1
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Yadav D, Hacisuleyman A, Dergai M, Khalifeh D, Abriata LA, Peraro MD, Fasshauer D. A look beyond the QR code of SNARE proteins. Protein Sci 2024; 33:e5158. [PMID: 39180485 PMCID: PMC11344281 DOI: 10.1002/pro.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Aysima Hacisuleyman
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Mykola Dergai
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Dany Khalifeh
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Luciano A. Abriata
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
3
|
Duan J, Kahms M, Steinhoff A, Klingauf J. Spontaneous and evoked synaptic vesicle release arises from a single releasable pool. Cell Rep 2024; 43:114461. [PMID: 38990719 DOI: 10.1016/j.celrep.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
The quantal content of an evoked postsynaptic response is typically determined by dividing it by the average spontaneous miniature response. However, this approach is challenged by the notion that different synaptic vesicle pools might drive spontaneous and evoked release. Here, we "silence" synaptic vesicles through pharmacological alkalinization and subsequently rescue them by optogenetic acidification. We find that such silenced synaptic vesicles, retrieved during evoked or spontaneous activity, cross-deplete the complementary release mode in a fully reversible manner. A fluorescently tagged version of the endosomal SNARE protein Vti1a, which has been suggested to identify a separate pool of spontaneously recycling synaptic vesicles, is trafficked to synaptic vesicles significantly only upon overexpression but not when endogenously tagged by CRISPR-Cas9. Thus, both release modes draw synaptic vesicles from the same readily releasable pool.
Collapse
Affiliation(s)
- Junxiu Duan
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Ana Steinhoff
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
4
|
Zhang H, Zhou J, Kou X, Liu Y, Zhao X, Qin G, Wang M, Qian G, Li W, Huang Y, Wang X, Zhao Z, Li S, Wu X, Jiang L, Feng X, Zhu JK, Li L. Syntaxin of plants71 plays essential roles in plant development and stress response via regulating pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1198353. [PMID: 37342145 PMCID: PMC10277689 DOI: 10.3389/fpls.2023.1198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guochen Qin
- Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoqian Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
van Bommel DM, Toonen RF, Verhage M. Mapping localization of 21 endogenous proteins in the Golgi apparatus of rodent neurons. Sci Rep 2023; 13:2871. [PMID: 36806293 PMCID: PMC9938882 DOI: 10.1038/s41598-023-29998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The Golgi apparatus is the major sorting hub in the secretory pathway and particularly important for protein sorting in neurons. Knowledge about protein localization in Golgi compartments is largely based on work in cell lines. Here, we systematically compared protein localization of 21 endogenous proteins in the Golgi apparatus of mouse neurons using confocal microscopy and line scan analysis. We localized these proteins by measuring the distance relative to the canonical TGN marker TGN38. Based on this, proteins fell into three groups: upstream of, overlapping with or downstream of TGN38. Seven proteins showed complete overlap with TGN38, while proteins downstream of TGN38 were located at varying distances from TGN38. Proteins upstream of TGN38 were localized in between TGN38 and the cis-/medial Golgi markers Giantin and GM130. This localization was consistent with protein function. Our data provide an overview of the relative localization of endogenous proteins in the Golgi of primary mouse neurons.
Collapse
Affiliation(s)
- Danique M. van Bommel
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ruud F. Toonen
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), UMC Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Bollmann C, Schöning S, Kotschnew K, Grosse J, Heitzig N, Fischer von Mollard G. Primary neurons lacking the SNAREs vti1a and vti1b show altered neuronal development. Neural Dev 2022; 17:12. [PMID: 36419086 PMCID: PMC9682837 DOI: 10.1186/s13064-022-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurons are highly specialized cells with a complex morphology generated by various membrane trafficking steps. They contain Golgi outposts in dendrites, which are formed from somatic Golgi tubules. In trafficking membrane fusion is mediated by a specific combination of SNARE proteins. A functional SNARE complex contains four different helices, one from each SNARE subfamily (R-, Qa, Qb and Qc). Loss of the two Qb SNAREs vti1a and vti1b from the Golgi apparatus and endosomes leads to death at birth in mice with massive neurodegeneration in peripheral ganglia and defective axon tracts. METHODS Hippocampal and cortical neurons were isolated from Vti1a-/- Vti1b-/- double deficient, Vti1a-/- Vti1b+/-, Vti1a+/- Vti1b-/- and Vti1a+/- Vti1b+/- double heterozygous embryos. Neurite outgrowth was determined in cortical neurons and after stimulation with several neurotrophic factors or the Rho-associated protein kinase ROCK inhibitor Y27632, which induces exocytosis of enlargeosomes, in hippocampal neurons. Moreover, postsynaptic densities were isolated from embryonic Vti1a-/- Vti1b-/- and Vti1a+/- Vti1b+/- control forebrains and analyzed by western blotting. RESULTS Golgi outposts were present in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- dendrites of hippocampal neurons but not detected in the absence of vti1a and vti1b. The length of neurites was significantly shorter in double deficient cortical neurons. These defects were not observed in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- neurons. NGF, BDNF, NT-3, GDNF or Y27632 as stimulator of enlargeosome secretion did not increase the neurite length in double deficient hippocampal neurons. Vti1a-/- Vti1b-/- postsynaptic densities contained similar amounts of scaffold proteins, AMPA receptors and NMDA receptors compared to Vti1a+/- Vti1b+/-, but much more TrkB, which is the receptor for BDNF. CONCLUSION The absence of Golgi outposts did not affect the amount of AMPA and NMDA receptors in postsynaptic densities. Even though TrkB was enriched, BDNF was not able to stimulate neurite elongation in Vti1a-/- Vti1b-/- neurons. Vti1a or vti1b function as the missing Qb-SNARE together with VAMP-4 (R-SNARE), syntaxin 16 (Qa-SNARE) and syntaxin 6 (Qc-SNARE) in induced neurite outgrowth. Our data show the importance of vti1a or vti1b for two pathways of neurite elongation.
Collapse
Affiliation(s)
- Christian Bollmann
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Susanne Schöning
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Katharina Kotschnew
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Julia Grosse
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Nicole Heitzig
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Music A, Tejeda-González B, Cunha DM, Fischer von Mollard G, Hernández-Pérez S, Mattila PK. The SNARE protein Vti1b is recruited to the sites of BCR activation but is redundant for antigen internalisation, processing and presentation. Front Cell Dev Biol 2022; 10:987148. [PMID: 36111340 PMCID: PMC9468668 DOI: 10.3389/fcell.2022.987148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
In order to fulfil the special requirements of antigen-specific activation and communication with other immune cells, B lymphocytes require finely regulated endosomal vesicle trafficking. How the endosomal machinery is regulated in B cells remains largely unexplored. In our previous proximity proteomic screen, we identified the SNARE protein Vti1b as one of the strongest candidates getting accumulated to the sites of early BCR activation. In this report, we follow up on this finding and investigate the localisation and function of Vti1b in B cells. We found that GFP-fused Vti1b was concentrated at the Golgi complex, around the MTOC, as well as in the Rab7+ lysosomal vesicles in the cell periphery. Upon BCR activation with soluble antigen, Vti1b showed partial localization to the internalized antigen vesicles, especially in the periphery of the cell. Moreover, upon BCR activation using surface-bound antigen, Vti1b polarised to the immunological synapse, colocalising with the Golgi complex, and with lysosomes at actin foci. To test for a functional role of Vti1b in early B cell activation, we used primary B cells isolated from Vit1b-deficient mouse. However, we found no functional defects in BCR signalling, immunological synapse formation, or processing and presentation of the internalized antigen, suggesting that the loss of Vti1b in B cells could be compensated by its close homologue Vti1a or other SNAREs.
Collapse
Affiliation(s)
- Amna Music
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Blanca Tejeda-González
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diogo M. Cunha
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | | | - Sara Hernández-Pérez
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Sara Hernández-Pérez, ; Pieta K. Mattila,
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Sara Hernández-Pérez, ; Pieta K. Mattila,
| |
Collapse
|
8
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|
9
|
Sokpor G, Rosenbusch J, Kunwar AJ, Rickmann M, Tuoc T, Rizzoli SO, Tarabykin V, von Mollard GF, Krieglstein K, Staiger JF. Ablation of Vti1a/1b Triggers Neural Progenitor Pool Depletion and Cortical Layer 5 Malformation in Late-embryonic Mouse Cortex. Neuroscience 2021; 463:303-316. [PMID: 33774122 DOI: 10.1016/j.neuroscience.2021.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Cortical morphogenesis entails several neurobiological events, including proliferation and differentiation of progenitors, migration of neuroblasts, and neuronal maturation leading to functional neural circuitry. These neurodevelopmental processes are delicately regulated by many factors. Endosomal SNAREs have emerged as formidable modulators of neuronal growth, aside their well-known function in membrane/vesicular trafficking. However, our understanding of their influence on cortex formation is limited. Here, we report that the SNAREs Vti1a and Vti1b (Vti1a/1b) are critical for proper cortical development. Following null mutation of Vti1a/1b in mouse, the late-embryonic mutant cortex appeared dysgenic, and the cortical progenitors therein were depleted beyond normal. Notably, cortical layer 5 (L5) is distinctively disorganized in the absence of Vti1a/1b. The latter defect, coupled with an overt apoptosis of Ctip2-expressing L5 neurons, likely contributed to the substantial loss of corticospinal and callosal projections in the Vti1a/1b-deficient mouse brain. These findings suggest that Vti1a/1b serve key neurodevelopmental functions during cortical histogenesis, which when mechanistically elucidated, can lend clarity to how endosomal SNAREs regulate brain development, or how their dysfunction may have implications for neurological disorders.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany; Institute for Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Ajaya J Kunwar
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany; Department of Anatomy, Nepalese Army Institute of Health Sciences, College of Medicine, Kathmandu, Nepal; Kathmandu Center for Genomics and Research Laboratory, Kathmandu, Nepal
| | - Michael Rickmann
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany; Institute for Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Silvio O Rizzoli
- Institute of Neuro- and Sensory Physiology, University of Göttingen Medical Centre, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany; Institute of Neuroscience, Lobachevsky State University of Nizhni Novogorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia
| | | | - Kerstin Krieglstein
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany; Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
11
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Tang BL. Vesicle transport through interaction with t-SNAREs 1a (Vti1a)'s roles in neurons. Heliyon 2020; 6:e04600. [PMID: 32775753 PMCID: PMC7398939 DOI: 10.1016/j.heliyon.2020.e04600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
The Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediates membrane fusion during membrane trafficking and autophagy in all eukaryotic cells, with a number of SNAREs having cell type-specific functions. The endosome-trans-Golgi network (TGN) localized SNARE, Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is unique among SNAREs in that it has numerous neuron-specific functions. These include neurite outgrowth, nervous system development, spontaneous neurotransmission, synaptic vesicle and dense core vesicle secretion, as well as a process of unconventional surface transport of the Kv4 potassium channel. Furthermore, the human VT11A gene is known to form fusion products with neighboring genes in cancer tissues, and VT11A variants are associated with risk in cancers, including glioma. In this review, I highlight VTI1A's known physio-pathological roles in brain neurons, as well as unanswered questions in these regards.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Phosphoproteomics reveals that the hVPS34 regulated SGK3 kinase specifically phosphorylates endosomal proteins including Syntaxin-7, Syntaxin-12, RFIP4 and WDR44. Biochem J 2020; 476:3081-3107. [PMID: 31665227 PMCID: PMC6824681 DOI: 10.1042/bcj20190608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/04/2023]
Abstract
The serum- and glucocorticoid-regulated kinase (SGK) isoforms contribute resistance to cancer therapies targeting the PI3K pathway. SGKs are homologous to Akt and these kinases display overlapping specificity and phosphorylate several substrates at the same residues, such as TSC2 to promote tumor growth by switching on the mTORC1 pathway. The SGK3 isoform is up-regulated in breast cancer cells treated with PI3K or Akt inhibitors and recruited and activated at endosomes, through its phox homology domain binding to PtdIns(3)P. We undertook genetic and pharmacological phosphoproteomic screens to uncover novel SGK3 substrates. We identified 40 potential novel SGK3 substrates, including four endosomal proteins STX7 (Ser126) and STX12 (Ser139), RFIP4 (Ser527) and WDR44 (Ser346) that were efficiently phosphorylated in vitro by SGK3 at the sites identified in vivo, but poorly by Akt. We demonstrate that these substrates are inefficiently phosphorylated by Akt as they possess an n + 1 residue from the phosphorylation site that is unfavorable for Akt phosphorylation. Phos-tag analysis revealed that stimulation of HEK293 cells with IGF1 to activate SGK3, promoted phosphorylation of a significant fraction of endogenous STX7 and STX12, in a manner that was blocked by knock-out of SGK3 or treatment with a pan SGK inhibitor (14H). SGK3 phosphorylation of STX12 enhanced interaction with the VAMP4/VTI1A/STX6 containing the SNARE complex and promoted plasma membrane localization. Our data reveal novel substrates for SGK3 and suggest a mechanism by which STX7 and STX12 SNARE complexes are regulated by SGK3. They reveal new biomarkers for monitoring SGK3 pathway activity.
Collapse
|
14
|
Emperador-Melero J, Toonen RF, Verhage M. Vti Proteins: Beyond Endolysosomal Trafficking. Neuroscience 2019; 420:32-40. [DOI: 10.1016/j.neuroscience.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
15
|
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, Anderson KR, Newman RJ, Roose-Girma M, Modrusan Z, Pektas H, Maltepe E, Newton K, Dixit VM. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One 2019; 14:e0214110. [PMID: 30951545 PMCID: PMC6450627 DOI: 10.1371/journal.pone.0214110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein. Expressed in a subset of mouse endocrine organs in addition to the placenta, PEG10 was identified as a substrate of the deubiquitinating enzyme USP9X. Consistent with PEG10 having a critical role in placental development, PEG10-deficient trophoblast stem cells (TSCs) exhibited impaired differentiation into placental lineages. PEG10 expressed in wild-type, differentiating TSCs was bound to many cellular RNAs including Hbegf (Heparin-binding EGF-like growth factor), which is known to play an important role in placentation. Expression of Hbegf was reduced in PEG10-deficient TSCs suggesting that PEG10 might bind to and stabilize RNAs that are critical for normal placental development.
Collapse
Affiliation(s)
- Mona Abed
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Hanna Budayeva
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Peter Liu
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Donald S. Kirkpatrick
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Rohit Reja
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah K. Kummerfeld
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Joshua D. Webster
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Keith R. Anderson
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Robert J. Newman
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Merone Roose-Girma
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Zora Modrusan
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Hazal Pektas
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Emin Maltepe
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Vishva M. Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
17
|
Emperador-Melero J, Huson V, van Weering J, Bollmann C, Fischer von Mollard G, Toonen RF, Verhage M. Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nat Commun 2018; 9:3421. [PMID: 30143604 PMCID: PMC6109172 DOI: 10.1038/s41467-018-05699-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022] Open
Abstract
The SNAREs Vti1a/1b are implicated in regulated secretion, but their role relative to canonical exocytic SNAREs remains elusive. Here, we show that synaptic vesicle and dense-core vesicle (DCV) secretion is indeed severely impaired in Vti1a/b-deficient neurons. The synaptic levels of proteins that mediate secretion were reduced, down to 50% for the exocytic SNARE SNAP25. The delivery of SNAP25 and DCV-cargo into axons was decreased and these molecules accumulated in the Golgi. These defects were rescued by either Vti1a or Vti1b expression. Distended Golgi cisternae and clear vacuoles were observed in Vti1a/b-deficient neurons. The normal non-homogeneous distribution of DCV-cargo inside the Golgi was lost. Cargo trafficking out of, but not into the Golgi, was impaired. Finally, retrograde Cholera Toxin trafficking, but not Sortilin/Sorcs1 distribution, was compromised. We conclude that Vti1a/b support regulated secretion by sorting secretory cargo and synaptic secretion machinery components at the Golgi.
Collapse
Affiliation(s)
- Javier Emperador-Melero
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Vincent Huson
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Jan van Weering
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Christian Bollmann
- Department of Biochemistry III, Bielefeld University, 33615, Bielefeld, Germany
| | | | - Ruud F Toonen
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands. .,Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Chanaday NL, Kavalali ET. Presynaptic origins of distinct modes of neurotransmitter release. Curr Opin Neurobiol 2018; 51:119-126. [PMID: 29597140 PMCID: PMC6066415 DOI: 10.1016/j.conb.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Presynaptic nerve terminals release neurotransmitter synchronously, asynchronously or spontaneously. During synchronous neurotransmission release is precisely coupled to action potentials, in contrast, asynchronous release events show only loose temporal coupling to presynaptic activity whereas spontaneous neurotransmission occurs independent of presynaptic activity. The mechanisms that give rise to this diversity in neurotransmitter release modes are poorly understood. Recent studies have described several presynaptic molecular pathways controlling synaptic vesicle pool segregation and recycling, which in turn may dictate distinct modes of neurotransmitter release. In this article, we review this recent work regarding neurotransmitter release modes and their relationship to synaptic vesicle pool dynamics as well as the molecular machinery that establishes synaptic vesicle pool identity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
19
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 PMCID: PMC5394918 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun 2017; 8:14436. [PMID: 28186166 PMCID: PMC5311059 DOI: 10.1038/ncomms14436] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that stimulus-evoked and spontaneous neurotransmitter release processes are mechanistically distinct. Here we targeted the non-canonical synaptic vesicle SNAREs Vps10p-tail-interactor-1a (vti1a) and vesicle-associated membrane protein 7 (VAMP7) to specifically inhibit spontaneous release events and probe whether these events signal independently of evoked release to the postsynaptic neuron. We found that loss of vti1a and VAMP7 impairs spontaneous high-frequency glutamate release and augments unitary event amplitudes by reducing postsynaptic eukaryotic elongation factor 2 kinase (eEF2K) activity subsequent to the reduction in N-methyl-D-aspartate receptor (NMDAR) activity. Presynaptic, but not postsynaptic, loss of vti1a and VAMP7 occludes NMDAR antagonist-induced synaptic potentiation in an intact circuit, confirming the role of these vesicular SNAREs in setting synaptic strength. Collectively, these results demonstrate that spontaneous neurotransmission signals independently of stimulus-evoked release and highlight its role as a key regulator of postsynaptic efficacy.
Collapse
|
21
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
22
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
23
|
Single Nucleotide Polymorphisms in VTI1A Gene Contribute to the Susceptibility of Chinese Population to Non-Small Cell Lung cancer. Int J Biol Markers 2015; 30:e286-93. [PMID: 25744365 DOI: 10.5301/jbm.5000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
Background Genome-wide association studies (GWAS) have determined a new single nucleotide polymorphism (SNP) called VTI1A (rs7086803) that induces lung cancer susceptibility in nonsmoking women in Asia. This study aimed to evaluate the association between the VTI1A gene and the susceptibility of Chinese patients to lung cancer; it was also conducted to investigate the relationship between VTI1A SNP and adiponectin receptor 1 expression. Methods A total of 887 subjects were enrolled in this study. VTI1A (rs7086803) genotypes were determined by genotyping. Overall survival (OS) was evaluated using Kaplan-Meier analysis with a log-rank test. Results Multivariate regression analysis results indicated that the AA genotype of VTI1A (rs7086803) polymorphism was associated with an increased risk of developing non-small cell lung carcinoma (NSCLC) compared with the GG genotype (AA vs. GG: odds ratio [OR] = 2.020; 95% confidence interval [95% CI], 1.033-3.949, p = 0.037). The AA genotype of VTI1A (rs7086803) in smokers predicted significantly shorter OS (median survival time [MST]: AA 9.8 months, AG 19.3 months, GG 12.2 months, p = 0.017). Adiponectin receptor 1 expression in tumor tissues with the AA genotype was significantly lower than that for other genotypes (mean rank: AA 18.55, AG 25, GG 45.76, p = 0.001). Conclusions The presence of the allele A of VTI1A (rs7086803) may be the allele contributing to the risk of lung cancer susceptibility in Chinese population. Smoking lung cancer patients with the AA genotype of VTI1A gene (rs7086803) had a poor survival rate. Adiponectin receptor 1 expression may be correlated with the susceptibility of the allele A of VTI1A.
Collapse
|
24
|
The structure and function of presynaptic endosomes. Exp Cell Res 2015; 335:172-9. [DOI: 10.1016/j.yexcr.2015.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022]
|
25
|
Meng J, Wang J. Role of SNARE proteins in tumourigenesis and their potential as targets for novel anti-cancer therapeutics. Biochim Biophys Acta Rev Cancer 2015; 1856:1-12. [PMID: 25956199 DOI: 10.1016/j.bbcan.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
The function of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in cellular trafficking, membrane fusion and vesicle release in synaptic nerve terminals is well characterised. Recent studies suggest that SNAREs are also important in the control of tumourigenesis through the regulation of multiple signalling and transportation pathways. The majority of published studies investigated the effects of knockdown/knockout or overexpression of particular SNAREs on the normal function of cells as well as their dysfunction in tumourigenesis promotion. SNAREs are involved in the regulation of cancer cell invasion, chemo-resistance, the transportation of autocrine and paracrine factors, autophagy, apoptosis and the phosphorylation of kinases essential for cancer cell biogenesis. This evidence highlights SNAREs as potential targets for novel cancer therapy. This is the first review to summarise the expression and role of SNAREs in cancer biology at the cellular level, their interaction with non-SNARE proteins and modulation of cellular signalling cascades. Finally, a strategy is proposed for developing novel anti-cancer therapeutics using targeted delivery of a SNARE-inactivating protease into malignant cells.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
26
|
Abstract
Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca(2+) influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release.
Collapse
|
27
|
Jany T, Moreth A, Gruschka C, Sischka A, Spiering A, Dieding M, Wang Y, Samo SH, Stammler A, Bögge H, Fischer von Mollard G, Anselmetti D, Glaser T. Rational Design of a Cytotoxic Dinuclear Cu2 Complex That Binds by Molecular Recognition at Two Neighboring Phosphates of the DNA Backbone. Inorg Chem 2015; 54:2679-90. [DOI: 10.1021/ic5028465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Jany
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Alexander Moreth
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Claudia Gruschka
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Andy Sischka
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Andre Spiering
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Mareike Dieding
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ying Wang
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Susan Haji Samo
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
28
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
29
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
30
|
Walter AM, Kurps J, de Wit H, Schöning S, Toft-Bertelsen TL, Lauks J, Ziomkiewicz I, Weiss AN, Schulz A, Fischer von Mollard G, Verhage M, Sørensen JB. The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 2014; 33:1681-97. [PMID: 24902738 DOI: 10.15252/embj.201387549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca(2+)-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca(2+)-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca(2+)-channel trafficking, but is dispensable for transmitter release.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Julia Kurps
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Susanne Schöning
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Trine L Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Lauks
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Iwona Ziomkiewicz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Annita N Weiss
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 2013; 76:333-63. [PMID: 24274737 DOI: 10.1146/annurev-physiol-021113-170338] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | | |
Collapse
|
32
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
33
|
Abstract
In addition to activity-dependent neurotransmission, neurons can undergo spontaneous activity-independent neurotransmitter release with low probability. In this issue of Neuron, Ramirez et al. (2012) now identify the noncanonical endosomal SNARE Vps10p-tail-interactor1a (Vti1a) as a regulator of spontaneously fusing vesicles.
Collapse
Affiliation(s)
- Natalia L Kononenko
- Freie Universität Berlin, NeuroCure Cluster of Excellence & Charité Berlin, 14195 Berlin, Germany
| | | |
Collapse
|
34
|
Ramirez DMO, Khvotchev M, Trauterman B, Kavalali ET. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 2012; 73:121-34. [PMID: 22243751 DOI: 10.1016/j.neuron.2011.10.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
Recent studies suggest that synaptic vesicles (SVs) giving rise to spontaneous neurotransmission are distinct from those that carry out evoked release. However, the molecular basis of this dichotomy remains unclear. Here, we focused on two noncanonical SNARE molecules, Vps10p-tail-interactor-1a (vti1a) and VAMP7, previously shown to reside on SVs. Using simultaneous multicolor imaging at individual synapses, we could show that compared to the more abundant vesicular SNARE synaptobrevin2, both vti1a and VAMP7 were reluctantly mobilized during activity. Vti1a, but not VAMP7, showed robust trafficking under resting conditions that could be partly matched by synaptobrevin2. Furthermore, loss of vti1a function selectively reduced high-frequency spontaneous neurotransmitter release detected postsynaptically. Expression of a truncated version of vti1a augmented spontaneous release more than full-length vti1a, suggesting that an autoinhibitory process regulates vti1a function. Taken together, these results support the premise that in its native form vti1a selectively maintains spontaneous neurotransmitter release.
Collapse
Affiliation(s)
- Denise M O Ramirez
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | | | |
Collapse
|
35
|
Ramirez DM, Kavalali ET. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol 2011; 21:275-82. [PMID: 21334193 PMCID: PMC3092808 DOI: 10.1016/j.conb.2011.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 12/20/2022]
Abstract
Recent studies have begun to scrutinize the presynaptic machinery and vesicle populations that give rise to action potential evoked and spontaneous forms of neurotransmitter release. In several cases this work produced unexpected results which lend support to the notion that regulation, mechanisms, postsynaptic targets and possibly presynaptic origins of evoked and spontaneous neurotransmitter release differ. Furthermore, the list of regulatory pathways that impact spontaneous and evoked release in a divergent manner is rapidly growing. These findings challenge our classical views on the relationship between evoked and spontaneous neurotransmission. In contrast to the well-characterized neuromodulatory pathways that equally suppress or augment all forms of neurotransmitter release, molecular substrates specifically controlling spontaneous release remain unclear. In this review, we outline possible mechanisms that may underlie the differential regulation of distinct forms of neurotransmission and help demultiplex complex neuronal signals and generate parallel signaling events at their postsynaptic targets.
Collapse
Affiliation(s)
- Denise M.O. Ramirez
- Department of Neuroscience UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T. Kavalali
- Department of Neuroscience UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
36
|
Lack of the endosomal SNAREs vti1a and vti1b led to significant impairments in neuronal development. Proc Natl Acad Sci U S A 2011; 108:2575-80. [PMID: 21262811 DOI: 10.1073/pnas.1013891108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fusion between membranes is mediated by specific SNARE complexes. Here we report that fibroblasts survive the absence of the trans-Golgi network/early endosomal SNARE vti1a and the late endosomal SNARE vti1b with intact organelle morphology and minor trafficking defects. Because vti1a and vti1b are the only members of their SNARE subclass and the yeast homolog Vti1p is essential for cell survival, these data suggest that more distantly related SNAREs acquired the ability to function in endosomal traffic during evolution. However, absence of vti1a and vti1b resulted in perinatal lethality. Major axon tracts were missing, reduced in size, or misrouted in Vti1a(-/-) Vti1b(-/-) embryos. Progressive neurodegeneration was observed in most Vti1a(-/-) Vti1b(-/-) peripheral ganglia. Neurons were reduced by more than 95% in Vti1a(-/-) Vti1b(-/-) dorsal root and geniculate ganglia at embryonic day 18.5. These data suggest that special demands for endosomal membrane traffic could not be met in Vti1a(-/-) Vti1b(-/-) neurons. Vti1a(-/-) and Vti1b(-/-) single deficient mice were viable without these neuronal defects, indicating that they can substitute for each other in these processes.
Collapse
|
37
|
Abstract
Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome.
Collapse
|
38
|
Ben-David E, Shifman S. Further investigation of the association between rs7341475 and rs17746501 and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1244-7. [PMID: 20468075 DOI: 10.1002/ajmg.b.31093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) with small sample size have had limited statistical power in identifying schizophrenia susceptibility genes. This is exemplified by the fact that one of the most convincing associations was detected only after meta-analyses of three different GWAS. Here we used meta-analysis to study the association of two single-nucleotide polymorphisms (SNPs) (rs7341475 and rs17746501) previously indicated to be associated with schizophrenia by a GWAS of Ashkenazi Jews (AJ). In the initial report, rs7341475 was associated only in women, while rs17746501 was associated in both men and women. We collected genotyping results of samples published in four GWAS for the two SNPs, additional to results from AJ. We used the Mantel-Haenszel method to combine the data of the different samples. For both SNPs, the results of the meta-analysis of all samples, including the initial report, did not reach a genome-wide significance level. However, the association between rs7341475 and schizophrenia in women, after excluding the data from AJ, was significant (P = 9.0 x 10(-3)), with a calculated odds ratio (OR) of 1.11, much smaller than the original result. Association between rs17746501 and schizophrenia was significant in four of the new samples, showing evidence for heterogeneity and very small effect when tested across all samples (P = 0.016, OR = 1.06). These findings suggest that the two SNPs might have a small effect on schizophrenia risk and suggest that meta-analyses of very large samples are needed to adequately study the contribution of common variants to schizophrenia susceptibility.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
39
|
Shupliakov O, Brodin L. Recent insights into the building and cycling of synaptic vesicles. Exp Cell Res 2010; 316:1344-50. [PMID: 20211177 DOI: 10.1016/j.yexcr.2010.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
The synaptic vesicle is currently the most well-characterized cellular organelle. During neurotransmitter release it undergoes multiple cycles of exo- and endocytosis. Despite this the vesicle manages to retain its protein and lipid composition. How does this happen? Here we provide a brief overview of the molecular architecture of the synaptic vesicle, and discuss recent studies investigating single vesicle behavior and the mechanisms controlling the vesicle's molecular contents.
Collapse
Affiliation(s)
- Oleg Shupliakov
- Department of Neuroscience, DBRM, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
40
|
Abstract
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
41
|
Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard GF. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res 2008; 334:227-42. [PMID: 18923845 PMCID: PMC3085783 DOI: 10.1007/s00441-008-0692-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/02/2008] [Indexed: 12/22/2022]
Abstract
SNARE (soluble-N-ethylmaleimide-sensitive factor attachment receptor) proteins mediate the recognition and fusion of transport vesicles in eukaryotic cells. The SNARE protein VAMP8 (also called endobrevin) is involved in the fusion of late endosomes and in some pathways of regulated exocytosis. In a subset of mice deficient for the SNARE protein VAMP8, a severe alteration of the thymus and in T lymphocyte development was observed and characterized. The size of the thymus and the number of thymocytes were dramatically reduced compared with those in heterozygous littermates. Further, the compartmentalization into cortex and medulla and the organization of the thymus epithelium were disturbed. The numbers of all thymocyte subpopulations were reduced, with the CD4 and CD8 double-positive thymocytes being most severely affected. The proportion of proliferating thymocytes was reduced, and the staining of apoptotic cells in situ and ex vivo indicated an increased number of apoptotic cells. Isolated thymocytes of Vamp8−/− mice were more susceptible to various apoptotic stimuli including glucocorticoids, FAS receptor, and CD3/CD28-mediated signaling in vitro, even before an increased number of apoptotic cells was detectable in situ. However, bone marrow of phenotypically affected Vamp8−/− mice was readily able to repopulate immunodeficient hosts suggesting that the SNARE protein VAMP8 has a specific function in the thymic stroma affecting the proliferation and apoptosis of T lymphocytes during maturation in the thymus.
Collapse
Affiliation(s)
- Namita Kanwar
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, 33501, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are estimated to encode these evolutionarily conserved sequences. miRNAs are thought to control expression of thousands of target mRNAs. Mammalian miRNAs generally negatively regulate gene expression by repressing translation, possibly through effects on mRNA stability and compartmentalisation, and/or the translation process itself. An extensive range of in silico and experimental techniques have been applied to our understanding of the occurrence and functional relevance of such sequences, and antisense technologies have been successfully used to control miRNA expression in vitro and in vivo. Interestingly, miRNAs have been identified in both normal and pathological conditions, including differentiation and development, metabolism, proliferation, cell death, viral infection and cancer. Of specific relevance and excitement to the area of diabetes research, miRNA regulation has been implicated in insulin secretion from pancreatic β-cells, diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro and in vivo will, undoubtedly, enable us determine their potential to be exploited as therapeutic targets in diabetes.
Collapse
|
43
|
Richards M, Iijima Y, Shizuno T, Kamegaya Y, Hori H, Omori M, Arima K, Saitoh O, Kunugi H. Failure to confirm an association between Epsin 4 and schizophrenia in a Japanese population. J Neural Transm (Vienna) 2008; 115:1347-54. [PMID: 18696005 DOI: 10.1007/s00702-008-0100-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/20/2008] [Indexed: 10/21/2022]
Abstract
Previous studies suggested that genetic variations in the 5' region of Epsin 4, a gene encoding enthoprotin on chromosome 5q33, are associated with schizophrenia. However, conflicting results have also been reported. We examined the possible association in a Japanese sample of 354 patients and 365 controls. Seventeen polymorphisms of Epsin 4 [3 microsatellites and 14 single nucleotide polymorphisms (SNPs)] were selected. A microsatellite marker (D5S1403) demonstrated a significant difference in the allele frequency between patients and controls (uncorrected P = 0.04). However, there was no significant difference in the genotype or allele frequency between the two groups for the other microsatellites or SNPs. Haplotype-based analysis provided no evidence for an association. The positive result at D5S1403 no longer reached statistical significance when multiple testing was taken into consideration. Our results suggest that the examined region of Epsin 4 does not have a major influence on susceptibility to schizophrenia in Japanese.
Collapse
Affiliation(s)
- Misty Richards
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chidambaram S, Zimmermann J, von Mollard GF. ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome. J Cell Sci 2008; 121:329-38. [DOI: 10.1242/jcs.012708] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ENTH and ANTH domain proteins are involved in budding of clathrin-coated vesicles. SNAREs are fusogenic proteins that function in the targeting and fusion of transport vesicles. In mammalian and yeast cells, ENTH domain proteins (epsinR and Ent3p) interact with SNAREs of the vti1 family (Vti1b or Vti1p). This interaction indicates that ENTH proteins could function in cargo sorting, which prompted us to search for additional SNAREs as potential cargo for Ent3p and epsinR. We carried out specific yeast two-hybrid assays, which identified interactions between epsinR and the mammalian late endosomal SNAREs syntaxin 7 and syntaxin 8 as well as between Ent3p and the endosomal SNAREs Pep12p and Syn8p from yeast. Lack of Ent3p affected the trafficking of Pep12p. Ent3p binding to Pep12p required the FSD late endosomal sorting signal in Pep12p. Inactivation of the sorting signal had a similar effect to removal of Ent3p on Pep12p stability indicating that Ent3p acts as a cargo adaptor for Pep12p by binding to the sorting signal. As Vti1p, Pep12p and Syn8p participate in a SNARE complex whereas Vti1b, syntaxin 7 and syntaxin 8 are mammalian SNARE partners, we propose that ENTH domain proteins at the TGN-endosome are cargo adaptors for these endosomal SNAREs.
Collapse
Affiliation(s)
- Subbulakshmi Chidambaram
- Biochemie III, Fakultät für Chemie, Universitätstrasse 25, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Jana Zimmermann
- Biochemie III, Fakultät für Chemie, Universitätstrasse 25, Universität Bielefeld, 33615 Bielefeld, Germany
| | | |
Collapse
|
45
|
Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO. The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 2007; 26:3981-92. [PMID: 17717530 PMCID: PMC1994121 DOI: 10.1038/sj.emboj.7601820] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/19/2007] [Indexed: 12/26/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved. Although both sets of SNAREs promiscuously assemble in vitro, there is no functional crosstalk. We now show that they not only colocalize to overlapping microdomains in the membrane of early endosomes of neuroendocrine cells, but also form cis-complexes promiscuously, with the proportion of the different complexes being primarily dependent on mass action. Addition of soluble SNARE molecules onto native membranes revealed preference for cognate SNAREs. Furthermore, we found that SNAREs are laterally segregated at endosome contact sites, with the exocytotic synaptobrevin being depleted. We conclude that specificity in endosome fusion is mediated by the following two synergistically operating mechanisms: (i) preference for the cognate SNARE in 'trans' interactions and (ii) lateral segregation of SNAREs, leading to relative enrichment of the cognate ones at the prospective fusion sites.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- International Max Planck Research School Neurosciences, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thorsten Lang
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulf Geumann
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jochen J Sieber
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany. Tel.: +49 551 201 1635; Fax: +49 551 201 1639; E-mail:
| | - Silvio O Rizzoli
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
46
|
Abstract
Neurotransmission requires the proper organization and rapid recycling of synaptic vesicles. Rapid retrieval has been suggested to occur either by kiss-and-stay or kiss-and-run mechanisms, whereas classical recycling is mediated by clathrin-dependent endocytosis. Molecular coats are key components in the selection of cargos, AP-2 (adaptor protein 2) playing a prominent role in synaptic vesicle endocytosis. Another coat protein, AP-3, has been implicated in synaptic vesicle biogenesis and in the generation of secretory and lysosomal-related organelles. In the present review, we will particularly focus on the recent data concerning the recycling of synaptic vesicles and the function of AP-3 and the v-SNARE (vesicular soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein) in these processes. We propose that AP-3 plays an important regulatory role in neurons which contributes to the basal and stimulated exocytosis of synaptic vesicles.
Collapse
Affiliation(s)
- Lydia Danglot
- Membrane Traffic in Neuronal and Epithelial Morphogenesis, INSERM Avenir Team, Paris, France
| | | |
Collapse
|
47
|
Abstract
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.
Collapse
Affiliation(s)
- Shaohui Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
48
|
Abstract
Synaptic vesicles are key organelles in neurotransmission. Vesicle integral or membrane-associated proteins mediate the various functions the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the pre-synaptic plasma membrane during exo- and endocytosis. Within the past two decades, converging work from several laboratories resulted in the molecular and functional characterization of the proteinaceous inventory of the synaptic vesicle compartment. However, up until recently and due to technical difficulties, it was impossible to screen the entire organelle thoroughly. Recent advances in membrane protein identification and mass spectrometry (MS) have dramatically promoted this field. A comparison of different techniques for elucidating the proteinaceous composition of synaptic vesicles revealed numerous overlaps but also remarkable differences in the protein constituents of the synaptic vesicle compartment, indicating that several protein separation techniques in combination with differing MS approaches are required to identify and characterize the synaptic vesicle proteome. This review highlights the power of various gel separation techniques and MS analyses for the characterization of the proteome of highly purified synaptic vesicles. Furthermore, the newly detected protein assignments to synaptic vesicles, especially those proteins which are new to the inventory of the synaptic vesicle proteome, are critically discussed.
Collapse
Affiliation(s)
- Jacqueline Burré
- Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
49
|
Boal F, Le Pevelen S, Cziepluch C, Scotti P, Lang J. Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:109-19. [PMID: 17034881 DOI: 10.1016/j.bbamcr.2006.08.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 07/27/2006] [Accepted: 08/02/2006] [Indexed: 11/24/2022]
Abstract
Cysteine string proteins (CSPs) belong to the DnaJ-like chaperone family and play an important role in regulated exocytosis in neurons and endocrine cells. The palmitoylation of several residues in a cysteine string domain may anchor CSPs to the exocytotic vesicle surface and in pancreatic beta-cells, Cspalpha is localized on insulin containing large dense core vesicles (LDCVs). An isoform closely related to Cspalpha, Cspbeta, has been obtained from testis cell cDNA libraries. To gain insights on this isoform and more generally on the properties of CSPs, we compared Cspalpha and Cspbeta. In pull-down experiments, Cspbeta was able to interact to the same extent with two of the known Cspalpha chaperone partners, Hsc70 and SGT. Upon transient overexpression in clonal beta-cells, Cspbeta but not Cspalpha was mainly produced as a non-palmitoylated protein and mutational analysis indicated that domains distinct from the cysteine string are responsible for this difference. As Cspbeta remained tightly bound to membranes, intrinsic properties of CSPs are sufficient for interactions with membranes. Indeed, recombinant Cspalpha and Cspbeta were capable to interact with membranes even in their non-palmitoylated forms. Furthermore, overexpressed Cspbeta was not associated with LDCVs, but was localized at the trans-Golgi network. Our results suggest a possible correlation between the specific membrane targeting and the palmitoylation level of CSPs.
Collapse
Affiliation(s)
- Frédéric Boal
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, F-33607 Pessac, France
| | | | | | | | | |
Collapse
|
50
|
Rizzoli SO, Bethani I, Zwilling D, Wenzel D, Siddiqui TJ, Brandhorst D, Jahn R. Evidence for early endosome-like fusion of recently endocytosed synaptic vesicles. Traffic 2007; 7:1163-76. [PMID: 17004320 DOI: 10.1111/j.1600-0854.2006.00466.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early endosomes are well-established acceptor compartments of endocytic vesicles in many cell types. Little evidence of their existence or function has been obtained in synapses, and it is generally believed that synaptic vesicles recycle without passing through an endosomal intermediate. We show here that the early endosomal SNARE proteins are enriched in synaptic vesicles. To investigate their function in the synapse, we isolated synaptic nerve terminals (synaptosomes), stimulated them in presence of different fluorescent markers to label the recycling vesicles and used these vesicles in in vitro fusion assays. The recently endocytosed vesicles underwent homotypic fusion. They also fused with endosomes from PC12 and BHK cells. The fusion process was dependent upon NSF activity. Moreover, fusion was dependent upon the early endosomal SNAREs but not upon the SNAREs involved in exocytosis. Our results thus show that at least a fraction of the vesicles endocytosed during synaptic activity are capable of fusing with early endosomes and lend support to an involvement of endosomal intermediates during recycling of synaptic vesicles.
Collapse
Affiliation(s)
- Silvio O Rizzoli
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|