1
|
Wang P, Niu T, Huang D, Li Y, Jiang Z, Wang X, Liao L. Molecular mechanism of programmed cell death in drug-induced neuronal damage: A special focus on ketamine-induced neurotoxicity. Toxicology 2025; 513:154102. [PMID: 40015548 DOI: 10.1016/j.tox.2025.154102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
In recent years, the abuse of ketamine as a recreational drug has been growing, and has become one of the most widely abused drugs. Continuous using ketamine poses a risk of drug addiction and complications such as attention deficit disorder, memory loss and cognitive decline. Ketamine-induced neurotoxicity is thought to play a key role in the development of these neurological complications. In this paper, we focus on the molecular mechanisms of ketamine-induced neurotoxicity. According to our analyses, drugs in causing neurotoxicity are closely associated with programmed cell death (PCD) such as apoptosis, autophagy, necroptosis, pyroptosis, and Ferroptosis. Therefore, this review will collate the existing mechanisms of programmed death in ketamine-induced neurotoxicity as well as explore the possible mechanisms by outlining the mechanisms of programmed death in other drug-induced neurotoxicity, which may be helpful in identifying potential therapeutic targets for neurotoxicity induced by ketamine abuse.
Collapse
Affiliation(s)
- Peipei Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tong Niu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Degao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuanlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Linchuan Liao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Abiola T, John EO, Sossou IT, Charles Callistus B. Immune boosting and ameliorative properties of aqueous extract of Vernonia amygdalina Delile against MSG-induced genotoxicity: An in silico and in vivo approach. Heliyon 2024; 10:e23226. [PMID: 38163244 PMCID: PMC10755317 DOI: 10.1016/j.heliyon.2023.e23226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Vernonia amygdalina (VA) is popularly consumed as food and as medicine due to its nutritional and bioactive constituents. This study assessed the anti-genotoxic effect of aqueous leaf extract of VA against monosodium (MSG) -induced genotoxicity. Crude extraction and phytochemical analysis were done using standard methods. In silico studies was done using compounds in the extract against Bcl-2, NF-kB 50, DNA polymerase lambda, DNA ligase, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Twelve rats were divided into three groups with four rats in each group. Group I was fed on food and water, group II received MSG (4 g/kg) per body weight (pbw) intraperitoneally, group III received MSG (4 g/kg) pbw intraperitoneally followed by oral dose of VA leaf extract (250 mg/kg) per body weight. The number of the micronucleated red blood cells and white blood cells were determined from blood smears microscopically. Results showed that aqueous extract of VA contained in mg/100 g alkaloids (7.04 ± 0.16), saponins (3.91 ± 0.13), flavonoid (1.64 ± 0.16), phenol (3.40 ± 0.12) and tannins (0.07 ± 0.32). In silico studies revealed high binding interaction (ΔG > -8.6) of vernoniosides D and E with all the tested proteins. There was a reduction in the number of micronucleated cells, neutrophils and eosinophils of the treated group compared to the MSG group, while there was an increase in the lymphocyte count. The anti-genotoxic effects of VA leaf extract might be attributed to the synergistic interaction of the various bioactive components in the extract. VA could be a potential plant for the prevention of cancer and other diseases that attenuate the immune system.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Emmanuel O. John
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Oduduwa University, Ipetumodu, Ile-Ife, Osun State, Nigeria
| | - Ibukun Temitope Sossou
- Department of Medical Laboratory Sciences, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | |
Collapse
|
3
|
Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023; 424:113507. [PMID: 36796746 PMCID: PMC9993434 DOI: 10.1016/j.yexcr.2023.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Margaret Haberman
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Jessica Sutton
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Rebecca A Slick
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shawn M Luttrell
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - Michael W Lawlor
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| |
Collapse
|
4
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
5
|
Yao M, Hao Y, Wang T, Xie M, Li H, Feng J, Feng L, Ma D. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy. Front Neurol 2023; 14:1149671. [PMID: 37025208 PMCID: PMC10070880 DOI: 10.3389/fneur.2023.1149671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.
Collapse
Affiliation(s)
- Mengyue Yao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Wang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meizhen Xie
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liangshu Feng
- Stroke Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
- Liangshu Feng
| | - Di Ma
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Di Ma
| |
Collapse
|
6
|
Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. Int J Mol Sci 2022; 23:ijms23084391. [PMID: 35457211 PMCID: PMC9024777 DOI: 10.3390/ijms23084391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D-aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
Collapse
|
7
|
Kratimenos P, Vij A, Vidva R, Koutroulis I, Delivoria-Papadopoulos M, Gallo V, Sathyanesan A. Computational analysis of cortical neuronal excitotoxicity in a large animal model of neonatal brain injury. J Neurodev Disord 2022; 14:26. [PMID: 35351004 PMCID: PMC8966144 DOI: 10.1186/s11689-022-09431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neonatal hypoxic brain injury is a major cause of intellectual and developmental disability. Hypoxia causes neuronal dysfunction and death in the developing cerebral cortex due to excitotoxic Ca2+-influx. In the translational piglet model of hypoxic encephalopathy, we have previously shown that hypoxia overactivates Ca2+/Calmodulin (CaM) signaling via Sarcoma (Src) kinase in cortical neurons, resulting in overexpression of proapoptotic genes. However, identifying the exact relationship between alterations in neuronal Ca2+-influx, molecular determinants of cell death, and the degree of hypoxia in a dynamic system represents a significant challenge. METHODS We used experimental and computational methods to identify molecular events critical to the onset of excitotoxicity-induced apoptosis in the cerebral cortex of newborn piglets. We used 2-3-day-old piglets (normoxic [Nx], hypoxic [Hx], and hypoxic + Src-inhibitor-treatment [Hx+PP2] groups) for biochemical analysis of ATP production, Ca2+-influx, and Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) expression. We then used SimBiology to build a computational model of the Ca2+/CaM-Src-kinase signaling cascade, simulating Nx, Hx, and Hx+PP2 conditions. To evaluate our model, we used Sobol variance decomposition, multiparametric global sensitivity analysis, and parameter scanning. RESULTS Our model captures important molecular trends caused by hypoxia in the piglet brain. Incorporating the action of Src kinase inhibitor PP2 further validated our model and enabled predictive analysis of the effect of hypoxia on CaMKK2. We determined the impact of a feedback loop related to Src phosphorylation of NMDA receptors and activation kinetics of CaMKII. We also identified distinct modes of signaling wherein Ca2+ level alterations following Src kinase inhibition may not be a linear predictor of changes in Bax expression. Importantly, our model indicates that while pharmacological pre-treatment significantly reduces the onset of abnormal Ca2+-influx, there exists a window of intervention after hypoxia during which targeted modulation of Src-NMDAR interaction kinetics in combination with PP2 administration can reduce Ca2+-influx and Bax expression to similar levels as pre-treatment. CONCLUSIONS Our model identifies new dynamics of critical components in the Ca2+/CaM-Src signaling pathway leading to neuronal injury and provides a feasible framework for drug efficacy studies in translational models of neonatal brain injury for the prevention of intellectual and developmental disabilities.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,Department of Pediatrics, Division of Neonatology, Children's National Hospital, Washington DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Abhya Vij
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | - Ioannis Koutroulis
- George Washington University School of Medicine and Health Sciences, Washington DC, USA.,Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Research Institute and Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA.,George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
8
|
Regulation of Superoxide by BAP31 through Its Effect on p22 phox and Keap1/Nrf2/HO-1 Signaling Pathway in Microglia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1457089. [PMID: 33777312 PMCID: PMC7969104 DOI: 10.1155/2021/1457089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species (ROS) production by activation of microglia is considered to be a major cause of neuronal dysfunction, which can lead to damage and death through direct oxidative damage to neuronal macromolecules or derangement of neuronal redox signaling circuits. BAP31, an integral ER membrane protein, has been defined as a regulatory molecule in the CNS. Our latest studies have found that BAP31 deficiency leads to activation of microglia. In this study, we discovered that BAP31 deficiency upregulated LPS-induced superoxide anion production in BV2 cells and mice by upregulating the expression level of p22phox and by inhibiting the activation of Nrf2-HO-1 signaling. Knockdown of p22phox/keap1 or use of an NADPH oxidase inhibitor (apocynin) reversed the production of superoxide anion and inflammatory cytokines, which then reduced neuronal damage and death in vitro and in vivo. These results suggest that BAP31 deficiency contributes to microglia-related superoxide anion production and neuroinflammation through p22phox and keap1. Furthermore, the excess superoxide anion cooperated with inflammatory cytokines to induce the damage and death of neurons. Thus, we determined that BAP31 is an important regulator in superoxide anion production and neuroinflammation, and the downstream regulators or agonists of BAP31 could therefore be considered as potential therapeutic targets in microglial-related superoxide anion production and neuroinflammation.
Collapse
|
9
|
Rajina S, Kim WJ, Shim JH, Chun KS, Joo SH, Shin HK, Lee SY, Choi JS. Isolinderalactone Induces Cell Death via Mitochondrial Superoxide- and STAT3-Mediated Pathways in Human Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E7530. [PMID: 33066004 PMCID: PMC7589373 DOI: 10.3390/ijms21207530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20-30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the dried root of Lindera aggregata, can inhibit several cancer cell lines' growth. However, the molecular mechanisms underlying ILL activities in human OC cells remain unexplored. This study investigated the antitumor activities of ILL in human OC cells by inducing mitochondrial superoxide (mtSO) and JAK-signal transducer and activator of transcription 3 (STAT3)-dependent cell death. ILL caused cell death in SKOV-3 and OVCAR-3 cells and increased the cell proportion in the subG1 phase. Additionally, ILL significantly induced mtSO production and reduced ROS production. Moreover, ILL downregulated mitochondrial membrane potential and the expression levels of anti-apoptotic Bcl-2 family proteins and superoxide dismutase (SOD)2. Results showed that ILL decreased phosphorylation of serine 727 and tyrosine 705 of STAT3 and expression of survivin, a STAT3-regulated gene. Furthermore, ILL-induced cell death was reversed by pretreatment of Mito-TEMPO, a mitochondria-specific antioxidant. These results suggest that ILL induces cell death by upregulation of mtSO, downregulation of mitochondrial SOD2, and inactivation of the STAT3-mediated pathway.
Collapse
Affiliation(s)
- Shakya Rajina
- College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea; (S.R.); (S.H.J.)
| | - Woo Jean Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 49267, Korea;
| | - Jung-Hyun Shim
- Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea; (S.R.); (S.H.J.)
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea;
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea; (S.R.); (S.H.J.)
| |
Collapse
|
10
|
Chen L, Song Q, Chen Y, Meng S, Zheng M, Huang J, Zhang Q, Jiang J, Feng J, Chen H, Jiang G, Gao X. Tailored Reconstituted Lipoprotein for Site-Specific and Mitochondria-Targeted Cyclosporine A Delivery to Treat Traumatic Brain Injury. ACS NANO 2020; 14:6636-6648. [PMID: 32464051 DOI: 10.1021/acsnano.9b09186] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The secondary damage in traumatic brain injury (TBI) can lead to lifelong disabilities, bringing enormous economic and psychological burden to patients and their families. Mitochondria, as the core mediator of the secondary injury cascade reaction in TBI, is an important target to prevent the spread of cell death and dysfunction. Thus, therapeutics that can accumulate at the damaged sites and subsequently rescue the functions of mitochondria would largely improve the outcome of TBI. Cyclosporine A (CsA), which can maintain the integrity of mitochondrial function, is among the most promising neuroprotective therapeutics for TBI treatment. However, the clinical application of CsA in TBI is largely hindered because of its poor access to the targets. Here, to realize targeted intracellular CsA delivery, we designed a lipoprotein biomimetic nanocarrier by incorporating CsA in the core and decorating a matrix metalloproteinase-9 activatable cell-penetrating peptide onto the surface of the lipoprotein-mimic nanocarrier. This CsA-loaded tailored reconstituted lipoprotein efficiently accumulated at the damaged brain sites, entered the target cells, bound to the membrane of mitochondria, more efficiently reduced neuronal damage, alleviated neuroinflammation, and rescued memory deficits at the dose 1/16 of free CsA in a controlled cortical impact injury mice model. The findings provide strong evidence that the secondary damages in TBI can be well controlled through targeted CsA delivery and highlight the potential of a lipoprotein biomimetic nanocarrier as a flexible nanoplatform for the management of TBI.
Collapse
Affiliation(s)
- Lepei Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Shuang Meng
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jialin Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jiyao Jiang
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Junfeng Feng
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
11
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
13
|
Mitochondrial quality control and neurodegenerative diseases. Neuronal Signal 2018; 2:NS20180062. [PMID: 32714594 PMCID: PMC7373240 DOI: 10.1042/ns20180062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Mitochondria homeostasis is sustained by the mitochondrial quality control (MQC) system, which is crucial for cellular health, especially in the maintenance of functional mitochondria. A healthy mitochondria network is essential for life as it regulates cellular metabolism processes, particularly ATP production. Mitochondrial dynamics and mitophagy are two highly integrated processes in MQC system that determines whether damaged mitochondria will be repaired or degraded. Neurons are highly differentiated cells which demand high energy consumption. Therefore, compromised MQC processes and the accumulation of dysfunctional mitochondria may be the main cause of neuronal death and lead to neurodegeneration. Here, we focus on the inseparable relationship of mitochondria dynamics and mitophagy and how their dysfunction may lead to neurodegenerative diseases.
Collapse
|
14
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
15
|
Protocatechuic acid methyl ester ameliorates fluoride toxicity in A549 cells. Food Chem Toxicol 2017; 109:941-950. [DOI: 10.1016/j.fct.2016.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022]
|
16
|
Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species. Antioxid Redox Signal 2017; 27:599-617. [PMID: 28322600 DOI: 10.1089/ars.2016.6705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,2 Division of Cardiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Maarten C Hardenberg
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Wendelinde F Kok
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Ate S Boerema
- 3 Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, the Netherlands .,4 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hannah V Carey
- 5 Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin , Madison, Wisconsin
| | - James F Staples
- 6 Department of Biology, University of Western Ontario , London, Canada
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,7 Department of Internal Medicine, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| |
Collapse
|
17
|
Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 2017. [DOI: 10.1016/j.neuint.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death Differ 2017; 24:1963-1974. [PMID: 28777375 PMCID: PMC5635221 DOI: 10.1038/cdd.2017.123] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
ABT-737 is a pharmacological inhibitor of the anti-apoptotic activity of B-cell lymphoma-extra large (Bcl-xL) protein; it promotes apoptosis of cancer cells by occupying the BH3-binding pocket. We have shown previously that ABT-737 lowers cell metabolic efficiency by inhibiting ATP synthase activity. However, we also found that ABT-737 protects rodent brain from ischemic injury in vivo by inhibiting formation of the pro-apoptotic, cleaved form of Bcl-xL, ΔN-Bcl-xL. We now report that a high concentration of ABT-737 (1 μM), or a more selective Bcl-xL inhibitor WEHI-539 (5 μM) enhances glutamate-induced neurotoxicity while a low concentration of ABT-737 (10 nM) or WEHI-539 (10 nM) is neuroprotective. High ABT-737 markedly increased ΔN-Bcl-xL formation, aggravated glutamate-induced death and resulted in the loss of mitochondrial membrane potential and decline in ATP production. Although the usual cause of death by ABT-737 is thought to be related to activation of Bax at the outer mitochondrial membrane due to sequestration of Bcl-xL, we now find that low ABT-737 not only prevents Bax activation, but it also inhibits the decline in mitochondrial potential produced by glutamate toxicity or by direct application of ΔN-Bcl-xL to mitochondria. Loss of mitochondrial inner membrane potential is also prevented by cyclosporine A, implicating the mitochondrial permeability transition pore in death aggravated by ΔN-Bcl-xL. In keeping with this, we find that glutamate/ΔN-Bcl-xL-induced neuronal death is attenuated by depletion of the ATP synthase c-subunit. C-subunit depletion prevented depolarization of mitochondrial membranes in ΔN-Bcl-xL expressing cells and substantially prevented the morphological change in neurites associated with glutamate/ΔN-Bcl-xL insult. Our findings suggest that low ABT-737 or WEHI-539 promotes survival during glutamate toxicity by preventing the effect of ΔN-Bcl-xL on mitochondrial inner membrane depolarization, highlighting ΔN-Bcl-xL as an important therapeutic target in injured brain.
Collapse
|
19
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
20
|
Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017; 25:471-484. [DOI: 10.1007/s10787-017-0348-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
|
21
|
Winter AN, Ross EK, Khatter S, Miller K, Linseman DA. Chemical basis for the disparate neuroprotective effects of the anthocyanins, callistephin and kuromanin, against nitrosative stress. Free Radic Biol Med 2017; 103:23-34. [PMID: 27986528 DOI: 10.1016/j.freeradbiomed.2016.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/10/2016] [Indexed: 01/05/2023]
Abstract
Oxidative and nitrosative stress are major factors in neuronal cell death underlying neurodegenerative disease. Thus, supplementation of antioxidant defenses may be an effective therapeutic strategy for diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. In this regard, treatment with nutraceutical antioxidants has garnered increasing attention; however, the differential neuroprotective effects of structurally similar nutraceuticals, which may affect their suitability as therapeutic agents, has not been directly examined. In this study we compare the ability of two anthocyanins, callistephin (pelargonidin-3-O-glucoside) and kuromanin (cyanidin-3-O-glucoside) to protect cerebellar granule neurons from damage induced by either oxidative or nitrosative stress. These anthocyanins differ by the presence of a single hydroxyl group on the B-ring of kuromanin, forming a catechol moiety. While both compounds protected neurons from oxidative stress induced by glutamate excitotoxicity, a stark contrast was observed under conditions of nitrosative stress. Only kuromanin displayed the capacity to defend neurons from nitric oxide (NO)-induced apoptosis. This protective effect was blocked by addition of Cu, Zn-superoxide dismutase, indicating that the neuroprotective mechanism is superoxide dependent. Based on these observations, we suggest a unique mechanism by which slight structural variances, specifically the absence or presence of a catechol moiety, lend kuromanin the unique ability to generate superoxide, which acts as a scavenger of NO. These findings indicate that kuromanin and compounds that share similar chemical characteristics may be more effective therapeutic agents for treating neurodegenerative diseases than callistephin and related (non-catechol) compounds.
Collapse
Affiliation(s)
- Aimee N Winter
- Department of Biological Sciences, University of Denver, Denver CO 80208, United States
| | - Erika K Ross
- Department of Biological Sciences, University of Denver, Denver CO 80208, United States
| | - Sonia Khatter
- Department of Biological Sciences, University of Denver, Denver CO 80208, United States
| | - Keith Miller
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80208, United States
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, Denver CO 80208, United States; Eleanor Roosevelt Institute, University of Denver, Denver CO 80208, United States; Knoebel Institute for Healthy Aging, University of Denver, Denver CO 80208, United States.
| |
Collapse
|
22
|
Qaid E, Zakaria R, Sulaiman SF, Yusof NM, Shafin N, Othman Z, Ahmad AH, Aziz CA. Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit - Lessons from rat studies. Hum Exp Toxicol 2017; 36:1315-1325. [PMID: 28111974 DOI: 10.1177/0960327116689714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impairment of memory is one of the most frequently reported symptoms during sudden hypoxia exposure in human. Cortical atrophy has been linked to the impaired memory function and is suggested to occur with chronic high-altitude exposure. However, the precise molecular mechanism(s) of hypoxia-induced memory impairment remains an enigma. In this work, we review hypoxia-induced learning and memory deficit in human and rat studies. Based on data from rat studies using different protocols of continuous hypoxia, we try to elicit potential mechanisms of hypobaric hypoxia-induced memory deficit.
Collapse
Affiliation(s)
- Eya Qaid
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - R Zakaria
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - S F Sulaiman
- 2 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Na Mohd Yusof
- 3 Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - N Shafin
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Z Othman
- 4 Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - A H Ahmad
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Cb Abd Aziz
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
23
|
Gliyazova NS, Ibeanu GC. The Chemical Molecule B355252 is Neuroprotective in an In Vitro Model of Parkinson's Disease. Cell Mol Neurobiol 2016; 36:1109-22. [PMID: 26649727 PMCID: PMC11482352 DOI: 10.1007/s10571-015-0304-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin frequently used to create in vitro and in vivo experimental models of Parkinson's disease (PD), a chronic neurodegenerative disorder largely resulting from damage to the nigrostriatal dopaminergic pathway. No effective drugs or therapies have been developed for this devastating disorder, and current regimens of symptomatic therapeutics only alleviate symptoms temporarily. Therefore, effective treatments that reverse or cure this disorder are urgently needed. The aim of the study described in this report was to investigate the therapeutic impact of B355252, an aryl thiophene sulfonamide chemical entity, in the widely recognized in vitro model of PD, and to characterize the molecular signaling pathways. We show here that 6-OHDA-induced cell death in HT22, a murine neuronal cell model, through a pathway that involves the mitochondria by increasing the levels of reactive oxygen species (ROS), raising intracellular calcium ([Ca(2+)]i), enhancing the release of cytochrome c to the cytosol, and promoting activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway. More importantly, we found that B355252 protected HT22 neurons against 6-OHDA toxin-induced neuronal cell death by significant attenuation of ROS production, blocking of mitochondrial depolarization, inhibition of cytochrome c release, sequestration of [Ca(2+)]i, modulation of JNK cascade, and strong inhibition of caspase 3/7 cleavage. Overall, this study demonstrates that death of neurons under toxic conditions characteristic of PD can be efficiently halted by B355252 and suggests that further development of the molecule could be potentially beneficial as a therapeutic prevention or treatment option for PD.
Collapse
Affiliation(s)
- Nailya S Gliyazova
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA
| | - Gordon C Ibeanu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
24
|
Bolaños JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 2016; 139 Suppl 2:115-125. [PMID: 26968531 PMCID: PMC5018236 DOI: 10.1111/jnc.13486] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Neuronal activity is a high‐energy demanding process recruiting all neural cells that adapt their metabolism to sustain the energy and redox balance of neurons. During neurotransmission, synaptic cleft glutamate activates its receptors in neurons and in astrocytes, before being taken up by astrocytes through energy costly transporters. In astrocytes, the energy requirement for glutamate influx is likely to be met by glycolysis. To enable this, astrocytes are constitutively glycolytic, robustly expressing 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase‐3 (PFKFB3), an enzyme that is negligibly present in neurons by continuous degradation because of the ubiquitin‐proteasome pathway via anaphase‐promoting complex/cyclosome (APC)‐Cdh1. Additional factors contributing to the glycolytic frame of astrocytes may include 5′‐AMP‐activated protein kinase (AMPK), hypoxia‐inducible factor‐1 (HIF‐1), pyruvate kinase muscle isoform‐2 (PKM2), pyruvate dehydrogenase kinase‐4 (PDK4), lactate dehydrogenase‐B, or monocarboxylate transporter‐4 (MCT4). Neurotransmission‐associated messengers, such as nitric oxide or ammonium, stimulate lactate release from astrocytes. Astrocyte‐derived glycolytic lactate thus sustains the energy needs of neurons, which in contrast to astrocytes mainly rely on oxidative phosphorylation. Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose‐phosphate pathway to preserve the redox status. Furthermore, neural activity is coupled with erythroid‐derived erythroid‐derived 2‐like 2 (Nrf2) mediated transcriptional activation of antioxidant genes in astrocytes, which boost the de novo glutathione biosynthesis in neighbor neurons. Thus, the bioenergetics and redox programs of astrocytes are adapted to sustain neuronal activity and survival. Developing therapeutic strategies to interfere with these pathways may be useful to combat neurological diseases.
Our current knowledge on brain's management of bioenergetics and redox requirements associated with neural activity is herein revisited. The astrocyte‐neuronal lactate shuttle (ANLS) explains the energy needs of neurotransmission. Furthermore, neurotransmission unavoidably triggers increased mitochondrial reactive oxygen species in neurons. By coupling glutamatergic activity with transcriptional activation of antioxidant genes, astrocytes provide neurons with neuroprotective glutathione through an astrocyte‐neuronal glutathione shuttle (ANGS).
This article is part of the60th Anniversary special issue.
Collapse
Affiliation(s)
- Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC-IBSAL, Salamanca, Spain.
| |
Collapse
|
25
|
Armagan G, Keser A, Atalayın Ç, Dagcı T. Tideglusib protects neural stem cells against NMDA receptor overactivation. Pharmacol Rep 2015; 67:823-31. [DOI: 10.1016/j.pharep.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
|
26
|
Solgi R, Baghaei A, Golaghaei A, Hasani S, Baeeri M, Navaei M, Ostad SN, Hosseini R, Abdollahi M. Electrophysiological and molecular mechanisms of protection by iron sucrose against phosphine-induced cardiotoxicity: a time course study. Toxicol Mech Methods 2015; 25:249-57. [PMID: 25906050 DOI: 10.3109/15376516.2015.1015086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed for determining the exact mechanism of cytotoxic action of aluminum phosphide (AlP) in the presence of iron sucrose as the proposed antidote. Rats received AlP (12 mg/kg) and iron sucrose (5-30 mg/kg) in various sets and were connected to cardiovascular monitoring device. After identification of optimum doses of AlP and iron sucrose, rats taken in 18 groups received AlP (6 mg/kg) and iron sucrose (10 mg/kg), treated at six different time points, and then their hearts were surgically removed and used for evaluating a series of mitochondrial parameters, including cell lipid peroxidation, antioxidant power, mitochondrial complex activity, ADP/ATP ratio and process of apoptosis. ECG changes of AlP poisoning, including QRS, QT, P-R, ST, BP and HR were ameliorated by iron sucrose (10 mg/kg) treatment. AlP initiated its toxicity in the heart mitochondria through reducing mitochondrial complexes (II, IV and V), which was followed by increasing lipid peroxidation and the ADP/ATP ratio and declining mitochondrial membrane integrity that ultimately resulted in cell death. AlP in acute exposure (6 mg/kg) resulted in an increase in hydroxyl radicals and lipid peroxidation in a time-dependent fashion, suggesting an interaction of delivering electrons of phosphine with mitochondrial respiratory chain and oxidative stress. Iron sucrose, as an electron receiver, can compete with mitochondrial respiratory chain complexes and divert electrons to another pathway. The present findings supported the idea that iron sucrose could normalize the activity of mitochondrial electron transfer chain and cellular ATP level as vital factors for cell escaping from AlP poisoning.
Collapse
Affiliation(s)
- Reza Solgi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran and
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Understanding the pathophysiology of traumatic brain injury and the mechanisms of action of neuroprotective interventions. J Trauma Nurs 2015; 21:30-5. [PMID: 24399316 DOI: 10.1097/jtn.0000000000000026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury continues to be a major socioeconomic problem, costing the United States $76.5 billion in the year of 2000. Despite the advances in the field of medicine, there are still no definitive treatments for traumatic brain injury. Goal of therapy is still gearing toward supportive cares such as intracranial pressure monitoring, lowering intracranial pressure, correcting cerebral ischemia, and manipulating serum osmolarity. The search for effective treatment in human studies has been unfruitful. In this review, the mechanisms of primary and secondary brain injury are discussed along with potential neuroprotective interventions such as hyperosmolar therapies, hypothermia, statins, and cyclosporin A.
Collapse
|
28
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
29
|
Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson's disease dementia. Neuropharmacology 2014; 91:43-56. [PMID: 25499022 DOI: 10.1016/j.neuropharm.2014.11.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
Abstract
Glutamatergic hyperactivity plays an important role in the pathophysiology of Parkinson's disease (PD). Ceftriaxone increases expression of glutamate transporter 1 (GLT-1) and affords neuroprotection. This study was aimed at clarifying whether ceftriaxone prevented, or reversed, behavioral and neuronal deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. Male Wistar rats were injected daily with either ceftriaxone starting 5 days before or 3 days after MPTP lesioning (day 0) or saline and underwent a bar-test on days 1-7, a T-maze test on days 9-11, and an object recognition test on days 12-14, then the brains were taken for histological evaluation on day 15. Dopaminergic degeneration in the substantia nigra pars compacta and striatum was observed on days 3 and 15. Motor dysfunction in the bar test was observed on day 1, but disappeared by day 7. In addition, lesioning resulted in deficits in working memory in the T-maze test and in object recognition in the object recognition task, but these were not observed in rats treated pre- or post-lesioning with ceftriaxone. Lesioning also caused neurodegeneration in the hippocampal CA1 area and induced glutamatergic hyperactivity in the subthalamic nucleus, and both changes were suppressed by ceftriaxone. Increased GLT-1 expression and its co-localization with astrocytes were observed in the striatum and hippocampus in the ceftriaxone-treated animals. To our knowledge, this is the first study showing a relationship between ceftriaxone-induced GLT-1 expression, neuroprotection, and improved cognition in a PD rat model. Ceftriaxone may have clinical potential for the prevention and treatment of dementia associated with PD.
Collapse
|
30
|
Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: An in silico study elucidating a novel mechanism of action of the drug. Med Hypotheses 2014; 83:740-6. [DOI: 10.1016/j.mehy.2014.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022]
|
31
|
Connolly NMC, Prehn JHM. The metabolic response to excitotoxicity - lessons from single-cell imaging. J Bioenerg Biomembr 2014; 47:75-88. [PMID: 25262286 DOI: 10.1007/s10863-014-9578-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Niamh M C Connolly
- Department of Physiology and Medical Physics, 123 St Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
32
|
Miltonprabu S, Sumedha NC. Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by diallyl trisulfide. Toxicol Mech Methods 2014; 24:124-35. [PMID: 24295472 DOI: 10.3109/15376516.2013.869778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present investigation was aimed to investigate the possible protective role of diallyl trisulfide (DATS) against arsenic (As)-induced hepatic mitochondrial toxicity in rats. Mitochondria were isolated from the liver tissue of rats from all the groups. Lipid profile, lipid peroxidation, antioxidant enzyme activities, hepatic function enzymes, mitochondrial swelling, cytochrome c oxidase activity, mitochondrial Ca(+)-ATPase and Na(+)/K(+)-ATPase activity, mitochondrial calcium content and mitochondrial enzyme activities were measured. Short-term As exposure (5 mg/kg bw/d for 28 d) caused liver damage as evidenced by changes in activities of liver enzymes. The effects of As were coupled with enhanced reactive oxygen species generation, mitochondrial swelling, inhibition of cytochrome c oxidase, complex I-mediated electron transfer, decreased Ca(2+)-ATPase and Na(+)/K(+)-ATPase activity, a reduction in mitochondrial calcium content, changes in indices of hepatic mitochondrial oxidative stress, significant increase in mitochondrial lipid peroxidation products and alterations in mitochondrial lipid profile. Significant decreases in mitochondrial antioxidants and tricarboxylic acid cycle enzymes were also found in the liver mitochondria of As-induced hepatic mitochondrial toxicity in rats. As also increased hepatic caspase-3 activity and DNA fragmentation. All these apoptosis-related molecular changes caused by As could be alleviated by supplementation with DATS, which likely suggests a protective role against As-induced hepatotoxic changes and hepatic mitochondrial toxicity. The protective effect of DATS on the liver mitochondria was evidenced by altering all the changes induced by As. Free radical scavenging and metal chelating activities of DATS may be the mechanism, responsible for the protective action against As-induced mitochondrial damage in liver.
Collapse
Affiliation(s)
- S Miltonprabu
- Department of Zoology, Faculty of Science, Annamalai University , Annamalainagar, Tamilnadu , India
| | | |
Collapse
|
33
|
Martorell-Riera A, Segarra-Mondejar M, Muñoz JP, Ginet V, Olloquequi J, Pérez-Clausell J, Palacín M, Reina M, Puyal J, Zorzano A, Soriano FX. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J 2014; 33:2388-407. [PMID: 25147362 DOI: 10.15252/embj.201488327] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Collapse
Affiliation(s)
- Alejandro Martorell-Riera
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Marc Segarra-Mondejar
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Juan P Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | | | - Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Manuel Reina
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Julien Puyal
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc X Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Ho SC, Hsu CC, Pawlak CR, Tikhonova MA, Lai TJ, Amstislavskaya TG, Ho YJ. Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson's disease rat model. Behav Brain Res 2014; 268:177-84. [PMID: 24755306 DOI: 10.1016/j.bbr.2014.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) and treatment with drugs modulating glutamatergic activity may have beneficial effects. Ceftriaxone has been reported to increase glutamate uptake by increasing glutamate transporter expression. The aim of this study was to determine the effects of ceftriaxone on working memory, object recognition, and neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Then, starting the next day (day 1), the rats were injected daily with either ceftriaxone (200 mg/kg/day, i.p.) or saline for 14 days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14. MPTP-lesioned rats showed impairments of working memory in the T-maze test and of recognition function in the object recognition test. The treatment of ceftriaxone decreased the above MPTP-induced cognitive deficits. Furthermore, this study provides evidence that ceftriaxone inhibits MPTP lesion-induced dopaminergic degeneration in the nigrostriatal system, microglial activation in the SNc, and cell loss in the hippocampal CA1 area. In conclusion, these data support the idea that hyperactivity of the glutamatergic system is involved in the pathophysiology of PD and suggest that ceftriaxone may be a promising pharmacological tool for the development of new treatments for the dementia associated with PD.
Collapse
Affiliation(s)
- Shih-Chun Ho
- School of Psychology, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chih-Chuan Hsu
- Department of Pediatrics, Tungs' Taichung Metrohabor Hospital, Taichung, Taiwan, ROC
| | - Cornelius Rainer Pawlak
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany
| | - Maria A Tikhonova
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine SB RAMS, Novosibirsk, Russia
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine SB RAMS, Novosibirsk, Russia.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
35
|
Rotigotine protects against glutamate toxicity in primary dopaminergic cell culture. Eur J Pharmacol 2014; 724:31-42. [DOI: 10.1016/j.ejphar.2013.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/22/2022]
|
36
|
Sasaki S, Yamada S, Iwamura M, Kobayashi Y. Specific detection of intramitochondrial superoxide produced by either cell activation or apoptosis by employing a newly developed cell-permeative lucigenin derivative, 10,10'-dimethyl-9,9'-biacridinium bis(monomethyl terephthalate). Free Radic Biol Med 2013; 65:1005-1011. [PMID: 23994770 DOI: 10.1016/j.freeradbiomed.2013.08.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022]
Abstract
Here we developed a new cell-permeative lucigenin derivative, 10,10'-dimethyl-9,9'-biacridinium bis(monomethyl terephthalate) (MMT), to detect intracellular superoxide production. Both MMT and lucigenin were specific to superoxide among reactive oxygen species tested. Although lucigenin barely penetrated into cells, MMT accumulated in mitochondria in a variety of cells such as neutrophils. By employing MMT, we found that, upon activation of neutrophils with phorbol myristate acetate, superoxide was generated extracellularly as well as intramitochondrially and that such intramitochondrial superoxide production was dependent on oxidative phosphorylation. We also found that, during apoptosis, superoxide was gradually produced in mitochondria in association with phosphatidylserine exposure and that the kinetics of superoxide production was very heterogeneous at the single-cell level. Thus this study demonstrates that MMT could serve as a specific probe for intramitochondrial superoxide in either activated or apoptotic cells.
Collapse
Affiliation(s)
- Soichiro Sasaki
- Division of Molecular Medicine Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Sachiko Yamada
- Division of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Michiko Iwamura
- Division of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yoshiro Kobayashi
- Division of Molecular Medicine Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
37
|
Manwani B, McCullough LD. Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res 2013; 91:1018-29. [PMID: 23463465 PMCID: PMC4266469 DOI: 10.1002/jnr.23207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/24/2012] [Accepted: 01/05/2013] [Indexed: 01/09/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved signaling molecule that is emerging as one of the most important energy sensors in the body. AMPK monitors cellular energy status and is activated via phosphorylation when energy stores are low. This allows for maintenance of energy homeostasis by promoting catabolic pathways for ATP production and limiting processes that consume ATP. Growing number of stimuli have been shown to activate AMPK, and AMPK has been implicated in many diverse biological processes, including cell polarity, autophagy, and senescence. The effect of AMPK activation and its biological functions are extremely diverse and depend on both the overall energy "milieu" and the location and duration of activation. AMPK has tissue- and isoform-specific functions in the brain vs. periphery. These functions and the pathways activated also appear to differ by cell location (hypothalamus vs. cortex), cell type (astrocyte vs. neuron), and duration of exposure. Short bursts of AMPK activation have been found to be involved in ischemic preconditioning and neuronal survival; however, prolonged AMPK activity during ischemia leads to neuronal cell death. AMPK may also underlie some of the beneficial effects of hypothermia, a potential therapy for ischemic brain injury. This review discusses the role of AMPK in ischemic stroke, a condition of severe energy depletion.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Louise D. McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
- Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
38
|
Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 2013; 39:392-406. [PMID: 23460132 DOI: 10.1002/biof.1093] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/25/2012] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction is at the base of development and progression of several psychiatric and neurologic diseases with different etiologies. MtDNA/nDNA mutational damage, failure of endogenous antioxidant defenses, hormonal malfunction, altered membrane permeability, metabolic dysregulation, disruption of calcium buffering capacity and ageing have been found to be the root causes of mitochondrial dysfunction in psychatric and neurodegenerative diseases. However, the overall consequences of mitochondrial dysfunction are only limited to increase in oxidative/nitrosative stress and cellular energy crises. Thus far, extensive efforts have been made to improve mitochondrial function through specific cause-dependent antioxidant therapy. However, owing to complex genetic and interlinked causes of mitochondrial dysfunction, it has not been possible to achieve any common, unique supportive antioxidant therapeutic strategy for the treatment of psychiatric and neurologic diseases. Hence, we propose an antioxidant therapeutic strategy for management of consequences of mitochondrial dysfunction in psychiatric and neurologic diseases. It is expected that this will not only reduces oxidative stress, but also promote anaerobic energy production.
Collapse
Affiliation(s)
- Deepak M Kasote
- MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, MS, India.
| | | | | |
Collapse
|
39
|
Xu Z, Xu B, Xia T, He W, Gao P, Guo L, Wang Z, Niu Q, Wang A. Relationship between intracellular Ca²⁺ and ROS during fluoride-induced injury in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:307-312. [PMID: 21786382 DOI: 10.1002/tox.20721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 03/10/2011] [Indexed: 05/31/2023]
Abstract
The mechanisms underlying the neurotoxicology of endemic fluorosis still remain obscure. To explore lactate dehydrogenase (LDH) leakage, intracellular Ca²⁺ concentration ([Ca²⁺]i ) and reactive oxygen species (ROS) production induced by fluoride, human neuroblastoma (SH-SY5Y) cells were incubated with sodium fluoride (NaF, 20, 40, 80 mg/L) for 24 h, with 40 mg/L NaF for 3, 6, 12, 18, 24 h, and N-acetyl-L-cysteine (NAC), ethyleneglycol-bis-(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM) alone or combined with fluoride (40 mg/L) respectively for 12 h in vitro. The results showed that the LDH levels in the 40 and 80 mg/L fluoride-treated groups were significantly higher than that of the control group (in the test level of 0.05, the difference were statistical significance). [Ca²⁺]i and ROS reached a peak at 3 h and 12 h respectively after exposure to 40 mg/L fluoride. Fluoride coincubated with NAC (antioxidant) dramatically decreased ROS and LDH levels compared with the fluoride only group (in the test level of 0.05, the difference were statistical significance). However, fluoride-induced increase in [Ca²⁺]i was not affected by NAC. BAPTA-AM (intracellular calcium chelator) markedly lowered fluoride-induced increase of [Ca²⁺]i , ROS and LDH levels while EGTA (extracellular calcium chelator) have no effects on them. These results indicate that fluoride-related Ca²⁺ release from the site of intracellular calcium storage causes the elevation of ROS contributing to the cytotoxicity in SH-SY5Y cells.
Collapse
Affiliation(s)
- Zhixia Xu
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y. Hyperglycemia in stroke and possible treatments. Neurol Res 2013; 35:479-91. [PMID: 23622737 DOI: 10.1179/1743132813y.0000000209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis. Second, hyperglycemia fuels anaerobic energy production, causing lactic acidosis, which further stresses neurons in the penumbral regions. Third, hyperglycemia decreases blood perfusion after ischemic stroke by lowering the availability of nitric oxide (NO), which is a crucial mediator of vasodilation. Lastly, hyperglycemia intensifies the inflammatory response after stroke, causing edema, and hemorrhage through disruption of the blood brain barrier and degradation of white matter, which leads to a worsening of functional outcomes. Many neuroprotective treatments addressing hyperglycemia in stroke have been implemented in the past decade. Early clinical use of insulin provided mixed results due to insufficiently controlled glucose levels and heterogeneity of patient population. Recently, however, the latest Stroke Hyperglycemia Insulin Network Effort trial has addressed the shortcomings of insulin therapy. While glucagon-like protein-1 administration, hyperbaric oxygen preconditioning, and ethanol therapy appear promising, these treatments remain in their infancy and more research is needed to better understand the mechanisms underlying hyperglycemia-induced injuries. Elucidation of these mechanistic pathways could lead to the development of rational treatments that reduce hyperglycemia-associated injuries and improve functional outcomes for ischemic stroke patients.
Collapse
Affiliation(s)
- William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Liu W, Xu Z, Deng Y, Xu B, Wei Y, Yang T. Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex. Neurotox Res 2013; 24:320-37. [PMID: 23504438 DOI: 10.1007/s12640-013-9386-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. The identification of the underlying mechanisms has been a main focus of research in the neurotoxicology field. Glutamate (Glu) dyshomeostasis and oxidative stress have been identified as two critical mechanisms mediating MeHg-induced neurotoxicity. However, little has been known of the interaction between these two mechanisms that play in MeHg poisoning in vivo. We, therefore, developed a rat model of MeHg subchronic poisoning to evaluate its neurotoxic effects and investigated the neuroprotective role of memantine, a low-affinity, noncompetitive N-methyl-D-aspartate receptors (NMDARs) antagonist, against MeHg-induced neurotoxicity. Ninety rats were randomly divided into five groups: control, memantine control, MeHg-treated (4 and 12 μmol/kg), and memantine pretreated. Administration of 12 μmol/kg MeHg for 4 weeks significantly elevated total Hg levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload, which might be critical to excessive reactive oxygen species (ROS) formation in cerebral cortex. Meanwhile, MeHg administration reduced non-enzymatic (non-protein sulfhydryl, NPSH) and enzymatic (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) antioxidants; caused lipid, protein, and DNA oxidative damage; and enhanced neurocyte apoptosis in cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appear to be inhibited by MeHg exposure. Pretreatment with memantine at a dose of 5 μmol/kg significantly prevented MeHg-induced alterations of Glu metabolism and oxidative stress, alleviated neurocyte apoptosis, and pathological injury. In conclusion, the results suggested that Glu dyshomeostasis and oxidative stress resulting from MeHg exposure contributed to neuronal injury. Memantine possesses the ability to attenuate MeHg-induced neurotoxicity through mechanisms involving its NMDARs-binding properties and indirect antioxidation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Zamora PL, Villamena FA. Pharmacological approaches to the treatment of oxidative stress-induced cardiovascular dysfunctions. Future Med Chem 2013; 5:465-478. [PMID: 23495692 DOI: 10.4155/fmc.13.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular diseases are a growing major global health problem. Our understanding of the mechanisms of pathophysiology of cardiovascular diseases has been gaining significant advances and a wealth of knowledge implicates oxidative stress as a key causative agent. However, to date, most efforts to treat heart failure using conventional antioxidant therapies have been less than encouraging. With increasing incidences of cardiovascular disease in young as well as in aging populations, and the problem of long-term diminishing efficacy of conventional therapeutics, the need for new treatments has never been greater. In this review, [corrected] a variety of therapeutic targets and compounds applied to treat cardiovascular diseases via inhibition of oxidative stress are presented.
Collapse
Affiliation(s)
- Pedro L Zamora
- Department of Pharmacology, & Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
43
|
Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 2013; 62:750-6. [PMID: 23416042 DOI: 10.1016/j.neuint.2013.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/25/2013] [Accepted: 02/03/2013] [Indexed: 02/07/2023]
Abstract
Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.
Collapse
|
44
|
Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 2013; 237:66-86. [PMID: 23384605 DOI: 10.1016/j.neuroscience.2013.01.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 02/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from glutamate excitotoxicity as determined by analysis of chromatin condensation, through activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways. However, it is still unknown whether BDNF also prevents the degeneration of axons and dendrites, and the functional demise of synapses, which would be required to preserve neuronal activity. Herein, we have studied the time-dependent changes in several neurobiological markers, and the regulation of proteolytic mechanisms in cultured rat hippocampal neurons, through quantitative western blot and immunocytochemistry. Calpain activation peaked immediately after the neurodegenerative input, followed by a transient increase in ubiquitin-conjugated proteins and increased abundance of cleaved-caspase-3. Proteasome and calpain inhibition did not reproduce the protective effect of BDNF and caspase inhibition in preventing chromatin condensation. However, proteasome and calpain inhibition did protect the neuronal markers for dendrites (MAP-2), axons (Neurofilament-H) and the vesicular glutamate transporters (VGLUT1-2), whereas caspase inhibition was unable to mimic the protective effect of BDNF on neurites and synaptic markers. BDNF partially prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate release using a Förster (Fluorescence) resonance energy transfer (FRET) glutamate nanosensor. These results translate a time-dependent activation of proteases and spatial segregation of these mechanisms, where calpain activation is followed by proteasome deregulation, from neuronal processes to the soma, and finally by caspase activation in the cell body. Moreover, PI3-K and PLCγ small molecule inhibitors significantly blocked the protective action of BDNF, suggesting an activity-dependent mechanism of neuroprotection. Ultimately, we hypothesize that neuronal repair after a degenerative insult is initiated at the synaptic level.
Collapse
|
45
|
Suresh S, Prithiviraj E, Lakshmi NV, Ganesh MK, Ganesh L, Prakash S. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:32-41. [PMID: 23103904 DOI: 10.1016/j.jep.2012.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/27/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mucuna pruriens Linn. (M. pruriens) is a leguminous plant that has been recognized as an herbal medicine for improving fertility and related disorders in the Indian traditional system of medicine, however without proper scientific validations. AIM OF THE STUDY To study the effect of ethanolic seed extract of M. pruriens on mitochondrial dysfunction and the DNA damage in hyperglycemic rat epididymal spermatozoa. MATERIALS AND METHODS Male Wistar albino rats were divided as control (Sham), diabetes induced [streptozotocin 60 mg/kg of body weight (b.w.) in 0.1M citrate buffer] (STZ), diabetic rats administered with 200mg/kg b.w. of extract (STZ+MP) and normal rats administered with 200mg/kg b.w. of extract (Sham+MP). M. pruriens was administered (gavage) once daily for a period of 60 days. On 60th day animals were sacrificed by cervical dislocation sperm were collected from epididymis and subjected various analysis like antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential (MMP). RESULTS Significant reduction in the sperm count, motility, viability and significant increase in the number of abnormal sperm in STZ compared to sham was noticed. STZ rat sperm showed significant increase in LPO and DNA damage. Both the enzymic and non-enzymic were decreased; MMP and the mitochondrial functions were severely affected in STZ group. The diabetic rats supplemented with M. pruriens showed a remarkable recovery in antioxidant levels and reduced LPO with well preserved sperm DNA. MMP and mitochondrial function test were also preserved in STZ+MP rat sperm. CONCLUSION The present study has clearly demonstrated the potency of M. pruriens to reduce the diabetic induced sperm damage induced by oxidative stress (OS). These observations are encouraging to perform similar studies in human.
Collapse
Affiliation(s)
- Sekar Suresh
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | | | | | |
Collapse
|
46
|
Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I. The role of non-synaptic extracellular glutamate. Brain Res Bull 2012; 93:17-26. [PMID: 23149167 DOI: 10.1016/j.brainresbull.2012.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Although there are some mechanisms which allow the direct crossing of substances between the cytoplasm of adjacent cells (gap junctions), most substances use the extracellular space to diffuse between brain cells. The present work reviews the behavior and functions of extracellular glutamate (GLU). There are two extracellular pools of glutamate (GLU) in the brain, a synaptic pool whose functions in the excitatory neurotransmission has been widely studied and an extrasynaptic GLU pool although less known nonetheless is gaining attention among a growing number of researchers. Evidence accumulated over the last years shows a number of mechanisms capable of releasing glial GLU to the extracellular medium, thus modulating neurons, microglia and oligodendrocytes, and regulating the immune response, cerebral blood flow, neuronal synchronization and other brain functions. This new scenario is expanding present knowledge regarding the role of GLU in the brain under different physiological and pathological conditions. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | |
Collapse
|
47
|
Weir HJM, Murray TK, Kehoe PG, Love S, Verdin EM, O’Neill MJ, Lane JD, Balthasar N. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS One 2012; 7:e48225. [PMID: 23139766 PMCID: PMC3491018 DOI: 10.1371/journal.pone.0048225] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/21/2012] [Indexed: 01/01/2023] Open
Abstract
Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer’s disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of β-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress.
Collapse
Affiliation(s)
| | - Tracey K. Murray
- Neurodegenerative Diseases Drug Hunting Team, Eli Lilly and Co. Ltd., Windlesham, Surrey, United Kingdom
| | - Patrick G. Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Eric M. Verdin
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael J. O’Neill
- Neurodegenerative Diseases Drug Hunting Team, Eli Lilly and Co. Ltd., Windlesham, Surrey, United Kingdom
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail: (NB); (JDL)
| | - Nina Balthasar
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail: (NB); (JDL)
| |
Collapse
|
48
|
Lieven CJ, Thurber KA, Levin EJ, Levin LA. Ordering of neuronal apoptosis signaling: a superoxide burst precedes mitochondrial cytochrome c release in a growth factor deprivation model. Apoptosis 2012; 17:591-9. [PMID: 22411528 DOI: 10.1007/s10495-012-0714-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Axonal injury to retinal ganglion cells, a defined central neuron, induces a burst of intracellular superoxide anion that precedes externalization of membrane phosphatidylserine and subsequent apoptotic cell death. Dismutation of superoxide prevents the signal and delays loss of these cells, consistent with superoxide being necessary for transduction of the axotomy signal. However, phosphatidylserine externalization is a relatively late step in apoptosis, and it is possible that the superoxide burst is not an early axotomy signal but rather a result of cytochrome c release from the mitochondrial inner membrane with consequent accumulation of reduced intermediates. Other possibilities are that both superoxide generation and cytochrome c release are induced in parallel by axotomy, or that cytochrome c release potentiates the effect of the superoxide burst. To distinguish these various possibilities, serum-deprived neuronal retinal cells were assayed in vitro for superoxide elevation and release of cytochrome c from mitochondria, and the distribution of these two markers across a large number of cells used to model the temporal ordering of events. Based on this model of factor-dependent cell death, superoxide precedes, and possibly potentiates, cytochrome c release, and thus the former is likely an early signal for certain types of neuronal apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Christopher J Lieven
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
49
|
Dou G, Sreekumar PG, Spee C, He S, Ryan SJ, Kannan R, Hinton DR. Deficiency of αB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic Biol Med 2012; 53:1111-22. [PMID: 22781655 PMCID: PMC3454510 DOI: 10.1016/j.freeradbiomed.2012.06.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/12/2012] [Accepted: 06/28/2012] [Indexed: 01/29/2023]
Abstract
Endoplasmic reticulum (ER) stress is linked to several pathological conditions including age-related macular degeneration. Excessive ER stress initiates cell death cascades which are mediated, in part, through mitochondrial dysfunction. Here, we identify αB crystallin as an important regulator of ER stress-induced cell death. Retinal pigment epithelial (RPE) cells from αB crystallin (-/-) mice, and human RPE cells transfected with αB crystallin siRNA, are more vulnerable to ER stress induced by tunicamycin. ER stress-mediated cell death is associated with increased levels of reactive oxygen species, depletion of glutathione in mitochondria, decreased superoxide dismutase activity, increased release of cytochrome c, and activation of caspases 3 and 4. The ER stress signaling inhibitors, salubrinal and 4-(2-aminoethyl) benzenesulfonyl fluoride, decrease mitochondrial damage and reduce RPE apoptosis induced by ER stress. Prolonged ER stress decreases levels of αB crystallin, thus exacerbating mitochondrial dysfunction. Overexpression of αB crystallin protects RPE cells from ER stress-induced apoptosis by attenuating increases in Bax, CHOP, mitochondrial permeability transition, and cleaved caspase 3. Thus, these data collectively demonstrate that αB crystallin provides critical protection of mitochondrial function during ER stress-induced RPE apoptosis.
Collapse
Affiliation(s)
- Guorui Dou
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Parameswaran G Sreekumar
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
| | - Christine Spee
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Shikun He
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Stephen J Ryan
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - David R Hinton
- Arnold and Beckman Macular Research Center, Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- Corresponding Author: David R Hinton MD, Department of Pathology, 2011 Zonal Avenue, HMR 209, Los Angeles, CA 90033, USA. Tel.: + 1 323 442 6617; Fax: + 1 323 442 6688.
| |
Collapse
|
50
|
Calcium-induced Cardiac Mitochondrial Dysfunction Is Predominantly Mediated by Cyclosporine A-dependent Mitochondrial Permeability Transition Pore. Arch Med Res 2012; 43:333-8. [DOI: 10.1016/j.arcmed.2012.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022]
|