1
|
Tedja MS, Swierkowska-Janc J, Enthoven CA, Meester-Smoor MA, Hysi PG, Felix JF, Cowan CS, Cherry TJ, van der Spek PJ, Ghanbari M, Erkeland SJ, Barakat TS, Klaver CCW, Verhoeven VJM. A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia. Hum Genet 2025; 144:67-91. [PMID: 39774722 PMCID: PMC11754329 DOI: 10.1007/s00439-024-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.
Collapse
Affiliation(s)
- Milly S Tedja
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joanna Swierkowska-Janc
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Clair A Enthoven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, USA
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe 2024; 32:2112-2130.e10. [PMID: 39615487 DOI: 10.1016/j.chom.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes. Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.
Collapse
Affiliation(s)
- Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Munich Medical Research School (MMRS), Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Danilo Prtvar
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hannah Frenzel
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Katja Schmidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gina Bruch
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | | | - Mojtaba Nemati
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | | | | | - Fatma Cherif
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | - Müge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Center of Doctoral Studies in Informatics and its Applications (CEDOSIA), Technical University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Ondruschka
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Koç University, School of Medicine, İstanbul, Turkey.
| |
Collapse
|
3
|
Moss CD, Wilson AL, Reed KJ, Jennings KJ, Kunz IGZ, Landolt GA, Metcalf J, Engle TE, Coleman SJ. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals (Basel) 2024; 14:2303. [PMID: 39199837 PMCID: PMC11350661 DOI: 10.3390/ani14162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Previous research demonstrated the distribution of distinct microbial communities in the equine hindgut surrounding the pelvic flexure. The current study evaluated gene expression in epithelial tissues surrounding the pelvic flexure to characterize patterns that might correlate with microbial distribution. Gene expression was determined by analyzing RNA sequence data from the pelvic flexure, the left and right ventral colon, and the left and right dorsal colon. An average of 18,330 genes were expressed across the five tissues sampled. Most of the genes showed some level of expression in all five tissues. Tissue-restricted patterns of expression were also observed. Genes with restricted expression in the left ventral and left dorsal colons have communication, signaling, and regulatory functions that correlate with their known physiology. In contrast, genes expressed exclusively in the pelvic flexure have diverse functions. The ontology of genes differentially expressed between the pelvic flexure and the surrounding tissues was associated with immune functions and signaling processes. Despite being non-significant, these enrichment trends were reinforced by the functions of statistically significant expression differences between tissues of the hindgut. These results provide insight into the physiology of the equine hindgut epithelium that might influence the microbiota and its distribution.
Collapse
Affiliation(s)
- Cameron D. Moss
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Amber L. Wilson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Kailee J. Reed
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Watchmaker Genomics, Boulder, CO 80301, USA
| | - Kaysie J. Jennings
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Transnetyx, Memphis, TN 38016, USA
| | - Isabelle G. Z. Kunz
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Gabriele A. Landolt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 8023, USA
| | - Jessica Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Terry E. Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Stephen J. Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| |
Collapse
|
4
|
Habicher J, Sanvido I, Bühler A, Sartori S, Piccoli G, Carl M. The Risk Genes for Neuropsychiatric Disorders negr1 and opcml Are Expressed throughout Zebrafish Brain Development. Genes (Basel) 2024; 15:363. [PMID: 38540422 PMCID: PMC10969947 DOI: 10.3390/genes15030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
The immunoglobulin LAMP/OBCAM/NTM (IgLON) family of cell adhesion molecules comprises five members known for their involvement in establishing neural circuit connectivity, fine-tuning, and maintenance. Mutations in IgLON genes result in alterations in these processes and can lead to neuropsychiatric disorders. The two IgLON family members NEGR1 and OPCML share common links with several of them, such as schizophrenia, autism, and major depressive disorder. However, the onset and the underlying molecular mechanisms have remained largely unresolved, hampering progress in developing therapies. NEGR1 and OPCML are evolutionarily conserved in teleosts like the zebrafish (Danio rerio), which is excellently suited for disease modelling and large-scale screening for disease-ameliorating compounds. To explore the potential applicability of zebrafish for extending our knowledge on NEGR1- and OPCML-linked disorders and to develop new therapeutic strategies, we investigated the spatio-temporal expression of the two genes during early stages of development. negr1 and opcml are expressed maternally and subsequently in partially distinct domains of conserved brain regions. Other areas of expression in zebrafish have not been reported in mammals to date. Our results indicate that NEGR1 and OPCML may play roles in neural circuit development and function at stages earlier than previously anticipated. A detailed functional analysis of the two genes based on our findings could contribute to understanding the mechanistic basis of related psychiatric disorders.
Collapse
Affiliation(s)
- Judith Habicher
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Ilaria Sanvido
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| |
Collapse
|
5
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Grigorieva O, Basalova N, Vigovskiy M, Arbatskiy M, Dyachkova U, Kulebyakina M, Kulebyakin K, Tyurin-Kuzmin P, Kalinina N, Efimenko A. Novel Potential Markers of Myofibroblast Differentiation Revealed by Single-Cell RNA Sequencing Analysis of Mesenchymal Stromal Cells in Profibrotic and Adipogenic Conditions. Biomedicines 2023; 11:biomedicines11030840. [PMID: 36979822 PMCID: PMC10045579 DOI: 10.3390/biomedicines11030840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are the key regulators of tissue homeostasis and repair after damage. Accumulating evidence indicates the dual contribution of MSCs into the development of fibrosis induced by chronic injury: these cells can suppress the fibrotic process due to paracrine activity, but their promoting role in fibrosis by differentiating into myofibroblasts has also been demonstrated. Many model systems reproducing fibrosis have shown the ability of peroxisome proliferator-activated receptor (PPAR) agonists to reverse myofibroblast differentiation. Thus, the differentiation of multipotent cells into myofibroblasts and adipocytes can be considered as processes that require the activation of opposite patterns of gene expression. To test this hypothesis, we analyzed single cell RNA-Seq transcriptome of human adipose tissue MSCs after stimulation of the myofibroblast or adipogenic differentiation and revealed several genes that changed their expression in a reciprocal manner upon these conditions. We validated the expression of selected genes by RT-PCR, and evaluated the upregulation of several relevant proteins using immunocytochemistry, refining the results obtained by RNA-Seq analysis. We have shown, for the first time, the expression of neurotrimin (NTM), previously studied mainly in the nervous tissue, in human adipose tissue MSCs, and demonstrated its increased gene expression and clustering of membrane receptors upon the stimulation of myofibroblast differentiation. We also showed an increased level of CHD3 (Chromodomain-Helicase-DNA-binding protein 3) in MSCs under profibrotic conditions, while retinol dehydrogenase-10 (RDH10) was detected only in MSCs after adipogenic induction, which contradicted the data of transcriptomic analysis and again highlights the need to validate the data obtained by omics methods. Our findings suggest the further analysis of the potential contribution of neurotrimin and CHD3 in the regulation of myofibroblast differentiation and the development of fibrosis.
Collapse
Affiliation(s)
- Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Correspondence:
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Uliana Dyachkova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| |
Collapse
|
7
|
Mukhtar T, Breda J, Adam MA, Boareto M, Grobecker P, Karimaddini Z, Grison A, Eschbach K, Chandrasekhar R, Vermeul S, Okoniewski M, Pachkov M, Harwell CC, Atanasoski S, Beisel C, Iber D, van Nimwegen E, Taylor V. Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. EMBO J 2022; 41:e111132. [PMID: 36345783 PMCID: PMC9753470 DOI: 10.15252/embj.2022111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Jeremie Breda
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Manal A Adam
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Marcelo Boareto
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Pascal Grobecker
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Zahra Karimaddini
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Alice Grison
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Katja Eschbach
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | | | - Swen Vermeul
- Scientific IT ServicesETH ZürichZürichSwitzerland
| | | | - Mikhail Pachkov
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzana Atanasoski
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Faculty of MedicineUniversity of ZürichZürichSwitzerland
| | - Christian Beisel
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | - Dagmar Iber
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Weill Institute for NeuroscienceSan FranciscoCAUSA
| | - Erik van Nimwegen
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Verdon Taylor
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
8
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
9
|
Limbach LE, Penick RL, Casseday RS, Hyland MA, Pontillo EA, Ayele AN, Pitts KM, Ackerman SD, Harty BL, Herbert AL, Monk KR, Petersen SC. Peripheral nerve development in zebrafish requires muscle patterning by tcf15/paraxis. Dev Biol 2022; 490:37-49. [PMID: 35820658 DOI: 10.1016/j.ydbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.
Collapse
Affiliation(s)
| | - Rocky L Penick
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | - Rudy S Casseday
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | | | - Afomia N Ayele
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | - Sarah D Ackerman
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Breanne L Harty
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, OH, USA; Department of Biology, Kenyon College, Gambier, OH, USA; Department of Developmental Biology, Washington University in St. Louis, MO, USA.
| |
Collapse
|
10
|
Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci Rep 2021; 11:19536. [PMID: 34599206 PMCID: PMC8486791 DOI: 10.1038/s41598-021-97768-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Differential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.
Collapse
|
11
|
Schaefer NK, Shapiro B, Green RE. An ancestral recombination graph of human, Neanderthal, and Denisovan genomes. SCIENCE ADVANCES 2021; 7:eabc0776. [PMID: 34272242 PMCID: PMC8284891 DOI: 10.1126/sciadv.abc0776] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/03/2021] [Indexed: 05/02/2023]
Abstract
Many humans carry genes from Neanderthals, a legacy of past admixture. Existing methods detect this archaic hominin ancestry within human genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes. Each of these methods is limited in sensitivity and scalability. We describe a new ancestral recombination graph inference algorithm that scales to large genome-wide datasets and demonstrate its accuracy on real and simulated data. We then generate a genome-wide ancestral recombination graph including human and archaic hominin genomes. From this, we generate a map within human genomes of archaic ancestry and of genomic regions not shared with archaic hominins either by admixture or incomplete lineage sorting. We find that only 1.5 to 7% of the modern human genome is uniquely human. We also find evidence of multiple bursts of adaptive changes specific to modern humans within the past 600,000 years involving genes related to brain development and function.
Collapse
Affiliation(s)
- Nathan K Schaefer
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Rebelo MÂ, Gómez C, Gomes I, Poza J, Martins S, Maturana-Candelas A, Ruiz-Gómez SJ, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Pinto N, Lopes AM. Genome-Wide Scan for Five Brain Oscillatory Phenotypes Identifies a New QTL Associated with Theta EEG Band. Brain Sci 2020; 10:brainsci10110870. [PMID: 33218114 PMCID: PMC7698967 DOI: 10.3390/brainsci10110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α, β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
Collapse
Affiliation(s)
- Miguel Ângelo Rebelo
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: (C.G.); (N.P.)
| | - Iva Gomes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sandra Martins
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Aarón Maturana-Candelas
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Saúl J. Ruiz-Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | | | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Nádia Pinto
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Centro de Matemática da, Universidade do Porto, 4169-007 Porto, Portugal
- Correspondence: (C.G.); (N.P.)
| | - Alexandra M. Lopes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
13
|
Venkannagari H, Kasper JM, Misra A, Rush SA, Fan S, Lee H, Sun H, Seshadrinathan S, Machius M, Hommel JD, Rudenko G. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Structural and Biological Outcomes. J Mol Biol 2020; 432:5287-5303. [PMID: 32710982 DOI: 10.1016/j.jmb.2020.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Neuronal growth regulator 1 (NEGR1) and neurotrimin (NTM) are abundant cell-surface proteins found in the brain and form part of the IgLON (Immunoglobulin LSAMP, OBCAM, Neurotrimin) family. In humans, NEGR1 is implicated in obesity and mental disorders, while NTM is linked to intelligence and cognitive function. IgLONs dimerize homophilically and heterophilically, and they are thought to shape synaptic connections and neural circuits by acting in trans (spanning cellular junctions) and/or in cis (at the same side of a junction). Here, we reveal homodimeric structures of NEGR1 and NTM. They assemble into V-shaped complexes via their Ig1 domains, and disruption of the Ig1-Ig1 interface abolishes dimerization in solution. A hydrophobic ridge from one Ig1 domain inserts into a hydrophobic pocket from the opposing Ig1 domain producing an interaction interface that is highly conserved among IgLONs but remarkably plastic structurally. Given the high degree of sequence conservation at the interaction interface, we tested whether different IgLONs could elicit the same biological effect in vivo. In a small-scale study administering different soluble IgLONs directly into the brain and monitoring feeding, only NEGR1 altered food intake significantly. Taking NEGR1 as a prototype, our studies thus indicate that while IgLONs share a conserved mode of interaction and are able to bind each other as homomers and heteromers, they are structurally plastic and can exert unique biological action.
Collapse
Affiliation(s)
- Harikanth Venkannagari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James M Kasper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott A Rush
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suchithra Seshadrinathan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Parikh TP, Malik M, Britten J, Aly JM, Pilgrim J, Catherino WH. Steroid hormones and hormone antagonists regulate the neural marker neurotrimin in uterine leiomyoma. Fertil Steril 2020; 113:176-186. [PMID: 32033718 DOI: 10.1016/j.fertnstert.2019.08.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To characterize the role of steroid hormone and antihormone exposure on neurotrimin (NTM) expression in human leiomyoma and myometrial tissue and cells. DESIGN Laboratory study of placebo and ulipristal acetate (UPA)-treated patient tissue. In vitro assessment of immortalized myometrial and leiomyoma cell lines after hormone and antihormone exposure. SETTING Academic research center. PATIENT(S) Not applicable. INTERVENTIONS(S) Exposure of leiomyoma cell lines to 17β-E2, medroxyprogesterone acetate (MPA), UPA, and fulvestrant. MAIN OUTCOME MEASURE(S) Messenger RNA expression quantified with the use of RNASeq analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Protein levels quantified by means of Western blot analysis. Immunohistochemistry (IHC) on placebo- and UPA-treated patient uterine tissue specimens. RESULT(S) Expression of NTM in human uterine leiomyoma specimens according to RNASeq was increased compared with myometrium (5.22 ± 0.57-fold), which was confirmed with the use of qRT-PCR (1.95 ± 0.05). Furthermore, NTM protein was elevated in leiomyoma tissue compared with matched myometrium (2.799 ± 0.575). IHC revealed increased staining intensity in leiomyoma surgical specimens compared with matched myometrium of placebo patients. Western blot analysis in immortalized leiomyoma cell lines demonstrated an up-regulation of NTM protein expression (2.4 ± 0.04). Treatment of leiomyoma cell lines with 17β-E2 yielded a 1.98 ± 0.11-fold increase in NTM protein expression; however, treatment with fulvestrant showed no significant change compared with control. Leiomyoma cell lines demonstrated a 1.91 ± 0.97-fold increase in NTM protein expression after progesterone treatment. RNASeq analysis demonstrated a reduced expression in patient leiomyoma after UPA treatment (0.75 ± 0.14). Treatment of leiomyoma cells with UPA demonstrated a reduced total NTM protein amount (0.54 ± 0.31) in patients, which was confirmed with the use of IHC (UPA10 147.2 ± 9.40, UPA20 182.8 ± 8.98). In vitro studies with UPA treatment revealed a concentration-dependent effect that supported these findings. CONCLUSION(S) NTM, a neural cell adhesion molecule, is increased in leiomyoma compared with myometrium in patient tissue and in vitro models after estrogen and progesterone treatment. Down-regulation of expression occurs after UPA treatment, but not after fulvestrant exposure. CLINICAL TRIAL REGISTRATION NUMBER NCT00290251.
Collapse
Affiliation(s)
- Toral P Parikh
- Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Minnie Malik
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jasmine M Aly
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Justin Pilgrim
- Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - William H Catherino
- Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Antony J, Zanini E, Birtley JR, Gabra H, Recchi C. Emerging roles for the GPI-anchored tumor suppressor OPCML in cancers. Cancer Gene Ther 2020; 28:18-26. [PMID: 32595215 DOI: 10.1038/s41417-020-0187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
OPCML is a highly conserved glycosyl phosphatidylinositol (GPI)-anchored protein belonging to the IgLON family of cell adhesion molecules. OPCML functions as a tumor suppressor and is silenced in over 80% of ovarian cancers by loss of heterozygosity and by epigenetic mechanisms. OPCML inactivation is also observed in many other cancers suggesting a conservation of tumor suppressor function. Although epigenetic silencing and subsequent loss of OPCML expression correlate with poor progression-free and overall patient survival, its mechanism of action is only starting to be fully elucidated. Recent discoveries have demonstrated that OPCML exerts its tumor suppressor effect by inhibiting several cancer hallmark phenotypes in vitro and abrogating tumorigenesis in vivo, by downregulating/inactivating a specific spectrum of Receptor Tyrosine Kinases (RTKs), including EphA2, FGFR1, FGFR3, HER2, HER4, and AXL. This modulation of RTKs can also sensitize ovarian and breast cancers to lapatinib, erlotinib, and anti-AXL therapies. Furthermore, OPCML has also been shown to function in synergy with the tumor suppressor phosphatase PTPRG to inactivate pro-metastatic RTKs such as AXL. Recently, the identification of inactivating point mutations and the elucidation of the crystal structure of OPCML have provided valuable insights into its structure-function relationships, giving rise to its potential as an anti-cancer therapeutic.
Collapse
Affiliation(s)
- Jane Antony
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, 94305, USA
| | - Elisa Zanini
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK
| | | | - Hani Gabra
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK
| | - Chiara Recchi
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
16
|
Noh K, Park JC, Han JS, Lee SJ. From Bound Cells Comes a Sound Mind: The Role of Neuronal Growth Regulator 1 in Psychiatric Disorders. Exp Neurobiol 2020; 29:1-10. [PMID: 32122104 PMCID: PMC7075657 DOI: 10.5607/en.2020.29.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell adhesion is important for maintenance of brain structure and function. Abnormal neuronal cell adhesion and loss of its connectivity are considered a main cause of psychiatric disorders such as major depressive disorder (MDD). Various cell adhesion molecules (CAMs) are involved in neuronal cell adhesions and thereby affect brain functions such as learning and memory, cognitive functions, and psychiatric functions. Compared with other CAMs, neuronal growth regulator 1 (Negr1) has a distinct functioning mechanism in terms of its cross-talk with cytokine receptor signaling. Negr1 is a member of the immunoglobulin LON (IgLON) family of proteins and is involved in neuronal outgrowth, dendritic arborization, and synapse formation. In humans, Negr1 is a risk gene for obesity based on a genome-wide association study. More recently, accumulating evidence supports that it also plays a critical role in psychiatric disorders. In this review, we discuss the recent findings on the role of Negr1 in MDD, focusing on its regulatory mechanism. We also provide evidence of putative involvement of Negr1 in other psychiatric disorders based on the novel behavioral phenotypes of Negr1 knockout mice.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Jung-Cheol Park
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| |
Collapse
|
17
|
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020; 52:404-416.e5. [DOI: 10.1016/j.immuni.2020.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
18
|
Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 2. Palatability. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Cheng S, Park Y, Kurleto JD, Jeon M, Zinn K, Thornton JW, Özkan E. Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proc Natl Acad Sci U S A 2019; 116:9837-9842. [PMID: 31043568 PMCID: PMC6525511 DOI: 10.1073/pnas.1818631116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Justyna D Kurleto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
20
|
Ranaivoson FM, Turk LS, Ozgul S, Kakehi S, von Daake S, Lopez N, Trobiani L, De Jaco A, Denissova N, Demeler B, Özkan E, Montelione GT, Comoletti D. A Proteomic Screen of Neuronal Cell-Surface Molecules Reveals IgLONs as Structurally Conserved Interaction Modules at the Synapse. Structure 2019; 27:893-906.e9. [PMID: 30956130 DOI: 10.1016/j.str.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
In the developing brain, cell-surface proteins play crucial roles, but their protein-protein interaction network remains largely unknown. A proteomic screen identified 200 interactions, 89 of which were not previously published. Among these interactions, we find that the IgLONs, a family of five cell-surface neuronal proteins implicated in various human disorders, interact as homo- and heterodimers. We reveal their interaction patterns and report the dimeric crystal structures of Neurotrimin (NTRI), IgLON5, and the neuronal growth regulator 1 (NEGR1)/IgLON5 complex. We show that IgLONs maintain an extended conformation and that their dimerization occurs through the first Ig domain of each monomer and is Ca2+ independent. Cell aggregation shows that NTRI and NEGR1 homo- and heterodimerize in trans. Taken together, we report 89 unpublished cell-surface ligand-receptor pairs and describe structural models of trans interactions of IgLONs, showing that their structures are compatible with a model of interaction across the synaptic cleft.
Collapse
Affiliation(s)
| | - Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sinem Ozgul
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sumie Kakehi
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Nicole Lopez
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Laura Trobiani
- Department of Biology and Biotechnology "Charles Darwin" and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology "Charles Darwin" and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Natalia Denissova
- Department of Molecular Biology and Biochemistry and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Gaetano T Montelione
- Department of Molecular Biology and Biochemistry and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Departments of Neuroscience and Cell Biology Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
21
|
Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomäe T, Heinla I, Hickey MA, Kaasik A, Schäfer MK, Innos J, Lilleväli K, Philips MA, Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci Rep 2019; 9:5457. [PMID: 30932003 PMCID: PMC6443666 DOI: 10.1038/s41598-019-41991-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) belongs to the immunoglobulin (IgLON) superfamily of cell adhesion molecules involved in cortical layering. Recent functional and genomic studies implicate the role of NEGR1 in a wide spectrum of psychiatric disorders, such as major depression, schizophrenia and autism. Here, we investigated the impact of Negr1 deficiency on brain morphology, neuronal properties and social behavior of mice. In situ hybridization shows Negr1 expression in the brain nuclei which are central modulators of cortical-subcortical connectivity such as the island of Calleja and the reticular nucleus of thalamus. Brain morphological analysis revealed neuroanatomical abnormalities in Negr1−/− mice, including enlargement of ventricles and decrease in the volume of the whole brain, corpus callosum, globus pallidus and hippocampus. Furthermore, decreased number of parvalbumin-positive inhibitory interneurons was evident in Negr1−/− hippocampi. Behaviorally, Negr1−/− mice displayed hyperactivity in social interactions and impairments in social hierarchy. Finally, Negr1 deficiency resulted in disrupted neurite sprouting during neuritogenesis. Our results provide evidence that NEGR1 is required for balancing the ratio of excitatory/inhibitory neurons and proper formation of brain structures, which is prerequisite for adaptive behavioral profiles. Therefore, Negr1−/− mice have a high potential to provide new insights into the neural mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia. .,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str.25, 53127, Bonn, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromso, Norway
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Michael K Schäfer
- Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
22
|
Sheu CC, Chang WA, Tsai MJ, Liao SH, Chong IW, Kuo PL. Bioinformatic analysis of next‑generation sequencing data to identify dysregulated genes in fibroblasts of idiopathic pulmonary fibrosis. Int J Mol Med 2019; 43:1643-1656. [PMID: 30720061 PMCID: PMC6414167 DOI: 10.3892/ijmm.2019.4086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease with an increasing global burden. It is hypothesized that fibroblasts have a number of functions that may affect the development and progression of IPF. However, the present understanding of cellular and molecular mechanisms associated with fibroblasts in IPF remains limited. The present study aimed to identify the dysregulated genes in IPF fibroblasts, elucidate their functions and explore potential microRNA (miRNA)-mRNA interactions. mRNA and miRNA expression profiles were obtained from IPF fibroblasts and normal lung fibroblasts using a next-generation sequencing platform, and bioinformatic analyses were performed in a step-wise manner. A total of 42 dysregulated genes (>2 fold-change of expression) were identified, of which 5 were verified in the Gene Expression Omnibus (GEO) database analysis, including the upregulation of neurotrimin (NTM), paired box 8 (PAX8) and mesoderm development LRP chaperone, and the downregulation of ITPR interacting domain containing 2 and Inka box actin regulator 2 (INKA2). Previous data indicated that PAX8 and INKA2 serve roles in cell growth, proliferation and survival. Gene Ontology analysis indicated that the most significant function of these 42 dysregulated genes was associated with the composition and function of the extracellular matrix (ECM). A total of 60 dysregulated miRNAs were also identified, and 1,908 targets were predicted by the miRmap database. The integrated analysis of mRNA and miRNA expression data, combined with GEO verification, finally identified Homo sapiens (hsa)-miR-1254-INKA2 and hsa-miR-766-3p-INKA2 as the potential miRNA-mRNA interactions in IPF fibroblasts. In summary, the results of the present study suggest that dysregulation of PAX8, hsa-miR-1254-INKA2 and hsa-miR-766-3p-INKA2 may promote the proliferation and survival of IPF fibroblasts. In the functional analysis of the dysregulated genes, a marked association between fibroblasts and the ECM was identified. These data improve the current understanding of fibroblasts as key cells in the pathogenesis of IPF. As a screening study using bioinformatics approaches, the results of the present study require additional validation.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ssu-Hui Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
23
|
Kubick N, Brösamle D, Mickael ME. Molecular Evolution and Functional Divergence of the IgLON Family. Evol Bioinform Online 2018; 14:1176934318775081. [PMID: 29844654 PMCID: PMC5967153 DOI: 10.1177/1176934318775081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022] Open
Abstract
IgLON family is a subgroup of cell adhesion molecules which is known to have diverse roles in neuronal development. IgLONs are characterized by possessing 3 Ig-like C2 domains, which play a part in mediating various cellular interactions. Recently, IgLONs have been shown to be expressed at the blood-brain barrier (BBB). However, our understanding of the genetic divergence patterns and evolutionary rates of these proteins in relation to their functions, in general, and at the BBB, in particular, remains inadequate. In this study, 12 species were explored to shed more light on the phylogenetic origins, structure, functional specificity, and divergence of this family. A total of 40 IgLON genes were identified from vertebrates and invertebrates. The absence of IgLON family genes in Hydra vulgaris and Nematostella vectensis but not in Drosophila melanogaster suggests that this family appeared during the time of divergence of Arthropoda 455 Mya. In general, IgLON genes have been subject to strong positive selection in vertebrates. Our study, based on IgLONs’ structural similarity, suggests that they may play a role in the evolutionary changes in the brain anatomy towards complexity including regulating neural growth and BBB permeability. IgLONs’ functions seem to be performed through complex interactions on the level of motifs as well as single residues. We identified several IgLON motifs that could be influencing cellular migration and proliferation as well as BBB integrity through interactions with SH3 or integrin. Our motif analysis also revealed that NEGR1 might be involved in MAPK pathway as a form of a signal transmitting receptor through its motif (KKVRVVVNF). We found several residues that were both positively selected and with highly functional specificity. We also located functional divergent residues that could act as drug targets to regulate BBB permeability. Furthermore, we identified several putative metalloproteinase cleavage sites that support the ectodomain shedding hypothesis of the IgLONs. In conclusion, our results present a bridge between IgLONs’ molecular evolution and their functions.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Brösamle
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel-Edwar Mickael
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Stefen H, Suchowerska AK, Chen BJ, Brettle M, Kuschelewski J, Gunning PW, Janitz M, Fath T. Tropomyosin isoforms have specific effects on the transcriptome of undifferentiated and differentiated B35 neuroblastoma cells. FEBS Open Bio 2018; 8:570-583. [PMID: 29632810 PMCID: PMC5881551 DOI: 10.1002/2211-5463.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tropomyosins, a family of actin‐associated proteins, bestow actin filaments with distinct biochemical and physical properties which are important for determining cell shape and regulating many cellular processes in eukaryotic cells. Here, we used RNA‐seq to investigate the effect of four tropomyosin isoforms on gene expression in undifferentiated and differentiated rat B35 neuroblastoma cells. In undifferentiated cells, overexpression of tropomyosin isoforms Tpm1.12, Tpm2.1, Tpm3.1, and Tpm4.2 differentially regulates a vast number of genes, clustering into several gene ontology terms. In differentiated cells, tropomyosin overexpression exerts a much weaker influence on overall gene expression. Our findings are particularly compelling because they demonstrate that tropomyosin‐dependent changes are attenuated once the cells are induced to follow a defined path of differentiation. Database Sequence data for public availability are deposited in the European Nucleotide Archive under the accession number PRJEB24136.
Collapse
Affiliation(s)
- Holly Stefen
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | | | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Merryn Brettle
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Jennifer Kuschelewski
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Peter William Gunning
- Cellular and Genetic Medicine Unit School of Medical Sciences UNSW Sydney NSW Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| |
Collapse
|
25
|
von Ziegler LM, Selevsek N, Tweedie-Cullen RY, Kremer E, Mansuy IM. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice. Cell Rep 2018; 22:3362-3374. [DOI: 10.1016/j.celrep.2018.02.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
|
26
|
Katiyar A, Sharma S, Singh TP, Kaur P. Identification of Shared Molecular Signatures Indicate the Susceptibility of Endometriosis to Multiple Sclerosis. Front Genet 2018; 9:42. [PMID: 29503661 PMCID: PMC5820528 DOI: 10.3389/fgene.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Women with endometriosis (EMS) appear to be at a higher risk of developing other autoimmune diseases predominantly multiple sclerosis (MS). Though EMS and MS are evidently diverse in their phenotype, they are linked by a common autoimmune condition or immunodeficiency which could play a role in the expansion of endometriosis and possibly increase the risk of developing MS in women with EMS. However, the common molecular links connecting EMS with MS are still unclear. We conducted a meta-analysis of microarray experiments focused on EMS and MS with their respective controls. The GEO2R web application discovered a total of 711 and 1516 genes that are differentially expressed across the experimental conditions in EMS and MS, respectively with 129 shared DEGs between them. The functional enrichment analysis of DEGs predicts the shared gene expression signatures as well as the overlapping biological processes likely to infer the co-occurrence of EMS with MS. Network based meta-analysis unveiled six interaction networks/crosstalks through overlapping edges between commonly dysregulated pathways of EMS and MS. The PTPN1, ERBB3, and CDH1 were observed to be the highly ranked hub genes connected with disease-related genes of both EMS and MS. Androgen receptor (AR) and nuclear factor-kB p65 (RelA) were observed to be the most enriched transcription factor in the upstream of shared down-regulated and up-regulated genes, respectively. The two disease sample sets compared through crosstalk interactions between shared pathways revealed commonly up- and down-regulated expressions of 10 immunomodulatory proteins as probable linkers between EMS and MS. This study pinpoints the number of shared genes, pathways, protein kinases, and upstream regulators that may help in the development of biomarkers for diagnosis of MS and endometriosis at the same time through improved understanding of shared molecular signatures and crosstalk.
Collapse
Affiliation(s)
- Amit Katiyar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
28
|
Handa-Narumi M, Yoshimura T, Konishi H, Fukata Y, Manabe Y, Tanaka K, Bao GM, Kiyama H, Fukase K, Ikenaka K. Branched Sialylated N-glycans Are Accumulated in Brain Synaptosomes and Interact with Siglec-H. Cell Struct Funct 2018; 43:141-152. [DOI: 10.1247/csf.18009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Yuko Fukata
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| | - Guang-ming Bao
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
29
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
Britten RA, Jewell JS, Davis LK, Miller VD, Hadley MM, Semmes OJ, Lonart G, Dutta SM. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiat Res 2017; 187:287-297. [PMID: 28156212 DOI: 10.1667/rr14067.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Collapse
Affiliation(s)
- Richard A Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Leslie K Davis
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D Miller
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.,d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - György Lonart
- d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita M Dutta
- c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
31
|
Vanaveski T, Singh K, Narvik J, Eskla KL, Visnapuu T, Heinla I, Jayaram M, Innos J, Lilleväli K, Philips MA, Vasar E. Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse. Front Neurosci 2017; 11:38. [PMID: 28210208 PMCID: PMC5288359 DOI: 10.3389/fnins.2017.00038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/19/2017] [Indexed: 01/20/2023] Open
Abstract
IgLON family is composed of five genes: Lsamp, Ntm, Opcml, Negr1, and Iglon5; encoding for five highly homologous neural adhesion proteins that regulate neurite outgrowth and synapse formation. In the current study we performed in silico analysis revealing that Ntm and Opcml display similar genomic structure as previously reported for Lsamp, characterized by two alternative promotors 1a and 1b. Negr1 and Iglon5 transcripts have uniform 5′ region, suggesting single promoter. Iglon5, the recently characterized family member, shares high level of conservation and structural qualities characteristic to IgLON family such as N-terminal signal peptide, three Ig domains, and GPI anchor binding site. By using custom 5′-isoform-specific TaqMan gene-expression assay, we demonstrated heterogeneous expression of IgLON transcripts in different areas of mouse brain and several-fold lower expression in selected tissues outside central nervous system. As an example, the expression of IgLON transcripts in urogenital and reproductive system is in line with repeated reports of urogenital tumors accompanied by mutations in IgLON genes. Considering the high levels of intra-family homology shared by IgLONs, we investigated potential compensatory effects at the level of IgLON isoforms in the brains of mice deficient of one or two family members. We found that the lack of IgLONs is not compensated by a systematic quantitative increase of the other family members. On the contrary, the expression of Ntm 1a transcript and NEGR1 protein was significantly reduced in the frontal cortex of Lsamp-deficient mice suggesting that the expression patterns within IgLON family are balanced coherently. The actions of individual IgLONs, however, can be antagonistic as demonstrated by differential expression of Syp in deletion mutants of IgLONs. In conclusion, we show that the genomic twin-promoter structure has impact on both anatomical distribution and intra-family interactions of IgLON family members. Remarkable variety in the activity levels of 1a and 1b promoters both in the brain and in other tissues, suggests complex functional regulation of IgLONs by alternative signal peptides driven by 1a and 1b promoters.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of TartuTartu, Estonia; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
| | - Indrek Heinla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| |
Collapse
|
32
|
Mazitov T, Bregin A, Philips MA, Innos J, Vasar E. Deficit in emotional learning in neurotrimin knockout mice. Behav Brain Res 2016; 317:311-318. [PMID: 27693610 DOI: 10.1016/j.bbr.2016.09.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Neurotrimin (Ntm) belongs to the IgLON family of cell adhesion molecules with Lsamp, Obcam and kilon that regulate the outgrowth of neurites mostly by forming heterodimers. IgLONs have been associated with psychiatric disorders, intelligence, body weight, heart disease and tumours. This study provides an initial behavioural and pharmacological characterization of the phenotype of Ntm-deficient mice. We expected to see at least some overlap with the phenotype of Lsamp-deficient mice as Ntm and Lsamp are the main interaction partners in the IgLON family and are colocalized in some brain regions. However, Ntm-deficient mice displayed none of the deviations in behaviour that we have previously shown in Lsamp-deficient mice, but differently from Lsamp-deficient mice, had a deficit in emotional learning in the active avoidance task. The only overlap was decreased sensitivity to the locomotor stimulating effect of amphetamine in both knockout models. Thus, despite being interaction partners, on the behavioural level Lsamp seems to play a much more central role than Ntm and the roles of these two proteins seem to be complementary rather than overlapping.
Collapse
Affiliation(s)
- Timur Mazitov
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
33
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Pischedda F, Piccoli G. The IgLON Family Member Negr1 Promotes Neuronal Arborization Acting as Soluble Factor via FGFR2. Front Mol Neurosci 2016; 8:89. [PMID: 26793057 PMCID: PMC4710852 DOI: 10.3389/fnmol.2015.00089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023] Open
Abstract
IgLON proteins are GPI anchored adhesion molecules that control neurite outgrowth. In particular, Negr1 down-regulation negatively influences neuronal arborization in vitro and in vivo. In the present study, we found that the metalloprotease ADAM10 releases Negr1 from neuronal membrane. Ectodomain shedding influences several neuronal mechanisms, including survival, synaptogenesis, and the formation of neurite trees. By combining morphological analysis and virus-mediated selective protein silencing in primary murine cortical neurons, we found that pharmacologically inhibition of ADAM10 results in an impairment of neurite tree maturation that can be rescued upon treatment with soluble Negr1. Furthermore, we report that released Negr1 influences neurite outgrowth in a P-ERK1/2 and FGFR2 dependent manner. Together our findings suggest a role for Negr1 in regulating neurite outgrowth through the modulation of FGFR2 signaling pathway. Given the physiological and pathological role of ADAM10, Negr1, and FGFR2, the regulation of Negr1 shedding may play a crucial role in sustaining brain function and development.
Collapse
Affiliation(s)
- Francesca Pischedda
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Giovanni Piccoli
- Department of Neuroscience, Istituto Di Neuroscienze-Consiglio Nazionale delle Ricerche, San Raffaele Scientific Park Milano, Italy
| |
Collapse
|
35
|
Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 2015; 18:1819-31. [PMID: 26523646 DOI: 10.1038/nn.4160] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. Cell type-specific proteins defined as tenfold more abundant than average expression represented about a tenth of the proteome, with an overrepresentation of cell surface proteins. To demonstrate the utility of our resource, we focused on this class of proteins and identified Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination. Our findings provide a framework for a system-level understanding of cell-type diversity in the CNS and serves as a rich resource for analyses of brain development and function.
Collapse
|
36
|
Wang W, Mandel J, Bouaziz J, Commenges D, Nabirotchkine S, Chumakov I, Cohen D, Guedj M. A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer's Disease. PLoS One 2015; 10:e0138223. [PMID: 26379234 PMCID: PMC4574966 DOI: 10.1371/journal.pone.0138223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 12/28/2022] Open
Abstract
Results from Genome-Wide Association Studies (GWAS) have shown that the genetic basis of complex traits often include many genetic variants with small to moderate effects whose identification remains a challenging problem. In this context multi-marker analysis at the gene and pathway level can complement traditional point-wise approaches that treat the genetic markers individually. In this paper we propose a novel statistical approach for multi-marker analysis based on the Rasch model. The method summarizes the categorical genotypes of SNPs by a generalized logistic function into a genetic score that can be used for association analysis. Through different sets of simulations, the false-positive rate and power of the proposed approach are compared to a set of existing methods, and shows good performances. The application of the Rasch model on Alzheimer's Disease (AD) ADNI GWAS dataset also allows a coherent interpretation of the results. Our analysis supports the idea that APOE is a major susceptibility gene for AD. In the top genes selected by proposed method, several could be functionally linked to AD. In particular, a pathway analysis of these genes also highlights the metabolism of cholesterol, that is known to play a key role in AD pathogenesis. Interestingly, many of these top genes can be integrated in a hypothetic signalling network.
Collapse
Affiliation(s)
- Wenjia Wang
- Pharnext, Issy-les-Moulineaux, Ile de France, France
- Inserm U897, University of Bordeaux, Bordeaux, Aquitaine, France
| | - Jonas Mandel
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Jan Bouaziz
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Daniel Commenges
- Inserm U897, University of Bordeaux, Bordeaux, Aquitaine, France
| | | | - Ilya Chumakov
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Daniel Cohen
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Mickaël Guedj
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | | |
Collapse
|
37
|
Maruani A, Huguet G, Beggiato A, ElMaleh M, Toro R, Leblond CS, Mathieu A, Amsellem F, Lemière N, Verloes A, Leboyer M, Gillberg C, Bourgeron T, Delorme R. 11q24.2-25 micro-rearrangements in autism spectrum disorders: Relation to brain structures. Am J Med Genet A 2015; 167A:3019-30. [DOI: 10.1002/ajmg.a.37345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Anna Maruani
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
- Department of Child Psychiatry; Robert Debré Hospital, APHP; Paris France
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
| | - Anita Beggiato
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
- Department of Child Psychiatry; Robert Debré Hospital, APHP; Paris France
| | - Monique ElMaleh
- Department of Radiology; Robert Debré Hospital, APHP; Paris France
| | - Roberto Toro
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
| | - Claire S. Leblond
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
| | | | - Nathalie Lemière
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
| | - Alain Verloes
- Department of Human Genetics; Robert Debré Hospital, APHP; Paris France
| | - Marion Leboyer
- INSERM U955, Team 15; Faculty of Medicine; Creteil France
- Department of Adult Psychiatry; Henri Mondor-Albert Chenevier Hospitals AP-HP; Creteil France
- Fondation FondaMental; French National Science Foundation; Creteil France
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre; Gothenburg University; Göteborg Sweden
- Saint George's Hospital Medical School; London United Kingdom
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
- Diderot Paris 7; University Paris; Paris France
| | - Richard Delorme
- Human Genetics and Cognitive Functions; Institut Pasteur; Paris France
- CNRS URA 2182; Institut Pasteur; Paris France
- Department of Child Psychiatry; Robert Debré Hospital, APHP; Paris France
- Fondation FondaMental; French National Science Foundation; Creteil France
| |
Collapse
|
38
|
Sanz R, Ferraro GB, Fournier AE. IgLON cell adhesion molecules are shed from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem 2014; 290:4330-42. [PMID: 25538237 DOI: 10.1074/jbc.m114.628438] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases and a disintegrin and metalloproteinases are members of the zinc endopeptidases, which cleave components of the extracellular matrix as well as cell surface proteins resulting in degradation or release of biologically active fragments. Surface ectodomain shedding affects numerous biological processes, including survival, axon outgrowth, axon guidance, and synaptogenesis. In this study, we evaluated the role of metalloproteinases in regulating cortical neurite growth. We found that treatment of mature cortical neurons with pan-metalloproteinase inhibitors or with tissue inhibitors of metalloproteinase-3 reduced neurite outgrowth. Through mass spectrometry, we characterized the metalloproteinase-sensitive cell surface proteome of mature cortical neurons. Members of the IgLON family of glycosylphosphatidylinositol-anchored neural cell adhesion molecules were identified and validated as proteins that were shed from the surface of mature cortical neurons in a metalloproteinase-dependent manner. Introduction of two members of the IgLON family, neurotrimin and NEGR1, in early embryonic neurons was sufficient to confer sensitivity to metalloproteinase inhibitors in neurite outgrowth assays. Outgrowth experiments on immobilized IgLON proteins revealed a role for all IgLON family members in promoting neurite extension from cortical neurons. Together, our findings support a role for metalloproteinase-dependent shedding of IgLON family members in regulating neurite outgrowth from mature cortical neurons.
Collapse
Affiliation(s)
- Ricardo Sanz
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Gino B Ferraro
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alyson E Fournier
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
39
|
Mónica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 2014; 187:1-17. [PMID: 25530517 DOI: 10.1016/j.autneu.2014.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression of BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation.
Collapse
Affiliation(s)
- M Mónica Brauer
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Institute for Neurological Discoveries, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
40
|
Laßek M, Weingarten J, Volknandt W. The Proteome of the Murine Presynaptic Active Zone. Proteomes 2014; 2:243-257. [PMID: 28250380 PMCID: PMC5302740 DOI: 10.3390/proteomes2020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 01/09/2023] Open
Abstract
The proteome of the presynaptic active zone controls neurotransmitter release and the short- and long-term structural and functional dynamics of the nerve terminal. The proteinaceous inventory of the presynaptic active zone has recently been reported. This review will evaluate the subcellular fractionation protocols and the proteomic approaches employed. A breakthrough for the identification of the proteome of the presynaptic active zone was the successful employment of antibodies directed against a cytosolic epitope of membrane integral synaptic vesicle proteins for the immunopurification of synaptic vesicles docked to the presynaptic plasma membrane. Combining immunopurification and subsequent analytical mass spectrometry, hundreds of proteins, including synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular and extracellular signaling and a large variety of adhesion molecules, were identified. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the presynapse. This review will critically discuss both the experimental approaches and prominent protein candidates identified. Many proteins have not previously been assigned to the presynaptic release sites and may be directly involved in the short- and long-term structural modulation of the presynaptic compartment. The identification of proteinaceous constituents of the presynaptic active zone provides the basis for further analyzing the interaction of presynaptic proteins with their targets and opens novel insights into the functional role of these proteins in neuronal communication.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Weingarten J, Lassek M, Mueller BF, Rohmer M, Lunger I, Baeumlisberger D, Dudek S, Gogesch P, Karas M, Volknandt W. The proteome of the presynaptic active zone from mouse brain. Mol Cell Neurosci 2014; 59:106-18. [PMID: 24534009 DOI: 10.1016/j.mcn.2014.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Neurotransmitter release as well as the structural and functional dynamics of the presynaptic active zone is controlled by proteinaceous components. Here we describe for the first time an experimental approach for the isolation of the presynaptic active zone from individual mouse brains, a prerequisite for understanding the functional inventory of the presynaptic protein network and for the later analysis of changes occurring in mutant mice. Using a monoclonal antibody against the ubiquitous synaptic vesicle protein SV2 we immunopurified synaptic vesicles docked to the presynaptic plasma membrane. Enrichment studies by means of Western blot analysis and mass spectrometry identified 485 proteins belonging to an impressive variety of functional categories. Our data suggest that presynaptic active zones represent focal hot spots that are not only involved in the regulation of neurotransmitter release but also in multiple structural and functional alterations the adult nerve terminal undergoes during neural activity in adult CNS. They furthermore open new avenues for characterizing alterations in the active zone proteome of mutant mice and their corresponding controls, including the various mouse models of neurological diseases.
Collapse
Affiliation(s)
- Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Melanie Lassek
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Benjamin F Mueller
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Marion Rohmer
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | | | - Simone Dudek
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Patricia Gogesch
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Mohr R, Neckel P, Zhang Y, Stachon S, Nothelfer K, Schaeferhoff K, Obermayr F, Bonin M, Just L. Molecular and cell biological effects of 3,5,3′-triiodothyronine on progenitor cells of the enteric nervous system in vitro. Stem Cell Res 2013; 11:1191-205. [DOI: 10.1016/j.scr.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023] Open
|
43
|
Mendonça DMF, Pizzati L, Mostacada K, de S Martins SC, Higashi R, Ayres Sá L, Moura Neto V, Chimelli L, Martinez AMB. Neuroproteomics: an insight into ALS. Neurol Res 2013; 34:937-43. [PMID: 23146297 DOI: 10.1179/1743132812y.0000000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown aetiology. Diagnosis is made through physical examination, electrophysiological findings, and by excluding other conditions. There is not a single biomarker that concludes the diagnosis. The aim of this study was to investigate differentially expressed proteins in cerebrospinal fluid (CSF) of ALS patients compared to control subjects, with the purpose to identify a panel of possible biomarkers for the disease. The differentially expressed spots/proteins were submitted to two-dimensional (2D) electrophoresis and recognized with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Parkin-like and many iron and zinc binding were some of the proteins found in ALS CSF. Parkin is a ligase involved in ubiquitin-proteasome pathway and mutations in the parkin gene are the most common cause of recessive familial Parkinson's disease. Iron and zinc are involved with many important metabolic processes and are related to neurodegenerative disease. Common features of ALS comprise failure of the ubiquitin-proteasome system and increased levels of metal ions in the brain. Therefore, the identification of these proteins can be a significant step in ALS research. These and other identified proteins are discussed in this study.
Collapse
Affiliation(s)
- D M F Mendonça
- Departamento de Biociências, Universidade Federal de Sergipe, Sergipe, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chesi A, Staahl BT, Jovicic A, Couthouis J, Fasolino M, Raphael AR, Yamazaki T, Elias L, Polak M, Kelly C, Williams KL, Fifita JA, Maragakis NJ, Nicholson GA, King OD, Reed R, Crabtree GR, Blair IP, Glass JD, Gitler AD. Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 2013; 16:851-5. [PMID: 23708140 PMCID: PMC3709464 DOI: 10.1038/nn.3412] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, we assessed the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n = 141 exomes). We found that amino acid-altering de novo mutations were enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex (nBAF) component SS18L1 (also known as CREST). CREST mutations inhibited activity-dependent neurite outgrowth in primary neurons, and CREST associated with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS.
Collapse
Affiliation(s)
- Alessandra Chesi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Brett T. Staahl
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ana Jovicic
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Maria Fasolino
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Alya R. Raphael
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Tomohiro Yamazaki
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Laura Elias
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Meraida Polak
- Department of Neurology, Emory University, Atlanta, GA 30322
| | - Crystal Kelly
- Department of Neurology, Emory University, Atlanta, GA 30322
| | - Kelly L. Williams
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennifer A. Fifita
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicholas J. Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Garth A. Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Oliver D. King
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ian P. Blair
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
45
|
Lo Vasco VR. Phosphoinositide pathway and the signal transduction network in neural development. Neurosci Bull 2012; 28:789-800. [PMID: 23152330 PMCID: PMC5561820 DOI: 10.1007/s12264-012-1283-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022] Open
Abstract
The development of the nervous system is under the strict control of a number of signal transduction pathways, often interconnected. Among them, the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention. Besides their well-known role in the regulation of intracellular calcium levels, PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways, contributing to a specific and complex network in the developing nervous system. In this review, the connections of PI signalling with further transduction pathways acting during neural development are discussed, with special regard to the role of the PI-PLC family of enzymes.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicine, Sapienza University of Rome, viale del Policlinico 33, Rome 00185, Italy.
| |
Collapse
|
46
|
Yang SH, Liao CC, Chen Y, Syu JP, Jeng CJ, Wang SM. Daidzein induces neuritogenesis in DRG neuronal cultures. J Biomed Sci 2012; 19:80. [PMID: 22931352 PMCID: PMC3500655 DOI: 10.1186/1423-0127-19-80] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Absract
Collapse
Affiliation(s)
- Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessières B, Barlier A, Jacques S, Simeoni U, Dandolo L, Letourneur F, Jammes H, Vaiman D. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics 2012; 7:1079-90. [PMID: 22894909 PMCID: PMC3466192 DOI: 10.4161/epi.21495] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.
Collapse
|
48
|
Sugimoto C, Morita S, Miyata S. Overexpression of IgLON cell adhesion molecules changes proliferation and cell size of cortical astrocytes. Cell Biochem Funct 2012; 30:400-5. [PMID: 22374746 DOI: 10.1002/cbf.2813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/16/2011] [Accepted: 01/26/2012] [Indexed: 11/09/2022]
Abstract
IgLON family is a subgroup of the immunoglobulin superfamily cell adhesion molecules and composed of limbic system-associated protein (LAMP), opioid binding cell adhesion molecule (OBCAM), neurotrimin (Ntm) and Kilon. In the present study, we investigated the overexpression of LAMP, OBCAM, Ntm and Kilon on the proliferation and cell size of type-1 astrocytes in vitro. Quantitative analysis using bromodeoxyuridine immunocytochemistry revealed that the expression of OBCAM had greater inhibitory effect on astrocytic proliferation as compared with LAMP, Ntm and Kilon ones. OBCAM overexpression increased the cell size of astrocytes as compared with the control. The treatment of FGF-2 had greater proliferative effect on OBCAM-transfected astrocytes as compared with the control. These results suggest that OBCAM is more potent regulator for controlling the proliferation and cell size of astrocytes as compared with other IgLON proteins possibly through FGF-2 receptor-mediated pathway.
Collapse
Affiliation(s)
- Chiaki Sugimoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | | | |
Collapse
|
49
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
50
|
McNamee CJ, Youssef S, Moss D. IgLONs form heterodimeric complexes on forebrain neurons. Cell Biochem Funct 2011; 29:114-9. [PMID: 21321971 DOI: 10.1002/cbf.1730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/07/2022]
Abstract
IgLONs are a family of four GPI-anchored cell adhesion molecules that regulate neurite outgrowth and synaptogenesis and may act as tumour suppressor genes. Recently we have proposed that two members of the IgLON family act as a heterodimeric complex termed DIgLON. Neurons isolated from chick forebrain co-express all six combinations of IgLONs and the intensity of fluorescence for each pair of IgLONs was highly correlated. Antibody-patching experiments on forebrain neurons show complex formation for IgLON pairs but not between unrelated GPI-anchored glycoproteins. Thus IgLONs are the first GPI-anchored family of glycoproteins shown to form heterodimeric complexes in the plane of the membrane.
Collapse
|