1
|
Wang J, Zhang L, Cavallini M, Pahlevan A, Sun J, Morshedian A, Fain GL, Sampath AP, Peng YR. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat Commun 2024; 15:10761. [PMID: 39737973 PMCID: PMC11685597 DOI: 10.1038/s41467-024-55019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species. The conservation of cell types indicates their emergence early in vertebrate evolution, highlighting primordial designs of retinal circuits for the rod pathway, ON-OFF discrimination, and direction selectivity. The diversification of amacrine and some ganglion cell types appears, however, to be distinct in the lamprey. We further infer genetic regulators in specifying retinal cell classes and identify ancestral regulatory elements across species, noting decreased conservation in specifying amacrine cells. Altogether, our characterization of the lamprey retina illuminates the evolutionary origin of visual processing in the retina.
Collapse
Affiliation(s)
- Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ali Pahlevan
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Junwei Sun
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Pang JJ, Jiang X, Wu SM. Linear and Nonlinear Behaviors of the Photoreceptor Coupled Network. J Neurosci 2024; 44:e1433232024. [PMID: 38423760 PMCID: PMC11026348 DOI: 10.1523/jneurosci.1433-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Photoreceptors are electrically coupled to one another, and the spatiotemporal properties of electrical synapses in a two-dimensional retinal network are still not well studied, because of the limitation of the single electrode or pair recording techniques which do not allow simultaneously measuring responses of multiple photoreceptors at various locations in the retina. A multiple electrode recording system is needed. In this study, we investigate the network properties of the two-dimensional rod coupled array of the salamander retina (both sexes were used) by using the newly available multiple patch electrode system that allows simultaneous recordings from up to eight cells and to determine the electrical connectivity among multiple rods. We found direct evidence that voltage signal spread in the rod-rod coupling network in the absence of I h (mediated by HCN channels) is passive and follows the linear cable equation. Under physiological conditions, I h shapes the network signal by progressively shortening the response time-to-peak of distant rods, compensating the time loss of signal traveling from distant rods to bipolar cell somas and facilitating synchronization of rod output signals. Under voltage-clamp conditions, current flow within the coupled rods follows Ohm's law, supporting the idea that nonlinear behaviors of the rod network are dependent on membrane voltage. Rod-rod coupling is largely symmetrical in the 2D array, and voltage-clamp blocking the next neighboring rod largely suppresses rod signal spread into the second neighboring rod, suggesting that indirect coupling pathways play a minor role in rod-rod coupling.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaolong Jiang
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Samuel M Wu
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
3
|
Hsiang JC, Shen N, Soto F, Kerschensteiner D. Distributed feature representations of natural stimuli across parallel retinal pathways. Nat Commun 2024; 15:1920. [PMID: 38429280 PMCID: PMC10907388 DOI: 10.1038/s41467-024-46348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.
Collapse
Affiliation(s)
- Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Kim YJ, Packer O, Pollreisz A, Martin PR, Grünert U, Dacey DM. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proc Natl Acad Sci U S A 2023; 120:e2300545120. [PMID: 37098066 PMCID: PMC10160961 DOI: 10.1073/pnas.2300545120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna1090, Austria
| | - Paul R. Martin
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
5
|
Pang JJ, Gao F, Wu SM. Light responses and amacrine cell modulation of morphologically-identified retinal ganglion cells in the mouse retina. Vision Res 2023; 205:108187. [PMID: 36758452 PMCID: PMC11349081 DOI: 10.1016/j.visres.2023.108187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs' spike responses are mediated primarily by bipolar cells inputs, and modulated by "shunting inhibition" from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic "synergistic addition", besides the abovementioned postsynaptic "shunting inhibition" in GCs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Fan Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Wen X, Liao P, Luo Y, Yang L, Yang H, Liu L, Jiang R. Tandem pore domain acid-sensitive K channel 3 (TASK-3) regulates visual sensitivity in healthy and aging retina. SCIENCE ADVANCES 2022; 8:eabn8785. [PMID: 36070380 PMCID: PMC9451158 DOI: 10.1126/sciadv.abn8785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Retinal ganglion cells (RGCs) not only collect but also integrate visual signals and send them from the retina to the brain. The mechanisms underlying the RGC integration of synaptic activity within retinal circuits have not been fully explored. Here, we identified a pronounced expression of tandem pore domain acid-sensitive potassium channel 3 (TASK-3), a two-pore domain potassium channel (K2P), in RGCs. By using a specific antagonist and TASK-3 knockout mice, we found that TASK-3 regulates the intrinsic excitability and the light sensitivity of RGCs by sensing neuronal activity-dependent extracellular acidification. In vivo, the blockade or loss of TASK-3 dampened pupillary light reflex, visual acuity, and contrast sensitivity. Furthermore, overexpressing TASK-3 specifically in RGCs using an adeno-associated virus approach restored the visual function of TASK-3 knockout mice and aged mice where the expression and function of TASK-3 were reduced. Thus, our results provide evidence that implicates a critical role of K2P in visual processing in the retina.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Longqian Liu
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Frederiksen R, Fain GL, Sampath AP. A hyperpolarizing rod bipolar cell in the sea lamprey, Petromyzon marinus. J Exp Biol 2022; 225:jeb243949. [PMID: 35319772 PMCID: PMC10658897 DOI: 10.1242/jeb.243949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Retinal bipolar cells receive direct input from rod and cone photoreceptors and send axons into the inner retina, synapsing onto amacrine and ganglion cells. Bipolar cell responses can be either depolarizing (ON) or hyperpolarizing (OFF); in lower vertebrates, bipolar cells receive mixed rod and cone input, whereas in mammals, input is mostly segregated into 14 classes of cone ON and OFF cells and a single rod ON bipolar cell. We show that lamprey, like mammals, have rod bipolar cells with little or no cone input, but these cells are OFF rather than ON. They have a characteristic morphology and a spectral sensitivity nearly indistinguishable from that of rod photoreceptors. In background light known to saturate rods, rod bipolar cells are also saturated and cannot respond to increment flashes. Our results suggest that early vertebrate progenitors of both agnathans and gnathostomes may have had a more fluid retinal organization than previously thought.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Gordon L. Fain
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Alapakkam P. Sampath
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| |
Collapse
|
8
|
Liu JK, Karamanlis D, Gollisch T. Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration. PLoS Comput Biol 2022; 18:e1009925. [PMID: 35259159 PMCID: PMC8932571 DOI: 10.1371/journal.pcbi.1009925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/18/2022] [Accepted: 02/14/2022] [Indexed: 01/05/2023] Open
Abstract
A central goal in sensory neuroscience is to understand the neuronal signal processing involved in the encoding of natural stimuli. A critical step towards this goal is the development of successful computational encoding models. For ganglion cells in the vertebrate retina, the development of satisfactory models for responses to natural visual scenes is an ongoing challenge. Standard models typically apply linear integration of visual stimuli over space, yet many ganglion cells are known to show nonlinear spatial integration, in particular when stimulated with contrast-reversing gratings. We here study the influence of spatial nonlinearities in the encoding of natural images by ganglion cells, using multielectrode-array recordings from isolated salamander and mouse retinas. We assess how responses to natural images depend on first- and second-order statistics of spatial patterns inside the receptive field. This leads us to a simple extension of current standard ganglion cell models. We show that taking not only the weighted average of light intensity inside the receptive field into account but also its variance over space can partly account for nonlinear integration and substantially improve response predictions of responses to novel images. For salamander ganglion cells, we find that response predictions for cell classes with large receptive fields profit most from including spatial contrast information. Finally, we demonstrate how this model framework can be used to assess the spatial scale of nonlinear integration. Our results underscore that nonlinear spatial stimulus integration translates to stimulation with natural images. Furthermore, the introduced model framework provides a simple, yet powerful extension of standard models and may serve as a benchmark for the development of more detailed models of the nonlinear structure of receptive fields. For understanding how sensory systems operate in the natural environment, an important goal is to develop models that capture neuronal responses to natural stimuli. For retinal ganglion cells, which connect the eye to the brain, current standard models often fail to capture responses to natural visual scenes. This shortcoming is at least partly rooted in the fact that ganglion cells may combine visual signals over space in a nonlinear fashion. We here show that a simple model, which not only considers the average light intensity inside a cell’s receptive field but also the variance of light intensity over space, can partly account for these nonlinearities and thereby improve current standard models. This provides an easy-to-obtain benchmark for modeling ganglion cell responses to natural images.
Collapse
Affiliation(s)
- Jian K. Liu
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
9
|
Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. Curr Biol 2022; 32:315-328.e4. [PMID: 34822767 PMCID: PMC8792273 DOI: 10.1016/j.cub.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.
Collapse
|
10
|
Sharpe ZJ, Shehu A, Ichinose T. Asymmetric Distributions of Achromatic Bipolar Cells in the Mouse Retina. Front Neuroanat 2022; 15:786142. [PMID: 35095431 PMCID: PMC8792968 DOI: 10.3389/fnana.2021.786142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
In the retina, evolutionary changes can be traced in the topography of photoreceptors. The shape of the visual streak depends on the height of the animal and its habitat, namely, woods, prairies, or mountains. Also, the distribution of distinct wavelength-sensitive cones is unique to each animal. For example, UV and green cones reside in the ventral and dorsal regions in the mouse retina, respectively, whereas in the rat retina these cones are homogeneously distributed. In contrast with the abundant investigation on the distribution of photoreceptors and the third-order neurons, the distribution of bipolar cells has not been well understood. We utilized two enhanced green fluorescent protein (EGFP) mouse lines, Lhx4-EGFP (Lhx4) and 6030405A18Rik-EGFP (Rik), to examine the topographic distributions of bipolar cells in the retina. First, we characterized their GFP-expressing cells using type-specific markers. We found that GFP was expressed by type 2, type 3a, and type 6 bipolar cells in the Rik mice and by type 3b, type 4, and type 5 bipolar cells in the Lhx4 mice. All these types are achromatic. Then, we examined the distributions of bipolar cells in the four cardinal directions and three different eccentricities of the retinal tissue. In the Rik mice, GFP-expressing bipolar cells were more highly observed in the nasal region than those in the temporal retina. The number of GFP cells was not different along with the ventral-dorsal axis. In contrast, in the Lhx4 mice, GFP-expressing cells occurred at a higher density in the ventral region than in the dorsal retina. However, no difference was observed along the nasal-temporal axis. Furthermore, we examined which type of bipolar cells contributed to the asymmetric distributions in the Rik mice. We found that type 3a bipolar cells occurred at a higher density in the temporal region, whereas type 6 bipolar cells were denser in the nasal region. The asymmetricity of these bipolar cells shaped the uneven distribution of the GFP cells in the Rik mice. In conclusion, we found that a subset of achromatic bipolar cells is asymmetrically distributed in the mouse retina, suggesting their unique roles in achromatic visual processing.
Collapse
|
11
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Pang JJ, Gao F, Wu SM. Dual-Cell Patch-Clamp Recording Revealed a Mechanism for a Ribbon Synapse to Process Both Digital and Analog Inputs and Outputs. Front Cell Neurosci 2021; 15:722533. [PMID: 34720878 PMCID: PMC8552968 DOI: 10.3389/fncel.2021.722533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
A chemical synapse is either an action potential (AP) synapse or a graded potential (GP) synapse but not both. This study investigated how signals passed the glutamatergic synapse between the rod photoreceptor and its postsynaptic hyperpolarizing bipolar cells (HBCs) and light responses of retinal neurons with dual-cell and single-cell patch-clamp recording techniques. The results showed that scotopic lights evoked GPs in rods, whose depolarizing Phase 3 associated with the light offset also evoked APs of a duration of 241.8 ms and a slope of 4.5 mV/ms. The depolarization speed of Phase 3 (Speed) was 0.0001–0.0111 mV/ms and 0.103–0.469 mV/ms for rods and cones, respectively. On pairs of recorded rods and HBCs, only the depolarizing limbs of square waves applied to rods evoked clear currents in HBCs which reversed at −6.1 mV, indicating cation currents. We further used stimuli that simulated the rod light response to stimulate rods and recorded the rod-evoked excitatory current (rdEPSC) in HBCs. The normalized amplitude (R/Rmax), delay, and rising slope of rdEPSCs were differentially exponentially correlated with the Speed (all p < 0.001). For the Speed < 0.1 mV/ms, R/Rmax grew while the delay and duration reduced slowly; for the Speed between 0.1 and 0.4 mV/ms, R/Rmax grew fast while the delay and duration dramatically decreased; for the Speed > 0.4 mV/ms, R/Rmax reached the plateau, while the delay and duration approached the minimum, resembling digital signals. The rdEPSC peak was left-shifted and much faster than currents in rods. The scotopic-light-offset-associated major and minor cation currents in retinal ganglion cells (RGCs), the gigantic excitatory transient currents (GTECs) in HBCs, and APs and Phase 3 in rods showed comparable light-intensity-related locations. The data demonstrate that the rod-HBC synapse is a perfect synapse that can differentially decode and code analog and digital signals to process enormously varied rod and coupled-cone inputs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Fan Gao
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Zhang AJ, Wu SM. Antagonistic surround responses in different cones are mediated by feedback synapses from different horizontal cells. Vision Res 2021; 186:13-22. [PMID: 34004350 PMCID: PMC11210320 DOI: 10.1016/j.visres.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Cone photoreceptors are the first neurons along the visual pathway that exhibit center-surround antagonistic receptive fields, the basic building blocks for spatial information processing in the visual system. The surround responses in cones are mediated by the horizontal cells (HCs) via multiple feedback synaptic mechanisms. It has been controversial on which mechanisms are responsible for the surround-elicited depolarizing responses in cones (ΔVCone(s)), and whether the surround responses of various types of cones are mediated by the same HC feedback mechanisms. In this report, we studied ΔVCone(s)) of four types of cones in the salamander retina, and found that they are mediated by feedback synapses from A-type, B-type or A- and B-type HCs. ΔVCone(s) are observable in the presence of concomitant center light spots, and surround + center light stimuli of various intensity, size and wavelength differentially activate the feedback synapses from A- and B-type HCs to cones. We found that ΔVCone(s) of the L-cones are mediated by both A- and B-type HCs, those of the P- and S-cones by B-type HCs, and those of the A-cones by the A-type HCs. Moreover, our results suggest that B-type HCs mediate ΔVCone(s) through both GABAergic and GluT-ClC feedback synaptic mechanisms, and A-type HCs mediate ΔVCone(s) via the GluT-ClC feedback mechanism. Feedback synaptic mechanisms that increase calcium influx in cone synaptic terminals play important roles in mediating the antagonistic surround responses in the postsynaptic bipolar cells, but they may not generate enough current to depolarize the cones and significantly contribute to ΔVCone(s).
Collapse
Affiliation(s)
- Ai-Jun Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
14
|
Ellis EM, Frederiksen R, Morshedian A, Fain GL, Sampath AP. Separate ON and OFF pathways in vertebrate vision first arose during the Cambrian. Curr Biol 2021; 30:R633-R634. [PMID: 32516608 DOI: 10.1016/j.cub.2020.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ellis et al. show that retinal ON and OFF bipolar cells, and the novel metabotropic glutamate receptors of ON bipolar-cell dendrites, are both present in lamprey. They conclude that the fundamental organizing principle of separate ON and OFF pathways first appeared in the vertebrate visual system over 500 million years ago in the late Cambrian.
Collapse
Affiliation(s)
- Erika M Ellis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ala Morshedian
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 2021; 109:1692-1706.e8. [PMID: 33798407 PMCID: PMC8153253 DOI: 10.1016/j.neuron.2021.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
The retina dissects the visual scene into parallel information channels, which extract specific visual features through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipolar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane potential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear integration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and natural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought: that is, at the input stage of bipolar cells. Some retinal bipolar cells represent visual contrast in a nonlinear fashion These bipolar cells also nonlinearly integrate visual signals over space The spatial nonlinearity affects the encoding of natural stimuli by bipolar cells The nonlinearity results from feedforward input, not from feedback inhibition
Collapse
|
16
|
Ishii T, Hosoya T. Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. PLoS Comput Biol 2020; 16:e1007726. [PMID: 33156853 PMCID: PMC7738174 DOI: 10.1371/journal.pcbi.1007726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/15/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Neurons in various regions of the brain generate spike bursts. While the number of spikes within a burst has been shown to carry information, information coding by interspike intervals (ISIs) is less well understood. In particular, a burst with k spikes has k−1 intraburst ISIs, and these k−1 ISIs could theoretically encode k−1 independent values. In this study, we demonstrate that such combinatorial coding occurs for retinal bursts. By recording ganglion cell spikes from isolated salamander retinae, we found that intraburst ISIs encode oscillatory light sequences that are much faster than the light intensity modulation encoded by the number of spikes. When a burst has three spikes, the two intraburst ISIs combinatorially encode the amplitude and phase of the oscillatory sequence. Analysis of trial-to-trial variability suggested that intraburst ISIs are regulated by two independent mechanisms responding to orthogonal oscillatory components, one of which is common to bursts with a different number of spikes. Therefore, the retina encodes multiple stimulus features by exploiting all degrees of freedom of burst spike patterns, i.e., the spike number and multiple intraburst ISIs. Neurons in various regions of the brain generate spike bursts. Bursts are typically composed of a few spikes generated within dozens of milliseconds, and individual bursts are separated by much longer periods of silence (~hundreds of milliseconds). Recent evidence indicates that the number of spikes in a burst, the interspike intervals (ISIs), and the overall duration of a burst, as well as the timing of burst onset, encode information. However, it remains unknown whether multiple ISIs within a single burst encode multiple input features. Here we demonstrate that such combinatorial ISI coding occurs for spike bursts in the retina. We recorded ganglion cell spikes from isolated salamander retinae stimulated with computer-generated movies. Visual response analyses indicated that multiple ISIs within a single burst combinatorially encode the phase and amplitude of oscillatory light sequences, which are different from the stimulus feature encoded by the spike number. The result demonstrates that the retina encodes multiple stimulus features by exploiting all degrees of freedom of burst spike patterns, i.e., the spike number and multiple intraburst ISIs. Because synaptic transmission in the visual system is highly sensitive to ISIs, the combinatorial ISI coding must have a major impact on visual information processing.
Collapse
Affiliation(s)
- Toshiyuki Ishii
- RIKEN Center for Brain Science and RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
- Toho University, Funabashi-shi, Chiba, Japan
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Toshihiko Hosoya
- RIKEN Center for Brain Science and RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
17
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
Hellmer CB, Bohl JM, Hall LM, Koehler CC, Ichinose T. Dopaminergic Modulation of Signal Processing in a Subset of Retinal Bipolar Cells. Front Cell Neurosci 2020; 14:253. [PMID: 32922266 PMCID: PMC7456991 DOI: 10.3389/fncel.2020.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The retina and the olfactory bulb are the gateways to the visual and olfactory systems, respectively, similarly using neural networks to initiate sensory signal processing. Sensory receptors receive signals that are transmitted to neural networks before projecting to primary cortices. These networks filter sensory signals based on their unique features and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal network for daylight conditions (“light adaptation”). In the olfactory system, dopamine mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation and discrimination. While dopamine is essential for signal discrimination in the olfactory system, it is not understood whether dopamine has similar roles in visual signal processing in the retina. To elucidate dopaminergic effects on visual processing, we conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit multiple types that can convey different temporal features of light. We recorded excitatory postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390, reversed the effects of SKF on these types of bipolar cells. To examine the mechanism of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+ channels. SKF modulated HCN and LVA currents, suggesting that these channels are the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken together, we found that dopamine modulates the temporal tuning of a subset of retinal bipolar cells. Consequently, we determined that dopamine plays a role in visual signal processing, which is similar to its role in signal decorrelation in the olfactory bulb.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
19
|
Hall LM, Hellmer CB, Koehler CC, Ichinose T. Bipolar Cell Type-Specific Expression and Conductance of Alpha-7 Nicotinic Acetylcholine Receptors in the Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:1353-1361. [PMID: 30934054 PMCID: PMC6738513 DOI: 10.1167/iovs.18-25753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Motion detection is performed by a unique neural network in the mouse retina. Starburst amacrine cells (SACs), which release acetylcholine and gamma-aminobutyric acid (GABA) into the network, are key neurons in the motion detection pathway. Although GABA contributions to the network have been extensively studied, the role of acetylcholine is minimally understood. Acetylcholine receptors are present in a subset of bipolar, amacrine, and ganglion cells. We focused on α7-nicotinic acetylcholine receptor (α7-nAChR) expression in bipolar cells, and investigated which types of bipolar cells possess α7-nAChRs. Methods Retinal slice sections were prepared from C57BL/6J and Gus8.4-GFP mice. Specific expression of α7-nAChRs in bipolar cells was examined using α-bungarotoxin (αBgTx)-conjugated Alexa dyes co-labeled with specific bipolar cell markers. Whole-cell recordings were conducted from bipolar cells in retinal slice sections. A selective α7-nAChR agonist, PNU282987, was applied by a puff and responses were recorded. Results αBgTx fluorescence was observed primarily in bipolar cell somas. We found that α7-nAChRs were expressed by the majority of type 1, 2, 4, and 7 bipolar cells. Whole-cell recordings revealed that type 2 and 7 bipolar cells depolarized by PNU application. In contrast, α7-nAChRs were not detected in most of type 3, 5, 6, and rod bipolar cells. Conclusions We found that α7-nAChRs are present in bipolar cells in a type-specific manner. Because these bipolar cells provide synaptic inputs to SACs and direction selective ganglion cells, α7-nAChRs may play a role in direction selectivity by modulating these bipolar cells' outputs.
Collapse
Affiliation(s)
- Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
20
|
Haug MF, Berger M, Gesemann M, Neuhauss SCF. Differential expression of PKCα and -β in the zebrafish retina. Histochem Cell Biol 2019; 151:521-530. [PMID: 30604284 DOI: 10.1007/s00418-018-1764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
The retina is a complex neural circuit, which processes and transmits visual information from light perceiving photoreceptors to projecting retinal ganglion cells. Much of the computational power of the retina rests on signal integrating interneurons, such as bipolar cells. Commercially available antibodies against bovine and human conventional protein kinase C (PKC) α and -β are frequently used as markers for retinal ON-bipolar cells in different species, despite the fact that it is not known which bipolar cell subtype(s) they actually label. In zebrafish (Danio rerio) five prkc genes (coding for PKC proteins) have been identified. Their expression has not been systematically determined. While prkcg is not expressed in retinal tissue, the other four prkc (prkcaa, prkcab, prkcba, prkcbb) transcripts were found in different parts of the inner nuclear layer and some as well in the retinal ganglion cell layer. Immunohistochemical analysis in adult zebrafish retina using fluorescent in situ hybridization and PKC antibodies showed an overlapping immunolabeling of ON-bipolar cells that are most likely of the BON s6 and BON s6L or RRod type. However, comparison of transcript expression with immunolabeling, implies that these antibodies are not specific for one single zebrafish conventional PKC, but rather detect a combination of PKC -α and -β variants.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Manuela Berger
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Meier A, Nelson R, Connaughton VP. Color Processing in Zebrafish Retina. Front Cell Neurosci 2018; 12:327. [PMID: 30337857 PMCID: PMC6178926 DOI: 10.3389/fncel.2018.00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a model organism for vertebrate developmental processes and, through a variety of mutant and transgenic lines, various diseases and their complications. Some of these diseases relate to proper function of the visual system. In the US, the National Eye Institute indicates >140 million people over the age of 40 have some form of visual impairment. The causes of the impairments range from refractive error to cataract, diabetic retinopathy and glaucoma, plus heritable diseases such as retinitis pigmentosa and color vision deficits. Most impairments directly affect the retina, the nervous tissue at the back of the eye. Zebrafish with long or short-wavelength color blindness, altered retinal anatomy due to hyperglycemia, high intraocular pressure, and reduced pigment epithelium are all used, and directly applicable, to study how these symptoms affect visual function. However, many published reports describe only molecular/anatomical/structural changes or behavioral deficits. Recent work in zebrafish has documented physiological responses of the different cell types to colored (spectral) light stimuli, indicating a complex level of information processing and color vision in this species. The purpose of this review article is to consolidate published morphological and physiological data from different cells to describe how zebrafish retina is capable of complex visual processing. This information is compared to findings in other vertebrates and relevance to disorders affecting color processing is discussed.
Collapse
Affiliation(s)
- April Meier
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Ralph Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Victoria P Connaughton
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
22
|
Sağlam M, Hayashida Y. A single retinal circuit model for multiple computations. BIOLOGICAL CYBERNETICS 2018; 112:427-444. [PMID: 29951908 DOI: 10.1007/s00422-018-0767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Vision is dependent on extracting intricate features of the visual information from the outside world, and complex visual computations begin to take place as soon as at the retinal level. In multiple studies on salamander retinas, the responses of a subtype of retinal ganglion cells, i.e., fast/biphasic-OFF ganglion cells, have been shown to be able to realize multiple functions, such as the segregation of a moving object from its background, motion anticipation, and rapid encoding of the spatial features of a new visual scene. For each of these visual functions, modeling approaches using extended linear-nonlinear cascade models suggest specific preceding retinal circuitries merging onto fast/biphasic-OFF ganglion cells. However, whether multiple visual functions can be accommodated together in a certain retinal circuitry and how specific mechanisms for each visual function interact with each other have not been investigated. Here, we propose a physiologically consistent, detailed computational model of the retinal circuit based on the spatiotemporal dynamics and connections of each class of retinal neurons to implement object motion sensitivity, motion anticipation, and rapid coding in the same circuit. Simulations suggest that multiple computations can be accommodated together, thereby implying that the fast/biphasic-OFF ganglion cell has potential to output a train of spikes carrying multiple pieces of information on distinct features of the visual stimuli.
Collapse
Affiliation(s)
- Murat Sağlam
- Department of Advanced Analytics, Supply Chain Wizard LLC, 34870, Istanbul, Turkey.
| | - Yuki Hayashida
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Maheswaranathan N, Kastner DB, Baccus SA, Ganguli S. Inferring hidden structure in multilayered neural circuits. PLoS Comput Biol 2018; 14:e1006291. [PMID: 30138312 PMCID: PMC6124781 DOI: 10.1371/journal.pcbi.1006291] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/05/2018] [Accepted: 06/09/2018] [Indexed: 01/26/2023] Open
Abstract
A central challenge in sensory neuroscience involves understanding how neural circuits shape computations across cascaded cell layers. Here we attempt to reconstruct the response properties of experimentally unobserved neurons in the interior of a multilayered neural circuit, using cascaded linear-nonlinear (LN-LN) models. We combine non-smooth regularization with proximal consensus algorithms to overcome difficulties in fitting such models that arise from the high dimensionality of their parameter space. We apply this framework to retinal ganglion cell processing, learning LN-LN models of retinal circuitry consisting of thousands of parameters, using 40 minutes of responses to white noise. Our models demonstrate a 53% improvement in predicting ganglion cell spikes over classical linear-nonlinear (LN) models. Internal nonlinear subunits of the model match properties of retinal bipolar cells in both receptive field structure and number. Subunits have consistently high thresholds, supressing all but a small fraction of inputs, leading to sparse activity patterns in which only one subunit drives ganglion cell spiking at any time. From the model’s parameters, we predict that the removal of visual redundancies through stimulus decorrelation across space, a central tenet of efficient coding theory, originates primarily from bipolar cell synapses. Furthermore, the composite nonlinear computation performed by retinal circuitry corresponds to a boolean OR function applied to bipolar cell feature detectors. Our methods are statistically and computationally efficient, enabling us to rapidly learn hierarchical non-linear models as well as efficiently compute widely used descriptive statistics such as the spike triggered average (STA) and covariance (STC) for high dimensional stimuli. This general computational framework may aid in extracting principles of nonlinear hierarchical sensory processing across diverse modalities from limited data. Computation in neural circuits arises from the cascaded processing of inputs through multiple cell layers. Each of these cell layers performs operations such as filtering and thresholding in order to shape a circuit’s output. It remains a challenge to describe both the computations and the mechanisms that mediate them given limited data recorded from a neural circuit. A standard approach to describing circuit computation involves building quantitative encoding models that predict the circuit response given its input, but these often fail to map in an interpretable way onto mechanisms within the circuit. In this work, we build two layer linear-nonlinear cascade models (LN-LN) in order to describe how the retinal output is shaped by nonlinear mechanisms in the inner retina. We find that these LN-LN models, fit to ganglion cell recordings alone, identify filters and nonlinearities that are readily mapped onto individual circuit components inside the retina, namely bipolar cells and the bipolar-to-ganglion cell synaptic threshold. This work demonstrates how combining simple prior knowledge of circuit properties with partial experimental recordings of a neural circuit’s output can yield interpretable models of the entire circuit computation, including parts of the circuit that are hidden or not directly observed in neural recordings.
Collapse
Affiliation(s)
- Niru Maheswaranathan
- Neurosciences Graduate Program, Stanford University, Stanford, California, United States of America
| | - David B. Kastner
- Neurosciences Graduate Program, Stanford University, Stanford, California, United States of America
| | - Stephen A. Baccus
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Retinal first-order neurons, photoreceptors, receive visual inputs and convert them to neural signals. The second-order neurons, bipolar cells then sort out the visual signals and encode them through multiple neural streams. Approximately 15 morphological types of bipolar cells have been identified, which are thought to encode different aspects of visual signals such as motion and color (Ichinose et al. J Neurosci 34(26):8761-8771, 2014; Euler et al. Nat Rev Neurosci 15(8):507-519, 2014). To investigate functional aspects of OFF bipolar cells, single cell recordings are preferred; however, bipolar cells in the mouse retina are small and hard to distinguish from other types of cells. Here, we describe our methodology and tips for immunohistochemistry and patch clamp recordings for analyzing light-evoked responses in each type of OFF bipolar cell.
Collapse
Affiliation(s)
- Chase B Hellmer
- Departments of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tomomi Ichinose
- Departments of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
25
|
Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization. Nat Commun 2017; 8:149. [PMID: 28747662 PMCID: PMC5529558 DOI: 10.1038/s41467-017-00156-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Neurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to functional subunits inside a neuron’s receptive field. The organization of these subunits provides a signature of the neuron’s presynaptic functional connectivity and determines how the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-negative matrix factorization for detecting the layout of subunits within a neuron’s receptive field. The method only requires the neuron’s spiking responses under finely structured sensory stimulation and is therefore applicable to large populations of simultaneously recorded neurons. Applied to recordings from ganglion cells in the salamander retina, the method retrieves the receptive fields of presynaptic bipolar cells, as verified by simultaneous bipolar and ganglion cell recordings. The identified subunit layouts allow improved predictions of ganglion cell responses to natural stimuli and reveal shared bipolar cell input into distinct types of ganglion cells. How a neuron integrates sensory information requires knowledge about its functional presynaptic connections. Here the authors report a new method using non-negative matrix factorization to identify the layout of presynaptic bipolar cell inputs onto retinal ganglion cells and predict their responses to natural stimuli.
Collapse
|
26
|
Schweikert LE, Fasick JI, Grace MS. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. J Comp Neurol 2016; 524:2873-85. [DOI: 10.1002/cne.23996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Lorian E. Schweikert
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| | - Jeffry I. Fasick
- Department of Biological SciencesThe University of TampaTampa Florida33606
| | - Michael S. Grace
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| |
Collapse
|
27
|
Wang J, Jacoby R, Wu SM. Physiological and morphological characterization of ganglion cells in the salamander retina. Vision Res 2016; 119:60-72. [PMID: 26731645 PMCID: PMC4774266 DOI: 10.1016/j.visres.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON-OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON-OFF RGCs. Dendritic field diameters of RGCs ranged 102-490 μm: narrow field (<200 μm, 31% of RGCs), medium field (200-300 μm, 45%) and wide field (>300 μm, 24%). Dendritic ramification patterns of RGCs agree with the sublamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON-OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification.
Collapse
Affiliation(s)
- Jing Wang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Roy Jacoby
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
28
|
Ichinose T, Hellmer CB. Differential signalling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina. J Physiol 2015; 594:883-94. [PMID: 26553530 DOI: 10.1113/jp271458] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Using whole-cell clamp methods, we characterized the temporal coding in each type of OFF bipolar cell. We found that type 2 and 3a cells are transient, type 1 and 4 cells are sustained, and type 3b cells are intermediate. The light-evoked excitatory postsynaptic potentials in some types were rectified, suggesting that they provide inputs to the non-linear ganglion cells. Visual signalling from the photoreceptors was mediated exclusively through the kainate receptors in the transient OFF bipolar cells, whereas both kainate and AMPA receptors contributed in the other cells. This study demonstrates, for the first time, that parallel visual encoding starts at the OFF bipolar cells in a type-specific manner. ABSTRACT The retina is the entrance to the visual system, which receives various kinds of image signals and forms multiple encoding pathways. The second-order retinal neurons, the bipolar cells, are thought to initiate multiple neural streams by encoding various visual signals in different types of cells. However, the functions of each bipolar cell type have not been fully understood. We investigated whether OFF bipolar cells encode visual signals in a type-dependent manner. We recorded the changes in the bipolar cell voltage in response to two input functions: step and sinusoidal light stimuli. Type 1 and 4 OFF bipolar cells were sustained cells and responded to sinusoidal stimuli over a broad range of frequencies. Type 2 and 3a cells were transient and exhibited band-pass filtering. Type 3b cells were in the middle of these two groups. The distinct temporal responses might be attributed to different types of glutamate receptors. We examined the AMPA and kainate glutamate receptor composition in each bipolar cell type. The light responses in the transient OFF bipolar cells were exclusively mediated by kainate receptors. Although the kainate receptors mediated the light responses in the sustained cells, the AMPA receptors also mediated a portion of the responses in sustained cells. Furthermore, we found that some types of cells were rectified more than other types. Taken together, we found that the OFF bipolar cells encode diverse temporal image signals in a type-dependent manner, confirming that each type of OFF bipolar cell initiates diverse temporal visual processing in parallel.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chase B Hellmer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
29
|
Hellmer CB, Zhou Y, Fyk-Kolodziej B, Hu Z, Ichinose T. Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina. Neuroscience 2015; 315:246-58. [PMID: 26704635 DOI: 10.1016/j.neuroscience.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/17/2022]
Abstract
Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features.
Collapse
Affiliation(s)
- C B Hellmer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Y Zhou
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - B Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Z Hu
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - T Ichinose
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
30
|
Purgert RJ, Lukasiewicz PD. Differential encoding of spatial information among retinal on cone bipolar cells. J Neurophysiol 2015. [PMID: 26203104 DOI: 10.1152/jn.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina.
Collapse
Affiliation(s)
- Robert J Purgert
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Sethuramanujam S, Slaughter MM. Properties of a Glutamatergic Synapse Controlling Information Output from Retinal Bipolar Cells. PLoS One 2015; 10:e0129133. [PMID: 26053500 PMCID: PMC4459976 DOI: 10.1371/journal.pone.0129133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
One general categorization of retinal ganglion cells is to segregate them into tonically or phasically responding neurons, each conveying discrete aspects of the visual scene. Although best identified in the output signals of the retina, this distinction is initiated at the first synapse: between photoreceptors and the dendrites of bipolar cells. In this study we found that the output synapses of bipolar cells also contribute to separate these pathways. Both transient and sustained ganglion cells can produce maintained spike activity, but bipolar cell glutamate release exhibits a divergence that corresponds to the response characteristics of the ganglion cells. Comparing light intensity coding in the sustained and transient ON pathways revealed that they shared the intensity spectrum. The transient pathway had greater sensitivity but smaller dynamic range, and switched from intensity coding to event detection at light levels where sustained pathway sensitivity began to rise. The distinctive properties of the sustained pathway depended upon inhibition and shifted toward those of the transient pathway in the absence of inhibition. The transient system was comparatively unaffected by the loss of inhibition and this was due to the concomitant activation of perisynaptic NMDA receptors. Overall, the properties of bipolar cell dendritic and axon terminals both contribute to the formation of key aspects of the sustained/transient dichotomy normally associated with ganglion cells.
Collapse
Affiliation(s)
- Santhosh Sethuramanujam
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| | - Malcolm M. Slaughter
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
32
|
Abstract
We discuss recent findings that uncover how the physical size of synaptic terminals contributes to the temporal filtering of retinal synapses. Sensory systems must be able to extract features of a stimulus to detect and represent properties of the world. Because sensory signals are constantly changing, a critical aspect of this transformation relates to the timing of signals and the ability to filter those signals to select dynamic properties, such as visual motion. At first assessment, one might think that the primary biophysical properties that construct a temporal filter would be dynamic mechanisms such as molecular concentration or membrane electrical properties. However, in the current issue of PLOS Biology, Baden et al. identify a mechanism of temporal filtering in the zebrafish and goldfish retina that is not dynamic but is in fact a structural building block—the physical size of a synapse itself. The authors observe that small, bipolar cell synaptic terminals are fast and highly adaptive, whereas large ones are slower and adapt less. Using a computational model, they conclude that the volume of the synaptic terminal influences the calcium concentration and the number of available vesicles. These results indicate that the size of the presynaptic terminal is an independent control for the dynamics of a synapse and may reveal aspects of synaptic function that can be inferred from anatomical structure.
Collapse
Affiliation(s)
- Bongsoo Suh
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Stephen A. Baccus
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Chin AL, Lin CY, Fu TF, Dickson BJ, Chiang AS. Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum. J Comp Neurol 2014; 522:3795-816. [PMID: 24782245 PMCID: PMC4265792 DOI: 10.1002/cne.23622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/09/2022]
Abstract
Local neurons in the vertebrate retina are instrumental in transforming visual inputs to extract contrast, motion, and color information and in shaping bipolar-to-ganglion cell transmission to the brain. In Drosophila, UV vision is represented by R7 inner photoreceptor neurons that project to the medulla M6 stratum, with relatively little known of this downstream substrate. Here, using R7 terminals as references, we generated a 3D volume model of the M6 stratum, which revealed a retinotopic map for UV representations. Using this volume model as a common 3D framework, we compiled and analyzed the spatial distributions of more than 200 single M6-specific local neurons (M6-LNs). Based on the segregation of putative dendrites and axons, these local neurons were classified into two families, directional and nondirectional. Neurotransmitter immunostaining suggested a signal routing model in which some visual information is relayed by directional M6-LNs from the anterior to the posterior M6 and all visual information is inhibited by a diverse population of nondirectional M6-LNs covering the entire M6 stratum. Our findings suggest that the Drosophila medulla M6 stratum contains diverse LNs that form repeating functional modules similar to those found in the vertebrate inner plexiform layer.
Collapse
Affiliation(s)
- An-Lun Chin
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Asari H, Meister M. The projective field of retinal bipolar cells and its modulation by visual context. Neuron 2014; 81:641-52. [PMID: 24507195 DOI: 10.1016/j.neuron.2013.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
The receptive field of a sensory neuron spells out all the receptor inputs it receives. To understand a neuron's role in the circuit, one also needs to know its projective field, namely the outputs it sends to all downstream cells. Here we present the projective fields of the primary excitatory neurons in a sensory circuit. We stimulated single bipolar cells of the salamander retina and recorded simultaneously from a population of ganglion cells. Individual bipolar cell signals diverge through polysynaptic pathways into ganglion cells of many different types and over surprisingly large distance. However, the strength and polarity of the projection depend on the cell types involved. Furthermore, visual stimulation strongly modulates the bipolar cell projective field, in opposite direction for different cell types. In this way, the context from distant parts of the visual field can control the routing of signals in the inner retina.
Collapse
Affiliation(s)
- Hiroki Asari
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Markus Meister
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Liu K, Wang Y, Yin Z, Weng C. Light-evoked currents in retinal ganglion cells from dystrophic RCS rats. Ophthalmic Res 2013; 50:141-50. [PMID: 23948861 DOI: 10.1159/000351639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. METHODS We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. RESULTS We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. CONCLUSIONS Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Kang Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | |
Collapse
|
37
|
Lu Q, Ivanova E, Ganjawala TH, Pan ZH. Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 2013; 19:1310-20. [PMID: 23805038 PMCID: PMC3692404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 06/10/2013] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Retinal bipolar cells, comprising multiple types, play an essential role in segregating visual information into multiple parallel pathways in the retina. The ability to manipulate gene expression in specific bipolar cell type(s) in the retina is important for understanding the molecular basis of their normal physiological functions and diseases/disorders. The Cre/LoxP recombination system has become an important tool for allowing gene manipulation in vivo, especially with the increasing availability of cell- and tissue-specific Cre transgenic mouse lines. Detailed in vivo examination of the Cre/LoxP recombination efficiency and the transgene expression patterns for cell- and tissue-specific Cre transgenic mouse lines is essential for evaluating their utility. In this study, we investigated the Cre-mediated recombination efficiency and transgene expression patterns of retinal bipolar cell-expressing Cre transgenic lines by crossing with a Cre reporter mouse line and through Cre-dependent recombinant adeno-associated virus (rAAV) vector-mediated transgene delivery. METHODS Three retinal bipolar cell-expressing Cre-transgenic mouse lines, 5-HTR2a-cre, Pcp2-cre, and Chx10-cre, were crossed with a strong Cre reporter mouse line that expresses a red fluorescent protein variant, tdTomato. rAAV2 vectors carrying a double-floxed inverted open-reading frame sequence encoding channelrhodopsin-2-mCherry (ChR2-mCherry) driven by a ubiquitous neuronal EF1α or a ubiquitous CMV promoter with a rAAV2 capsid mutation (Y444F) were injected into the intravitreal space of the eyes. Immunohistochemistry using retinal bipolar cell type-specific markers was performed to examine Cre-mediated recombination efficiency and the transgene expression patterns in bipolar cells in retinal whole mounts and vertical sections. RESULTS For the 5-HTR2a-cre and Pcp2-cre mouse lines, the expression pattern of the Cre-mediated recombination by crossing the reporter line largely resembled the expression pattern of Cre. The bipolar cells showing Cre-mediated recombination in the 5-HTR2a-cre line and the Pcp2-cre line were predominantly type 4 cone bipolar cells and rod bipolar cells, respectively. For the Chx10-cre mouse line, the expression pattern of the Cre-mediated recombination by crossing the reporter line was different from that of Cre. The Cre-mediated transgene expression in retinal bipolar cells in the Chx10-cre line was not observed by crossing with the reporter mouse line but through Cre-dependent rAAV vector delivery. A rAAV2 vector with the combination of a CMV promoter and the Y444F capsid mutation achieved Cre-dependent transgene expression in retinal bipolar cells. CONCLUSIONS The retinal bipolar cell-expressing Cre-transgenic lines and the Cre-dependent rAAV vector reported in this study could be valuable tools for gene targeting and manipulation in retinal bipolar cells in mice.
Collapse
|
38
|
Garvert MM, Gollisch T. Local and global contrast adaptation in retinal ganglion cells. Neuron 2013; 77:915-28. [PMID: 23473321 DOI: 10.1016/j.neuron.2012.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 11/19/2022]
Abstract
Retinal ganglion cells react to changes in visual contrast by adjusting their sensitivity and temporal filtering characteristics. This contrast adaptation has primarily been studied under spatially homogeneous stimulation. Yet, ganglion cell receptive fields are often characterized by spatial subfields, providing a substrate for nonlinear spatial processing. This raises the question whether contrast adaptation follows a similar subfield structure or whether it occurs globally over the receptive field even for local stimulation. We therefore recorded ganglion cell activity in isolated salamander retinas while locally changing visual contrast. Ganglion cells showed primarily global adaptation characteristics, with notable exceptions in certain aspects of temporal filtering. Surprisingly, some changes in filtering were most pronounced for locations where contrast did not change. This seemingly paradoxical effect can be explained by a simple computational model, which emphasizes the importance of local nonlinearities in the retina and suggests a reevaluation of previously reported local contrast adaptation.
Collapse
Affiliation(s)
- Mona M Garvert
- Visual Coding Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | |
Collapse
|
39
|
Li YN, Tsujimura T, Kawamura S, Dowling JE. Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina. J Comp Neurol 2013; 520:3786-802. [PMID: 22907678 DOI: 10.1002/cne.23168] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar cells convey luminance, spatial, and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red-(R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which-G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod, and RRod bipolar cells-accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further subdivided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the nine common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels.
Collapse
Affiliation(s)
- Yong N Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
40
|
Baden T, Berens P, Bethge M, Euler T. Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Curr Biol 2013; 23:48-52. [DOI: 10.1016/j.cub.2012.11.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/25/2012] [Accepted: 11/02/2012] [Indexed: 11/29/2022]
|
41
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
42
|
Wiechmann AF, Sherry DM. Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis. J Comp Neurol 2012; 520:1115-27. [PMID: 22020534 DOI: 10.1002/cne.22783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melatonin receptors have been identified in several retinal cell types, including photoreceptors, horizontal cells, amacrine cells, and ganglion cells. Recent reports suggest that melatonin potentiates signaling from rods to inner retinal neurons. However, the organization of the melatonin receptors mediating this action in the outer plexiform layer (OPL) is not clear. To assess melatonin receptor localization in the OPL, double-label confocal immunohistochemistry for Mel1a or Mel1b melatonin receptors was performed in combination with markers for cone photoreceptors (calbindin, XAP-1) and ON bipolar cells (guanine nucleotide binding protein alpha, Goα) on the retina of Xenopus laevis. Both Mel1a and Mel1b receptors were specifically associated with processes contacting the pedicles of cones, but localized to processes from different sets of second-order neurons. Mel1a receptors localized to the large axonal processes of horizontal cells, while Mel1b receptors localized to the dendrites of OFF bipolar cells. Both receptors also localized to third-order amacrine and ganglion cells and their processes in the inner plexiform layer. This study indicates that Mel1a and Mel1b melatonin receptors are expressed specifically in the Xenopus OPL to modulate transmission from cones to horizontal cells and OFF bipolar cells, respectively; they are second-order neurons that predominantly contact ribbon synapses and display OFF responses to light. When combined with results from recent physiological studies, the current results suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons across species, although the precise mechanisms by which melatonin enhances this transmission are likely to vary in a species-dependent manner.
Collapse
Affiliation(s)
- Allan F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
43
|
Light AC, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, Li X, Chiodo VA, Hauswirth WW, Li W, DeVries SH. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol 2012; 520:2864-87. [PMID: 22778006 DOI: 10.1002/cne.23068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In daylight vision, parallel processing starts at the cone synapse. Cone signals flow to On and Off bipolar cells, which are further divided into types according to morphology, immunocytochemistry, and function. The axons of the bipolar cell types stratify at different levels in the inner plexiform layer (IPL) and can interact with costratifying amacrine and ganglion cells. These interactions endow the ganglion cell types with unique functional properties. The wiring that underlies the interactions among bipolar, amacrine, and ganglion cells is poorly understood. It may be easier to elucidate this wiring if organizational rules can be established. We identify 13 types of cone bipolar cells in the ground squirrel, 11 of which contact contiguous cones, with the possible exception of short-wavelength-sensitive cones. Cells were identified by antibody labeling, tracer filling, and Golgi-like filling following transduction with an adeno-associated virus encoding for green fluorescent protein. The 11 bipolar cell types displayed two organizational patterns. In the first pattern, eight to 10 of the 11 types came in pairs with partially overlapping axonal stratification. Pairs shared morphological, immunocytochemical, and functional properties. The existence of similar pairs is a new motif that might have implications for how signals first diverge from a cone to bipolar cells and then reconverge onto a costratifying ganglion cell. The second pattern is a mirror symmetric organization about the middle of the IPL involving at least seven bipolar cell types. This anatomical symmetry may be associated with a functional symmetry in On and Off ganglion cell responses.
Collapse
Affiliation(s)
- Adam C Light
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asari H, Meister M. Divergence of visual channels in the inner retina. Nat Neurosci 2012; 15:1581-9. [PMID: 23086336 DOI: 10.1038/nn.3241] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022]
Abstract
Bipolar cells form parallel channels that carry visual signals from the outer to the inner retina. Each type of bipolar cell is thought to carry a distinct visual message to select types of amacrine cells and ganglion cells. However, the number of ganglion cell types exceeds that of the bipolar cells providing their input, suggesting that bipolar cell signals diversify on transmission to ganglion cells. We explored in the salamander retina how signals from individual bipolar cells feed into multiple ganglion cells and found that each bipolar cell was able to evoke distinct responses among ganglion cells, differing in kinetics, adaptation and rectification properties. This signal divergence resulted primarily from interactions with amacrine cells that allowed each bipolar cell to send distinct signals to its target ganglion cells. Our findings indicate that individual bipolar cell-ganglion cell connections have distinct transfer functions. This expands the number of visual channels in the inner retina and enhances the computational power and feature selectivity of early visual processing.
Collapse
Affiliation(s)
- Hiroki Asari
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
45
|
Pang JJ, Gao F, Wu SM. Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells. Vision Res 2012; 68:48-58. [PMID: 22842089 DOI: 10.1016/j.visres.2012.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/28/2022]
Abstract
Previous studies have suggested that photoreceptor synaptic inputs to depolarizing bipolar cells (DBCs or ON bipolar cells) are mediated by mGluR6 receptors and those to hyperpolarizing bipolar cells (HBCs or OFF bipolar cells) are mediated by AMPA/kainate receptors. Here we show that in addition to mGluR6 receptors which mediate the sign-inverting, depolarizing light responses, subpopulations of cone-dominated and rod/cone mixed DBCs use GluR4 AMPA receptors to generate a transient sign-preserving OFF response under light adapted conditions. These AMPA receptors are located at the basal junctions postsynaptic to rods and they are silent under dark-adapted conditions, as tonic glutamate release in darkness desensitizes these receptors. Light adaptation enhances rod-cone coupling and thus allows cone photocurrents with an abrupt OFF depolarization to enter the rods. The abrupt rod depolarization triggers glutamate activation of unoccupied AMPA receptors, resulting in a transient OFF response in DBCs. It has been widely accepted that the DNQX-sensitive, OFF transient responses in retinal amacrine cells and ganglion cells are mediated exclusively by HBCs. Our results suggests that this view needs revision as AMPA receptors in subpopulations of DBCs are likely to significantly contribute to the DNQX-sensitive OFF transient responses in light-adapted third- and higher-order visual neurons.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | |
Collapse
|
46
|
Bölinger D, Gollisch T. Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina. Neuron 2012; 73:333-46. [PMID: 22284187 DOI: 10.1016/j.neuron.2011.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2011] [Indexed: 11/28/2022]
Abstract
Neurons often integrate information from multiple parallel signaling streams. How a neuron combines these inputs largely determines its computational role in signal processing. Experimental assessment of neuronal signal integration, however, is often confounded by cell-intrinsic nonlinear processes that arise after signal integration has taken place. To overcome this problem and determine how ganglion cells in the salamander retina integrate visual contrast over space, we used automated online analysis of recorded spike trains and closed-loop control of the visual stimuli to identify different stimulus patterns that give the same neuronal response. These iso-response stimuli revealed a threshold-quadratic transformation as a fundamental nonlinearity within the receptive field center. Moreover, for a subset of ganglion cells, the method revealed an additional dynamic nonlinearity that renders these cells particularly sensitive to spatially homogeneous stimuli. This function is shown to arise from a local inhibition-mediated dynamic gain control mechanism.
Collapse
Affiliation(s)
- Daniel Bölinger
- Max Planck Institute of Neurobiology, Visual Coding Group, 82152 Martinsried, Germany
| | | |
Collapse
|
47
|
Kaur T, Nawy S. Characterization of Trpm1 desensitization in ON bipolar cells and its role in downstream signalling. J Physiol 2011; 590:179-92. [PMID: 22041187 DOI: 10.1113/jphysiol.2011.218974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ON bipolar cells invert the sign of light responses from hyperpolarizing to depolarizing before passing them on to ganglion cells. Light responses are generated when a cation channel, recently identified as Trpm1, opens. The amplitude of the light response rapidly decays due to desensitization of Trpm1 current. The role of Trpm1 desensitization in shaping light responses both in bipolar and downstream ganglion cells has not been well characterized. Here we show that two parameters, the amount and the rate of recovery from desensitization, depend on the strength of the presynaptic stimulus. Stimuli that activate less than 20% of the maximum Trpm1 current did not promote any detectable desensitization, even for prolonged periods. Beyond this threshold there was a linear relationship between the amount of desensitization and the fractional Trpm1 current. In response to stimuli that open all available channels, desensitization reduced the response to approximately 40% of the peak, with a time constant of 1 s, and recovery was slow, with a time constant of more than 20 s. In dye-filled bipolar cells classified as transient or sustained using morphological criteria, there were no significant differences in Trpm1 desensitization parameters. Trpm1 activation evoked robust EPSCs in ganglion cells, and removal of Trpm1 desensitization strongly augmented a sustained component of the ganglion cell EPSC irrespective of whether ganglion cells were of the ON or ON/OFF type. We conclude that Trpm1 desensitization impacts the kinetics of ganglion cell EPSCs, but does not underlie the sustained/transient dichotomy of neurons in the ON pathway.
Collapse
Affiliation(s)
- Tejinder Kaur
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Freeman DK, Jeng JS, Kelly SK, Hartveit E, Fried SI. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms. J Neural Eng 2011; 8:046005. [PMID: 21628768 PMCID: PMC3152377 DOI: 10.1088/1741-2560/8/4/046005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step toward improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of L- and T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range.
Collapse
Affiliation(s)
- Daniel K Freeman
- Center for Innovative Visual Rehabilitation, Boston VA Healthcare System, 150 South Huntington Ave, Boston, MA 02130, USA
| | | | | | | | | |
Collapse
|
49
|
Burkhardt DA, Bartoletti TM, Thoreson WB. Center/surround organization of retinal bipolar cells: High correlation of fundamental responses of center and surround to sinusoidal contrasts. Vis Neurosci 2011; 28:183-92. [PMID: 21439110 PMCID: PMC3437648 DOI: 10.1017/s0952523811000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse.
Collapse
Affiliation(s)
- Dwight A Burkhardt
- Department of Psychology and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA.
| | | | | |
Collapse
|
50
|
Hilgen G, von Maltzahn J, Willecke K, Weiler R, Dedek K. Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol 2011; 519:433-50. [PMID: 21192077 DOI: 10.1002/cne.22526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the mouse retina, connexin45 (Cx45) participates in the gap junction between ON cone bipolar cells and AII amacrine cells, which constitutes an essential element of the primary rod pathway. Although it has been shown that Cx45 is also expressed in OFF bipolar cells, its subcellular localization and functional role in these cells are unknown. Here, we analyzed the localization of Cx45 on OFF bipolar cells in the mouse retina. For this, we used wild-type mice and a transgenic mouse line that expressed, in addition to native Cx45, a fusion protein consisting of Cx45 and the enhanced green fluorescent protein (EGFP). Cx45-EGFP expression generates an EGFP signal at gap junctions containing Cx45. Combining immunohistochemistry with intracellular injections, we found that Cx45 was present on dendrites and axon terminals of all OFF bipolar cell types. Cx45 was not found at intersections of two terminal processes of the same type, suggesting that Cx45 might not form gap junctions between axon terminals of the same OFF bipolar cell type but rather might connect OFF bipolar cells to amacrine or ganglion cells. In OFF bipolar cell dendrites, Cx45 was found predominantly in the proximal outer plexiform layer (OPL), well below the cone pedicles. Cx45 did not colocalize with Cx36, which is found predominantly in the distal OPL. We conclude that Cx45 is expressed on OFF bipolar cell dendrites, presumably forming gap junctions with cells of the same type, and on OFF bipolar cell axon terminals, presumably forming heterologous gap junctions with other retinal neurons.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Department of Neurobiology, University of Oldenburg, Germany
| | | | | | | | | |
Collapse
|