1
|
Musotto R, Wanderlingh U, Pioggia G. Ca 2+ waves in astrocytes: computational modeling and experimental data. Front Cell Neurosci 2025; 19:1536096. [PMID: 40226297 PMCID: PMC11985530 DOI: 10.3389/fncel.2025.1536096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
This paper examines different computational models for Calcium wave propagation in astrocytes. Through a comparative analysis of models by Goldbeter, De Young-Keizer, Atri, Li-Rinzel, and De Pittà and of experimental data, the study highlights the model contributions for the understanding of Calcium dynamics. Tracing the evolution from simple to complex models, this work emphasizes the importance of integrating experimental data in order to further refine these models. The results allow to improve our understanding of the physiological functions of astrocytes, suggesting the importance of more accurate astrocyte models.
Collapse
Affiliation(s)
- Rosa Musotto
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| | - Ulderico Wanderlingh
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| |
Collapse
|
2
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Kopach O, Sylantyev S, Bard L, Michaluk P, Heller JP, Gutierrez del Arroyo A, Ackland GL, Gourine AV, Rusakov DA. Human neutrophils communicate remotely via calcium-dependent glutamate-induced glutamate release. iScience 2023; 26:107236. [PMID: 37496680 PMCID: PMC10366500 DOI: 10.1016/j.isci.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Neutrophils are white blood cells that are critical to acute inflammatory and adaptive immune responses. Their swarming-pattern behavior is controlled by multiple cellular cascades involving calcium-dependent release of various signaling molecules. Previous studies have reported that neutrophils express glutamate receptors and can release glutamate but evidence of direct neutrophil-neutrophil communication has been elusive. Here, we hold semi-suspended cultured human neutrophils in patch-clamp whole-cell mode to find that calcium mobilization induced by stimulating one neutrophil can trigger an N-methyl-D-aspartate (NMDA) receptor-driven membrane current and calcium signal in neighboring neutrophils. We employ an enzymatic-based imaging assay to image, in real time, glutamate release from neutrophils induced by glutamate released from their neighbors. These observations provide direct evidence for a positive-feedback inter-neutrophil communication that could contribute to mechanisms regulating communal neutrophil behavior.
Collapse
Affiliation(s)
- Olga Kopach
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Lucie Bard
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Piotr Michaluk
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Janosch P. Heller
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Ana Gutierrez del Arroyo
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dmitri A. Rusakov
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
4
|
Herrera Moro Chao D, Kirchner MK, Pham C, Foppen E, Denis RGP, Castel J, Morel C, Montalban E, Hassouna R, Bui LC, Renault J, Mouffle C, García-Cáceres C, Tschöp MH, Li D, Martin C, Stern JE, Luquet SH. Hypothalamic astrocytes control systemic glucose metabolism and energy balance. Cell Metab 2022; 34:1532-1547.e6. [PMID: 36198294 PMCID: PMC9615252 DOI: 10.1016/j.cmet.2022.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 09/02/2022] [Indexed: 01/29/2023]
Abstract
The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.
Collapse
Affiliation(s)
| | - Matthew K Kirchner
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30302, USA
| | - Cuong Pham
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Universite, Paris 75005, France
| | - Ewout Foppen
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Raphael G P Denis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France; Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Chloe Morel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Enrica Montalban
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Justine Renault
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Christine Mouffle
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Universite, Paris 75005, France
| | - Cristina García-Cáceres
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, 85764, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, 80333, Germany; Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias H Tschöp
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, 85764, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, 80333, Germany
| | - Dongdong Li
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Universite, Paris 75005, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30302, USA
| | - Serge H Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France.
| |
Collapse
|
5
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
6
|
Kim AA, Nguyen A, Marchetti M, Du X, Montell DJ, Pruitt BL, O'Brien LE. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J Cell Sci 2022; 135:jcs260249. [PMID: 35722729 PMCID: PMC9450890 DOI: 10.1242/jcs.260249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types - even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.
Collapse
Affiliation(s)
- Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Amanda Nguyen
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - XinXin Du
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Denise J Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Brandner S, Aicher S, Schroeter S, Swierzy I, Kinfe TM, Buchfelder M, Maslarova A, Stadlbauer A. Real-time imaging of glutamate transients in the extracellular space of acute human brain slices using a single-wavelength glutamate fluorescence nanosensor. Sci Rep 2022; 12:3926. [PMID: 35273260 PMCID: PMC8913701 DOI: 10.1038/s41598-022-07940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate is the most important excitatory neurotransmitter in the brain. The ability to assess glutamate release and re-uptake with high spatial and temporal resolution is crucial to understand the involvement of this primary excitatory neurotransmitter in both normal brain function and different neurological disorders. Real-time imaging of glutamate transients by fluorescent nanosensors has been accomplished in rat brain slices. We performed for the first time single-wavelength glutamate nanosensor imaging in human cortical brain slices obtained from patients who underwent epilepsy surgery. The glutamate fluorescence nanosensor signals of the electrically stimulated human cortical brain slices showed steep intensity increase followed by an exponential decrease. The spatial distribution and the time course of the signal were in good agreement with the position of the stimulation electrode and the dynamics of the electrical stimulation, respectively. Pharmacological manipulation of glutamate release and reuptake was associated with corresponding changes in the glutamate fluorescence nanosensor signals. We demonstrated that the recently developed fluorescent nanosensors for glutamate allow to detect neuronal activity in acute human cortical brain slices with high spatiotemporal precision. Future application to tissue samples from different pathologies may provide new insights into pathophysiology without the limitations of an animal model.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Simon Aicher
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Sarah Schroeter
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Izabela Swierzy
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Thomas M Kinfe
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Division of Functional Neurosurgery and Stereotaxy, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| |
Collapse
|
8
|
Wang Q, Fang C, Huang X, Xue L. Research progress of the CXCR4 mechanism in Alzheimer's disease. IBRAIN 2022; 8:3-14. [PMID: 37786419 PMCID: PMC10528775 DOI: 10.1002/ibra.12026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease with complex clinical manifestations and pathogeneses such as abnormal deposition of beta-amyloid protein and inflammation caused by the excessive activation of microglia. CXC motif chemokine receptor type 4 (CXCR4) is a type of G protein-coupled receptor that binds to CXC motif ligand 12 (CXCL12) to activate downstream signaling pathways, such as the Janus kinase/signal transducer and activator of transcription and the renin-angiotensin system (Ras)/RAF proto-oncogene serine (Raf)/mitogen-activated protein kinase/extracellular-regulated protein kinase; most of these signaling pathways are involved in inflammatory responses. CXCR4 is highly expressed in the microglia and astrocytes; this might be one of the important causes of inflammation caused by microglia and astrocytes. In this review, we summarize the mechanism and therapeutics of AD, the structures of CXCR4 and the CXCL12 ligand, and the mechanisms of CXCR4/CXCL12 that are involved in the occurrence and development of AD. The possible treatment of AD through microglia and astrocytes is also discussed, with the aim of providing a new method for the treatment of AD.
Collapse
Affiliation(s)
- Qiu‐Lin Wang
- Department of Clinical MedicineChongqing Medical UniversityChongqingChina
| | - Chang‐Le Fang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Xue‐Yan Huang
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of Biotherapy of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Hao Y, Plested AJ. Seeing glutamate at central synapses. J Neurosci Methods 2022; 375:109531. [DOI: 10.1016/j.jneumeth.2022.109531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
10
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Noriega-Prieto JA, Araque A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem Res 2021; 46:2580-2585. [PMID: 33837868 PMCID: PMC10159683 DOI: 10.1007/s11064-021-03317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Astrocytes are recognized as more important cells than historically thought in synaptic function through the reciprocal exchange of signaling with the neuronal synaptic elements. The idea that astrocytes are active elements in synaptic physiology is conceptualized in the Tripartite Synapse concept. This review article presents and discusses recent representative examples that highlight the heterogeneity of signaling in tripartite synapse function and its consequences on neural network function and animal behavior.
Collapse
Affiliation(s)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Mruga D, Soldatkin O, Paliienko K, Topcheva A, Krisanova N, Kucherenko D, Borisova T, Dzyadevych S, Soldatkin A. Optimization of the Design and Operating Conditions of an Amperometric Biosensor for Glutamate Concentration Measurements in the Blood Plasma. ELECTROANAL 2021. [DOI: 10.1002/elan.202060449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- D. Mruga
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - O. Soldatkin
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - K. Paliienko
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - A. Topcheva
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - N. Krisanova
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - D. Kucherenko
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - T. Borisova
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - S. Dzyadevych
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - A. Soldatkin
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| |
Collapse
|
13
|
Parker PD, Suryavanshi P, Melone M, Sawant-Pokam PA, Reinhart KM, Kaufmann D, Theriot JJ, Pugliese A, Conti F, Shuttleworth CW, Pietrobon D, Brennan KC. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 2021; 109:611-628.e8. [PMID: 33321071 PMCID: PMC7889497 DOI: 10.1016/j.neuron.2020.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy
| | - Punam A Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Katelyn M Reinhart
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Dan Kaufmann
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Jeremy J Theriot
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, 35131 Padova, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| |
Collapse
|
14
|
Montes de Oca Balderas P, Matus Núñez M, Picones A, Hernández-Cruz A. NMDAR in cultured astrocytes: Flux-independent pH sensor and flux-dependent regulator of mitochondria and plasma membrane-mitochondria bridging. FASEB J 2020; 34:16622-16644. [PMID: 33131132 DOI: 10.1096/fj.202001300r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, México City, México.,Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Mauricio Matus Núñez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
15
|
Manninen T, Saudargiene A, Linne ML. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Comput Biol 2020; 16:e1008360. [PMID: 33170856 PMCID: PMC7654831 DOI: 10.1371/journal.pcbi.1008360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes have been shown to modulate synaptic transmission and plasticity in specific cortical synapses, but our understanding of the underlying molecular and cellular mechanisms remains limited. Here we present a new biophysicochemical model of a somatosensory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-dependent long-term depression (t-LTD) in vivo. By applying the synapse model and electrophysiological data recorded from rodent somatosensory cortex, we show that a signal from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signaling, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling, induces t-LTD which is sensitive to the temporal difference between post- and presynaptic firing. We predict for the first time the dynamics of astrocyte-mediated molecular mechanisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynaptic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sensory processing with slow non-neuronal processing to modulate synaptic properties in the brain. Our results suggest that astrocytes play a critical role in synaptic computation during postnatal development and are of paramount importance in guiding the development of brain circuit functions, learning and memory.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
16
|
Ma C, Kuzma ML, Bai X, Yang J. Biomaterial-Based Metabolic Regulation in Regenerative Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900819. [PMID: 31592416 PMCID: PMC6774061 DOI: 10.1002/advs.201900819] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Indexed: 05/22/2023]
Abstract
Recent advances in cell metabolism studies have deepened the appreciation of the role of metabolic regulation in influencing cell behavior during differentiation, angiogenesis, and immune response in the regenerative engineering scenarios. However, the understanding of whether the intracellular metabolic pathways could be influenced by material-derived cues remains limited, although it is now well appreciated that material cues modulate cell functions. Here, an overview of how the regulation of different aspect of cell metabolism, including energy homeostasis, oxygen homeostasis, and redox homeostasis could contribute to modulation of cell function is provided. Furthermore, recent evidence demonstrating how material cues, including the release of inherent metabolic factors (e.g., ions, regulatory metabolites, and oxygen), tuning of the biochemical cues (e.g., inherent antioxidant properties, cell adhesivity, and chemical composition of nanomaterials), and changing in biophysical cues (topography and surface stiffness), may impact cell metabolism toward modulated cell behavior are discussed. Based on the resurgence of interest in cell metabolism and metabolic regulation, further development of biomaterials enabling metabolic regulation toward dictating cell function is poised to have substantial implications for regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Michelle L. Kuzma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiaochun Bai
- Academy of OrthopedicsGuangdong ProvinceProvincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510280China
- Department of Cell BiologyKey Laboratory of Mental Health of the Ministry of EducationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
17
|
High-resolution detection of ATP release from single cultured mouse dorsal horn spinal cord glial cells and its modulation by noradrenaline. Purinergic Signal 2019; 15:403-420. [PMID: 31444738 DOI: 10.1007/s11302-019-09673-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022] Open
Abstract
Human embryonic kidney 293 (HEK293) cells stably transfected with the rat P2X2 receptor subunit were preincubated with 200 nM progesterone (HEK293-P2X2-PROG), a potent positive allosteric modulator of homomeric P2X2 receptors, and used to detect low nanomolar concentrations of extracellular ATP. Fura-2-loaded HEK293-P2X2-PROG cells were acutely plated on top of cultured DH glial cells to quantify ATP release from single DH glial cells. Application of the α1 adrenoceptor agonist phenylephrine (PHE, 20 μM) or of a low K+ (0.2 mM) solution evoked reversible increases in the intracellular calcium concentration ([Ca2+]i) in the biosensor cells. A reversible increase in [Ca2+]i was also detected in half of the biosensor cells following the interruption of general extracellular perfusion. All increases in [Ca2+]i were blocked in the presence of the P2X2 antagonist PPADS or after preloading the glial cells with the calcium chelator BAPTA, indicating that they were due to calcium-dependent ATP release from the glial cells. ATP release induced by PHE was blocked by -L-phenylalanine 2-naphtylamide (GPN) that permeabilizes secretory lysosomes and bafilomycin A1 (Baf A1), an inhibitor of the H+-pump of acidic secretory vesicles. By contrast, ATP release induced by application of a low-K+ solution was abolished by Baf A1 but not by GPN. Finally, spontaneous ATP release observed after interrupting general perfusion was insensitive to both GPN and Baf A1 pretreatment. Our results indicate that ATP is released in a calcium-dependent manner from two distinct vesicular pools and one non-vesicular pool coexisting in DH glial cells and that noradrenaline and PHE selectively target the secretory lysosome pool.
Collapse
|
18
|
Abstract
Background: Previous papers have developed a statistical mechanics of neocortical interactions (SMNI) fit to short-term memory and EEG data. Adaptive Simulated Annealing (ASA) has been developed to perform fits to such nonlinear stochastic systems. An N-dimensional path-integral algorithm for quantum systems, qPATHINT, has been developed from classical PATHINT. Both fold short-time propagators (distributions or wave functions) over long times. Previous papers applied qPATHINT to two systems, in neocortical interactions and financial options. Objective: In this paper the quantum path-integral for Calcium ions is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. Using fits of this SMNI model to EEG data, including these effects, will help determine if this is a reasonable approach. Method: Methods of mathematical-physics for optimization and for path integrals in classical and quantum spaces are used for this project. Studies using supercomputer resources tested various dimensions for their scaling limits. In this paper the quantum path-integral is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. Results: The mathematical-physics and computer parts of the study are successful, in that there is modest improvement of cost/objective functions used to fit EEG data using these models. Conclusions: This project points to directions for more detailed calculations using more EEG data and qPATHINT at each time slice to propagate quantum calcium waves, synchronized with PATHINT propagation of classical SMNI.
Collapse
|
19
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
20
|
|
21
|
Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol 2017; 39:259-271. [PMID: 29290065 DOI: 10.1007/s10792-017-0795-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. METHODS A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. RESULTS Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. CONCLUSIONS The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma, ischemia and impact of metabolic toxins, which triggers an inflammatory process and secondary degeneration in the ONH.
Collapse
Affiliation(s)
- Karine Evangelho
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de medicina, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia
| | - Maria Mogilevskaya
- Grupo de Investigación en Ingeniería Clínica - Hospital Universitario la Samaritana GINIC-HUS, Sede Bogotá, ECCI, Bogotá, Colombia
| | - Monica Losada-Barragan
- Grupo de Biología Celular y Funcional e Ingeniería de Biomoléculas, Facultad de Ciencias, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia
| | - Jeinny Karina Vargas-Sanchez
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de medicina, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
22
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Liu M, Zhu Q, Wu J, Yu X, Hu M, Xie X, Yang Z, Yang J, Feng YQ, Yue J. Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway. Toxicology 2017; 381:31-38. [DOI: 10.1016/j.tox.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 12/27/2022]
|
24
|
Shtrahman E, Maruyama D, Olariu E, Fink C, Zochowski M. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion. Phys Biol 2017; 14:016001. [PMID: 28004641 PMCID: PMC5333993 DOI: 10.1088/1478-3975/aa5565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
Collapse
Affiliation(s)
- E. Shtrahman
- Applied Physics Program, University of Michigan – Ann Arbor 48109, USA
| | - D. Maruyama
- Department of Physics, University of Michigan - Ann Arbor 48109, USA
| | - E. Olariu
- Department of Physics, University of Michigan - Ann Arbor 48109, USA
| | - C.G. Fink
- Department of Physics, Ohio Wesleyan University -- Delaware 43015, USA
- Neuroscience Program, Ohio Wesleyan University -- Delaware 43015, USA
| | - M. Zochowski
- Department of Physics, University of Michigan - Ann Arbor 48109, USA
- Biophysics Program, University of Michigan - Ann Arbor 48109, USA
| |
Collapse
|
25
|
Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ. Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep 2017; 7:39610. [PMID: 28045032 PMCID: PMC5206744 DOI: 10.1038/srep39610] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 01/13/2023] Open
Abstract
While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Bruce Maki
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | | | - Sophie Belin
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Gabriela K. Popescu
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
| | - Susan Z. Hua
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
26
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Jeanson T, Duchêne A, Richard D, Bourgoin S, Picoli C, Ezan P, Mouthon F, Giaume C, Hamon M, Charvériat M. Potentiation of Amitriptyline Anti-Hyperalgesic-Like Action By Astroglial Connexin 43 Inhibition in Neuropathic Rats. Sci Rep 2016; 6:38766. [PMID: 27941941 PMCID: PMC5150232 DOI: 10.1038/srep38766] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
Antidepressants, prescribed as first line treatment of neuropathic pain, have a limited efficacy and poorly tolerated side effects. Because recent studies pointed out the implication of astroglial connexins (Cx) in both neuropathic pain and antidepressive treatment, we investigated whether their blockade by mefloquine could modulate the action of the tricyclic antidepressant amitriptyline. Using primary cultures, we found that both mefloquine and amitriptyline inhibited Cx43-containing gap junctions, and that the drug combination acted synergically. We then investigated whether mefloquine could enhance amitriptyline efficacy in a preclinical model of neuropathic pain. Sprague-Dawley rats that underwent chronic unilateral constriction injury (CCI) to the sciatic nerve (SN) were treated with either amitriptyline, mefloquine or the combination of both drugs. Whereas acute treatments were ineffective, chronic administration of amitriptyline reduced CCI-SN-induced hyperalgesia-like behavior, and this effect was markedly enhanced by co-administration of mefloquine, which was inactive on its own. No pharmacokinetic interactions between both drugs were observed and CCI-SN-induced neuroinflammatory and glial activation markers remained unaffected by these treatments in dorsal root ganglia and spinal cord. Mechanisms downstream of CCI-SN-induced neuroinflammation and glial activation might therefore be targeted. Connexin inhibition in astroglia could represent a promising approach towards improving neuropathic pain therapy by antidepressants.
Collapse
Affiliation(s)
- Tiffany Jeanson
- Theranexus, Lyon, France.,CIRB, Collège de France, Paris, France
| | | | - Damien Richard
- CHU Clermont-Ferrand, Service de Pharmacologie Médicale, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Statistical mechanics of neocortical interactions: Large-scale EEG influences on molecular processes. J Theor Biol 2016; 395:144-152. [PMID: 26874226 DOI: 10.1016/j.jtbi.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
Calculations further support the premise that large-scale synchronous firings of neurons may affect molecular processes. The context is scalp electroencephalography (EEG) during short-term memory (STM) tasks. The mechanism considered is Π=p+qA (SI units) coupling, where p is the momenta of free Ca(2+) waves, q the charge of Ca(2+) in units of the electron charge, and A the magnetic vector potential of current I from neuronal minicolumnar firings considered as wires, giving rise to EEG. Data has processed using multiple graphs to identify sections of data to which spline-Laplacian transformations are applied, to fit the statistical mechanics of neocortical interactions (SMNI) model to EEG data, sensitive to synaptic interactions subject to modification by Ca(2+) waves.
Collapse
|
29
|
Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast 2016; 2016:7607924. [PMID: 27195153 PMCID: PMC4852535 DOI: 10.1155/2016/7607924] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023] Open
Abstract
Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.
Collapse
|
30
|
Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochem Res 2016; 42:19-34. [PMID: 26915104 DOI: 10.1007/s11064-016-1848-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.
Collapse
|
31
|
Verkhratsky A, Steardo L, Peng L, Parpura V. Astroglia, Glutamatergic Transmission and Psychiatric Diseases. ADVANCES IN NEUROBIOLOGY 2016; 13:307-326. [PMID: 27885635 DOI: 10.1007/978-3-319-45096-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Astrocytes are primary homeostatic cells of the central nervous system. They regulate glutamatergic transmission through the removal of glutamate from the extracellular space and by supplying neurons with glutamine. Glutamatergic transmission is generally believed to be significantly impaired in the contexts of all major neuropsychiatric diseases. In most of these neuropsychiatric diseases, astrocytes show signs of degeneration and atrophy, which is likely to be translated into reduced homeostatic capabilities. Astroglial glutamate uptake/release and glutamate homeostasis are affected in all forms of major psychiatric disorders and represent a common mechanism underlying neurotransmission disbalance, aberrant connectome and overall failure on information processing by neuronal networks, which underlie pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Luca Steardo
- Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, 35294, USA
| |
Collapse
|
32
|
Hedgehog Signaling Modulates the Release of Gliotransmitters from Cultured Cerebellar Astrocytes. Neurochem Res 2015; 41:278-89. [PMID: 26694649 DOI: 10.1007/s11064-015-1791-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family, plays essential roles in the development of the central nervous system. Recent studies suggest that the Hh signaling pathway also functions in mature astrocytes under physiological conditions. We first examined the expression of genes encoding Hh signaling molecules in the adult mouse cerebellum by in situ hybridization histochemistry. mRNA for Patched homolog 1 (Ptch1), a receptor for Hh family members, was expressed in S100β-positive astrocytes and Shh mRNA was expressed in HuC/D-positive neurons, implying that the Hh signaling pathway contributes to neuro-glial interactions. To test this hypothesis, we next examined the effects of recombinant SHH N-terminal protein (rSHH-N) on the functions of cultured cerebellar astrocytes. rSHH-N up-regulated Hh signal target genes such as Ptch1 and Gli-1, a key transcription factor of the Hh signaling pathway. Although activation of Hh signaling by rSHH-N or purmorphamine influenced neither glutamate uptake nor gliotransmitters release, inhibition of the Hh signaling pathway by cyclopamine, neutralizing antibody against SHH or intracellular Ca(2+) chelation decreased glutamate and ATP release from cultured cerebellar astrocytes. On the other hand, cyclopamine, neutralizing antibody against SHH or Ca(2+) chelator hardly affected D-serine secretion. Various kinase inhibitors attenuated glutamate and ATP release, while only U0126 reduced D-serine secretion from the astrocytes. These results suggested that the Hh signaling pathway sustains the release of glutamate and ATP and participates in neuro-glial interactions in the adult mouse brain. We also propose that signaling pathways distinct from the Hh pathway govern D-serine secretion from adult cerebellar astrocytes.
Collapse
|
33
|
Park S, Ahuja M, Kim MS, Brailoiu GC, Jha A, Zeng M, Baydyuk M, Wu LG, Wassif CA, Porter FD, Zerfas PM, Eckhaus MA, Brailoiu E, Shin DM, Muallem S. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 2015; 17:266-78. [PMID: 26682800 DOI: 10.15252/embr.201541542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Collapse
Affiliation(s)
- Soonhong Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Korea
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Mei Zeng
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Maryna Baydyuk
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christopher A Wassif
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| |
Collapse
|
34
|
Majeed ZR, Ritter K, Robinson J, Blümich SLE, Brailoiu E, Cooper RL. New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:52-61. [PMID: 26232582 DOI: 10.1016/j.cbpc.2015.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The commonly used mood altering drug fluoxetine (Prozac) in humans has a low occurrence in reports of harmful effects from overdose; however, individuals with altered metabolism of the drug and accidental overdose have led to critical conditions and even death. We addressed direct actions of high concentrations on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine's action as a selective 5-HT reuptake inhibitor. There appears to be action in blocking action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events in the presynaptic terminals at NMJs of both Drosophila and crayfish. In rodent neurons, cytoplasmic Ca(2+) rises by fluoxetine and is thapsigargin dependent. The Drosophila larval heart showed a dose dependent effect in cardiac arrest. Acute paralytic behavior in crayfish occurred at a systemic concentration of 2mM. A high percentage of death as well as slowed development occurred in Drosophila larvae consuming food containing 100μM fluoxetine. The release of Ca(2+) from the endoplasmic reticulum in neurons and the cardiac tissue as well as blockage of voltage-gated Na(+) channels in neurons could explain the effects on the whole animal as well as the isolated tissues. The use of various animal models in demonstrating the potential mechanisms for the toxic effects with high doses of fluoxetine maybe beneficial for acute treatments in humans. Future studies in determining how fluoxetine is internalized in cells and if there are subtle effects of these mentioned mechanisms presented with chronic therapeutic doses are of general interest.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Department of Biology, University of Salahaddin, Erbil, Iraq
| | - Kyle Ritter
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Centre College, Danville, KY, USA
| | - Jonathan Robinson
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Morehead State University, Morehead, KY, USA
| | - Sandra L E Blümich
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; V.M.F., University of Leipzig, Leipzig, Germany
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA.
| |
Collapse
|
35
|
Vardjan N, Parpura V, Zorec R. Loose excitation-secretion coupling in astrocytes. Glia 2015; 64:655-67. [PMID: 26358496 DOI: 10.1002/glia.22920] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Tanaka K, Shoji A, Sugawara M. An enzyme-entrapped agarose gel for visualization of ischemia-induced L-glutamate fluxes in hippocampal slices in a flow system. ANAL SCI 2015; 31:321-5. [PMID: 25864676 DOI: 10.2116/analsci.31.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An agarose gel slip containing L-glutamate oxidase (GluOx), horseradish peroxidase (HRP) and a dye DA-64 is proposed as a tool for visualizing ischemia-induced L-glutamate release in hippocampal slices in a flow system. The agarose slip with a detection limit of 6.0 ± 0.8 μmol L(-1) for L-glutamate enabled us to visualize L-glutamate fluxes in a flow system. The leak of a dye from the agarose gel was negligible and a diffusion blur due to spreading of Bindshedler's Green (BG) within the gel was suppressed. Monitoring the time-dependent change of ischemia-induced L-glutamate fluxes at neuronal regions CA1, DG and CA3 of hippocampal slices is demonstrated.
Collapse
Affiliation(s)
- Kazuhisa Tanaka
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | | | | |
Collapse
|
37
|
Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci Rep 2015; 5:7847. [PMID: 25597401 PMCID: PMC4297955 DOI: 10.1038/srep07847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing.
Collapse
|
38
|
Liu C, Cui G, Zhu M, Kang X, Guo H. Neuroinflammation in Alzheimer's disease: chemokines produced by astrocytes and chemokine receptors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8342-8355. [PMID: 25674199 PMCID: PMC4314046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer's disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer's disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in Alzheimer's disease, and the role of chemokine/chemokine receptors in the occurrence and development of Alzheimer's disease. Clarification of the involvement of chemokines and their receptors, such as MCP-1/CCR2, fractalkine/CX3CR1, SDF-1α/CXCR4, MIP-1α/CCR5, IP-10/CXCR3, IL-8/CXCR1, CXCR2, and RANTES/CCR1, CCR3, CCR5, will provide a new strategy and more specific targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Chang Liu
- School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Guohong Cui
- Department of Neurology, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Meiping Zhu
- Department of Gastroenterology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xiangping Kang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
39
|
Abstract
The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.
Collapse
|
40
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
41
|
Hamadi A, Giannone G, Takeda K, Rondé P. Glutamate involvement in calcium-dependent migration of astrocytoma cells. Cancer Cell Int 2014; 14:42. [PMID: 24860258 PMCID: PMC4032497 DOI: 10.1186/1475-2867-14-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/30/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-β1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)]i). Finally we found that compounds known to increase [Ca(2+)]i in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy.
Collapse
Affiliation(s)
- Abdelkader Hamadi
- Laboratoire de Biophotonique et Pharmacologie, CNRS, UMR 7213, Université de Strasbourg, Illkirch 67401, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience and UMR CNRS 5297, University of Bordeaux, Bordeaux 33000, France
| | - Kenneth Takeda
- Laboratoire de Biophotonique et Pharmacologie, CNRS, UMR 7213, Université de Strasbourg, Illkirch 67401, France
| | - Philippe Rondé
- Laboratoire de Biophotonique et Pharmacologie, CNRS, UMR 7213, Université de Strasbourg, Illkirch 67401, France
| |
Collapse
|
42
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
43
|
Wang T, Kumada T, Morishima T, Iwata S, Kaneko T, Yanagawa Y, Yoshida S, Fukuda A. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria. Cereb Cortex 2014; 24:1088-101. [PMID: 23246779 PMCID: PMC3948493 DOI: 10.1093/cercor/bhs375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatsuro Kumada
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Toshitaka Morishima
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satomi Iwata
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan and
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
44
|
Di Penta A, Chiba A, Alloza I, Wyssenbach A, Yamamura T, Villoslada P, Miyake S, Vandenbroeck K. A trifluoromethyl analogue of celecoxib exerts beneficial effects in neuroinflammation. PLoS One 2013; 8:e83119. [PMID: 24349442 PMCID: PMC3859644 DOI: 10.1371/journal.pone.0083119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX2) inhibitor. We have previously shown that celecoxib inhibits experimental autoimmune encephalomyelitis (EAE) in COX-2-deficient mice, suggestive for a mode of action involving COX2-independent pathways. In the present study, we tested the effect of a trifluoromethyl analogue of celecoxib (TFM-C) with 205-fold lower COX-2 inhibitory activity in two models of neuroinflammation, i.e. cerebellar organotypic cultures challenged with LPS and the EAE mouse model for multiple sclerosis. TFM-C inhibited secretion of IL-1β, IL-12 and IL-17, enhanced that of TNF-α and RANTES, reduced neuronal axonal damage and protected from oxidative stress in the organotypic model. TFM-C blocked TNF-α release in microglial cells through a process involving intracellular retention, but induced TNF-α secretion in primary astrocyte cultures. Finally, we demonstrate that TFM-C and celecoxib ameliorated EAE with equal potency. This coincided with reduced secretion of IL-17 and IFN-γ by MOG-reactive T-cells and of IL-23 and inflammatory cytokines by bone marrow-derived dendritic cells. Our study reveals that non-coxib analogues of celecoxib may have translational value in the treatment of neuro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Di Penta
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Asako Chiba
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Iraide Alloza
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ane Wyssenbach
- Neurotek Laboratory, University of Basque Country (UPV/EHU), Zamudio, Spain
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Pablo Villoslada
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS) – Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koen Vandenbroeck
- Neurogenomiks Laboratory, University of Basque Country (UPV/ EHU), Zamudio, Spain
- Achucarro Basque Center for Neuroscience, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
45
|
Lee W, Reyes RC, Gottipati MK, Lewis K, Lesort M, Parpura V, Gray M. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington's disease mouse model. Neurobiol Dis 2013; 58:192-9. [PMID: 23756199 DOI: 10.1016/j.nbd.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) causes preferential loss of a subset of neurons in the brain although the huntingtin protein is expressed broadly in various neural cell types, including astrocytes. Glutamate-mediated excitotoxicity is thought to cause selective neuronal injury, and brain astrocytes have a central role in regulating extracellular glutamate. To determine whether full-length mutant huntingtin expression causes a cell-autonomous phenotype and perturbs astrocyte gliotransmitter release, we studied cultured cortical astrocytes from BACHD mice. Here, we report augmented glutamate release through Ca(2+)-dependent exocytosis from BACHD astrocytes. Although such release is usually dependent on cytosolic Ca(2+) levels, surprisingly, we found that BACHD astrocytes displayed Ca(2+) dynamics comparable to those in wild type astrocytes. These results point to a possible involvement of other factors in regulating Ca(2+)-dependent/vesicular release of glutamate from astrocytes. We found a biochemical footprint that would lead to increased availability of cytosolic glutamate in BACHD astrocytes: i) augmented de novo glutamate synthesis due to an increase in the level of the astrocyte specific mitochondrial enzyme pyruvate carboxylase; and ii) unaltered conversion of glutamate to glutamine, as there were no changes in the expression level of the astrocyte specific enzyme glutamine synthetase. This work identifies a new mechanism in astrocytes that could lead to increased levels of extracellular glutamate in HD and thus may contribute to excitotoxicity in this devastating disease.
Collapse
Affiliation(s)
- William Lee
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 2013; 10:162-70. [PMID: 23314171 PMCID: PMC4469972 DOI: 10.1038/nmeth.2333] [Citation(s) in RCA: 693] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 12/11/2012] [Indexed: 11/08/2022]
Abstract
We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.
Collapse
|
47
|
Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 2012; 151:25-40. [PMID: 23021213 DOI: 10.1016/j.cell.2012.09.005] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/18/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
Astrocytes release glutamate upon activation of various GPCRs to exert important roles in synaptic functions. However, the molecular mechanism of release has been controversial. Here, we report two kinetically distinct modes of nonvesicular, channel-mediated glutamate release. The fast mode requires activation of G(αi), dissociation of G(βγ), and subsequent opening of glutamate-permeable, two-pore domain potassium channel TREK-1 through direct interaction between G(βγ) and N terminus of TREK-1. The slow mode is Ca(2+) dependent and requires G(αq) activation and opening of glutamate-permeable, Ca(2+)-activated anion channel Best1. Ultrastructural analyses demonstrate that TREK-1 is preferentially localized at cell body and processes, whereas Best1 is mostly found in microdomains of astrocytes near synapses. Diffusion modeling predicts that the fast mode can target neuronal mGluR with peak glutamate concentration of 100 μM, whereas slow mode targets neuronal NMDA receptors at around 1 μM. Our results reveal two distinct sources of astrocytic glutamate that can differentially influence neighboring neurons.
Collapse
Affiliation(s)
- Dong Ho Woo
- Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
49
|
Parpura V, Verkhratsky A. The astrocyte excitability brief: From receptors to gliotransmission. Neurochem Int 2012; 61:610-21. [DOI: 10.1016/j.neuint.2011.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/14/2011] [Accepted: 12/01/2011] [Indexed: 01/23/2023]
|
50
|
Coulter DA, Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 2012; 60:1215-26. [PMID: 22592998 PMCID: PMC3375386 DOI: 10.1002/glia.22341] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/16/2012] [Indexed: 12/18/2022]
Abstract
Astrocytes play a critical role in regulation of extracellular neurotransmitter levels in the central nervous system. This function is particularly prominent for the excitatory amino acid glutamate, with estimates that 80-90% of extracellular glutamate uptake in brain is through astrocytic glutamate transporters. This uptake has significance both in regulation of the potential toxic accumulation of extracellular glutamate and in normal resupply of inhibitory and excitatory synapses with neurotransmitter. This resupply of neurotransmitter is accomplished by astroglial uptake of glutamate, transformation of glutamate to glutamine by the astrocytic enzyme glutamine synthetase (GS), and shuttling of glutamine back to excitatory and inhibitory neurons via specialized transporters. Once in neurons, glutamine is enzymatically converted back to glutamate, which is utilized for synaptic transmission, either directly, or following decarboxylation to γ-aminobutyric acid. Many neurologic and psychiatric conditions, particularly epilepsy, are accompanied by the development of reactive gliosis, a pathology characterized by anatomical and biochemical plasticity in astrocytes, accompanied by proliferation of these cells. Among the biochemical changes evident in reactive astrocytes is a downregulation of several of the important regulators of the glutamine-glutamate cycle, including GS, and possibly also glutamate transporters. This downregulation may have significance in contributing both to the aberrant excitability and to the altered neuropathology characterizing epilepsy. In the present review, we provide an overview of the normal function of astrocytes in regulating extracellular glutamate homeostasis, neurotransmitter supply, and excitotoxicity. We further discuss the potential role reactive gliosis may play in the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Douglas A Coulter
- Departments of Pediatrics and Neuroscience, University of Pennsylvania School of Medicine and the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tore Eid
- Departments of Laboratory Medicine and Neurosurgery, Yale University School of Medicine and the Clinical Chemistry Laboratory, Yale-New Haven Hospital, New Haven, Connecticut
| |
Collapse
|