1
|
Han C, English G, Saal HP, Indiveri G, Gilra A, von der Behrens W, Vasilaki E. Modelling novelty detection in the thalamocortical loop. PLoS Comput Biol 2023; 19:e1009616. [PMID: 37186588 DOI: 10.1371/journal.pcbi.1009616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/25/2023] [Accepted: 02/21/2023] [Indexed: 05/17/2023] Open
Abstract
In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities.
Collapse
Affiliation(s)
- Chao Han
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolyn English
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Hannes P Saal
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Giacomo Indiveri
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Aditya Gilra
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
| |
Collapse
|
2
|
Zhang H, Wang X, Guo W, Li A, Chen R, Huang F, Liu X, Chen Y, Li N, Liu X, Xu T, Xue Z, Zeng S. Cross-Streams Through the Ventral Posteromedial Thalamic Nucleus to Convey Vibrissal Information. Front Neuroanat 2021; 15:724861. [PMID: 34776879 PMCID: PMC8582278 DOI: 10.3389/fnana.2021.724861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Whisker detection is crucial to adapt to the environment for some animals, but how the nervous system processes and integrates whisker information is still an open question. It is well-known that two main parallel pathways through Ventral posteromedial thalamic nucleus (VPM) ascend to the barrel cortex, and classical theory suggests that the cross-talk from trigeminal nucleus interpolaris (Sp5i) to principal nucleus (Pr5) between the main parallel pathways contributes to the multi-whisker integration in barrel columns. Moreover, some studies suggest there are other cross-streams between the parallel pathways. To confirm their existence, in this study we used a dual-viral labeling strategy and high-resolution, large-volume light imaging to get the complete morphology of individual VPM neurons and trace their projections. We found some new thalamocortical projections from the ventral lateral part of VPM (VPMvl) to barrel columns. In addition, the retrograde-viral labeling and imaging results showed there were the large trigeminothalamic projections from Sp5i to the dorsomedial section of VPM (VPMdm). Our results reveal new cross-streams between the parallel pathways through VPM, which may involve the execution of multi-whisker integration in barrel columns.
Collapse
Affiliation(s)
- Huimin Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Guo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Huang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pellicer-Morata V, Wang L, de Jongh Curry A, Tsao JW, Waters RS. Structural and functional organization of the lower jaw barrel subfield in rat primary somatosensory cortex. J Comp Neurol 2020; 529:1895-1910. [PMID: 33135168 DOI: 10.1002/cne.25063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022]
Abstract
Barrel subfields in rodent primary somatosensory cortex (SI) are important model systems for studying cortical organization and reorganization. During cortical reorganization that follows limb deafferentation, neurons in deafferented forelimb SI become responsive to previously unexpressed inputs from the lower jaw. Although the lower jaw barrel subfield (LJBSF) is a likely source of the input, this subfield has received little attention. Our aim was to describe the structural and functional organization of the normal LJBSF. To investigate LJBSF organization, a nomenclature for lower jaw skin surface was developed, cytochrome oxidase (CO) was used to label flattened-cut LJBSF sections, microelectrodes were used to map the lower jaw skin surface representation in SI, and electrolytic lesions, recovered from electrode penetrations, were used to align the physiological map to the underlying barrel map. LJBSF is a tear-shaped subfield containing approximately 24 barrels, arranged in eight mediolateral rows and a barrel-free zone capping the anterior border. The representation of the lower jaw skin consisting of chin vibrissae and microvibrissae embedded in common fur is somatotopically organized in a single map in the contralateral SI. This physiological map shows that the activity from the vibrissae aligns with the CO-staining of the underlying LJBSF. LJBSF barrels receive topographically ordered barrel-specific input from individual vibrissa and microvibrissae in the lower jaw but not from trident whiskers. The barrel-free zone receives topographically ordered input from the lower lip. These data demonstrating that the LJBSF is a highly organized subfield are essential for understanding its possible role in cortical reorganization.
Collapse
Affiliation(s)
- Violeta Pellicer-Morata
- Department of Physiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, USA
| | - Lie Wang
- Department of Neurology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, Memphis, Tennessee, USA
| | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Robert S Waters
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, Memphis, Tennessee, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage 2020; 223:117255. [PMID: 32800990 DOI: 10.1016/j.neuroimage.2020.117255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Encoding schemes are systematic large-scale arrangements that convert incoming sensory information into a format required for further information processing. The increased spatial resolution of brain images obtained with ultra-high field magnetic resonance imaging at 7 T (7T-MRI) and above increases the granularity and precision of processing units that mediate the link between neuronal encoding and functional readouts. Here, these new developments are reviewed with a focus on human tactile encoding schemes derived from small-scale processing units (in the order of 0.5-5 mm) that are relevant for theoretical and practical concepts of somatosensory encoding and cortical plasticity. Precisely, we review recent approaches to characterize meso-scale maps, layer units, and cortical fields in the sensorimotor cortex of the living human brain and discuss their impact on theories of perception, motor control, topographic encoding, and cortical plasticity. Finally, we discuss concepts on the integration of small-scale processing units into functional networks that span multiple topographic maps and multiple cortical areas. Novel research areas are highlighted that may help to bridge the gap between cortical microstructure and meta-topographic models on brain anatomy and function.
Collapse
Affiliation(s)
- Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg 39120, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| |
Collapse
|
5
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
6
|
Texture Identification by Bounded Integration of Sensory Cortical Signals. Curr Biol 2019; 29:1425-1435.e5. [DOI: 10.1016/j.cub.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/17/2022]
|
7
|
Ciruelas K, Marcotulli D, Bajjalieh SM. Synaptic vesicle protein 2: A multi-faceted regulator of secretion. Semin Cell Dev Biol 2019; 95:130-141. [PMID: 30826548 DOI: 10.1016/j.semcdb.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Kristine Ciruelas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Daniele Marcotulli
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
8
|
Devilbiss DM. Consequences of tuning network function by tonic and phasic locus coeruleus output and stress: Regulating detection and discrimination of peripheral stimuli. Brain Res 2018; 1709:16-27. [PMID: 29908165 DOI: 10.1016/j.brainres.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Flexible and adaptive behaviors have evolved with increasing complexity and numbers of neuromodulator systems. The neuromodulatory locus coeruleus-norepinephrine (LC-NE) system is central to regulating cognitive function in a behaviorally-relevant and arousal-dependent manner. Through its nearly ubiquitous efferent projections, the LC-NE system acts to modulate neuron function on a cell-by-cell basis and exert a spectrum of actions across different brain regions to optimize target circuit function. As LC neuron activity, NE signaling, and arousal level increases, cognitive performance improves over an inverted-U shaped curve. Additionally, LC neurons burst phasically in relation to novel or salient sensory stimuli and top-down decision- or response-related processes. Together, the variety of LC activity patterns and complex actions of the LC-NE system indicate that the LC-NE system may dynamically regulate the function of target neural circuits. The manner in which neural networks encode, represent, and perform neurocomputations continue to be revealed. This has improved our ability to understand the optimization of neural circuits by NE and generation of flexible and adaptive goal-directed behaviors. In this review, the rat vibrissa somatosensory system is explored as a model neural circuit to bridge known modulatory actions of NE and changes in cognitive function. It is argued that fluid transitions between neural computational states reflect the ability of this sensory system to shift between two principal functions: detection of novel or salient sensory information and detailed descriptions of sensory information. Such flexibility in circuit function is likely critical for producing context-appropriate sensory signal processing. Nonetheless, many challenges remain including providing a causal link between NE mediated changes in sensory neural coding and perceptual changes, as well as extending these principles to higher cognitive functions including behavioral flexibility and decision making.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, United States.
| |
Collapse
|
9
|
Hama N, Kawai M, Ito SI, Hirota A. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli. J Neurophysiol 2018; 119:1934-1946. [DOI: 10.1152/jn.00904.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates in the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different interstimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves, 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus, and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two singly induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs. NEW & NOTEWORTHY Sensory stimulation-induced cortical excitation propagates as a wave and spreads over a wide area of the sensory cortex. To elucidate the characteristics of this relatively unknown phenomenon, we examined the interaction between two individually induced waves in the somatosensory cortex. Either the waves collided or the preceding wave affected the emergence of the following one. Our results indicate that the state of the interaction was strongly influenced by the relative timing of sensory inputs.
Collapse
Affiliation(s)
- Noriyuki Hama
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Minako Kawai
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Shin-Ichi Ito
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiko Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
10
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
11
|
Abstract
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
Collapse
|
12
|
Estebanez L, Férézou I, Ego-Stengel V, Shulz DE. Representation of tactile scenes in the rodent barrel cortex. Neuroscience 2017; 368:81-94. [PMID: 28843997 DOI: 10.1016/j.neuroscience.2017.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
After half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that take place during spontaneous rodent behavior - so called natural tactile scenes. Here we review the current knowledge regarding the coding of patterns of whisker stimuli by barrel cortex neurons, from responses to single-whisker deflections to the representation of complex tactile scenes. A number of multi-whisker tunings have already been identified, including center-surround feature extraction, angular tuning during edge-like multi-whisker deflections, and even tuning to specific statistical properties of the tactile scene such as the level of correlation across whiskers. However, a more general model of the representation of multi-whisker information in the barrel cortex is still missing. This is in part because of the lack of a human intuition regarding the perception emerging from a whisker system, but also because in contrast to other primary sensory cortices such as the visual cortex, the spatial feature selectivity of barrel cortex neurons rests on highly nonlinear interactions that remained hidden to classical receptive field approaches.
Collapse
Affiliation(s)
- Luc Estebanez
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Isabelle Férézou
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Valérie Ego-Stengel
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Grajski KA. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b. Front Comput Neurosci 2016; 10:72. [PMID: 27504086 PMCID: PMC4958931 DOI: 10.3389/fncom.2016.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 11/13/2022] Open
Abstract
Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.
Collapse
|
14
|
Panzeri S, Pola G, Petersen RS. Coding of Sensory Signals by Neuronal Populations: The Role of Correlated Activity. Neuroscientist 2016; 9:175-80. [PMID: 15065813 DOI: 10.1177/1073858403009003010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How is sensory information encoded by the patterns of action potentials emitted by ensembles of neurons? Computational methods have recently been applied to this fundamental question and have found, both in the somatosensory and visual system, that the basic unit of information transmission is the timing of individual spikes. In systems studied to date, the neuronal population codes appear to be simple ones that do not rely on complex patterns of correlated spikes.
Collapse
Affiliation(s)
- Stefano Panzeri
- UMIST, Department of Optometry and Neuroscience, PO Box 88, Manchester M60 IQD, United Kingdom.
| | | | | |
Collapse
|
15
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Joao G Franca
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Jain
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Yoshinao Kajikawa
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
16
|
Gollnick CA, Millard DC, Ortiz AD, Bellamkonda RV, Stanley GB. Response reliability observed with voltage-sensitive dye imaging of cortical layer 2/3: the probability of activation hypothesis. J Neurophysiol 2016; 115:2456-69. [PMID: 26864758 DOI: 10.1152/jn.00547.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
A central assertion in the study of neural processing is that our perception of the environment directly reflects the activity of our sensory neurons. This assertion reinforces the intuition that the strength of a sensory input directly modulates the amount of neural activity observed in response to that sensory feature: an increase in the strength of the input yields a graded increase in the amount of neural activity. However, cortical activity across a range of sensory pathways can be sparse, with individual neurons having remarkably low firing rates, often exhibiting suprathreshold activity on only a fraction of experimental trials. To compensate for this observed apparent unreliability, it is assumed that instead the local population of neurons, although not explicitly measured, does reliably represent the strength of the sensory input. This assumption, however, is largely untested. In this study, using wide-field voltage-sensitive dye (VSD) imaging of the somatosensory cortex in the anesthetized rat, we show that whisker deflection velocity, or stimulus strength, is not encoded by the magnitude of the population response at the level of cortex. Instead, modulation of whisker deflection velocity affects the likelihood of the cortical response, impacting the magnitude, rate of change, and spatial extent of the cortical response. An ideal observer analysis of the cortical response points to a probabilistic code based on repeated sampling across cortical columns and/or time, which we refer to as the probability of activation hypothesis. This hypothesis motivates a range of testable predictions for both future electrophysiological and future behavioral studies.
Collapse
Affiliation(s)
- Clare A Gollnick
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia
| | - Daniel C Millard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia
| | - Alexander D Ortiz
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia
| | - Ravi V Bellamkonda
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia
| | - Garrett B Stanley
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia
| |
Collapse
|
17
|
Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J Cereb Blood Flow Metab 2015; 35:1819-26. [PMID: 26104288 PMCID: PMC4635237 DOI: 10.1038/jcbfm.2015.130] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex.
Collapse
|
18
|
Pais-Vieira M, Kunicki C, Tseng PH, Martin J, Lebedev M, Nicolelis MAL. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination. J Neurophysiol 2015; 114:1652-76. [PMID: 26180115 PMCID: PMC4567613 DOI: 10.1152/jn.00108.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/12/2015] [Indexed: 11/22/2022] Open
Abstract
Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.
Collapse
Affiliation(s)
- Miguel Pais-Vieira
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Carolina Kunicki
- Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| | - Po-He Tseng
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Joel Martin
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Mikhail Lebedev
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and
| | - Miguel A L Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
19
|
Mao H, Yuan Y, Si J. Improved discriminability of spatiotemporal neural patterns in rat motor cortical areas as directional choice learning progresses. Front Syst Neurosci 2015; 9:28. [PMID: 25798093 PMCID: PMC4351592 DOI: 10.3389/fnsys.2015.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 11/13/2022] Open
Abstract
Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively) areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2–3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats' behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.
Collapse
Affiliation(s)
- Hongwei Mao
- Electrical Engineering, School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ, USA
| | - Yuan Yuan
- Electrical Engineering, School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ, USA
| | - Jennie Si
- Electrical Engineering, School of Electrical, Computer and Energy Engineering, Arizona State University Tempe, AZ, USA ; Graduate Faculty of the School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA ; Affiliate Faculty of the Interdisciplinary Graduate Program in Neuroscience, Arizona State University Tempe, AZ, USA
| |
Collapse
|
20
|
Reyes-Puerta V, Amitai Y, Sun JJ, Shani I, Luhmann HJ, Shamir M. Long-range intralaminar noise correlations in the barrel cortex. J Neurophysiol 2015; 113:3410-20. [PMID: 25787960 DOI: 10.1152/jn.00981.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel "silicon probes" to examine the spike-count noise correlations during spontaneous activity between multiple neurons with identified laminar position and over large horizontal distances in the anesthetized rat barrel cortex. Eigen decomposition of correlation coefficient matrices revealed that the laminar position of a neuron is a significant determinant of these correlations, such that the fluctuations of layer 5B/6 neurons are in opposite direction to those of layers 5A and 4. Moreover, we found that within each experiment, the distribution of horizontal, intralaminar spike-count correlation coefficients, up to a distance of ∼1.5 mm, is practically identical to the distribution of vertical correlations. Taken together, these data reveal that the neuron's laminar position crucially affects its role in cortical processing. Moreover, our analyses reveal that this laminar effect extends over several functional columns. We propose that within the cortex the influence of the horizontal elements exists in a dynamic balance with the influence of the vertical domain and this balance is modulated with brain states to shape the network's behavior.
Collapse
Affiliation(s)
- Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yael Amitai
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Itamar Shani
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maoz Shamir
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
21
|
Sharp T, Petersen R, Furber S. Real-time million-synapse simulation of rat barrel cortex. Front Neurosci 2014; 8:131. [PMID: 24910593 PMCID: PMC4038760 DOI: 10.3389/fnins.2014.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Simulations of neural circuits are bounded in scale and speed by available computing resources, and particularly by the differences in parallelism and communication patterns between the brain and high-performance computers. SpiNNaker is a computer architecture designed to address this problem by emulating the structure and function of neural tissue, using very many low-power processors and an interprocessor communication mechanism inspired by axonal arbors. Here we demonstrate that thousand-processor SpiNNaker prototypes can simulate models of the rodent barrel system comprising 50,000 neurons and 50 million synapses. We use the PyNN library to specify models, and the intrinsic features of Python to control experimental procedures and analysis. The models reproduce known thalamocortical response transformations, exhibit known, balanced dynamics of excitation and inhibition, and show a spatiotemporal spread of activity though the superficial cortical layers. These demonstrations are a significant step toward tractable simulations of entire cortical areas on the million-processor SpiNNaker machines in development.
Collapse
Affiliation(s)
- Thomas Sharp
- School of Computer Science, The University of Manchester Manchester, UK ; Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wakoshi Saitama, Japan
| | - Rasmus Petersen
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| | - Steve Furber
- School of Computer Science, The University of Manchester Manchester, UK
| |
Collapse
|
22
|
Reyes-Puerta V, Sun JJ, Kim S, Kilb W, Luhmann HJ. Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. Cereb Cortex 2014; 25:2001-21. [PMID: 24518757 DOI: 10.1093/cercor/bhu007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the most relevant questions regarding the function of the nervous system is how sensory information is represented in populations of cortical neurons. Despite its importance, the manner in which sensory-evoked activity propagates across neocortical layers and columns has yet not been fully characterized. In this study, we took advantage of the distinct organization of the rodent barrel cortex and recorded with multielectrode arrays simultaneously from up to 74 neurons localized in several functionally identified layers and columns of anesthetized adult Wistar rats in vivo. The flow of activity within neuronal populations was characterized by temporally precise spike sequences, which were repeatedly evoked by single-whisker stimulation. The majority of the spike sequences representing instantaneous responses were led by a subgroup of putative inhibitory neurons in the principal column at thalamo-recipient layers, thus revealing the presence of feedforward inhibition. However, later spike sequences were mainly led by infragranular excitatory neurons in neighboring columns. Although the starting point of the sequences was anatomically confined, their ending point was rather scattered, suggesting that the population responses are structurally dispersed. Our data show for the first time the simultaneous intra- and intercolumnar processing of information at high temporal resolution.
Collapse
Affiliation(s)
- Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany Present address: Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Suam Kim
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
23
|
Estebanez L, El Boustani S, Destexhe A, Shulz DE. [What the whiskers tell the tactile brain]. Med Sci (Paris) 2014; 30:93-8. [PMID: 24472465 DOI: 10.1051/medsci/20143001019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rodent whisker system became one of the main system models for the study of the functional properties of sensory neurons. This is due on one hand to the detailed knowledge that we have on the afferent pathways linking the mechanoreceptors in the follicles to the primary somatosensory cortex and on the other hand to the possibility of controlling the sensory input at a micrometer and millisecond scale. The observation of the natural use of the whiskers by rodents indicates that exploration of objects and textures imply multiple contacts with tens of whiskers simultaneously. We have studied the neural code in the barrel cortex, which receives tactile information from the whiskers. By combining multi-electrode recordings and controlled multiwhisker tactile stimulation with theoretical analysis, we have observed a dependence of neural responses on the statistics of the sensory input. Several classes of neuronal responses, similar to those described in a number of cortical visual areas, were observed in the same cortical volume, indicating that various coding schemes are implemented in the same cortical network and can be put into play differentially to cope with the changing statistics of the peripheral stimuli.
Collapse
Affiliation(s)
- Luc Estebanez
- Unité de neurosciences, information et complexité (UNIC), Centre national de la recherche scientifique, 1 avenue de la Terrasse, bâtiment 32-33, 91190 Gif sur Yvette, France - Actuellement au Max-Delbrück-centrum für molekular medizin, Berlin, Allemagne
| | - Sami El Boustani
- Unité de neurosciences, information et complexité (UNIC), Centre national de la recherche scientifique, 1 avenue de la Terrasse, bâtiment 32-33, 91190 Gif sur Yvette, France - Actuellement au Picower institute for learning and memory, department of brain and cognitive sciences, Massachusetts institute of technology, Cambridge MA, États-Unis
| | - Alain Destexhe
- Unité de neurosciences, information et complexité (UNIC), Centre national de la recherche scientifique, 1 avenue de la Terrasse, bâtiment 32-33, 91190 Gif sur Yvette, France
| | - Daniel E Shulz
- Unité de neurosciences, information et complexité (UNIC), Centre national de la recherche scientifique, 1 avenue de la Terrasse, bâtiment 32-33, 91190 Gif sur Yvette, France
| |
Collapse
|
24
|
Strain differences in cortical electroencephalogram associated with isoflurane-induced loss of consciousness. Anesthesiology 2013; 118:350-60. [PMID: 23287707 DOI: 10.1097/aln.0b013e31827ddfed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Previously observed increased sensitivity to noxious stimulation in the Dahl salt-sensitive rat strain (SS/JrHsdMcwi, abbreviated as SS) compared to Brown Norway rats (BN/NhsdMcwi abbreviated as BN) is mediated by genes on a single chromosome. The current study used behavioral and electrocortical data to determine if differences also exist between SS and BN rats in loss of consciousness. METHODS Behavioral responses, including loss of righting, (a putative index of consciousness) and concurrent electroencephalogram recordings, in 12 SS and BN rats were measured during isoflurane at inhaled concentrations of 0, 0.3, 0.6, 0.8, 1.0 and 1.2%. RESULTS In SS compared to BN rats, the mean ± SEM EC50 for righting was significantly less (0.65 ± 0.01% vs. 0.74 ± 0.02% inhaled isoflurane) and delta fraction in parietal electroencephalogram was enhanced 50-100% at all isoflurane levels during emergence. The frequency decay constant of an exponential fit of the parietal electroencephalogram spectrum graphed as a function of isoflurane level was three times less steep (mean ± SEM slope -57 ± 13 vs. -191 ± 38) and lower at each level of isoflurane in SS versus BN rats (i.e., shifted toward low frequency activity). Electroencephalogram differences between strains were larger during emergence than induction. CONCLUSIONS Sensitivity is higher in SS compared to BN rats leading to unconsciousness at lower levels of isoflurane. This supports using additional strains in this animal model to study the genetic basis for differences in anesthetic action on mechanisms of consciousness. Moreover, induction and emergence appear to involve distinct pathways.
Collapse
|
25
|
Kannurpatti SS, Biswal BB. Frequency tuning in the rat whisker barrel cortex revealed through RBC flux maps. Brain Res 2011; 1417:16-26. [PMID: 21911212 DOI: 10.1016/j.brainres.2011.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/29/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022]
Abstract
The rodent whisker barrel cortex is ideal for studies related to sensory processing and neural plasticity in the brain. However, its small spatial dimensions challenge optical and other imaging technologies mapping cortical hemodynamics as functional resolution (the ability to spatially and selectively discriminate signals from microvascular compartments) limit measurement accuracy. To precisely map hemodynamic activity within the rat posteriomedial barrel subfield (PMBSF), we used functional Laser Doppler Imaging (fLDI) at high spatial resolution with optimized detection and analysis. In this configuration, we demonstrate prominent whisker deflection-induced fLDI hemodynamic responses from microvascular regions indicating the technique's specificity to smaller vessel compartments. Clusters of fLDI activation were confined within the PMBSF region during deflection of either single or all whiskers. Stereotaxic co-ordinate mapping was performed over all animals leading to an average maximum activity cluster at +5.3, -3.5 from the Bregma. The maximum activity cluster during all whisker stimulation combined with the principal activation cluster during deflection of the C1 whisker were used as a reference to characterize the fLDI maps within the PMBSF. fLDI activation area increased with the frequency of whisker deflection. In a quantitative analysis, we reveal the increase in the spatial extent of fLDI activation with stimulation frequency as spatially non-uniform with a bias towards the caudal region for low and rostral region for higher stimulation frequencies.
Collapse
|
26
|
Le Cam J, Estebanez L, Jacob V, Shulz DE. Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent. J Neurophysiol 2011; 106:986-98. [PMID: 21653730 DOI: 10.1152/jn.00044.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tactile sensations mediated by the whisker-trigeminal system allow rodents to efficiently detect and discriminate objects. These capabilities rely strongly on the temporal and spatial structure of whisker deflections. Subthreshold but also spiking receptive fields in the barrel cortex encompass a large number of vibrissae, and it seems likely that the functional properties of these multiwhisker receptive fields reflect the multiple-whisker interactions encountered by the animal during exploration of its environment. The aim of this study was to examine the dependence of the spatial structure of cortical receptive fields on stimulus parameters. Using a newly developed 24-whisker stimulation matrix, we applied a forward correlation analysis of spiking activity to randomized whisker deflections (sparse noise) to characterize the receptive fields that result from caudal and rostral directions of whisker deflection. We observed that the functionally determined principal whisker, the whisker eliciting the strongest response with the shortest latency, differed according to the direction of whisker deflection. Thus, for a given neuron, maximal responses to opposite directions of whisker deflections could be spatially separated. This spatial separation resulted in a displacement of the center of mass between the rostral and caudal subfields and was accompanied by differences between response latencies in rostral and caudal directions of whisker deflection. Such direction-dependent receptive field organization was observed in every cortical layer. We conclude that the spatial structure of receptive fields in the barrel cortex is not an intrinsic property of the neuron but depends on the properties of sensory input.
Collapse
Affiliation(s)
- Julie Le Cam
- Unité de Neurosciences, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | | | | | |
Collapse
|
27
|
Chen Q, Xiao L, Liu Q, Ling S, Yin Y, Dong Q, Wang P. An olfactory bulb slice-based biosensor for multi-site extracellular recording of neural networks. Biosens Bioelectron 2011; 26:3313-9. [PMID: 21295963 DOI: 10.1016/j.bios.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/11/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Multi-site recording is the important component for studies of the neural networks. In order to investigate the electrophysiological properties of the olfactory bulb neural networks, we developed a novel slice-based biosensor for synchronous measurement with multi-sites. In the present study, the horizontal olfactory bulb slices with legible layered structures were prepared as the sensing element to construct a tissue-based biosensor with the microelectrode array. This olfactory bulb slice-based biosensor was used to simultaneously record the extracellular potentials from multi-positions. Spike detection and cross-correlation analysis were applied to evaluate the electrophysiological activities. The spontaneous potentials as well as the induced responses by glutamic acid took on different electrophysiological characteristics and firing patterns at the different sites of the olfactory bulb slice. This slice-based biosensor can realize multi-site synchronous monitoring and is advantageous for searching after the firing patterns and synaptic connections in the olfactory bulb neural networks. It is also helpful for further probing into olfactory information encoding of the olfactory neural networks.
Collapse
Affiliation(s)
- Qingmei Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Reed JL, Qi HX, Pouget P, Burish MJ, Bonds AB, Kaas JH. Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 2010; 104:3136-45. [PMID: 20926605 DOI: 10.1152/jn.00566.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the hand representation of primary somatosensory cortex (area 3b) are known to have discretely localized receptive fields; and these neurons form modules that can be visualized histologically as distinct digit and palm representations. Despite these indicators of the importance of local processing in area 3b, widespread interactions between stimuli presented to locations across the hand have been reported. We investigated the relationship of neuron firing rate with distance from the site of maximum activation in cortex by recording from a 100-electrode array with electrodes spaced 400 μm apart, implanted into the area 3b hand representation in anesthetized owl monkeys. For each stimulated location on the hand, the electrode site where neurons had the highest peak firing rate was defined as the peak activation site. The lesser firing rates of neurons at all other electrode sites in the grid were compared with the firing rates of neurons at the peak activation site. On average, peak firing rates of neurons decreased rapidly with distance away from the peak activation site. The effect of distance on the variance of firing rates was highly significant (P < 0.0001). However, individual neurons retained high firing rates for distances over 3 mm. The clear decline in firing rate with distance from the most activated location indicates that local processing is emphasized in area 3b, while the distance of neurons with reduced but maintained firing rates ≤3-4 mm from the site of best activation demonstrated widespread activation in primary somatosensory cortex.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21 Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kreuzer M, Hentschke H, Antkowiak B, Schwarz C, Kochs EF, Schneider G. Cross-approximate entropy of cortical local field potentials quantifies effects of anesthesia--a pilot study in rats. BMC Neurosci 2010; 11:122. [PMID: 20863382 PMCID: PMC2955690 DOI: 10.1186/1471-2202-11-122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 09/23/2010] [Indexed: 12/02/2022] Open
Abstract
Background Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane. Results Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction). Conclusions The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.
Collapse
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Ince RA, Senatore R, Arabzadeh E, Montani F, Diamond ME, Panzeri S. Information-theoretic methods for studying population codes. Neural Netw 2010; 23:713-27. [DOI: 10.1016/j.neunet.2010.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 11/28/2022]
|
31
|
Takeda M, Takahashi M, Nasu M, Matsumoto S. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin. Mol Pain 2010; 6:30. [PMID: 20500889 PMCID: PMC2891679 DOI: 10.1186/1744-8069-6-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although it has been widely accepted that the primary somatosensory (SI) cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. RESULTS In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV). Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field) and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22%) and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11%) and nociceptive-specific neurons (18/27, 67%). In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs) reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. CONCLUSIONS The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | | | | | | |
Collapse
|
32
|
Correlated physiological and perceptual effects of noise in a tactile stimulus. Proc Natl Acad Sci U S A 2010; 107:7981-6. [PMID: 20385799 DOI: 10.1073/pnas.0914750107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated connections between the physiology of rat barrel cortex neurons and the sensation of vibration in humans. One set of experiments measured neuronal responses in anesthetized rats to trains of whisker deflections, each train characterized either by constant amplitude across all deflections or by variable amplitude ("amplitude noise"). Firing rate and firing synchrony were, on average, boosted by the presence of noise. However, neurons were not uniform in their responses to noise. Barrel cortex neurons have been categorized as regular-spiking units (putative excitatory neurons) and fast-spiking units (putative inhibitory neurons). Among regular-spiking units, amplitude noise caused a higher firing rate and increased cross-neuron synchrony. Among fast-spiking units, noise had the opposite effect: It led to a lower firing rate and decreased cross-neuron synchrony. This finding suggests that amplitude noise affects the interaction between inhibitory and excitatory neurons. From these physiological effects, we expected that noise would lead to an increase in the perceived intensity of a vibration. We tested this notion using psychophysical measurements in humans. As predicted, subjects overestimated the intensity of noisy vibrations. Thus the physiological mechanisms present in barrel cortex also appear to be at work in the human tactile system, where they affect vibration perception.
Collapse
|
33
|
Ince RAA, Montani F, Arabzadeh E, Diamond ME, Panzeri S. On the presence of high-order interactions among somatosensory neurons and their effect on information transmission. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/197/1/012013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Bale MR, Petersen RS. Transformation in the neural code for whisker deflection direction along the lemniscal pathway. J Neurophysiol 2009; 102:2771-80. [PMID: 19741100 PMCID: PMC2777830 DOI: 10.1152/jn.00636.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/05/2009] [Indexed: 11/22/2022] Open
Abstract
A prominent characteristic of neurons in the whisker system is their selectivity to the direction in which a whisker is deflected. The aim of this study was to determine how information about whisker direction is encoded at successive levels of the lemniscal pathway. We made extracellular recordings under identical conditions from the trigeminal ganglion, ventro-posterior medial thalamus (VPM), and barrel cortex while varying the direction of whisker deflection. We found a marked increase in the variability of single unit responses along the pathway. To study the consequences of this for information processing, we quantified the responses using mutual information. VPM units conveyed 48% of the mutual information conveyed by ganglion units, and cortical units conveyed 12%. The fraction of neuronal bandwidth used for transmitting direction information decreased from 40% in the ganglion to 24% in VPM and 5% in barrel cortex. To test whether, in cortex, population coding might compensate for this information loss, we made simultaneous recordings. We found that cortical neuron pairs conveyed 2.1 times the mutual information conveyed by single neurons. Overall, these findings indicate a marked transformation from a subcortical neural code based on small numbers of reliable neurons to a cortical code based on populations of unreliable neurons. However, the basic form of the neural code in ganglion, thalamus, and cortex was similar-at each stage, the first poststimulus spike carried the majority of the information.
Collapse
|
35
|
Montani F, Ince RAA, Senatore R, Arabzadeh E, Diamond ME, Panzeri S. The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:3297-3310. [PMID: 19620125 DOI: 10.1098/rsta.2009.0082] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding the operations of neural networks in the brain requires an understanding of whether interactions among neurons can be described by a pairwise interaction model, or whether a higher order interaction model is needed. In this article we consider the rate of synchronous discharge of a local population of neurons, a macroscopic index of the activation of the neural network that can be measured experimentally. We analyse a model based on physics' maximum entropy principle that evaluates whether the probability of synchronous discharge can be described by interactions up to any given order. When compared with real neural population activity obtained from the rat somatosensory cortex, the model shows that interactions of at least order three or four are necessary to explain the data. We use Shannon information to compute the impact of high-order correlations on the amount of somatosensory information transmitted by the rate of synchronous discharge, and we find that correlations of higher order progressively decrease the information available through the neural population. These results are compatible with the hypothesis that high-order interactions play a role in shaping the dynamics of neural networks, and that they should be taken into account when computing the representational capacity of neural populations.
Collapse
Affiliation(s)
- Fernando Montani
- Robotics, Brain, and Cognitive Sciences Department, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Giaume C, Maravall M, Welker E, Bonvento G. The barrel cortex as a model to study dynamic neuroglial interaction. Neuroscientist 2009; 15:351-66. [PMID: 19542529 DOI: 10.1177/1073858409336092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that glial cells, in particular astrocytes, interact dynamically with neurons. The well-known anatomofunctional organization of neurons in the barrel cortex offers a suitable and promising model to study such neuroglial interaction. This review summarizes and discusses recent in vitro as well as in vivo works demonstrating that astrocytes receive, integrate, and respond to neuronal signals. In addition, they are active elements of brain metabolism and exhibit a certain degree of plasticity that affects neuronal activity. Altogether these findings indicate that the barrel cortex presents glial compartments overlapping and interacting with neuronal compartments and that these properties help define barrels as functional and independent units. Finally, this review outlines how the use of the barrel cortex as a model might in the future help to address important questions related to dynamic neuroglia interaction.
Collapse
|
37
|
Petersen RS, Panzeri S, Maravall M. Neural coding and contextual influences in the whisker system. BIOLOGICAL CYBERNETICS 2009; 100:427-446. [PMID: 19189120 DOI: 10.1007/s00422-008-0290-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
A fundamental problem in neuroscience, to which Prof. Segundo has made seminal contributions, is to understand how action potentials represent events in the external world. The aim of this paper is to review the issue of neural coding in the context of the rodent whiskers, an increasingly popular model system. Key issues we consider are: the role of spike timing; mechanisms of spike timing; decoding and context-dependence. Significant insight has come from the development of rigorous, information theoretic frameworks for tackling these questions, in conjunction with suitably designed experiments. We review both the theory and experimental studies. In contrast to the classical view that neurons are noisy and unreliable, it is becoming clear that many neurons in the subcortical whisker pathway are remarkably reliable and, by virtue of spike timing with millisecond-precision, have high bandwidth for conveying sensory information. In this way, even small (approximately 200 neuron) subcortical modules are able to support the sensory processing underlying sophisticated whisker-dependent behaviours. Future work on neural coding in cortex will need to consider new findings that responses are highly dependent on context, including behavioural and internal states.
Collapse
|
38
|
She WC, Quairiaux C, Albright MJ, Wang YC, Sanchez DE, Chang PS, Welker E, Lu HC. Roles of mGluR5 in synaptic function and plasticity of the mouse thalamocortical pathway. Eur J Neurosci 2009; 29:1379-96. [PMID: 19519626 DOI: 10.1111/j.1460-9568.2009.06696.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.
Collapse
Affiliation(s)
- Wei-Chi She
- Department of Pediatrics, The Cain Foundation Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
HajjHassan M, Chodavarapu V, Musallam S. NeuroMEMS: Neural Probe Microtechnologies. SENSORS 2008; 8:6704-6726. [PMID: 27873894 PMCID: PMC3707475 DOI: 10.3390/s8106704] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/27/2008] [Accepted: 10/21/2008] [Indexed: 11/25/2022]
Abstract
Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer's, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultra-long multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.
Collapse
Affiliation(s)
- Mohamad HajjHassan
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
| | - Vamsy Chodavarapu
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
| | - Sam Musallam
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
- Department of Physiology, McGill University, 3655 Promenade Osler, Montreal, Canada H3G 1Y6.
| |
Collapse
|
40
|
Moxon K, Hale L, Aguilar J, Foffani G. Responses of infragranular neurons in the rat primary somatosensory cortex to forepaw and hindpaw tactile stimuli. Neuroscience 2008; 156:1083-92. [DOI: 10.1016/j.neuroscience.2008.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/25/2022]
|
41
|
Foffani G, Chapin JK, Moxon KA. Computational role of large receptive fields in the primary somatosensory cortex. J Neurophysiol 2008; 100:268-80. [PMID: 18400959 DOI: 10.1152/jn.01015.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Computational studies are challenging the intuitive view that neurons with broad tuning curves are necessarily less discriminative than neurons with sharp tuning curves. In the context of somatosensory processing, broad tuning curves are equivalent to large receptive fields. To clarify the computational role of large receptive fields for cortical processing of somatosensory information, we recorded ensembles of single neurons from the infragranular forelimb/forepaw region of the rat primary somatosensory cortex while tactile stimuli were separately delivered to different locations on the forelimbs/forepaws under light anesthesia. We specifically adopted the perspective of individual columns/segregates receiving inputs from multiple body location. Using single-trial analyses of many single-neuron responses, we obtained two main results. 1) The responses of even small populations of neurons recorded from within the same estimated column/segregate can be used to discriminate between stimuli delivered to different surround locations in the excitatory receptive fields. 2) The temporal precision of surround responses is sufficiently high for spike timing to add information over spike count in the discrimination between surround locations. This surround spike-timing code (i) is particularly informative when spike count is ambiguous, e.g., in the discrimination between close locations or when receptive fields are large, (ii) becomes progressively more informative as the number of neurons increases, (iii) is a first-spike code, and (iv) is not limited by the assumption that the time of stimulus onset is known. These results suggest that even though large receptive fields result in a loss of spatial selectivity of single neurons, they can provide as a counterpart a sophisticated temporal code based on latency differences in large populations of neurons without necessarily sacrificing basic information about stimulus location.
Collapse
Affiliation(s)
- Guglielmo Foffani
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
42
|
SIMPSON KIMBERLY, WANG YUE, LIN RICKC. Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: light and electron microscopic study. J Comp Neurol 2008; 507:1521-41. [PMID: 18213707 PMCID: PMC2921836 DOI: 10.1002/cne.21624] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to the restricted receptive field (RF) properties of the ventral posteromedial nucleus (VPM), neurons of the ventral thalamus zona incerta (ZI) have been shown to exhibit multiwhisker responses that vary from the ventral (ZIv) to the dorsal (ZId) subdivision. Differences in activity may arise from the trigeminal nuclear complex (TNC) and result from subnucleus specific inputs via certain cells of origin, axon distribution patterns, fiber densities, bouton sizes, or postsynaptic contact sites. We tested this hypothesis by assessing circuit relationships among TNC, ZI, and VPM. Results from tracer studies show that, 1) relative to ZId, the trigeminal projection to ZIv is denser and arises predominantly from the principalis (PrV) and interpolaris (SpVi) subdivisions; 2) the incertal projection from TNC subnuclei overlaps and covers most of ZIv; 3) two sets of PrV axons terminate in ZI: a major subtype, possessing bouton-like swellings, and a few fine fibers, with minimal specialization; 4) both PrV and SpVi terminals exhibit asymmetric endings and preferentially target dendrites of ZI neurons; 5) small and large neurons in PrV are labeled after retrograde injections into ZI; 6) small PrV cells with incertal projections form a population that is distinct from those projecting to VPM; and 7) approximately 30-50% of large cells in PrV send collaterals to ZI and VPM. These findings suggest that, 1) although information to ZI and VPM is essentially routed along separate TNC circuits, streams of somatosensory code converge in ZI to establish large RFs, and 2) subregional differences in ZI response profiles are attributable in part to TNC innervation density.
Collapse
Affiliation(s)
- KIMBERLY SIMPSON
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - YUE WANG
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - RICK C.S. LIN
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
43
|
Montemurro MA, Senatore R, Panzeri S. Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural Comput 2008; 19:2913-57. [PMID: 17883346 DOI: 10.1162/neco.2007.19.11.2913] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The estimation of the information carried by spike times is crucial for a quantitative understanding of brain function, but it is difficult because of an upward bias due to limited experimental sampling. We present new progress, based on two basic insights, on reducing the bias problem. First, we show that by means of a careful application of data-shuffling techniques, it is possible to cancel almost entirely the bias of the noise entropy, the most biased part of information. This procedure provides a new information estimator that is much less biased than the standard direct one and has similar variance. Second, we use a nonparametric test to determine whether all the information encoded by the spike train can be decoded assuming a low-dimensional response model. If this is the case, the complexity of response space can be fully captured by a small number of easily sampled parameters. Combining these two different procedures, we obtain a new class of precise estimators of information quantities, which can provide data-robust upper and lower bounds to the mutual information. These bounds are tight even when the number of trials per stimulus available is one order of magnitude smaller than the number of possible responses. The effectiveness and the usefulness of the methods are tested through applications to simulated data and recordings from somatosensory cortex. This application shows that even in the presence of strong correlations, our methods constrain precisely the amount of information encoded by real spike trains recorded in vivo.
Collapse
|
44
|
von Heimendahl M, Itskov PM, Arabzadeh E, Diamond ME. Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol 2007; 5:e305. [PMID: 18001152 PMCID: PMC2071938 DOI: 10.1371/journal.pbio.0050305] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/25/2007] [Indexed: 11/19/2022] Open
Abstract
Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat's observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window, neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat's behavioral response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures. Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly to the animal's judgment of texture. How cortical activity contributes to sensation is among biology's oldest problems. We studied the nature of the cortical representations underlying judgments of texture in rats. The rodent whisker sensory system is particularly intriguing because it is “active”: the animal generates sensory signals by palpating objects through self-controlled whisker motion (just as we move our fingertips along surfaces to measure their tactile features). Rats touched rough or smooth textures with their whiskers and turned left or right for a reward according to the texture identity. Monitoring behavior with high-speed videography, we have found that on trials when the rat correctly identified the stimulus, the firing rate of cortical neurons varies during a window of a few hundred milliseconds before making a decision according to the contacted texture: high for rough and lower for smooth. This firing-rate code is reversed on error trials (lower for rough than smooth). So when cortical neurons report the wrong stimulus, the rat, “feeling” the signals of its cortical neurons, fails to identify the stimulus. We conclude that barrel cortex firing rate on each trial predicts the animal's judgment of texture. This experiment begins to elucidate which features of cortical activity underlie the animal's capacity for tactile sensory discrimination. Rats palpate objects with their whiskers to perceive texture. Their judgment of texture is predicted by the firing rate of neurons in the somatosensory cortex.
Collapse
Affiliation(s)
- Moritz von Heimendahl
- Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste, Italy
- SISSA Unit, Italian Institute of Technology, Trieste, Italy
| | - Pavel M Itskov
- Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste, Italy
- SISSA Unit, Italian Institute of Technology, Trieste, Italy
| | - Ehsan Arabzadeh
- School of Psychology, University of Sydney, Sydney, Australia
| | - Mathew E Diamond
- Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste, Italy
- SISSA Unit, Italian Institute of Technology, Trieste, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Nakamura H, Chaumon M, Klijn F, Innocenti GM. Dynamic properties of the representation of the visual field midline in the visual areas 17 and 18 of the ferret (Mustela putorius). ACTA ACUST UNITED AC 2007; 18:1941-50. [PMID: 18065721 DOI: 10.1093/cercor/bhm221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In mammals, the visual field is split along the midline, each hemisphere representing the contralateral hemifield. We determined that, in the ferret, an 8- to 10-deg-wide strip of visual field near the midline is represented in both hemispheres. Bright squares (1.5 deg) were flashed at different azimuths within the central 20 deg of the visual field. Stimuli were flashed either alone or sequentially, and the responses were analyzed with the voltage-sensitive dye (VSD) RH 795 and/or by recording local field potentials (LFPs). In both VSD and LFP experiments, each stimulus evoked a cortical response field that extended over visual areas 17 and 18 up to a surface of 1-1.5 mm(2) and then shrank again. Amplitude of the responses decreased approaching the visual midline and the latency increased. These positional differences are likely to originate from the spatiotemporal structure of the peripheral response fields (PRFs) that form a mosaic in areas 17 and 18, interrupted near the visual midline. Unexpectedly, interhemispheric connections appear not to modify these PRFs' effects and may not contribute to the responses to discrete, flashed stimuli.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Berwick J, Johnston D, Jones M, Martindale J, Martin C, Kennerley AJ, Redgrave P, Mayhew JEW. Fine detail of neurovascular coupling revealed by spatiotemporal analysis of the hemodynamic response to single whisker stimulation in rat barrel cortex. J Neurophysiol 2007; 99:787-98. [PMID: 18046008 DOI: 10.1152/jn.00658.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial resolution of hemodynamic-based neuroimaging techniques, including functional magnetic resonance imaging, is limited by the degree to which neurons regulate their blood supply on a fine scale. Here we investigated the spatial detail of neurovascular events with a combination of high spatiotemporal resolution two-dimensional spectroscopic optical imaging, multichannel electrode recordings and cytochrome oxidase histology in the rodent whisker barrel field. After mechanical stimulation of a single whisker, we found two spatially distinct cortical hemodynamic responses: a transient response in the "upstream" branches of surface arteries and a later highly localized increase in blood volume centered on the activated cortical column. Although the spatial representation of this localized response exceeded that of a single "barrel," the spread of hemodynamic activity accurately reflected the neural response in neighboring columns rather than being due to a passive "overspill." These data confirm hemodynamics are capable of providing accurate "single-condition" maps of neural activity.
Collapse
Affiliation(s)
- J Berwick
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wallace DJ, Sakmann B. Plasticity of representational maps in somatosensory cortex observed by in vivo voltage-sensitive dye imaging. ACTA ACUST UNITED AC 2007; 18:1361-73. [PMID: 17921458 DOI: 10.1093/cercor/bhm168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the effect of selective whisker trimming on the development of the cortical representation of a whisker deflection in layer 2/3 of rat somatosensory cortex using in vivo voltage-sensitive dye (vsd) imaging. Responses to deflection of D-row whiskers were recorded after trimming of A-row, B-row, and C-row whiskers, referred to as DE pairing, during postnatal development. Animals DE paired from postnatal day (p) 7 to p17 had a significant bias in the spread of the vsd signal, favoring spread toward the concomitantly nondeprived E-row columns. This resulted primarily from a strong decrease in signal spreading into the deprived C-row columns. In contrast, signal spread in control littermates was approximately symmetrical. DE pairing failed to elicit significant changes when begun after p14, thus defining a critical period for this phenomenon. The results suggest that sensory deprivation in this model results in lower connectivity being established between nondeprived columns and adjacent deprived ones.
Collapse
Affiliation(s)
- Damian J Wallace
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
48
|
Lak A, Arabzadeh E, Diamond ME. Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise. ACTA ACUST UNITED AC 2007; 18:1085-93. [PMID: 17712164 DOI: 10.1093/cercor/bhm144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sensory stimuli under natural conditions often consist of a temporally irregular sequence of events, contrasting with the periodic sequences commonly used as stimuli in the laboratory. These experiments compared the responses of neurons in rat barrel cortex with trains of whisker movements with different frequencies; each train possessed either a periodic or an irregular, "noisy" temporal structure. Periodic stimulus trains were composed of a sequence of 21 whisker deflections separated by 20 equal interdeflection intervals (IDIs). Noisy trains were matched for mean IDI but included intervals shorter and longer than the mean IDI. Cortical responses were equivalent for periodic and noisy stimuli for frequencies up to 10 Hz. Above 10 Hz, temporal noise led to a larger response magnitude, and this effect was amplified as deflection frequency increased. Noise also caused a sharpening of the temporal precision of response to the individual deflections of the stimulus train. Cortical neurons thus appear to be "tuned" to respond in a different way to stimuli characterized by temporal unpredictability. As a consequence, perceptual judgments that depend on somatosensory cortical firing rate may be affected by the presence of temporal noise.
Collapse
Affiliation(s)
- Armin Lak
- Cognitive Neuroscience Sector, International School for Advanced Studies (SISSA), Via Beirut 2/4, 34014 Trieste Italy and Italian Institute of Technology-SISSA Unit
| | | | | |
Collapse
|
49
|
Berger T, Borgdorff A, Crochet S, Neubauer FB, Lefort S, Fauvet B, Ferezou I, Carleton A, Lüscher HR, Petersen CCH. Combined Voltage and Calcium Epifluorescence Imaging In Vitro and In Vivo Reveals Subthreshold and Suprathreshold Dynamics of Mouse Barrel Cortex. J Neurophysiol 2007; 97:3751-62. [PMID: 17360827 DOI: 10.1152/jn.01178.2006] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the supragranular layers in vivo. The two optical signals reported distinct aspects of cortical function. VSD fluorescence varied linearly with membrane potential and was dominated by subthreshold postsynaptic potentials, whereas the CaSD signal predominantly reflected local action potential firing. Combining VSDs and CaSDs allowed us to monitor the synaptic drive and the spiking activity of a given area at the same time in the same preparation. The spatial extent of the two dye signals was different, with VSD signals spreading further than CaSD signals, reflecting broad subthreshold and narrow suprathreshold receptive fields. Importantly, the signals from the dyes were differentially affected by pharmacological manipulations, stimulation strength, and depth of isoflurane anesthesia. Combined VSD and CaSD measurements can therefore be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.
Collapse
Affiliation(s)
- Thomas Berger
- Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rajan R, Bourke J, Cassell J. A novel stimulus system for applying tactile stimuli to the macrovibrissae in electrophysiological experiments. J Neurosci Methods 2006; 157:103-17. [PMID: 16698087 DOI: 10.1016/j.jneumeth.2006.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 02/28/2006] [Accepted: 04/14/2006] [Indexed: 11/22/2022]
Abstract
The rat's vibrissae are a wonderful system for the study of sensory neural encoding in relation to behaviour because the vibrissae are easily identifiable and accessible for manipulation, allowing easy application of a variety of different types of deflections that mimic natural whisking. Here we report the development of a powerful and flexible method for precisely deflecting these vibrissae. Recordings from CNS neurons showed, in response to variations in the parameters of a trapezoid whisker deflection stimulus that mimics the basic unit of whisking, a variety of complex responses as well as complex interactions between different response components. The recordings also included a response that is reported to be found during active whisking (movement under muscle control) and not passive whisker movements and thus to differentiate active from passive whisker deflections. Thus, this system could well be used in anaesthetized animals to apply whisker deflections that well mimic natural active whisking in awake animals, thereby allowing highly detailed study of the neuronal responses and neuronal interactions found with natural whisking behaviour.
Collapse
Affiliation(s)
- R Rajan
- Department of Physiology, Monash University, Wellington Road, Monash, Vic. 3800, Australia.
| | | | | |
Collapse
|