was undertaken to examine the role of basolateral nuclei of amygdala and the intracellular signaling molecule in drug cues-elicited cocaine memory retrieval. Systemic anisomycin treatment prior to the retrieval test abolished the cues-provoked cocaine conditioned place preference (CPP) memory. Likewise, a similar blockade of cues-provoked cocaine CPP performance was achieved by infusion of anisomycin and cycloheximide into the basolateral nuclei of amygdala before the test. Intra-amygdaloid infusion of H89, a protein kinase A inhibitor, or U0126, a MEK inhibitor, did not affect retrieval of the cues-elicited cocaine CPP memory. In contrast, intra-amygdaloid infusion of NPC 15437, a PKC inhibitor, abolished the cues-elicited cocaine CPP expression, while left the memory per se intact. Intra-amygdaloid infusion of NPC 15437 did not seem to affect locomotor activity or exert observable aversive effect. Taken together, our results suggest that activation of PKC signaling pathway and probably downstream de novo protein synthesis in the basolateral nuclei of amygdala is required for the cues-elicited cocaine memory performance. However, temporary inhibition of this signaling pathway does not seem to affect cocaine CPP memory per se.
Collapse
Affiliation(s)
- Yu-Ting Lai
- Behavioral Neuropharmacology Laboratory, Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Road, Tainan 701, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
31
|
Ahn M, Beacham D, Westenbroek RE, Scheuer T, Catterall WA. Regulation of Na(v)1.2 channels by brain-derived neurotrophic factor, TrkB, and associated Fyn kinase. J Neurosci 2007; 27:11533-42. [PMID: 17959796 PMCID: PMC6673213 DOI: 10.1523/jneurosci.5005-06.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels are responsible for action potential initiation and propagation in neurons, and modulation of their function has an important impact on neuronal excitability. Sodium channels are regulated by a Src-family tyrosine kinase pathway, and this modulation can be reversed by specifically bound receptor phosphoprotein tyrosine phosphatase-beta. However, the specific tyrosine kinase and signaling pathway are unknown. We found that the sodium channels in rat brain interact with Fyn, one of four Src-family tyrosine kinases expressed in the brain. Na(V)1.2 channels and Fyn are localized together in the axons of cultured hippocampal neurons, the mossy fibers of the hippocampus, and cell bodies, dendrites, and axons of neurons in many other brain areas, and they coimmunoprecipitate with Fyn from cotransfected tsA-201 cells. Coexpression of Fyn with Na(V)1.2 channels decreases sodium currents by increasing the rate of inactivation and causing a negative shift in the voltage dependence of inactivation. Reconstitution of a signaling pathway from brain-derived neurotrophic factor (BDNF) to sodium channels via the tyrosine receptor kinase B (TrkB)/p75 neurotrophin receptor and Fyn kinase in transfected cells resulted in an increased rate of inactivation of sodium channels and a negative shift in the voltage dependence of inactivation after treatment with BDNF. These results indicate that Fyn kinase is associated with sodium channels in brain neurons and can modulate Na(V)1.2 channels by tyrosine phosphorylation after activation of TrkB/p75 signaling by BDNF.
Collapse
Affiliation(s)
- Misol Ahn
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Daniel Beacham
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Ruth E. Westenbroek
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - William A. Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| |
Collapse
|