1
|
Ümmü E, Kurt E, Bayram A. Alterations within and between intrinsic connectivity networks in cognitive interference resolution. Int J Psychophysiol 2025; 212:112577. [PMID: 40306372 DOI: 10.1016/j.ijpsycho.2025.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Cognitive interference resolution (CIR) is the process of maintaining goal-directed focus despite the presence of distractions. While CIR has been extensively studied through localized activation analyses, its network-level dynamics remain underexplored with sufficient methodological diversity. In this study, we investigated the task-modulated intrinsic connectivity networks (ICNs) and their dynamic interactions with detailed subnetwork segmentation during CIR using fMRI data from 27 healthy adults performing the Multi-Source Interference Task (MSIT). We applied high-order group independent component analysis (ICA) to extract ICN subcomponents, followed by task-modulated component identification and dynamic functional connectivity analysis to examine network interactions. Our results reveal that the dorsal attention network (DAN) and cognitive control network (CCN) show increased activation and connectivity, while the default mode network (DMN) and limbic network exhibit decreased activation and connectivity. Additionally, the visual and cerebellum networks emerge as key intermediaries in CIR, as DAN and CCN strengthen their connectivity with these networks rather than directly interacting with each other. Furthermore, network reconfiguration patterns suggest functional segregation within the somatomotor network and CCN, indicating specialized subcomponent contributions. These findings provide a granular understanding of ICN activations and dynamic inter-network communication during CIR, offering new insights into the flexible reorganization of brain networks in response to cognitive interference.
Collapse
Affiliation(s)
- Eylem Ümmü
- Graduate School of Health Sciences, Istanbul University, Istanbul 34126, Türkiye; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Istanbul 34093, Türkiye.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Istanbul 34093, Türkiye
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
2
|
Liu M, Li R, Liang M, Li J, Meng S, Lin W, Zhou Z, Yu K, Chen Y, Yin Y, Xu S, Xiao W, Chen Z, Jiang G, Wu Y. Early detection of cognitive impairment in end-stage renal disease patients undergoing hemodialysis: insights from Resting-State functional connectivity analysis. BMC Nephrol 2025; 26:191. [PMID: 40229685 PMCID: PMC11998435 DOI: 10.1186/s12882-025-04109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND This study aims to investigate the characteristics of functional connectivity (FC) in neurologically asymptomatic patients with end-stage renal disease (ESRD) undergoing hemodialysis (HD) and experiencing cognitive impairment (CI). METHODS 36 early-stage ESRD patients undergoing HD (ESHD) and 31 healthy control subjects underwent MRI scans. Abnormal FCs and networks were identified between the two groups, and correlation analysis and Area Under the Curve (AUC) analysis were conducted between abnormal FC regions and clinical variables. RESULTS The ESHD group exhibited abnormal FCs in the posterior default mode network (DMN), attention network, and external visual network (VN). Significant correlations were observed between FC values of multiple brain regions and neurocognitive scores in the ESHD group. Additionally, the FC value of the right median cingulate gyrus negatively correlated with serum calcium levels. AUC analysis demonstrated that altered FC values in the left angular gyrus and the right supramarginal gyrus effectively distinguished patients with or without CI. CONCLUSIONS In conclusion, our study reveals multiple abnormal FC regions in asymptomatic ESHD patients, affecting visual-spatial processing, short-term memory, language, attention, and executive function. Altered FCs and their negative correlation with serum calcium levels highlight a potential link between metabolic disturbances and cognitive decline, suggesting new opportunities for targeted interventions in this vulnerable population.
Collapse
Affiliation(s)
- Mengchen Liu
- The Department of Nuclear Medicine Department, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Rujin Li
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- The Second School of Clinical Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, PR China
| | - Man Liang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, PR China
| | - Jiejing Li
- The Second School of Clinical Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, PR China
| | - Shandong Meng
- The Department of Renal Transplantation, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Weizhao Lin
- Department of Radiology, Jieyang People's Hospital, Jieyang, PR China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Kanghui Yu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- The Second School of Clinical Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanying Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, PR China
| | - Yi Yin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Wenqing Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Zichao Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, PR China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
- The Second School of Clinical Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, PR China
| | - Yunfan Wu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China.
- The Second School of Clinical Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
3
|
Tomou G, Baltaretu BR, Ghaderi A, Crawford JD. Saccades influence functional modularity in the human cortical vision network. Sci Rep 2025; 15:10683. [PMID: 40155663 PMCID: PMC11953456 DOI: 10.1038/s41598-025-95568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
Visual cortex is thought to show both dorsoventral and hemispheric modularity, but it is not known if the same functional modules emerge spontaneously from an unsupervised network analysis, or how they interact when saccades necessitate increased sharing of spatial information. Here, we address these issues by applying graph theory analysis to fMRI data obtained while human participants decided whether an object's shape or orientation changed, with or without an intervening saccade across the object. BOLD activation from 50 vision-related cortical nodes was used to identify local and global network properties. Modularity analysis revealed three sub-networks during fixation: a bilateral parietofrontal network linking areas implicated in visuospatial processing and two lateralized occipitotemporal networks linking areas implicated in object feature processing. When horizontal saccades required visual comparisons between visual hemifields, functional interconnectivity and information transfer increased, and the two lateralized ventral modules became functionally integrated into a single bilateral sub-network. This network included 'between module' connectivity hubs in lateral intraparietal cortex and dorsomedial occipital areas previously implicated in transsaccadic integration. These results provide support for functional modularity in the visual system and show that the hemispheric sub-networks are modified and functionally integrated during saccades.
Collapse
Affiliation(s)
- George Tomou
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
| | - Bianca R Baltaretu
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
- Department of Biology, York University, Toronto, Canada
- Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Amirhossein Ghaderi
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada.
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada.
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada.
- Department of Psychology, York University, Toronto, Canada.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
4
|
Sun M, Chen L. Prefrontal-Dependent and Gender-Specific Modulation of Guilt Emotion on Human Early Visual Perception. Behav Sci (Basel) 2025; 15:333. [PMID: 40150228 PMCID: PMC11939296 DOI: 10.3390/bs15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Negative emotions can shape human visual perception, which is mainly investigated using basic emotions such as fear. Whether guilt emotion, which is a negative moral emotion originating late in our evolutionary ancestry, has similar modulatory effects as basic emotions is largely unexplored. Here, we employed a dot estimation task to induce feelings of guilt and subsequently measured the Ebbinghaus illusion strength. The photos of victims' faces were projected on the central circle of the Ebbinghaus configuration. The results showed that guilt significantly strengthened the illusion effect relative to control condition, which was observed only for female participants playing with same-gender partners and reversed to the opposite pattern with disruption of left ventrolateral prefrontal cortex. The findings suggest that guilt can sculpt early visual perception in a gender-specific and prefrontal-dependent manner, thus broaden our understanding of guilt emotion and have implications for relevant neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mingyang Sun
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Lihong Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| |
Collapse
|
5
|
Meyyappan S, Rajan A, Yang Q, Mangun GR, Ding M. Decoding Visual Spatial Attention Control. eNeuro 2025; 12:ENEURO.0512-24.2025. [PMID: 39947905 PMCID: PMC11875837 DOI: 10.1523/eneuro.0512-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these baseline neural activity changes translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a voluntary spatial attention task, using two independent functional magnetic resonance imaging datasets and two analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants' free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control and how these biases influence both sensory processing and behavioral performance.
Collapse
Affiliation(s)
- Sreenivasan Meyyappan
- Center for Mind and Brain, University of California, Davis, California 95618
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Qiang Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, California 95618
- Departments of Psychology and Neurology, University of California, Davis, California 95616
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
6
|
Fattal J, McAdams DP, Mittal VA. Interpersonal synchronization: An overlooked factor in development, social cognition, and psychopathology. Neurosci Biobehav Rev 2025; 170:106037. [PMID: 39929382 DOI: 10.1016/j.neubiorev.2025.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Intact social functioning relies on a combination of explicit and implicit behavioral, attentional, and interpersonal processes referred to as "social cognition". Characterizing these interpersonal processes forms a critical underpinning to understanding and treating psychopathology, particularly in disorders where deficits in social functioning do not emerge as a secondary symptom but rather as an essential feature of the disorder. Two of such disorders are autism spectrum disorders (ASD) and schizophrenia spectrum disorders (SZ). However, despite the substantial overlap in the features of social dysfunction between ASD and SZ, including social cognitive deficits in theory of mind, perspective-taking, and empathy, there is a limited understanding of the mechanisms underlying those shared deficits, and how to treat them. We suggest that disruptions of interpersonal functioning emerge over the course of development, and that interpersonal synchronization, a phenomenon in which behavioral and physiological cues align between interacting partners, forms a critical component of social cognition that underlies the disruption in social functioning in ASD and SZ. We present a conceptual review of typical and atypical development of social processes and highlight the role of interpersonal synchronization across the course of development. Then, we review the existing evidence suggesting impairments in both the intentional and spontaneous synchronization of interpersonal processes in ASD and SZ, as well as studies suggesting that interpersonal synchronization and clinical symptoms may be improved through body-oriented interventions within these disorders. Finally, we suggest potential mechanisms that may underpin typical and atypical development of interpersonal synchronization.
Collapse
Affiliation(s)
- Jessica Fattal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA.
| | - Dan P McAdams
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Wu Y, Li R, Jiang G, Yang N, Liu M, Chen Y, Chen Z, Yu K, Yin Y, Xu S, Xia B, Meng S. Cognitive impairment assessed by static and dynamic changes of spontaneous brain activity during end stage renal disease patients on early hemodialysis. Front Neurol 2025; 16:1510321. [PMID: 40040917 PMCID: PMC11877905 DOI: 10.3389/fneur.2025.1510321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
Background Compared with the general population, patients with end-stage renal disease (ESRD) undergoing maintenance hemodialysis (ESHD) exhibit a higher incidence of cognitive impairment. Early identification of cognitive impairment in these patients is crucial for reducing disability and mortality rates. Examining the characteristics of static and dynamic regional spontaneous activities in ESHD cases may provide insights into neuropathological damage in these patients. Methods Resting-state functional magnetic resonance images were acquired from 40 patients with early ESHD (3 or 4 times/week for more than 30 days but less than 12 months) and 31 healthy matched controls. Group differences in regional static and dynamic regional homogeneity (ReHo) were identified, and correlations examined with clinical variables, including neuropsychological scale scores, while controlling for covariates. Receiving operating characteristic (ROC) curve analyses were conducted to assess the accuracy of ReHo abnormalities for predicting cognitive decline among early ESHD. Results The ESHD group exhibited significantly reduced static and dynamic ReHo in the temporal and parietal lobes, including regions involved in basal ganglia-thalamus-cortex circuits, the default mode network, and ventral attentional network. Several static and dynamic ReHo abnormalities (including those in the right parietal and left middle temporal gyrus) were significantly correlated with neurocognitive scale scores. In addition, the dynamic ReHo value of the left superior temporal gyrus was positively correlated with depression scale scores. Comparing the ROC curve area revealed that numerous brain regions with altered ReHo can effectively distinguish between patients with ESHD and those without cognitive impairment. Conclusion Our study found that spontaneous activity alterations located in the basal ganglia-thalamus-cortex circuit, default mode network, and ventral attentional network are associated with the severity of cognitive deficits and negative emotion in early ESHD patients. These findings provide further insight into the relationship between cognitive impairment and underlying neuropathophysiological mechanisms underlying the interplay between the kidneys and the nervous system in ESRD patients, and provide further possibilities for developing effective clinical intervention measures.
Collapse
Affiliation(s)
- Yunfan Wu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rujin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Ning Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mengchen Liu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yanying Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Zichao Chen
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Kanghui Yu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shoujun Xu
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Bin Xia
- Department of Medical Imaging, Guangdong Medical University, Zhanjiang, China
| | - Shandong Meng
- The Department of Renal Transplantation, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Huang PJ, Son JJ, Arif Y, John JA, Horne LK, Schantell M, Springer SD, Rempe MP, Okelberry HJ, Killanin AD, Glesinger R, Coutant AT, Ward TW, Willett MP, Johnson HJ, Heinrichs-Graham E, Wilson TW. Chronic cannabis use differentially modulates neural oscillations serving the manipulate versus maintain components of working memory processing. Neurobiol Dis 2025; 205:106792. [PMID: 39765275 PMCID: PMC11798582 DOI: 10.1016/j.nbd.2025.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
The legalization of recreational cannabis use has expanded the availability of this psychoactive substance in the United States. Research has shown that chronic cannabis use is associated with altered working memory function, however, the brain areas and neural dynamics underlying these affects remain poorly understood. In this study, we leveraged magnetoencephalography (MEG) to investigate neurophysiological activity in 45 participants (22 heavy cannabis users) during a numerical WM task, whereby participants were asked to either maintain or manipulate (i.e., rearrange in ascending order) a group of visually presented numbers. Significant oscillatory responses were imaged using a beamformer and subjected to whole-brain ANOVAs. Notably, we found that cannabis users exhibited significantly weaker alpha oscillations in superior parietal, occipital, and other regions during the encoding phase relative to nonusers. Interestingly, during the maintenance phase, there was a group-by-condition interaction in the right inferior frontal gyrus, left prefrontal, parietal, and other regions, such that cannabis users exhibited weaker alpha and beta oscillations relative to nonusers during maintain trials. Additionally, chronic cannabis users exhibited stronger alpha and beta maintenance responses in these same brain regions and prolonged reaction times during manipulate relative to maintain trials, while no such differences were found in nonusers. Neurobehavioral relationships were also detected in the prefrontal cortices of nonusers, but not cannabis users. In sum, chronic cannabis users exhibit weaker neural oscillations during working memory encoding but may compensate for these deficiencies through stronger oscillatory responses during memory maintenance, especially during strenuous tasks such as manipulating the to-be remembered items.
Collapse
Affiliation(s)
- Peihan J Huang
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
| |
Collapse
|
9
|
Nikolaev AR, Meghanathan RN, van Leeuwen C. Refixation behavior in naturalistic viewing: Methods, mechanisms, and neural correlates. Atten Percept Psychophys 2025; 87:25-49. [PMID: 38169029 PMCID: PMC11845542 DOI: 10.3758/s13414-023-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
When freely viewing a scene, the eyes often return to previously visited locations. By tracking eye movements and coregistering eye movements and EEG, such refixations are shown to have multiple roles: repairing insufficient encoding from precursor fixations, supporting ongoing viewing by resampling relevant locations prioritized by precursor fixations, and aiding the construction of memory representations. All these functions of refixation behavior are understood to be underpinned by three oculomotor and cognitive systems and their associated brain structures. First, immediate saccade planning prior to refixations involves attentional selection of candidate locations to revisit. This process is likely supported by the dorsal attentional network. Second, visual working memory, involved in maintaining task-related information, is likely supported by the visual cortex. Third, higher-order relevance of scene locations, which depends on general knowledge and understanding of scene meaning, is likely supported by the hippocampal memory system. Working together, these structures bring about viewing behavior that balances exploring previously unvisited areas of a scene with exploiting visited areas through refixations.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Department of Psychology, Lund University, Box 213, 22100, Lund, Sweden.
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium.
| | | | - Cees van Leeuwen
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Cognitive Science, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
10
|
Meyyappan S, Rajan A, Yang Q, Mangun GR, Ding M. Decoding Visual Spatial Attention Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.05.552084. [PMID: 37609147 PMCID: PMC10441319 DOI: 10.1101/2023.08.05.552084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these changes in baseline neural activity directly translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a trial-by-trial voluntary spatial attention task, using two independent fMRI datasets, and two different analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control, and how these biases influence both sensory processing and behavioral performance. Highlights Multivariate pattern analysis revealed the presence of top-down attentional biasing signals in all areas of the visual hierarchy whereas univariate analysis was not able to reveal the full extent of attentional biasing in the visual cortex.The decoding accuracy derived from the MVPA analysis but not the magnitude difference derived from the univariate analysis predicted the subject's behavioral performance in stimulus discrimination.The MVPA results were consistent across two experimental conditions where the direction of spatial attention was driven either by external instructions or from purely internal decisions.
Collapse
|
11
|
Hou C, Zhou Z, Uner IJ, Nicholas SC. Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI. Brain Sci 2024; 14:1148. [PMID: 39595911 PMCID: PMC11591568 DOI: 10.3390/brainsci14111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Amblyopia is a neurodevelopmental disorder of vision, commonly caused by strabismus or anisometropia during early childhood. While studies demonstrated that perceptual learning improves visual acuity and stereopsis in adults with amblyopia, accompanying changes in visual cortical function remain unclear. Methods: We measured functional magnetic resonance imaging (fMRI) responses before and after perceptual learning in seven adults with amblyopia. Our learning tasks involved dichoptic high-attention-demand tasks that avoided V1 function-related tasks and required high-level cortical functions (e.g., intraparietal sulcus) to train the amblyopic eye. Results: Perceptual learning induced low-level visual cortical function changes, which were strongly associated with the etiology of amblyopia and visual function improvements. Anisometropic amblyopes showed functional improvements across all regions of interest (ROIs: V1, V2, V3, V3A, and hV4), along with improvements in visual acuity and stereoacuity. In contrast, strabismic amblyopes showed robust improvements in visual cortical functions only in individuals who experienced significant gains in visual acuity and stereoacuity. Notably, improvements in V1 functions were significantly correlated with the magnitude of visual acuity and stereoacuity improvements when combining both anisometropic and strabismic amblyopes. Conclusions: Our findings provide evidence that learning occurs in both high-level and low-level cortical processes. Our study suggests that early intervention to correct eye alignment (e.g., strabismus surgery) is critical for restoring both visual and cortical functions in strabismic amblyopia.
Collapse
Affiliation(s)
- Chuan Hou
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA; (Z.Z.); (I.J.U.); (S.C.N.)
| | | | | | | |
Collapse
|
12
|
Ge Y, Song J, Zhao R, Guo X, Chu X, Zhou J, Xue Y. Intra- and inter-network connectivity abnormalities associated with surgical outcomes in degenerative cervical myelopathy patients: a resting-state fMRI study. Front Neurol 2024; 15:1490763. [PMID: 39574511 PMCID: PMC11580013 DOI: 10.3389/fneur.2024.1490763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Resting-state functional MRI (fMRI) has revealed functional changes at the cortical level in degenerative cervical myelopathy (DCM) patients. The aim of this study was to systematically integrate static and dynamic functional connectivity (FC) to unveil abnormalities of functional networks of DCM patients and to analyze the prognostic value of these abnormalities for patients using resting-state fMRI. In this study, we collected clinical data and fMRI data from 44 DCM patients and 39 healthy controls (HC). Independent component analysis (ICA) was performed to investigate the group differences of intra-network FC. Subsequently, both static and dynamic FC were calculated to investigate the inter-network FC alterations in DCM patients. k-means clustering was conducted to assess temporal properties for comparison between groups. Finally, the support vector machine (SVM) approach was performed to predict the prognosis of DCM patients based on static FC, dynamic FC, and fusion of these two metrics. Relative to HC, DCM patients exhibited lower intra-network FC and higher inter-network FC. DCM patients spent more time than HC in the state in which both patients and HC were characterized by strong inter-network FC. Both static and dynamic FC could successfully classify DCM patients with different surgical outcomes. The classification accuracy further improved after fusing the dynamic and static FC for model training. In conclusion, our findings provide valuable insights into the brain mechanisms underlying DCM neuropathology on the network level.
Collapse
Affiliation(s)
- Yuqi Ge
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiajun Song
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'An, China
| | - Xing Guo
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xu Chu
- Department of Shoulder and Elbow of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'An, China
| | - Jiaming Zhou
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Xue
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Meyyappan S, Ding M, Mangun GR. Hierarchical Organization of Visual Feature Attention Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.615879. [PMID: 39554008 PMCID: PMC11566002 DOI: 10.1101/2024.10.02.615879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Attention can be deployed in anticipation of visual stimuli based on features such as their color or direction of motion. This anticipatory feature-based attention involves top-down neural control signals from the frontoparietal network that bias visual cortex to enhance the processing of attended information and suppress distraction. So, for example, anticipatory attention control can enable effective selection based on stimulus color while ignoring distracting information about stimulus motion. But as well, anticipatory attention can be focused more narrowly, for example, to select specific colors or motion directions that define task-relevant events and objects. One important question that remains open is whether anticipatory attention control first biases broad feature dimensions such as color versus motion before biasing the specific feature attributes (e.g., blue vs. green). To investigate this, we recorded EEG activity during a task where participants were cued to either attend to a color (blue or green) or a motion direction (up or down) on a trial-by-trial basis. Applying multivariate decoding approaches to the EEG alpha band (8-12 Hz) activity during the attention control period (cue-target interval), we observed significant decoding for both the attended dimensions (color vs. motion) and specific feature attributes (blue vs. green; up vs. down). Importantly, the temporal onset of the dimension-level biasing (color vs. motion) preceded that of the attribute-level biasing (e.g., blue vs. green). These findings demonstrate that the top-down control of feature-based attention proceeds in a hierarchical fashion, first biasing the broad feature dimension, and then narrowing to the specific feature attribute. Significance Statement During voluntary feature-based attention, electrophysiological and neuroimaging studies have highlighted the role of anticipatory (top-down) biasing of the sensory cortex in enhancing the selection of attended stimulus attributes, but little is known about how this is achieved. In particular, it is not clear whether attending to an attribute such as a color (blue vs. green) or motion direction (up vs. down) first biases all neural structures coding that dimension (color/motion) before biasing the specific attribute, or if the top-down signals directly bias only the attended attribute. Using EEG and multivariate decoding, we report that top-down attention control follows a hierarchical organization: first, the broader attended feature dimension is biased, which is followed by the biasing of the specific feature attribute.
Collapse
|
14
|
Huang YN, Liang WK, Juan CH. Spatial prediction modulates the rhythm of attentional sampling. Cereb Cortex 2024; 34:bhae392. [PMID: 39329361 DOI: 10.1093/cercor/bhae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies demonstrate that behavioral performance during visual spatial attention fluctuates at theta (4 to 8 Hz) and alpha (8 to 16 Hz) frequencies, linked to phase-amplitude coupling of neural oscillations within the visual and attentional system depending on task demands. To investigate the influence of prior spatial prediction, we employed an adaptive discrimination task with variable cue-target onset asynchronies (300 to 1,300 ms) and different cue validity (100% & 50%). We recorded electroencephalography concurrently and adopted adaptive electroencephalography data analytical methods, namely, Holo-Holo-Hilbert spectral analysis and Holo-Hilbert cross-frequency phase clustering. Our findings indicate that response precision for near-threshold Landolt rings fluctuates at the theta band (4 Hz) under certain predictions and at alpha & beta bands (15 & 19 Hz) with uncertain predictions. Furthermore, spatial prediction strengthens theta-alpha modulations at parietal-occipital areas, frontal theta/parietal-occipital alpha phase-amplitude coupling, and within frontal theta-alpha phase-amplitude coupling. Notably, during the pretarget period, beta-modulated gamma oscillations in parietal-occipital areas predict response precision under uncertain prediction, while frontal theta/parietal-occipital alpha phase-amplitude coupling predicts response precision in spatially certain conditions. In conclusion, our study highlights the critical role of spatial prediction in attentional sampling rhythms with both behavioral and electroencephalography evidence.
Collapse
Affiliation(s)
- Yih-Ning Huang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| |
Collapse
|
15
|
Zhang K, Fang H, Li Z, Ren T, Li BM, Wang C. Sex differences in large-scale brain network connectivity for mental rotation performance. Neuroimage 2024; 298:120807. [PMID: 39179012 DOI: 10.1016/j.neuroimage.2024.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
Mental rotation has emerged as an important predictor for success in science, technology, engineering, and math fields. Previous studies have shown that males and females perform mental rotation tasks differently. However, how the brain functions to support this difference remains poorly understood. Recent advancements in neuroimaging techniques have enabled the identification of sex differences in large-scale brain network connectivity. Using a classic mental rotation task with functional magnetic resonance imaging, the present study investigated whether there are any sex differences in large-scale brain network connectivity for mental rotation performance. Our results revealed that, relative to females, males exhibited less cross-network interaction (i.e. lower inter-network connectivity and participation coefficient) of the visual network but more intra-network integration (i.e. higher intra-network connectivity and local efficiency) and cross-network interaction (i.e. higher inter-network connectivity and participation coefficient) of the salience network. Across all participants, mental rotation performance was negatively correlated with cross-network interaction (i.e. participation coefficient) of the visual network, was positively correlated with cross-network interaction (i.e. inter-network connectivity) of the salience network, and was positively correlated with intra-network integration (i.e. local efficiency) of the somato-motor network. Interestingly, the cross-network integration indexes of both the visual and salience networks significantly mediated sex difference in mental rotation performance. The present findings suggest that large-scale brain network connectivity may constitute an essential neural basis for sex difference in mental rotation, and highlight the importance of considering sex as a research variable in investigating the complex network underpinnings of spatial cognition.
Collapse
Affiliation(s)
- Kaijie Zhang
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou 311121, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Haifeng Fang
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China; School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng Li
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China; School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Ren
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou 311121, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Ming Li
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou 311121, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China; School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou 311121, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
16
|
Arif Y, Song RW, Springer SD, John JA, Embury CM, Killanin AD, Son JJ, Okelberry HJ, McDonald KM, Picci G, Wilson TW. High-definition transcranial direct current stimulation of the parietal cortices modulates the neural dynamics underlying verbal working memory. Hum Brain Mapp 2024; 45:e70001. [PMID: 39169661 PMCID: PMC11339318 DOI: 10.1002/hbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Verbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham). Following stimulation, participants completed a vWM task during high-density magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer and whole-brain ANOVAs were used to identify the specific neuromodulatory effects of the stimulation conditions on neural responses serving distinct phases of vWM. We found that right stimulation had a faciliatory effect relative to left stimulation and sham on theta oscillations during encoding in the right inferior frontal, while the opposite pattern was observed for left supramarginal regions. Stimulation also had a faciliatory effect on theta in occipital regions and alpha in temporal regions regardless of the laterality of stimulation. In summary, our data suggest that parietal HD-tDCS both facilitates and interferes with neural responses underlying both the encoding and maintenance phases of vWM. Future studies are warranted to determine whether specific tDCS parameters can be tuned to accentuate the facilitation responses and attenuate the interfering aspects.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Richard W. Song
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Vanderbilt UniversityNashvilleTennesseeUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jake J. Son
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Kellen M. McDonald
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
17
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
18
|
Gallina J, Ronconi L, Marsicano G, Bertini C. Alpha and theta rhythm support perceptual and attentional sampling in vision. Cortex 2024; 177:84-99. [PMID: 38848652 DOI: 10.1016/j.cortex.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at ∼10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at ∼10 Hz and ∼6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a ∼5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy.
| |
Collapse
|
19
|
Haque MT, Segreti M, Giuffrida V, Ferraina S, Brunamonti E, Pani P. Attentional spatial cueing of the stop-signal affects the ability to suppress behavioural responses. Exp Brain Res 2024; 242:1429-1438. [PMID: 38652274 PMCID: PMC11108874 DOI: 10.1007/s00221-024-06825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The ability to adapt to the environment is linked to the possibility of inhibiting inappropriate behaviours, and this ability can be enhanced by attention. Despite this premise, the scientific literature that assesses how attention can influence inhibition is still limited. This study contributes to this topic by evaluating whether spatial and moving attentional cueing can influence inhibitory control. We employed a task in which subjects viewed a vertical bar on the screen that, from a central position, moved either left or right where two circles were positioned. Subjects were asked to respond by pressing a key when the motion of the bar was interrupted close to the circle (go signal). In about 40% of the trials, following the go signal and after a variable delay, a visual target appeared in either one of the circles, requiring response inhibition (stop signal). In most of the trials the stop signal appeared on the same side as the go signal (valid condition), while in the others, it appeared on the opposite side (invalid condition). We found that spatial and moving cueing facilitates inhibitory control in the valid condition. This facilitation was observed especially for stop signals that appeared within 250ms of the presentation of the go signal, thus suggesting an involvement of exogenous attentional orienting. This work demonstrates that spatial and moving cueing can influence inhibitory control, providing a contribution to the investigation of the relationship between spatial attention and inhibitory control.
Collapse
Affiliation(s)
- Md Tanbeer Haque
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Mariella Segreti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
20
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Dimitriadis SI, Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, García-Molina A, Monte-Rubio G, Stillman C, Perera-Lluna A, Mataró M. Intrinsic functional brain connectivity changes following aerobic exercise, computerized cognitive training, and their combination in physically inactive healthy late-middle-aged adults: the Projecte Moviment. GeroScience 2024; 46:573-596. [PMID: 37872293 PMCID: PMC10828336 DOI: 10.1007/s11357-023-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Lifestyle interventions have positive neuroprotective effects in aging. However, there are still open questions about how changes in resting-state functional connectivity (rsFC) contribute to cognitive improvements. The Projecte Moviment is a 12-week randomized controlled trial of a multimodal data acquisition protocol that investigated the effects of aerobic exercise (AE), computerized cognitive training (CCT), and their combination (COMB). An initial list of 109 participants was recruited from which a total of 82 participants (62% female; age = 58.38 ± 5.47) finished the intervention with a level of adherence > 80%. Only in the COMB group, we revealed an extended network of 33 connections that involved an increased and decreased rsFC within and between the aDMN/pDMN and a reduced rsFC between the bilateral supplementary motor areas and the right thalamus. No global and especially local rsFC changes due to any intervention mediated the cognitive benefits detected in the AE and COMB groups. Projecte Moviment provides evidence of the clinical relevance of lifestyle interventions and the potential benefits when combining them.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
| | - Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Alberto García-Molina
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gemma Monte-Rubio
- Centre for Comparative Medicine and Bioimage (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Chelsea Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandre Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, CIBER-BBN, Automàtica I Informàtica Industrial, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain
- Department of Biomedical Engineering, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
22
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
23
|
Guidali G, Bagattini C, De Matola M, Brignani D. Influence of frontal-to-parietal connectivity in pseudoneglect: A cortico-cortical paired associative stimulation study. Cortex 2023; 169:50-64. [PMID: 37862830 DOI: 10.1016/j.cortex.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/22/2023]
Abstract
Pseudoneglect is a set of visuospatial biases that entails a behavioral advantage for stimuli appearing in the left hemifield compared to the right one. Although right hemisphere dominance for visuospatial processing has been invoked to explain this phenomenon, its neurophysiological mechanisms are still debated, and the role of intra- and inter-hemispheric connectivity is yet to be defined. The present study explored the possibility of modulating pseudoneglect in healthy participants through a cortico-cortical paired associative stimulation protocol (ccPAS): a non-invasive brain stimulation protocol that manipulates the interplay between brain regions through the repeated, time-locked coupling of two transcranial magnetic stimulation (TMS) pulses. In the first experiment, healthy participants underwent a frontal-to-parietal (FP) and a parietal-to-frontal (PF) ccPAS. In the FP protocol, the first TMS pulse targeted the right frontal eye field (FEF), and the second pulse the right inferior parietal lobule (IPL), two critical areas for visuospatial and attentional processing. In the PF condition, the order of the pulses was reversed. In both protocols, the inter-stimulus interval (ISI) was 10 ms. Before and after stimulation, pseudoneglect was assessed with a landmark task and a manual line bisection task. A second experiment controlled for ccPAS timing dependency by testing FP-ccPAS with a longer ISI of 100 ms. Results showed that after administering the FP-ccPAS with the ISI of 10 ms, participants' leftward bias in the landmark task increased significantly, with no effects in the manual line bisection task. The other two protocols tested were ineffective. Our findings showed that ccPAS could be used to modulate pseudoneglect by exploiting frontal-to-parietal connectivity, possibly through increased top-down attentional control. FP-ccPAS could represent a promising tool to investigate connectivity properties within visuospatial and attentional networks in the healthy and as a potential rehabilitation protocol in patients suffering from severe visuospatial pathologies.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiara Bagattini
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo De Matola
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
24
|
Narganes-Pineda C, Paz-Alonso PM, Marotta A, Lupiáñez J, Chica AB. Neural basis of social attention: common and distinct mechanisms for social and nonsocial orienting stimuli. Cereb Cortex 2023; 33:11010-11024. [PMID: 37782936 DOI: 10.1093/cercor/bhad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
Social and nonsocial directional stimuli (such as gaze and arrows, respectively) share their ability to trigger attentional processes, although the issue of whether social stimuli generate other additional (and unique) attentional effects is still under debate. In this study, we used the spatial interference paradigm to explore, using functional magnetic resonance imaging, shared and dissociable brain activations produced by gaze and arrows. Results showed a common set of regions (right parieto-temporo-occipital) similarly involved in conflict resolution for gaze and arrows stimuli, which showed stronger co-activation for incongruent than congruent trials. The frontal eye field showed stronger functional connectivity with occipital regions for congruent as compared with incongruent trials, and this effect was enhanced for gaze as compared with arrow stimuli in the right hemisphere. Moreover, spatial interference produced by incongruent (as compared with congruent) arrows was associated with increased functional coupling between the right frontal eye field and a set of regions in the left hemisphere. This result was not observed for incongruent (as compared with congruent) gaze stimuli. The right frontal eye field also showed greater coupling with left temporo-occipital regions for those conditions in which larger conflict was observed (arrow incongruent vs. gaze incongruent trials, and gaze congruent vs. arrow congruent trials). These findings support the view that social and nonsocial stimuli share some attentional mechanisms, while at the same time highlighting other differential effects. Highlights Attentional orienting triggered by social (gaze) and nonsocial (arrow) cues is comparable. When social and nonsocial stimuli are used as targets, qualitatively different behavioral effects are observed. This study explores the neural bases of shared and dissociable neural mechanisms for social and nonsocial stimuli. Shared mechanisms were found in the functional coupling between right parieto-temporo-occipital regions. Dissociable mechanisms were found in the functional coupling between right frontal eye field and ipsilateral and contralateral occipito-temporal regions.
Collapse
Affiliation(s)
- Cristina Narganes-Pineda
- Department of Experimental Psychology and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
| | - Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain, and Language, Mikeletegi Pasealekua 69, 20009 Donostia, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbo, Bizkaia, Spain
| | - Andrea Marotta
- Department of Experimental Psychology and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
| | - Juan Lupiáñez
- Department of Experimental Psychology and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
| |
Collapse
|
25
|
Jiang Y, He S, Zhang J. Different roles of response covariability and its attentional modulation in the sensory cortex and posterior parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2216942120. [PMID: 37812698 PMCID: PMC10589615 DOI: 10.1073/pnas.2216942120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- Institute of AI, Hefei Comprehensive National Science Center, Hefei230088, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiedong Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
26
|
Wagner M, Rusiniak M, Higby E, Nourski KV. Sensory processing of native and non-native phonotactic patterns in the alpha and beta frequency bands. Neuropsychologia 2023; 189:108659. [PMID: 37579990 PMCID: PMC10602391 DOI: 10.1016/j.neuropsychologia.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The phonotactic patterns of one's native language are established within cortical network processing during development. Sensory processing of native language phonotactic patterns established in memory may be modulated by top-down signals within the alpha and beta frequency bands. To explore sensory processing of phonotactic patterns in the alpha and beta frequency bands, electroencephalograms (EEGs) were recorded from native Polish and native English-speaking adults as they listened to spoken nonwords within same and different nonword pairs. The nonwords contained three phonological sequence onsets that occur in the Polish and English languages (/pət/, /st/, /sət/) and one onset sequence /pt/, which occurs in Polish but not in English onsets. Source localization modeling was used to transform 64-channel EEGs into brain source-level channels. Spectral power values in the low frequencies (2-29 Hz) were analyzed in response to the first nonword in nonword pairs within the context of counterbalanced listening-task conditions, which were presented on separate testing days. For the with-task listening condition, participants performed a behavioral task to the second nonword in the pairs. For the without-task condition participants were only instructed to listen to the stimuli. Thus, in the with-task condition, the first nonword served as a cue for the second nonword, the target stimulus. The results revealed decreased spectral power in the beta frequency band for the with-task condition compared to the without-task condition in response to native language phonotactic patterns. In contrast, the task-related suppression effects in response to the non-native phonotactic pattern /pt/ for the English listeners extended into the alpha frequency band. These effects were localized to source channels in left auditory cortex, the left anterior temporal cortex and the occipital pole. This exploratory study revealed a pattern of results that, if replicated, suggests that native language speech perception is supported by modulations in the alpha and beta frequency bands.
Collapse
Affiliation(s)
- Monica Wagner
- St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | | | - Eve Higby
- California State University, East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| | - Kirill V Nourski
- The University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
28
|
Hon N. Attention and expectation likely underlie temporal binding measured using the Libet Clock. Q J Exp Psychol (Hove) 2023; 76:2084-2093. [PMID: 36214087 DOI: 10.1177/17470218221132762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An interesting finding that has emerged in studies of the sense of agency is that of a perceived compression of the temporal interval between actions and the outcomes they produce. This is generally referred to as temporal binding. Although temporal binding has been studied using various paradigms, possibly the most popular of these is the Libet Clock task. The Libet task is also interesting because it suggests that temporal binding can be decomposed into two components, one purportedly relating to actions and the other relating to outcomes. These are termed action binding and outcome binding, respectively. In this article, I focus specifically on temporal binding revealed using the Libet Clock task and propose the idea that attention underpins the action binding effect, while outcome binding, on the other hand, is driven by the effects of expectation.
Collapse
Affiliation(s)
- Nicholas Hon
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
29
|
Bevilacqua M, Huxlin KR, Hummel FC, Raffin E. Pathway and directional specificity of Hebbian plasticity in the cortical visual motion processing network. iScience 2023; 26:107064. [PMID: 37408682 PMCID: PMC10319215 DOI: 10.1016/j.isci.2023.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/14/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Cortico-cortical paired associative stimulation (ccPAS), which repeatedly pairs single-pulse transcranial magnetic stimulation (TMS) over two distant brain regions, is thought to modulate synaptic plasticity. We explored its spatial selectivity (pathway and direction specificity) and its nature (oscillatory signature and perceptual consequences) when applied along the ascending (Forward) and descending (Backward) motion discrimination pathway. We found unspecific connectivity increases in bottom-up inputs in the low gamma band, probably reflecting visual task exposure. A clear distinction in information transfer occurred in the re-entrant alpha signals, which were only modulated by Backward-ccPAS, and predictive of visual improvements in healthy participants. These results suggest a causal involvement of the re-entrant MT-to-V1 low-frequency inputs in motion discrimination and integration in healthy participants. Modulating re-entrant input activity could provide single-subject prediction scenarios for visual recovery. Visual recovery might indeed partly rely on these residual inputs projecting to spared V1 neurons.
Collapse
Affiliation(s)
- Michele Bevilacqua
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, EPFL, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Krystel R. Huxlin
- The Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Friedhelm C. Hummel
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, EPFL, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Estelle Raffin
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, EPFL, Geneva, Switzerland
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute (NRX) and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| |
Collapse
|
30
|
Moreau Q, Parrotta E, Pesci UG, Era V, Candidi M. Early categorization of social affordances during the visual encoding of bodily stimuli. Neuroimage 2023; 274:120151. [PMID: 37191657 DOI: 10.1016/j.neuroimage.2023.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
Interpersonal interactions rely on various communication channels, both verbal and non-verbal, through which information regarding one's intentions and emotions are perceived. Here, we investigated the neural correlates underlying the visual processing of hand postures conveying social affordances (i.e., hand-shaking), compared to control stimuli such as hands performing non-social actions (i.e., grasping) or showing no movement at all. Combining univariate and multivariate analysis on electroencephalography (EEG) data, our results indicate that occipito-temporal electrodes show early differential processing of stimuli conveying social information compared to non-social ones. First, the amplitude of the Early Posterior Negativity (EPN, an Event-Related Potential related to the perception of body parts) is modulated differently during the perception of social and non-social content carried by hands. Moreover, our multivariate classification analysis (MultiVariate Pattern Analysis - MVPA) expanded the univariate results by revealing early (<200 ms) categorization of social affordances over occipito-parietal sites. In conclusion, we provide new evidence suggesting that the encoding of socially relevant hand gestures is categorized in the early stages of visual processing.
Collapse
Affiliation(s)
- Q Moreau
- Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - E Parrotta
- Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - U G Pesci
- Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Era
- Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Candidi
- Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
31
|
Yu R, Han B, Wu X, Wei G, Zhang J, Ding M, Wen X. Dual-functional network regulation underlies the central executive system in working memory. Neuroscience 2023:S0306-4522(23)00245-2. [PMID: 37286158 DOI: 10.1016/j.neuroscience.2023.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
The frontoparietal network (FPN) and cingulo-opercular network (CON) may exert top-down regulation corresponding to the central executive system (CES) in working memory (WM); however, contributions and regulatory mechanisms remain unclear. We examined network interaction mechanisms underpinning the CES by depicting CON- and FPN-mediated whole-brain information flow in WM. We used datasets from participants performing verbal and spatial working memory tasks, divided into encoding, maintenance, and probe stages. We used general linear models to obtain task-activated CON and FPN nodes to define regions of interest (ROI); an online meta-analysis defined alternative ROIs for validation. We calculated whole-brain functional connectivity (FC) maps seeded by CON and FPN nodes at each stage using beta sequence analysis. We used Granger causality analysis to obtain the connectivity maps and assess task-level information flow patterns. For verbal working memory, the CON functionally connected positively and negatively to task-dependent and task-independent networks, respectively, at all stages. FPN FC patterns were similar only in the encoding and maintenance stages. The CON elicited stronger task-level outputs. Main effects were: stable CON→FPN, CON→DMN, CON→visual areas, FPN→visual areas, and phonological areas→FPN. The CON and FPN both up-regulated task-dependent and down-regulated task-independent networks during encoding and probing. Task-level output was slightly stronger for the CON. CON→FPN, CON→DMN, visual areas→CON, and visual areas→FPN showed consistent effects. The CON and FPN might together underlie the CES's neural basis and achieve top-down regulation through information interaction with other large-scale functional networks, and the CON may be a higher-level regulatory core in WM.
Collapse
Affiliation(s)
- Renshu Yu
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China, 100093
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Junhui Zhang
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL, USA, 32611
| | - Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing, China, 100872; Laboratory of the Department of Psychology, Renmin University of China, Beijing, China, 100872; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, China, 100872.
| |
Collapse
|
32
|
Giannopoulos AE, Zioga I, Luft CDB, Papageorgiou P, Papageorgiou GN, Kapsali F, Kontoangelos K, Capsalis CN, Papageorgiou C. Unravelling brain connectivity patterns in body dysmorphic disorder during decision-making on visual illusions: A graph theoretical approach. Psychiatry Res 2023; 325:115256. [PMID: 37216795 DOI: 10.1016/j.psychres.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Body dysmorphic disorder (BDD) is characterized by an excessive preoccupation with perceived defects in physical appearance, and is associated with compulsive checking. Visual illusions are illusory or distorted subjective perceptions of visual stimuli, which are induced by specific visual cues or contexts. While previous research has investigated visual processing in BDD, the decision-making processes involved in visual illusion processing remain unknown. The current study addressed this gap by investigating the brain connectivity patterns of BDD patients during decision-making about visual illusions. Thirty-six adults - 18 BDD (9 female) and 18 healthy controls (10 female) - viewed 39 visual illusions while their EEG was recorded. For each image, participants were asked to indicate (1) whether they perceived the illusory features of the images; and (2) their degree of confidence in their response. Our results did not uncover group-level differences in susceptibility to visual illusions, supporting the idea that higher-order differences, as opposed to lower-level visual impairments, can account for the visual processing differences that have previously been reported in BDD. However, the BDD group had lower confidence ratings when they reported illusory percepts, reflecting increased feelings of doubt. At the neural level, individuals with BDD showed greater theta band connectivity while making decisions about the visual illusions, likely reflecting higher intolerance to uncertainty and thus increased performance monitoring. Finally, control participants showed increased left-to-right and front-to-back directed connectivity in the alpha band, which may suggest more efficient top-down modulation of sensory areas in control participants compared to individuals with BDD. Overall, our findings are consistent with the idea that higher-order disruptions in BDD are associated with increased performance monitoring during decision-making, which may be related to constant mental rechecking of responses.
Collapse
Affiliation(s)
- Anastasios E Giannopoulos
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece.
| | - Ioanna Zioga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Caroline Di Bernardi Luft
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Panos Papageorgiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | | | - Fotini Kapsali
- Psychiatric Hospital of Attica, 374 Athinon Ave., Athens 12462, Greece
| | - Konstantinos Kontoangelos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 74 Vas. Sophias Ave., Athens 11528, Greece
| | - Christos N Capsalis
- School of Electrical & Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., Zografou Athens 15773, Greece
| | - Charalabos Papageorgiou
- University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", (UMHRI), Athens, Greece
| |
Collapse
|
33
|
Wang X, Chang Z, Wang R. Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia. Commun Biol 2023; 6:279. [PMID: 36932140 PMCID: PMC10023794 DOI: 10.1038/s42003-023-04637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Schizophrenia is a severe psychotic disorder characterized by positive and negative symptoms, but their neural bases remain poorly understood. Here, we utilized a nested-spectral partition (NSP) approach to detect hierarchical modules in resting-state brain functional networks in schizophrenia patients and healthy controls, and we studied dynamic transitions of segregation and integration as well as their relationships with clinical symptoms. Schizophrenia brains showed a more stable integrating process and a more variable segregating process, thus maintaining higher segregation, especially in the limbic system. Hallucinations were associated with higher integration in attention systems, and avolition was related to a more variable segregating process in default-mode network (DMN) and control systems. In a machine-learning model, NSP-based features outperformed graph measures at predicting positive and negative symptoms. Multivariate analysis confirmed that positive and negative symptoms had opposite effects on dynamic segregation and integration of brain networks. Gene ontology analysis revealed that the effect of negative symptoms was related to autistic, aggressive and violent behavior; the effect of positive symptoms was associated with hyperammonemia and acidosis; and the interaction effect was correlated with abnormal motor function. Our findings could contribute to the development of more accurate diagnostic criteria for positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Xinrui Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhao Chang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Rong Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China.
| |
Collapse
|
34
|
Menze I, Mueller NG, Zaehle T, Schmicker M. Individual response to transcranial direct current stimulation as a function of working memory capacity and electrode montage. Front Hum Neurosci 2023; 17:1134632. [PMID: 36968784 PMCID: PMC10034341 DOI: 10.3389/fnhum.2023.1134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionAttempts to improve cognitive abilities via transcranial direct current stimulation (tDCS) have led to ambiguous results, likely due to the method’s susceptibility to methodological and inter-individual factors. Conventional tDCS, i.e., using an active electrode over brain areas associated with the targeted cognitive function and a supposedly passive reference, neglects stimulation effects on entire neural networks.MethodsWe investigated the advantage of frontoparietal network stimulation (right prefrontal anode, left posterior parietal cathode) against conventional and sham tDCS in modulating working memory (WM) capacity dependent transfer effects of a single-session distractor inhibition (DIIN) training. Since previous results did not clarify whether electrode montage drives this individual transfer, we here compared conventional to frontoparietal and sham tDCS and reanalyzed data of 124 young, healthy participants in a more robust way using linear mixed effect modeling.ResultsThe interaction of electrode montage and WM capacity resulted in systematic differences in transfer effects. While higher performance gains were observed with increasing WM capacity in the frontoparietal stimulation group, low WM capacity individuals benefited more in the sham condition. The conventional stimulation group showed subtle performance gains independent of WM capacity.DiscussionOur results confirm our previous findings of WM capacity dependent transfer effects on WM by a single-session DIIN training combined with tDCS and additionally highlight the pivotal role of the specific electrode montage. WM capacity dependent differences in frontoparietal network recruitment, especially regarding the parietal involvement, are assumed to underlie this observation.
Collapse
Affiliation(s)
- Inga Menze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Inga Menze,
| | - Notger G. Mueller
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marlen Schmicker
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
35
|
Liao PC, Zhou X, Chong HY, Hu Y, Zhang D. Exploring construction workers' brain connectivity during hazard recognition: a cognitive psychology perspective. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2023; 29:207-215. [PMID: 35098890 DOI: 10.1080/10803548.2022.2035966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monitoring brain activity is a novel development for hazard recognition in the construction industry. However, very few empirical studies have investigated the causal connections within the brain. This study aimed to explore the brain connectivity of construction workers during hazard recognition. Electroencephalogram data were collected from construction workers to perform image-based hazard recognition tasks. The Granger causality-based adaptive directed transfer function was used to simulate directed and time-variant information flow across the observed brain activity from the perspective of cognitive psychology. The results suggested a top-down modulation of behavioral goals originating from the dorsal attention network during hazard relocation. The sensory cortex predominantly serves as the information outlet center and interacts extensively with the frontal and visual cortices, reflecting a top-down attention reorientation mechanism for processing threatening stimuli. Our findings of brain effective connectivity supplement new evidence underpinning parallel distributed processing theory for workplace hazard recognition.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Construction Management, Tsinghua University, China
| | - Xiaoshan Zhou
- Department of Construction Management, Tsinghua University, China
| | - Heap-Yih Chong
- School of Design and the Built Environment, Curtin University, Australia
| | - Yinan Hu
- Department of Construction Management, Tsinghua University, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, China
| |
Collapse
|
36
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
37
|
Rodríguez-San Esteban P, Chica AB, Paz-Alonso PM. Functional characterization of correct and incorrect feature integration. Cereb Cortex 2023; 33:1440-1451. [PMID: 35510933 DOI: 10.1093/cercor/bhac147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/14/2022] Open
Abstract
Our sensory system constantly receives information from the environment and our own body. Despite our impression to the contrary, we remain largely unaware of this information and often cannot report it correctly. Although perceptual processing does not require conscious effort on the part of the observer, it is often complex, giving rise to errors such as incorrect integration of features (illusory conjunctions). In the present study, we use functional magnetic resonance imaging to study the neural bases of feature integration in a dual task that produced ~30% illusions. A distributed set of regions demonstrated increased activity for correct compared to incorrect (illusory) feature integration, with increased functional coupling between occipital and parietal regions. In contrast, incorrect feature integration (illusions) was associated with increased occipital (V1-V2) responses at early stages, reduced functional connectivity between right occipital regions and the frontal eye field at later stages, and an overall decrease in coactivation between occipital and parietal regions. These results underscore the role of parietal regions in feature integration and highlight the relevance of functional occipito-frontal interactions in perceptual processing.
Collapse
Affiliation(s)
- Pablo Rodríguez-San Esteban
- Department of Experiment Psychology and Brain, Mind and Behavior Research Center (CIMCYC), Universidad de Granada, Campus de Cartuja S/N, 18071 Granada, Spain
| | - Ana B Chica
- Department of Experiment Psychology and Brain, Mind and Behavior Research Center (CIMCYC), Universidad de Granada, Campus de Cartuja S/N, 18071 Granada, Spain
| | - Pedro M Paz-Alonso
- BCBL-Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua 69, 20009 Donostia, Gipuzkoa, Spain.,IKERBASQUE-Basque Foundation for Science, 48013 Bilbo, Bizkaia, Spain
| |
Collapse
|
38
|
Chang Z, Wang X, Wu Y, Lin P, Wang R. Segregation, integration and balance in resting-state brain functional networks associated with bipolar disorder symptoms. Hum Brain Mapp 2023; 44:599-611. [PMID: 36161679 PMCID: PMC9842930 DOI: 10.1002/hbm.26087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Bipolar disorder (BD) is a serious mental disorder involving widespread abnormal interactions between brain regions, and it is believed to be associated with imbalanced functions in the brain. However, how this brain imbalance underlies distinct BD symptoms remains poorly understood. Here, we used a nested-spectral partition (NSP) method to study the segregation, integration, and balance in resting-state brain functional networks in BD patients and healthy controls (HCs). We first confirmed that there was a high deviation in the brain functional network toward more segregation in BD patients than in HCs and that the limbic system had the largest alteration. Second, we demonstrated a network balance of segregation and integration that corresponded to lower anxiety in BD patients but was not related to other symptoms. Subsequently, based on a machine-learning approach, we identified different system-level mechanisms underlying distinct BD symptoms and found that the features related to the brain network balance could predict BD symptoms better than graph theory analyses. Finally, we studied attention-deficit/hyperactivity disorder (ADHD) symptoms in BD patients and identified specific patterns that distinctly predicted ADHD and BD scores, as well as their shared common domains. Our findings supported an association of brain imbalance with anxiety symptom in BD patients and provided a potential network signature for diagnosing BD. These results contribute to further understanding the neuropathology of BD and to screening ADHD in BD patients.
Collapse
Affiliation(s)
- Zhao Chang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
| | - Xinrui Wang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace Engineering, Xi'an Jiaotong UniversityXi'anChina
- National Demonstration Center for Experimental Mechanics EducationXi'an Jiaotong UniversityXi'anChina
| | - Pan Lin
- Center for Mind & Brain Sciences and Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
| | - Rong Wang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace Engineering, Xi'an Jiaotong UniversityXi'anChina
- National Demonstration Center for Experimental Mechanics EducationXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
39
|
Redding ZV, Sabol KE. Reduced attentional lapses in male rats following a combination treatment of low-dose D-serine and atomoxetine. J Psychopharmacol 2023; 37:204-215. [PMID: 36648101 DOI: 10.1177/02698811221149652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Goal-directed attention involves the selective processing of behaviorally relevant sensory information. This selective processing is thought to be supported by glutamatergic and noradrenergic systems. Pharmacotherapies that simultaneously target these systems could therefore be effective treatments for impaired attention. AIMS We first tested an N-methyl-D-aspartate (NMDA) receptor co-agonist (D-serine) for effects on attention (processing speed and attentional lapses). NMDA receptor activation is thought to support noradrenergic effects on sensory processing; therefore, we tested a combination treatment comprising D-serine and a norepinephrine reuptake inhibitor (atomoxetine). METHODS D-serine was first tested in rats performing a two-choice visuospatial discrimination task. Combination treatments comprising relatively low doses of D-serine and atomoxetine were then tested in a separate group. RESULTS In experiment 1, D-serine reduced the skew of initiation time (IT) distributions (IT devmode) at the highest dose tested (300 mg/kg). In experiment 2, low-dose D-serine (125 mg/kg) had no effect, while low-dose atomoxetine (0.3 mg/kg) reduced IT devmode and slowed movement speed. Importantly, the combination of these relatively low doses of D-serine and atomoxetine reduced IT devmode more than either drug alone without further slowing movement speed. CONCLUSIONS IT devmode is thought to reflect attentional lapses; therefore, D-serine's effects on IT devmode suggest that NMDA receptors are involved in the preparatory deployment of attention. Greater effects following a combination of D-serine and atomoxetine suggest that preparatory attention can be facilitated by targeting glutamatergic and noradrenergic systems simultaneously. These results could inform the development of improved treatments for individuals with ADHD who experience abnormally high attentional lapses.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Psychology, The University of Mississippi, University Park, MS, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen E Sabol
- Department of Psychology, The University of Mississippi, University Park, MS, USA
| |
Collapse
|
40
|
Fairclough SH, Stamp K, Dobbins C. Functional connectivity across dorsal and ventral attention networks in response to task difficulty and experimental pain. Neurosci Lett 2023; 793:136967. [PMID: 36379390 DOI: 10.1016/j.neulet.2022.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
The dorsal and ventral attention networks (DAN & VAN) provide a framework for studying attentional modulation of pain. It has been argued that cognitive demand distracts attention from painful stimuli via top-down reinforcement of task goals (DAN), whereas pain exerts an interruptive effect on cognitive performance via bottom-up pathways (VAN). The current study explores this explanatory framework by manipulating pain and task demand in combination with functional near-infrared spectroscopy (fNIRS) and Granger Causal Connectivity Analyses (GCCA). Twenty-one participants played a racing game at low and high difficulty levels with or without experimental pain (administered via a cold pressor test). Six channels of fNIRS were collected from bilateral frontal eye fields and intraparietal sulci (DAN), with right-lateralised channels at the inferior frontal gyrus and temporoparietal junction (VAN). Our first analysis revealed increased G-causality from bottom-up pathways (VAN) during the cold pressor test. However, an equivalent experience of experimental pain during gameplay increased G-causality in top-down (DAN) pathways, with the left intraparietal sulcus serving a hub of connectivity. High game difficulty increased G-causality via top-down pathways and implicated the right inferior frontal gyrus as an interhemispheric hub. Our results are discussed with reference to existing models of both networks and attentional modulation of pain.
Collapse
Affiliation(s)
| | - Kellyann Stamp
- School of Computer Science and Mathematics, Liverpool John Moores University, UK
| | - Chelsea Dobbins
- School of Information Technology and Electrical Engineering, The University of Queensland, Australia
| |
Collapse
|
41
|
A low-dimensional cognitive-network space in Alzheimer's disease and frontotemporal dementia. Alzheimers Res Ther 2022; 14:199. [PMID: 36581943 PMCID: PMC9798659 DOI: 10.1186/s13195-022-01145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal dementia (FTD) show network dysfunctions linked with cognitive deficits. Within this framework, network abnormalities between AD and FTD show both convergent and divergent patterns. However, these functional patterns are far from being established and their relevance to cognitive processes remains to be elucidated. METHODS We investigated the relationship between cognition and functional connectivity of major cognitive networks in these diseases. Twenty-three bvFTD (age: 71±10), 22 AD (age: 72±6), and 20 controls (age: 72±6) underwent cognitive evaluation and resting-state functional MRI. Principal component analysis was used to describe cognitive variance across participants. Brain network connectivity was estimated with connectome analysis. Connectivity matrices were created assessing correlations between parcels within each functional network. The following cognitive networks were considered: default mode (DMN), dorsal attention (DAN), ventral attention (VAN), and frontoparietal (FPN) networks. The relationship between cognition and connectivity was assessed using a bootstrapping correlation and interaction analyses. RESULTS Three principal cognitive components explained more than 80% of the cognitive variance: the first component (cogPC1) loaded on memory, the second component (cogPC2) loaded on emotion and language, and the third component (cogPC3) loaded on the visuo-spatial and attentional domains. Compared to HC, AD and bvFTD showed impairment in all cogPCs (p<0.002), and bvFTD scored worse than AD in cogPC2 (p=0.031). At the network level, the DMN showed a significant association in the whole group with cogPC1 and cogPC2 and the VAN with cogPC2. By contrast, DAN and FPN showed a divergent pattern between diagnosis and connectivity for cogPC2. We confirmed these results by means of a multivariate analysis (canonical correlation). CONCLUSIONS A low-dimensional representation can account for a large variance in cognitive scores in the continuum from normal to pathological aging. Moreover, cognitive components showed both convergent and divergent patterns with connectivity across AD and bvFTD. The convergent pattern was observed across the networks primarily involved in these diseases (i.e., the DMN and VAN), while a divergent FC-cognitive pattern was mainly observed between attention/executive networks and the language/emotion cognitive component, suggesting the co-existence of compensatory and detrimental mechanisms underlying these components.
Collapse
|
42
|
Wang M, Yang P, Zhang T, Li W, Zhang J, Jin Z, Li L. Working memory biases early object discrimination and parietal activity during attentional selection. Cortex 2022; 157:53-64. [PMID: 36272331 DOI: 10.1016/j.cortex.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/12/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
The contents of working memory (WM) guide visual attention, but the neural mechanisms underlying WM biases remains unclear. Here, we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) approaches to characterize the timing and location of the neural response underlying WM guidance during a visual search task. Behaviorally, we observed faster search performance when the WM contents matching targets (valid) compared to when WM contents did not reappear (neutral). The EEG data showed similar benefit effects of posterior N1 component, in which targets induced larger N1 amplitudes in the valid condition than in the neutral condition. Interestingly, the fMRI activation in left supramarginal gyrus (SMG)/inferior parietal lobule (IPL) and bilateral occipital cortex was lower in the valid compared to neutral conditions. Importantly, the magnitude of the increased N1 activity and the decreased fMRI activity in the left SMG/IPL predicted the extent of search improvement at an individual subject level. These results suggest that information held in WM enhances early object discrimination during attentional selection, and the left SMG/IPL may be a critical region in mediating goal-directed processing under WM biases in human visual attention.
Collapse
Affiliation(s)
- Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, China; Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Basic Psychological and Cognitive Neuroscience, School of Psychology, Guizhou Normal University, Guiyang, China
| | - Tingting Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjuan Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
43
|
Li Y, Yu Z, Wu P, Chen J. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: A longitudinal study. Front Aging Neurosci 2022; 14:933567. [PMID: 36185473 PMCID: PMC9520312 DOI: 10.3389/fnagi.2022.933567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke can be viewed as an acute disruption of an individual's connectome caused by a focal or widespread loss of blood flow. Although individuals exhibit connectivity changes in multiple functional networks after stroke, the neural mechanisms that underlie the longitudinal reorganization of the connectivity patterns are still unclear. The study aimed to determine whether brain network connectivity patterns after stroke can predict longitudinal behavioral outcomes. Nineteen patients with stroke with subcortical lesions underwent two sessions of resting-state functional magnetic resonance imaging scanning at a 1-month interval. By independent component analysis, the functional connectivity within and between multiple brain networks (including the default mode network, the dorsal attention network, the limbic network, the visual network, and the frontoparietal network) was disrupted after stroke and partial recovery at the second time point. Additionally, regression analyses revealed that the connectivity between the limbic and dorsal attention networks at the first time point showed sufficient reliability in predicting the clinical scores (Fugl-Meyer Assessment and Neurological Deficit Scores) at the second time point. The overall findings suggest that functional coupling between the dorsal attention and limbic networks after stroke can be regarded as a biomarker to predict longitudinal clinical outcomes in motor function and the degree of neurological functional deficit. Overall, the present study provided a novel opportunity to improve prognostic ability after subcortical strokes.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zeyun Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Zhang D, Liu J, Fan L, Liu Q. Quantitative description of the relationship between the enhancement of distraction-suppression and brain local state alteration after transcranial direct current stimulation. Front Neurosci 2022; 16:984893. [PMID: 36148150 PMCID: PMC9485618 DOI: 10.3389/fnins.2022.984893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) over the left dorsal lateral prefrontal cortex (lDLPFC) can improve distraction suppression ability, possibly by distantly regulating the connection properties of several large-scale brain networks and local brain state changes. However, little is known about the local state alteration that tDCS can induce in distant but task-related regions and the relationship between performance enhancement and local state alteration in potentially related regions, resulting in inefficient and uncertain tDCS regulation. We aimed to examine the alteration of brain local state before and after tDCS and its relationship with performance enhancement. With the within-subject design, the participants received anodal (1.5 mA) and sham tDCS at F3 (lDLPFC) for 20 min. The visual search task and resting-state functional magnetic resonance imaging (rsfMRI) were performed before and after stimulation. Anodal tDCS significantly enhanced distraction suppression. The amplitude of low-frequency fluctuation (ALFF) in the left parietal region significantly decreased, the decrement significantly positively correlated with performance enhancement after anodal tDCS. As well, the regional homogeneity (ReHo) in the left precuneus significantly increased, and the increasement significantly positively correlated with performance enhancement. Anodal tDCS over the lDLPFC can distantly modulate the local state of the brain and improve the distraction suppression ability. These two aspects are closely related and provide a direct and efficient approach to enhancing performance.
Collapse
Affiliation(s)
- Di Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Jiaojiao Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Li Fan
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- *Correspondence: Qiang Liu,
| |
Collapse
|
45
|
Yamamoto Y, Hirano J, Ueda R, Yoshitake H, Yamagishi M, Kimura M, Kamiya K, Shino M, Mimura M, Yamagata B. White matter alterations in the dorsal attention network contribute to a high risk of unsafe driving in healthy older people. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e45. [PMID: 38868688 PMCID: PMC11114439 DOI: 10.1002/pcn5.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/21/2022] [Indexed: 06/14/2024]
Abstract
Aim Healthy older drivers may be at high risk of fatal traffic accidents. Our recent study showed that volumetric alterations in gray matter in the brain regions within the dorsal attention network (DAN) were strongly related to the risk of unsafe driving in healthy older people. However, the relationship between white matter (WM) structural connectivity and driving ability in healthy older people is still unclear. Methods We used diffusion tensor imaging to examine the association between microstructural alterations in the DAN and the risk of unsafe driving among healthy older people. We enrolled 32 healthy older individuals aged over 65 years and screened unsafe drivers using an on-road driving test. We then determined the pattern of WM aberrations in unsafe drivers using tract-based spatial statistics. Results The analysis demonstrated that unsafe drivers had significantly higher axial diffusivity values in nine WM clusters compared with safe drivers. These results were primarily observed bilaterally in the dorsal superior longitudinal fasciculus, which is involved in the DAN. Furthermore, correlation analyses showed that higher axial diffusivity values in the superior longitudinal fasciculus were associated with lower Trail Making Test A scores within unsafe drivers. This result suggests that functionally, WM microstructural alterations in the DAN are associated with attention problems, which may contribute to the risk of unsafe driving among healthy older people. Conclusion Our findings may elucidate the neurobiological mechanisms underlying the increased risk of unsafe driving in healthy older people, potentially facilitating the development of new interventions to prevent fatal accidents.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Jinichi Hirano
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Ryo Ueda
- Office of Radiation TechnologyKeio University HospitalTokyoJapan
| | - Hiroshi Yoshitake
- Department of Human and Engineered Environmental StudiesThe University of TokyoTokyoJapan
| | - Mika Yamagishi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Mariko Kimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Graduate School of PsychologyRissho UniversityTokyoJapan
| | - Kei Kamiya
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Motoki Shino
- Department of Human and Engineered Environmental StudiesThe University of TokyoTokyoJapan
| | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Bun Yamagata
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
46
|
Bressler SL, Kumar A, Singer I. Brain Synchronization and Multivariate Autoregressive (MVAR) Modeling in Cognitive Neurodynamics. Front Syst Neurosci 2022; 15:638269. [PMID: 35813980 PMCID: PMC9263589 DOI: 10.3389/fnsys.2021.638269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
This paper is a review of cognitive neurodynamics research as it pertains to recent advances in Multivariate Autoregressive (MVAR) modeling. Long-range synchronization between the frontoparietal network (FPN) and forebrain subcortical systems occurs when multiple neuronal actions are coordinated across time (Chafee and Goldman-Rakic, 1998), resulting in large-scale measurable activity in the EEG. This paper reviews the power and advantages of the MVAR method to analyze long-range synchronization between brain regions (Kaminski et al., 2016; Kaminski and Blinowska, 2017). It explores the synchronization expressed in neurocognitive networks that is observable in the local field potential (LFP), an EEG-like signal, and in fMRI time series. In recent years, the surge in MVAR modeling in cognitive neurodynamics experiments has highlighted the effectiveness of the method, particularly in analyzing continuous neural signals such as EEG and fMRI (Pereda et al., 2005). MVAR modeling has been particularly useful in identifying causality, a multichannel time-series measure that can only be consistently computed with multivariate processes. Due to the multivariate nature of neuronal communication, multiple non-linear multivariate-analysis models are successful, presenting results with much greater accuracy and speed than non-linear univariate-analysis methods. Granger’s framework provides causal information about neuronal flow using neural time and frequency analysis, comprising the basis of the MVAR model. Recent advancements in MVAR modeling have included Directed Transfer Function (DTF) and Partial Directed Coherence (PDC), multivariate methods based on MVAR modeling that are capable of determining causal influences and directed propagation of EEG activity. The related Granger causality is an increasingly popular tool for measuring directed functional interactions from time series data.
Collapse
Affiliation(s)
- Steven L. Bressler
- Center for Complex Systems and Brain Sciences, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- *Correspondence: Steven L. Bressler,
| | - Ashvin Kumar
- Center for Complex Systems and Brain Sciences, Boca Raton, FL, United States
- Ashvin Kumar,
| | - Isaac Singer
- Center for Complex Systems and Brain Sciences, Boca Raton, FL, United States
| |
Collapse
|
47
|
Hou C, Nicholas SC. Perceptual learning with dichoptic attention tasks improves attentional modulation in V1 and IPS and reduces interocular suppression in human amblyopia. Sci Rep 2022; 12:9660. [PMID: 35690626 PMCID: PMC9188564 DOI: 10.1038/s41598-022-13747-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term and chronic visual suppression to the non-preferred eye in early childhood is a key factor in developing amblyopia, as well as a critical barrier to treat amblyopia. To explore the relationship between selective visual attention and amblyopic suppression and its role in the success of amblyopic training, we used EEG source-imaging to show that training human adults with strabismic and anisometropic amblyopia with dichoptic attention tasks improved attentional modulation of neural populations in the primary visual cortex (V1) and intraparietal sulcus (IPS). We also used psychophysics to show that training reduced interocular suppression along with visual acuity and stereoacuity improvements. Importantly, our results revealed that the reduction of interocular suppression by training was significantly correlated with the improvement of selective visual attention in both training-related and -unrelated tasks in the amblyopic eye, relative to the fellow eye. These findings suggest a relation between interocular suppression and selective visual attention bias between eyes in amblyopic vision, and that dichoptic training with high-attention demand tasks in the amblyopic eye might be an effective way to treat amblyopia.
Collapse
Affiliation(s)
- Chuan Hou
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, 94115, USA.
| | - Spero C Nicholas
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, 94115, USA
| |
Collapse
|
48
|
Lanssens A, Mantini D, de Beeck HO, Gillebert CR. Activity in the Fronto-Parietal and Visual Cortex Is Modulated by Feature-Based Attentional Weighting. Front Neurosci 2022; 16:838683. [PMID: 35546874 PMCID: PMC9082947 DOI: 10.3389/fnins.2022.838683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In day-to-day dynamic activities where sensory input is abundant, stimulus representations in the visual cortex are modulated based on their attentional priority. Several studies have established the top-down role of a fronto-parietal dorsal attention network in selective attention. In the current study, we aimed to investigate whether activity of subregions of this network and the visual cortex is modulated by feature-based attentional weighting, and if so, whether their timecourses of activity are correlated. To this end, we analyzed fMRI data of 28 healthy subjects, who performed a feature-based go/no-go task. Participants had to attend to one or two colored streams of sinusoidal gratings and respond to each grating in the task-relevant stream(s) except to a single non-target grating. Univariate and multivariate fMRI results indicated that activity in bilateral fronto-parietal (frontal eye fields, intraparietal sulcus and superior parietal lobe) and visual (V1-V4, lateral occipital cortex and fusiform gyrus) regions was modulated by selecting one instead of attending to two gratings. Functional connectivity was not significantly different between fronto-parietal and visual regions when attending to one as opposed to two gratings. Our study demonstrates that activity in subregions of both the fronto-parietal and visual cortex is modified by feature-based attentional weighting.
Collapse
Affiliation(s)
- Armien Lanssens
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hans Op de Beeck
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Celine R Gillebert
- Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Sparse representations of high dimensional neural data. Sci Rep 2022; 12:7295. [PMID: 35508638 PMCID: PMC9068763 DOI: 10.1038/s41598-022-10459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Conventional Vector Autoregressive (VAR) modelling methods applied to high dimensional neural time series data result in noisy solutions that are dense or have a large number of spurious coefficients. This reduces the speed and accuracy of auxiliary computations downstream and inflates the time required to compute functional connectivity networks by a factor that is at least inversely proportional to the true network density. As these noisy solutions have distorted coefficients, thresholding them as per some criterion, statistical or otherwise, does not alleviate the problem. Thus obtaining a sparse representation of such data is important since it provides an efficient representation of the data and facilitates its further analysis. We propose a fast Sparse Vector Autoregressive Greedy Search (SVARGS) method that works well for high dimensional data, even when the number of time points is relatively low, by incorporating only statistically significant coefficients. In numerical experiments, our methods show high accuracy in recovering the true sparse model. The relative absence of spurious coefficients permits accurate, stable and fast evaluation of derived quantities such as power spectrum, coherence and Granger causality. Consequently, sparse functional connectivity networks can be computed, in a reasonable time, from data comprising tens of thousands of channels/voxels. This enables a much higher resolution analysis of functional connectivity patterns and community structures in such large networks than is possible using existing time series methods. We apply our method to EEG data where computed network measures and community structures are used to distinguish emotional states as well as to ADHD fMRI data where it is used to distinguish children with ADHD from typically developing children.
Collapse
|
50
|
Huang Q, Lin D, Huang S, Cao Y, Jin Y, Wu B, Fan L, Tu W, Huang L, Jiang S. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol 2022; 13:780966. [PMID: 35309550 PMCID: PMC8927543 DOI: 10.3389/fneur.2022.780966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Stroke is a chief cause of sudden brain damage that severely disrupts the whole-brain network. However, the potential mechanisms of motor recovery after stroke are uncertain and the prognosis of poststroke upper extremity recovery is still a challenge. This study investigated the global and local topological properties of the brain functional connectome in patients with subacute ischemic stroke and their associations with the clinical measurements. A total of 57 patients, consisting of 29 left-sided and 28 right-sided stroke patients, and 32 age- and gender-matched healthy controls (HCs) were recruited to undergo a resting-state functional magnetic resonance imaging (rs-fMRI) study; patients were also clinically evaluated with the Upper Extremity Fugl-Meyer Assessment (FMA_UE). The assessment was repeated at 15 weeks to assess upper extremity functional recovery for the patient remaining in the study (12 left- 20 right-sided stroke patients). Global graph topological disruption indices of stroke patients were significantly decreased compared with HCs but these indices were not significantly associated with FMA_UE. In addition, local brain network structure of stroke patients was altered, and the altered regions were dependent on the stroke site. Significant associations between local degree and motor performance and its recovery were observed in the right lateral occipital cortex (R LOC) in the right-sided stroke patients. Our findings suggested that brain functional topologies alterations in R LOC are promising as prognostic biomarkers for right-sided subacute stroke. This cortical area might be a potential target to be further validated for non-invasive brain stimulation treatment to improve poststroke upper extremity recovery.
Collapse
Affiliation(s)
- Qianqian Huang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Dinghong Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Shishi Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Jin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Department of Information, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linyu Fan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lejian Huang
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
- Songhe Jiang
| |
Collapse
|