1
|
Parras GG, Delgado-García JM, López-Ramos JC, Gruart A, Leal-Campanario R. Cerebellar interpositus nucleus exhibits time-dependent errors and predictive responses. NPJ SCIENCE OF LEARNING 2024; 9:12. [PMID: 38409163 PMCID: PMC10897197 DOI: 10.1038/s41539-024-00224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Learning is a functional state of the brain that should be understood as a continuous process, rather than being restricted to the very moment of its acquisition, storage, or retrieval. The cerebellum operates by comparing predicted states with actual states, learning from errors, and updating its internal representation to minimize errors. In this regard, we studied cerebellar interpositus nucleus (IPn) functional capabilities by recording its unitary activity in behaving rabbits during an associative learning task: the classical conditioning of eyelid responses. We recorded IPn neurons in rabbits during classical eyeblink conditioning using a delay paradigm. We found that IPn neurons reduce error signals across conditioning sessions, simultaneously increasing and transmitting spikes before the onset of the unconditioned stimulus. Thus, IPn neurons generate predictions that optimize in time and shape the conditioned eyeblink response. Our results are consistent with the idea that the cerebellum works under Bayesian rules updating the weights using the previous history.
Collapse
Grants
- DOC-00309 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- BIO-122 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- PID2021-122446NB-100 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
Collapse
Affiliation(s)
- Gloria G Parras
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain.
| | | | | | - Agnès Gruart
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain
| | | |
Collapse
|
2
|
Broersen R, Albergaria C, Carulli D, Carey MR, Canto CB, De Zeeuw CI. Synaptic mechanisms for associative learning in the cerebellar nuclei. Nat Commun 2023; 14:7459. [PMID: 37985778 PMCID: PMC10662440 DOI: 10.1038/s41467-023-43227-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.
Collapse
Affiliation(s)
- Robin Broersen
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Catarina Albergaria
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- University College London, Sainsbury Wellcome Centre, London, UK
| | - Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| | - Cathrin B Canto
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| | - Chris I De Zeeuw
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Elbaz MA, Demers M, Kleinfeld D, Ethier C, Deschênes M. Interchangeable Role of Motor Cortex and Reafference for the Stable Execution of an Orofacial Action. J Neurosci 2023; 43:5521-5536. [PMID: 37400255 PMCID: PMC10376937 DOI: 10.1523/jneurosci.2089-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Animals interact with their environment through mechanically active, mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability or prehension would be profoundly impeded. The nervous system may keep track of the position of a sensorimotor organ via two complementary feedback mechanisms-peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training male rats to place one of their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, except in the absence of peripheral reafference to maintain motor stability. Finally, the red nucleus, which receives descending inputs from motor cortex and cerebellum and projects to facial motoneurons, is critically involved in the execution of the vibrissa positioning task. All told, our results point toward the existence of an internal model that requires either peripheral reafference or motor cortex to optimally drive voluntary motion.SIGNIFICANCE STATEMENT How does an animal know where a mechanically active, mobile sensor lies relative to its body? We address this basic question in sensorimotor integration using the motion of the vibrissae in rats. We show that rats can learn to reliably position their vibrissae in the absence of sensory feedback or in the absence of motor cortex. Yet, when both sensory feedback and motor cortex are absent, motor precision is degraded. This suggests the existence of an internal model able to operate in closed- and open-loop modes, requiring either motor cortex or sensory feedback to maintain motor stability.
Collapse
Affiliation(s)
- Michaël A Elbaz
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Maxime Demers
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - David Kleinfeld
- Departments of Physics
- Neurobiology, University of California, San Diego, La Jolla, California 92093
| | - Christian Ethier
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Martin Deschênes
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| |
Collapse
|
4
|
Gruart A, Delgado-García JM. Neural bases of freedom and responsibility. Front Neural Circuits 2023; 17:1191996. [PMID: 37334060 PMCID: PMC10272542 DOI: 10.3389/fncir.2023.1191996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
This review presents a broad perspective of the Neuroscience of our days with special attention to how the brain generates our behaviors, emotions, and mental states. It describes in detail how unconscious and conscious processing of sensorimotor and mental information takes place in our brains. Likewise, classic and recent experiments illustrating the neuroscientific foundations regarding the behavioral and cognitive abilities of animals and, in particular, of human beings are described. Special attention is applied to the description of the different neural regulatory systems dealing with behavioral, cognitive, and emotional functions. Finally, the brain process for decision-making, and its relationship with individual free will and responsibility, are also described.
Collapse
|
5
|
Borgognon S, Rouiller EM. Loss of Motor Cortical Inputs to the Red Nucleus after CNS Disorders in Nonhuman Primates. J Neurosci 2023; 43:1682-1691. [PMID: 36693756 PMCID: PMC10010457 DOI: 10.1523/jneurosci.1942-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
The premotor (PM) and primary motor (M1) cortical areas broadcast voluntary motor commands through multiple neuronal pathways, including the corticorubral projection that reaches the red nucleus (RN). However, the respective contribution of M1 and PM to corticorubral projections as well as changes induced by motor disorders or injuries are not known in nonhuman primates. Here, we quantified the density and topography of axonal endings of the corticorubral pathway in RN in intact monkeys, as well as in monkeys subjected to either cervical spinal cord injury (SCI), Parkinson's disease (PD)-like symptoms or primary motor cortex injury (MCI). Twenty adult macaque monkeys of either sex were injected with the biotinylated dextran amine anterograde tracer either in PM or in M1. We developed a semiautomated algorithm to reliably detect and count axonal boutons within the magnocellular and parvocellular (pRN) subdivisions of RN. In intact monkeys, PM and M1 preferentially target the medial part of the ipsilateral pRN, reflecting its somatotopic organization. Projection of PM to the ipsilateral pRN is denser than that of M1, matching previous observations for the corticotectal, corticoreticular, and corticosubthalamic projections (Fregosi et al., 2018, 2019; Borgognon et al., 2020). In all three types of motor disorders, there was a uniform and strong decrease (near loss) of the corticorubral projections from PM and M1. The RN may contribute to functional recovery after SCI, PD, and MCI, by reducing direct cortical influence. This reduction possibly privileges direct access to the final output motor system, via emphasis on the direct corticospinal projection.SIGNIFICANCE STATEMENT We measured the corticorubral projection density arising from the PM or the M1 cortices in adult macaques. The premotor cortex sent denser corticorubral projections than the primary motor cortex, as previously observed for the corticotectal, corticoreticular, and corticosubthalamic projections. The premotor cortex may thus exert more influence than primary motor cortex onto subcortical structures. We next asked whether the corticorubral motor projections undergo lesion-dependent plasticity after either cervical spinal cord injury, Parkinson's disease-like symptoms, or primary motor cortex lesion. In all three types of pathology, there was a strong decrease of the corticorubral motor projection density, suggesting that the red nucleus may contribute to functional recovery after such motor system disorders based on a reduced direct cortical influence.
Collapse
Affiliation(s)
- Simon Borgognon
- Center for the Neural Basis of Cognition, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Eric M Rouiller
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
7
|
He Y, Madeo G, Liang Y, Zhang C, Hempel B, Liu X, Mu L, Liu S, Bi GH, Galaj E, Zhang HY, Shen H, McDevitt RA, Gardner EL, Liu QS, Xi ZX. A red nucleus-VTA glutamate pathway underlies exercise reward and the therapeutic effect of exercise on cocaine use. SCIENCE ADVANCES 2022; 8:eabo1440. [PMID: 36054363 PMCID: PMC10848951 DOI: 10.1126/sciadv.abo1440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.
Collapse
Affiliation(s)
- Yi He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Graziella Madeo
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ying Liang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Cindy Zhang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Briana Hempel
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shui Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Hui Shen
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ross A. McDevitt
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
- Comparative Medicine Section, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Muñoz-Capote A, Gómez-Martínez DG, Rodriguez-Flores T, Robles F, Ramos M, Ramos F. A bioinspired model to motivate learning of appetitive signals’ incentive value under a Pavlovian conditioning approach. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
10
|
Trimarco E, Mirino P, Caligiore D. Cortico-Cerebellar Hyper-Connections and Reduced Purkinje Cells Behind Abnormal Eyeblink Conditioning in a Computational Model of Autism Spectrum Disorder. Front Syst Neurosci 2022; 15:666649. [PMID: 34975423 PMCID: PMC8719301 DOI: 10.3389/fnsys.2021.666649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Empirical evidence suggests that children with autism spectrum disorder (ASD) show abnormal behavior during delay eyeblink conditioning. They show a higher conditioned response learning rate and earlier peak latency of the conditioned response signal. The neuronal mechanisms underlying this autistic behavioral phenotype are still unclear. Here, we use a physiologically constrained spiking neuron model of the cerebellar-cortical system to investigate which features are critical to explaining atypical learning in ASD. Significantly, the computer simulations run with the model suggest that the higher conditioned responses learning rate mainly depends on the reduced number of Purkinje cells. In contrast, the earlier peak latency mainly depends on the hyper-connections of the cerebellum with sensory and motor cortex. Notably, the model has been validated by reproducing the behavioral data collected from studies with real children. Overall, this article is a starting point to understanding the link between the behavioral and neurobiological basis in ASD learning. At the end of the paper, we discuss how this knowledge could be critical for devising new treatments.
Collapse
Affiliation(s)
- Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Pierandrea Mirino
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.,Laboratory of Neuropsychology of Visuo-Spatial and Navigational Disorders, Department of Psychology, "Sapienza" University, Rome, Italy.,AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.,AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
11
|
López-Ramos JC, Delgado-García JM. Role of the motor cortex in the generation of classically conditioned eyelid and vibrissae responses. Sci Rep 2021; 11:16701. [PMID: 34404871 PMCID: PMC8371024 DOI: 10.1038/s41598-021-96153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The eyelid motor system has been used for years as an experimental model for studying the neuronal mechanisms underlying motor and cognitive learning, mainly with classical conditioning procedures. Nonetheless, it is not known yet which brain structures, or neuronal mechanisms, are responsible for the acquisition, storage, and expression of these motor responses. Here, we studied the temporal correlation between unitary activities of identified eyelid and vibrissae motor cortex neurons and the electromyographic activity of the orbicularis oculi and vibrissae muscles and magnetically recorded eyelid positions during classical conditioning of eyelid and vibrissae responses, using both delay and trace conditioning paradigms in behaving mice. We also studied the involvement of motor cortex neurons in reflexively evoked eyelid responses and the kinematics and oscillatory properties of eyelid movements evoked by motor cortex microstimulation. Results show the involvement of the motor cortex in the performance of conditioned responses elicited during the classical conditioning task. However, a timing correlation analysis showed that both electromyographic activities preceded the firing of motor cortex neurons, which must therefore be related more with the reinforcement and/or proper performance of the conditioned responses than with their acquisition and storage.
Collapse
Affiliation(s)
- Juan C López-Ramos
- Department of Physiology, Anatomy and Cellular Biology, Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.
| | - José M Delgado-García
- Department of Physiology, Anatomy and Cellular Biology, Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
12
|
Brockett AT, Roesch MR. Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sci 2021; 11:617. [PMID: 34064876 PMCID: PMC8151620 DOI: 10.3390/brainsci11050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to inhibit or suppress unwanted or inappropriate actions, is an essential component of executive function and cognitive health. The immense selective pressure placed on maintaining inhibitory control processes is exemplified by the relatively small number of instances in which these systems completely fail in the average person's daily life. Although mistakes and errors do inevitably occur, inhibitory control systems not only ensure that this number is low, but have also adapted behavioral strategies to minimize future failures. The ability of our brains to adapt our behavior and appropriately engage proper motor responses is traditionally depicted as the primary domain of frontal brain areas, despite evidence to the fact that numerous other brain areas contribute. Using the stop-signal task as a common ground for comparison, we review a large body of literature investigating inhibitory control processes across frontal, temporal, and midbrain structures, focusing on our recent work in rodents, in an effort to understand how the brain biases action selection and adapts to the experience of conflict.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
14
|
Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. J Neurosci 2020; 40:4715-4726. [PMID: 32376779 PMCID: PMC7294803 DOI: 10.1523/jneurosci.2775-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to adjust behavior is an essential component of cognitive control. Much is known about frontal and striatal processes that support cognitive control, but few studies have investigated how motor signals change during reactive and proactive adjustments in motor output. To address this, we characterized neural signals in red nucleus (RN), a brain region linked to motor control, as male and female rats performed a novel variant of the stop-signal task. We found that activity in RN represented the direction of movement and was strongly correlated with movement speed. Additionally, we found that directional movement signals were amplified on STOP trials before completion of the response and that the strength of RN signals was modulated when rats exhibited cognitive control. These results provide the first evidence that neural signals in RN integrate cognitive control signals to reshape motor outcomes reactively within trials and proactivity across them.SIGNIFICANCE STATEMENT Healthy human behavior requires the suppression or inhibition of errant or maladaptive motor responses, often called cognitive control. While much is known about how frontal brain regions facilitate cognitive control, less is known about how motor regions respond to rapid and unexpected changes in action selection. To address this, we recorded from neurons in the red nucleus, a motor region thought to be important for initiating movement in rats performing a cognitive control task. We show that red nucleus tracks motor plans and that selectivity was modulated on trials that required shifting from one motor response to another. Collectively, these findings suggest that red nucleus contributes to modulating motor behavior during cognitive control.
Collapse
|
15
|
Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem 2020; 170:107023. [DOI: 10.1016/j.nlm.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
|
16
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus during unpaired extinction does not prevent extinction of conditioned eyeblink responses or conditioning-specific reflex modification. Behav Neurosci 2019; 133:398-413. [PMID: 30869952 PMCID: PMC6625864 DOI: 10.1037/bne0000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For almost 75 years, classical eyeblink conditioning has been an invaluable tool for assessing associative learning processes across many species, thanks to its high translatability and well-defined neural circuitry. Our laboratory has adapted the paradigm to extensively detail associative changes in the rabbit reflexive eyeblink response (unconditioned response, UR), characterized by postconditioning increases in the frequency, size, and latency of the UR when the periorbital shock unconditioned stimulus (US) is presented alone, termed conditioning-specific reflex modification (CRM). Because the shape and timing of CRM closely resembles the conditioned eyeblink response (CR) to the tone conditioned stimulus (CS), we previously tested whether CRs and CRM share a common neural substrate, the interpositus nucleus of the cerebellum (IP), and found that IP inactivation during conditioning blocked the development of both CRs and the timing aspect of CRM. The goal of the current study was to examine whether extinction of CRs and CRM timing, accomplished simultaneously with unpaired CS/US extinction, also involves the IP. Results showed that muscimol inactivation of the IP during extinction blocked CR expression but not extinction of CRs or CRM timing, contrasting with the literature showing IP inactivation prevents CR extinction during CS-alone presentations. The continued presence of the US throughout the unpaired extinction procedure may have been sufficient to overcome IP blockade, promoting plasticity in the cerebellar cortex and/or extracerebellar components of the eyeblink conditioning pathway that can modulate extinction of CRs and CRM timing. Results therefore add support to the distributed plasticity view of cerebellar learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren B. Burhans
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Bernard G. Schreurs
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
17
|
Zhang LQ, Yao J, Gao J, Sun L, Wang LT, Sui JF. Modulation of eyeblink conditioning through sensory processing of conditioned stimulus by cortical and subcortical regions. Behav Brain Res 2019; 359:149-155. [PMID: 30385367 DOI: 10.1016/j.bbr.2018.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Classical eyeblink conditioning (EBC) is one of the simplest forms of associative learning that depends critically on the cerebellum. Using delay EBC (dEBC), a standard paradigm in which the unconditioned stimulus (US) is delayed and co-terminates with the conditioned stimulus (CS), converging lines of evidence has been accumulated and shows that the essential neural circuit mediating EBC resides in the cerebellum and brainstem. In addition to this essential circuit, multiple cerebral cortical and subcortical structures are required to modulate dEBC with suboptimal training parameters, and trace EBC (tEBC) in which a trace-interval separates the CS and US. However, it remains largely unclear why and how so many brain regions are involved for modulation of EBC. Previous research has suggested that the forebrain regions, such as medial prefrontal cortex (mPFC) and hippocampus, may be required to process weak CSs, or to realize temporal overlap between the CS and US signal inputs when the two stimuli were separated in time (i.e. during tEBC). Here, we proposed a multi-level network model for EBC modulation which focuses on sensory processing of CS. The model explains how different neural pathways projecting to pontine nucleus (PN) are involved to amplify or extend CS through heterosynaptic facilitation mechanism or "substitution effect" under different circumstances to achieve EBC. As such, our model can serve as a general framework to explain the modulating mechanism of EBC in a variety of conditions and to help understand the interaction among cerebellum, brainstem, cortical and subcortical regions in EBC modulation.
Collapse
Affiliation(s)
- Lang-Qian Zhang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China; Department of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 University City Road, Shapingba District, Chongqing 401331, PR China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Lin Sun
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Li-Ting Wang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
18
|
Caro-Martín CR, Delgado-García JM, Gruart A, Sánchez-Campusano R. Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci Rep 2018; 8:17796. [PMID: 30542106 PMCID: PMC6290782 DOI: 10.1038/s41598-018-35491-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Spike sorting is one of the most important data analysis problems in neurophysiology. The precision in all steps of the spike-sorting procedure critically affects the accuracy of all subsequent analyses. After data preprocessing and spike detection have been carried out properly, both feature extraction and spike clustering are the most critical subsequent steps of the spike-sorting procedure. The proposed spike sorting approach comprised a new feature extraction method based on shape, phase, and distribution features of each spike (hereinafter SS-SPDF method), which reveal significant information of the neural events under study. In addition, we applied an efficient clustering algorithm based on K-means and template optimization in phase space (hereinafter K-TOPS) that included two integrative clustering measures (validity and error indices) to verify the cohesion-dispersion among spike events during classification and the misclassification of clustering, respectively. The proposed method/algorithm was tested on both simulated data and real neural recordings. The results obtained for these datasets suggest that our spike sorting approach provides an efficient way for sorting both single-unit spikes and overlapping waveforms. By analyzing raw extracellular recordings collected from the rostral-medial prefrontal cortex (rmPFC) of behaving rabbits during classical eyeblink conditioning, we have demonstrated that the present method/algorithm performs better at classifying spikes and neurons and at assessing their modulating properties than other methods currently used in neurophysiology.
Collapse
Affiliation(s)
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, 41013, Spain
| | - R Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Seville, 41013, Spain.
| |
Collapse
|
19
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
20
|
The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid Responses in Behaving Rabbits. J Neurosci 2017; 36:6988-7001. [PMID: 27358456 DOI: 10.1523/jneurosci.4190-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Classical blink conditioning is a well known model for studying neural generation of acquired motor responses. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. We recorded in rabbits the activity of MC neurons during blink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from facial nucleus (FN) or red nucleus (RN). For conditioning, we used a tone as a conditioned stimulus (CS) followed by an air puff as an unconditioned stimulus (US) that coterminated with it. Conditioned responses (CRs) were determined from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded with the search coil technique. Type A neurons increased their discharge rates across conditioning sessions and reached peak firing during the CS-US interval, while type B cells presented a second peak during US presentation. Both of them project to the FN. Type C cells increased their firing across the CS-US interval, reaching peak values at the time of US presentation, and were activated from the RN. These three types of neurons fired well in advance of the beginning of CRs and changed with them. Reversible inactivation of the MC during conditioning evoked a decrease in learning curves and in the amplitude of CRs, while train stimulation of the MC simulated the profile and kinematics of conditioned blinks. In conclusion, MC neurons are involved in the acquisition and expression of CRs. SIGNIFICANCE STATEMENT Classical blink conditioning is a popular experimental model for studying neural mechanisms underlying the acquisition of motor skills. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. Here, we report that the firing activities of MC neurons, recorded in behaving rabbits, are related to and preceded the initiation of conditioned blinks. MC neurons were identified as projecting to the red or facial nuclei and encoded the kinematics of conditioned eyelid responses. The timed stimulation of recording sites simulated the profile of conditioned blinks. MC neurons play a role in the acquisition and expression of these acquired motor responses.
Collapse
|
21
|
Del Rio-Bermudez C, Plumeau AM, Sattler NJ, Sokoloff G, Blumberg MS. Spontaneous activity and functional connectivity in the developing cerebellorubral system. J Neurophysiol 2016; 116:1316-27. [PMID: 27385801 DOI: 10.1152/jn.00461.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellar system depends in part on the emergence of functional connectivity in its input and output pathways. Characterization of spontaneous activity within these pathways provides insight into their functional status in early development. In the present study we recorded extracellular activity from the interpositus nucleus (IP) and its primary downstream target, the red nucleus (RN), in unanesthetized rats at postnatal days 8 (P8) and P12, a period of dramatic change in cerebellar circuitry. The two structures exhibited state-dependent activity patterns and age-related changes in rhythmicity and overall firing rate. Importantly, sensory feedback (i.e., reafference) from myoclonic twitches (spontaneous, self-generated movements that are produced exclusively during active sleep) drove neural activity in the IP and RN at both ages. Additionally, anatomic tracing confirmed the presence of cerebellorubral connections as early as P8. Finally, inactivation of the IP and adjacent nuclei using the GABAA receptor agonist muscimol caused a substantial decrease in neural activity in the contralateral RN at both ages, as well as the disappearance of rhythmicity; twitch-related activity in the RN, however, was preserved after IP inactivation, indicating that twitch-related reafference activates the two structures in parallel. Overall, the present findings point to the contributions of sleep-related spontaneous activity to the development of cerebellar networks.
Collapse
Affiliation(s)
| | - Alan M Plumeau
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Nicholas J Sattler
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa; and DeLTA Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
22
|
A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits. J Neurosci 2016; 35:14809-21. [PMID: 26538651 DOI: 10.1523/jneurosci.2285-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.
Collapse
|
23
|
Raghavan RT, Prevosto V, Sommer MA. Contribution of Cerebellar Loops to Action Timing. Curr Opin Behav Sci 2016; 8:28-34. [PMID: 27933311 DOI: 10.1016/j.cobeha.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent studies of sensorimotor processing have benefited from decision-making paradigms that emphasize the selection of appropriate movements. Selecting when to make those responses, or action timing, is important as well. Although the cerebellum is commonly viewed as a controller of movement dynamics, its role in action timing is also firmly supported. Several lines of research have now extended this idea. Anatomical findings have revealed connections between the cerebellum and broader timing circuits, neurophysiological results have suggested mechanisms for timing within its microcircuitry, and theoretical work has indicated how temporal signals are processed through it and decoded by its targets. These developments are inspiring renewed studies of the role of the cerebellar loops in action timing.
Collapse
Affiliation(s)
- Ramanujan T Raghavan
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708
| | - Vincent Prevosto
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708
| | - Marc A Sommer
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708; Center for Cognitive Neuroscience, Duke University, Durham NC 27708
| |
Collapse
|
24
|
Kotilainen T, Lehto SM, Wikgren J. Effect of transcranial direct current stimulation on semantic discrimination eyeblink conditioning. Behav Brain Res 2015; 292:142-6. [PMID: 26099815 DOI: 10.1016/j.bbr.2015.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a neuromodulation method that has been used to modulate learning. We tested whether anodal tDCS targeted at the left DLPFC could enhance learning in a semantic variant of discrimination eyeblink conditioning, i.e., whether the stimulation would have a specific effect on the discrimination ability, rate of acquisition, amplitude of the conditioned response (CR), or all of these. METHODS Immediately prior to the eyeblink conditioning, the participants received either active stimulation of 1 mA for 10 min or sham stimulation. The anode was placed over F3 and the cathode over the right supraorbital area. The conditioned stimuli (CSs) were common Finnish male and female names that were presented as text. Male names were reinforced with an unconditioned stimulus. RESULTS Stimulation had no effect on the learning rate or discrimination ratio, but the stimulated participants showed steeper CR acquisition in the initial phase of the experiment. Nevertheless, the participants in the stimulation group showed greater eyeblink CRs to the non-reinforced CS. DISCUSSION Contrary to our initial hypothesis, the magnitude and rate of CRs to non-reinforced CS was higher in the active stimulation group than in the sham stimulation group, which may suggest deterioration of discrimination and contingency awareness in the used task. Our observations may suggest a lack of effect on the participants' ability to discriminate between two different types of CS. Furthermore, cathodal modulation of the right prefrontal cortex may explain the change in magnitude and rate of CRs to non-reinforced CS.
Collapse
Affiliation(s)
- Tuukka Kotilainen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Jan Wikgren
- Centre for Interdisciplinary Brain Research, Jyvaskyla, Finland; Department of Psychology, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland.
| |
Collapse
|
25
|
Abstract
Deep brain stimulation of the thalamus (and especially the ventral intermediate nucleus) does not significantly improve a drug-resistant, disabling cerebellar tremor. The dentato-rubro-olivary tract (Guillain-Mollaret triangle, including the red nucleus) is a subcortical loop that is critically involved in tremor genesis. We report the case of a 48-year-old female patient presenting with generalized cerebellar tremor caused by alcohol-related cerebellar degeneration. Resistance to pharmacological treatment and the severity of the symptoms prompted us to investigate the effects of bilateral deep brain stimulation of the red nucleus. Intra-operative microrecordings of the red nucleus revealed intense, irregular, tonic background activity but no rhythmic components that were synchronous with upper limb tremor. The postural component of the cerebellar tremor disappeared during insertion of the macro-electrodes and for a few minutes after stimulation, with no changes in the intentional (kinetic) component. Stimulation per se did not reduce postural or intentional tremor and was associated with dysautonomic symptoms (the voltage threshold for which was inversed related to the stimulation frequency). Our observations suggest that the red nucleus is (1) an important centre for the genesis of cerebellar tremor and thus (2) a possible target for drug-refractory tremor. Future research must determine how neuromodulation of the red nucleus can best be implemented in patients with cerebellar degeneration.
Collapse
|
26
|
Voogd J. What we do not know about cerebellar systems neuroscience. Front Syst Neurosci 2014; 8:227. [PMID: 25565986 PMCID: PMC4270173 DOI: 10.3389/fnsys.2014.00227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
Our knowledge of the modular organization of the cerebellum and the sphere of influence of these modules still presents large gaps. Here I will review these gaps against our present anatomical and physiological knowledge of these systems.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
27
|
Cheron G, Dan B, Márquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013; 2013:853654. [PMID: 24319600 PMCID: PMC3844268 DOI: 10.1155/2013/853654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Javier Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
28
|
Siegel JJ, Mauk MD. Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not. J Neurosci 2013; 33:15272-84. [PMID: 24048856 PMCID: PMC3776068 DOI: 10.1523/jneurosci.1238-13.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022] Open
Abstract
Persistent neural activity, responses that outlast the stimuli that evoke them, plays an important role in neural computations and possibly in processes, such as working memory. Recent studies suggest that trace eyelid conditioning, which involves a temporal gap between the conditioned and unconditioned stimuli (the trace interval), requires persistent neural activity in a region of medial prefrontal cortex (mPFC). This persistent activity, which could be conveyed to cerebellum via a pathway through pons, may engage the cerebellum and allow for the expression of conditioned responses. Given the substantial reciprocity observed among many brain regions, it is essential to demonstrate that persistent responses in mPFC neurons are not simply a reflection of cerebellar feedback to the forebrain, leaving open the possibility that such responses could serve as input to the cerebellum. This concern is highlighted by studies showing that hippocampal learning-related activity is abolished by cerebellar inactivation. We inactivated the cerebellum while recording single-unit activity from the mPFC of rabbits trained with a forebrain-dependent trace eyelid conditioning procedure. We report that, whereas the responses of cells that show an onset of increased spike activity during the trace interval were abolished by cerebellar inactivation, persistent responses that begin during the conditioned stimulus and persisted into the trace interval were unaffected. Therefore, conditioned stimulus-evoked persistent responses remain the strongest candidate input pattern to support the cerebellar expression of learned responses.
Collapse
Affiliation(s)
| | - Michael D. Mauk
- Center for Learning and Memory and
- the Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
29
|
Satoh Y, Yajima E, Ishizuka K, Nagamine Y, Iwasaki SI. Modulation of two types of jaw-opening reflex by stimulation of the red nucleus. Brain Res Bull 2013; 97:24-31. [DOI: 10.1016/j.brainresbull.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023]
|