1
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Kato A, Ohta K, Okanoya K, Kazama H. Dopaminergic neurons dynamically update sensory values during olfactory maneuver. Cell Rep 2023; 42:113122. [PMID: 37757823 DOI: 10.1016/j.celrep.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic neurons (DANs) drive associative learning to update the value of sensory cues, but their contribution to the assessment of sensory values outside the context of association remains largely unexplored. Here, we show in Drosophila that DANs in the mushroom body encode the innate value of odors and constantly update the current value by inducing plasticity during olfactory maneuver. Our connectome-based network model linking all the way from the olfactory neurons to DANs reproduces the characteristics of DAN responses, proposing a concrete circuit mechanism for computation. Downstream of DANs, odors alone induce value- and dopamine-dependent changes in the activity of mushroom body output neurons, which store the current value of odors. Consistent with this neural plasticity, specific sets of DANs bidirectionally modulate flies' steering in a virtual olfactory environment. Thus, the DAN circuit known for discrete, associative learning also continuously updates odor values in a nonassociative manner.
Collapse
Affiliation(s)
- Ayaka Kato
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Yagishita S. Cellular bases for reward-related dopamine actions. Neurosci Res 2023; 188:1-9. [PMID: 36496085 DOI: 10.1016/j.neures.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Dopamine neurons exhibit transient increases and decreases in their firing rate upon reward and punishment for learning. This bidirectional modulation of dopamine dynamics occurs on the order of hundreds of milliseconds, and it is sensitively detected to reinforce the preceding sensorimotor events. These observations indicate that the mechanisms of dopamine detection at the projection sites are of remarkable precision, both in time and concentration. A major target of dopamine projection is the striatum, including the ventral region of the nucleus accumbens, which mainly comprises dopamine D1 and D2 receptor (D1R and D2R)-expressing spiny projection neurons. Although the involvement of D1R and D2R in dopamine-dependent learning has been suggested, the exact cellular bases for detecting transient dopamine signaling remain unclear. This review discusses recent cellular studies on the novel synaptic mechanisms for detecting dopamine transient signals associated with learning. Analyses of behavior based on these mechanisms have further revealed new behavioral aspects that are closely associated with these synaptic mechanisms. Thus, it is gradually possible to mechanistically explain behavioral learning via synaptic and cellular bases in rodents.
Collapse
Affiliation(s)
- Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Carney AE, Clarke C, Pratt WE. Administration of neuropeptide Y into the rat nucleus accumbens shell, but not core, attenuates the motivational impairment from systemic dopamine receptor antagonism by α-flupenthixol. Neurosci Lett 2023; 797:137069. [PMID: 36641044 DOI: 10.1016/j.neulet.2023.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Previous research has demonstrated that dopamine and Neuropeptide Y (NPY) promote motivated behavior, and there is evidence to suggest that they interact within neural circuitry involved in motivation. NPY and dopamine both modulate appetitive motivation towards food through direct actions in the nucleus accumbens (NAc), although how they interact in this region to promote motivation is presently unclear. In this study, we sought to further elucidate the relationship between NAc NPY and dopamine and their effects on motivated behavior. Specifically, we examined whether NAc injections of NPY might reverse behavioral deficits caused by reduced dopamine signaling due to systemic dopamine receptor antagonism. Appetitive motivation was measured using a progressive ratio-2 paradigm. Male Sprague Dawley rats were treated with systemic injections of the dopamine antagonist, α-flupenthixol or a saline vehicle. Two hours following injections, they were administered infusions of NPY (at 0, 156, or 235 pmol) into either the NAc shell (n = 12) or the NAc core (n = 10) and were placed in operant chambers. In both groups, α-flupenthixol impaired performance on the PR-2 task. NPY receptor stimulation of the NAc shell significantly increased both breakpoint and active lever presses during the PR-2 task, and dose-dependently increased responding following systemic dopamine receptor blockade. NPY did not affect appetitive motivation when injected into the NAc core. These data demonstrate that NPY in the NAc shell can improve motivational impairments that result from dopamine antagonism, and that these effects are site specific. These results also suggest that upregulation of NPY in neurodegenerative diseases may possibly buffer early motivational deficits caused by dopamine depletion in Parkinson's and Huntington's disease patients, both of which show increased NPY expression after disease onset.
Collapse
|
5
|
Abela N, Haywood K, Di Giovanni G. Alcohol and cannabinoid binges and daily exposure to nicotine in adolescent/young adult rats induce sex-dependent long-term appetitive instrumental learning impairment. Front Behav Neurosci 2023; 17:1129866. [PMID: 36815183 PMCID: PMC9939753 DOI: 10.3389/fnbeh.2023.1129866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Adolescence is a critical developmental period, concerning anatomical, neurochemical and behavioral changes. Moreover, adolescents are more sensitive to the long-term deleterious effects of drug abuse. Binge-like consumption of alcohol and marijuana, along with tobacco smoking, is a dangerous pattern often observed in adolescents during weekends. Nevertheless, the long-term effect of their adolescent co-exposure has not been yet experimentally investigated. Long-Evans adolescent male (n = 20) and female (n = 20) rats from postnatal day 30 (P30) until P60 were daily treated with nicotine (0.3 mg/kg, i.p.), and, on two consecutive 'binging days' per week (for a total of eight times), received an intragastric ethanol solution (3 g/kg) and an intraperitoneal (i.p.) dose of cannabinoid 1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). These rats were tested after treatment discontinuation at > P90 for associative food-rewarded operant learning in the two-lever conditioning chambers for six consecutive days on a fixed ratio 1 (FR1) schedule followed by another six days of daily FR2 schedule testing, after 42 days rest. We found the main effects of sex x treatment interactions in FR1 but not in FR2 experiments. Treated females show attenuated operant responses for food pellets during all FR1 and the FR2 schedule, whilst the treated males show an impairment in FR2 but not in the FR1 schedule. Moreover, the treated females' percentage of learners was significantly lower than female controls in FR1 while treated males were lower than controls in FR2. Our findings suggest that intermittent adolescent abuse of common drugs, such as alcohol and marijuana, and chronic tobacco exposure can cause significant long-term effects on motivation for natural reinforcers later in adulthood in both sexes. Females appear to be sensitive earlier to the deleterious effects of adolescent polydrug abuse, with both sexes having an increased likelihood of developing lifelong brain alterations.
Collapse
Affiliation(s)
- Norbert Abela
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Katie Haywood
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta,Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta,Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom,*Correspondence: Giuseppe Di Giovanni, ;
| |
Collapse
|
6
|
Kurtenbach H, Ort E, Froböse MI, Jocham G. Removal of reinforcement improves instrumental performance in humans by decreasing a general action bias rather than unmasking learnt associations. PLoS Comput Biol 2022; 18:e1010201. [PMID: 36480546 PMCID: PMC9767373 DOI: 10.1371/journal.pcbi.1010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Performance during instrumental learning is commonly believed to reflect the knowledge that has been acquired up to that point. However, recent work in rodents found that instrumental performance was enhanced during periods when reinforcement was withheld, relative to periods when reinforcement was provided. This suggests that reinforcement may mask acquired knowledge and lead to impaired performance. In the present study, we investigated whether such a beneficial effect of removing reinforcement translates to humans. Specifically, we tested whether performance during learning was improved during non-reinforced relative to reinforced task periods using signal detection theory and a computational modelling approach. To this end, 60 healthy volunteers performed a novel visual go/no-go learning task with deterministic reinforcement. To probe acquired knowledge in the absence of reinforcement, we interspersed blocks without feedback. In these non-reinforced task blocks, we found an increased d', indicative of enhanced instrumental performance. However, computational modelling showed that this improvement in performance was not due to an increased sensitivity of decision making to learnt values, but to a more cautious mode of responding, as evidenced by a reduction of a general response bias. Together with an initial tendency to act, this is sufficient to drive differential changes in hit and false alarm rates that jointly lead to an increased d'. To conclude, the improved instrumental performance in the absence of reinforcement observed in studies using asymmetrically reinforced go/no-go tasks may reflect a change in response bias rather than unmasking latent knowledge.
Collapse
Affiliation(s)
- Hannah Kurtenbach
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Eduard Ort
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Monja Isabel Froböse
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
7
|
Catecholaminergic cell type-specific expression of Cre recombinase in knock-in transgenic rats generated by the Combi-CRISPR technology. J Neurosci Methods 2022; 381:109707. [PMID: 36089167 DOI: 10.1016/j.jneumeth.2022.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cell groups containing catecholamines provide a useful model to study the molecular and cellular mechanisms underlying the morphogenesis, physiology, and pathology of the central nervous system. For this purpose, it is necessary to establish a system to induce catecholaminergic group-specific expression of Cre recombinase. Recently, we introduced a gene cassette encoding 2A peptide fused to Cre recombinase into the site between the C-terminus and translational termination codons of the rat tyrosine hydroxylase (TH) open reading frame by the Combi-CRISPR technology, which is a genomic editing method to enable an efficient knock-in (KI) of long DNA sequence into a target site. However, the expression patterns of the transgene and its function as well as the effect of the mutation on the biochemical and behavioral phenotypes in the KI strains have not been characterized yet. NEW METHOD We aimed to evaluate the usefulness of TH-Cre KI rats as an experimental model for investigating the structure and function of catecholaminergic neurons in the brain. RESULTS We detected cell type-specific expression of Cre recombinase and site-specific recombination activity in the representative catecholaminergic groups in the TH-Cre KI rat strains. In addition, we measured TH protein levels and catecholamine accumulation in the brain regions, as well as motor, reward-related, and anxiety-like behaviors, indicating that catecholamine metabolism and general behavior are apparently normal in these KI rats. CONCLUSIONS TH-Cre KI rat strains produced by the Combi-CRISPR system offer a beneficial model to study the molecular and cellular mechanics for the morphogenesis, physiology, and pathology of catecholamine-containing neurons in the brain.
Collapse
|
8
|
Zhao ZD, Han X, Chen R, Liu Y, Bhattacherjee A, Chen W, Zhang Y. A molecularly defined D1 medium spiny neuron subtype negatively regulates cocaine addiction. SCIENCE ADVANCES 2022; 8:eabn3552. [PMID: 35960793 PMCID: PMC9374336 DOI: 10.1126/sciadv.abn3552] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/30/2022] [Indexed: 05/21/2023]
Abstract
The striatum plays a critical role in regulating addiction-related behaviors. The conventional dichotomy model suggests that striatal D1/D2 medium spiny neurons (MSNs) positively/negatively regulate addiction-related behaviors. However, this model does not account for the neuronal heterogeneity and functional diversity of the striatum, and whether MSN subtypes beyond the pan-D1/D2 populations play distinct roles in drug addiction remains unknown. We characterized the role of a tachykinin 2-expressing D1 MSN subtype (Tac2+), present in both rodent and primate striatum, using cocaine addiction mouse models. We found that acute cocaine administration reduces Tac2 neuronal activity, and cocaine conditioning alters neuronal response related to cocaine reward contextual associations. In addition, activation/inhibition of Tac2+ neurons attenuates/promotes cocaine-induced conditioned place preference and cocaine intravenous self-administration. Furthermore, stimulation of the NAc-to-lateral hypothalamic projection of Tac2+ neurons suppresses cocaine reward behavior. Our study reveals an unconventional negative regulatory function of D1 MSNs in drug addiction that operates in a subtype- and projection-specific manner.
Collapse
Affiliation(s)
- Zheng-dong Zhao
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiao Han
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Wenqiang Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
van Elzelingen W, Warnaar P, Matos J, Bastet W, Jonkman R, Smulders D, Goedhoop J, Denys D, Arbab T, Willuhn I. Striatal dopamine signals are region specific and temporally stable across action-sequence habit formation. Curr Biol 2022; 32:1163-1174.e6. [PMID: 35134325 PMCID: PMC8926842 DOI: 10.1016/j.cub.2021.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Habits are automatic, inflexible behaviors that develop slowly with repeated performance. Striatal dopamine signaling instantiates this habit-formation process, presumably region specifically and via ventral-to-dorsal and medial-to-lateral signal shifts. Here, we quantify dopamine release in regions implicated in these presumed shifts (ventromedial striatum [VMS], dorsomedial striatum [DMS], and dorsolateral striatum [DLS]) in rats performing an action-sequence task and characterize habit development throughout a 10-week training. Surprisingly, all regions exhibited stable dopamine dynamics throughout habit development. VMS and DLS signals did not differ between habitual and non-habitual animals, but DMS dopamine release increased during action-sequence initiation and decreased during action-sequence completion in habitual rats, whereas non-habitual rats showed opposite effects. Consistently, optogenetic stimulation of DMS dopamine release accelerated habit formation. Thus, we demonstrate that dopamine signals do not shift regionally during habit formation and that dopamine in DMS, but not VMS or DLS, determines habit bias, attributing "habit functions" to a region previously associated exclusively with non-habitual behavior.
Collapse
Affiliation(s)
- Wouter van Elzelingen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Pascal Warnaar
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - João Matos
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Wieneke Bastet
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Roos Jonkman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Dyonne Smulders
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Jessica Goedhoop
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Damiaan Denys
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Tara Arbab
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
11
|
Nishioka M, Kamada T, Nakata A, Shiokawa N, Kinoshita A, Hata T. Intra-dorsal striatal acetylcholine M1 but not dopaminergic D1 or glutamatergic NMDA receptor antagonists inhibit consolidation of duration memory in interval timing. Behav Brain Res 2022; 419:113669. [PMID: 34800548 DOI: 10.1016/j.bbr.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Taisuke Kamada
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Atsushi Nakata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoko Shiokawa
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Aoi Kinoshita
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
12
|
Yamaguchi K, Maeda Y, Sawada T, Iino Y, Tajiri M, Nakazato R, Ishii S, Kasai H, Yagishita S. A behavioural correlate of the synaptic eligibility trace in the nucleus accumbens. Sci Rep 2022; 12:1921. [PMID: 35121769 PMCID: PMC8817024 DOI: 10.1038/s41598-022-05637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Reward reinforces the association between a preceding sensorimotor event and its outcome. Reinforcement learning (RL) theory and recent brain slice studies explain the delayed reward action such that synaptic activities triggered by sensorimotor events leave a synaptic eligibility trace for 1 s. The trace produces a sensitive period for reward-related dopamine to induce synaptic plasticity in the nucleus accumbens (NAc). However, the contribution of the synaptic eligibility trace to behaviour remains unclear. Here we examined a reward-sensitive period to brief pure tones with an accurate measurement of an effective timing of water reward in head-fixed Pavlovian conditioning, which depended on the plasticity-related signaling in the NAc. We found that the reward-sensitive period was within 1 s after the pure tone presentation and optogenetically-induced presynaptic activities at the NAc, showing that the short reward-sensitive period was in conformity with the synaptic eligibility trace in the NAc. These findings support the application of the synaptic eligibility trace to construct biologically plausible RL models.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Psychology, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yoshitomo Maeda
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Sawada
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mio Tajiri
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Nakazato
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin Ishii
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Kyoto, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Kljakic O, Janíčková H, Skirzewski M, Reichelt A, Memar S, El Mestikawy S, Li Y, Saksida LM, Bussey TJ, Prado VF, Prado MAM. Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB J 2022; 36:e22135. [PMID: 35032355 PMCID: PMC9303754 DOI: 10.1096/fj.202101425r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward‐based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co‐transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue‐based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward‐evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors.
Collapse
Affiliation(s)
- Ornela Kljakic
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Helena Janíčková
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Miguel Skirzewski
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Amy Reichelt
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sara Memar
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.,INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Lisa M Saksida
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
15
|
Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X, Zhang Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021; 24:1757-1771. [PMID: 34663959 PMCID: PMC8639815 DOI: 10.1038/s41593-021-00938-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
The nucleus accumbens (NAc) plays an important role in regulating multiple behaviors, and its dysfunction has been linked to many neural disorders. However, the molecular, cellular and anatomic heterogeneity underlying its functional diversity remains incompletely understood. In this study, we generated a cell census of the mouse NAc using single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization, revealing a high level of cell heterogeneity in this brain region. Here we show that the transcriptional and spatial diversity of neuron subtypes underlie the NAc's anatomic and functional heterogeneity. These findings explain how the seemingly simple neuronal composition of the NAc achieves its highly heterogenous structure and diverse functions. Collectively, our study generates a spatially resolved cell taxonomy for understanding the structure and function of the NAc, which demonstrates the importance of combining molecular and spatial information in revealing the fundamental features of the nervous system.
Collapse
Affiliation(s)
- Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Timothy R Blosser
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics,, Harvard University, Cambridge, MA, USA
| | - Mohamed N Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Junjie Hao
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics,, Harvard University, Cambridge, MA, USA
| | - Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wenqiang Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Luis M Tuesta
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics,, Harvard University, Cambridge, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Smith ACW, Jonkman S, Difeliceantonio AG, O'Connor RM, Ghoshal S, Romano MF, Everitt BJ, Kenny PJ. Opposing roles for striatonigral and striatopallidal neurons in dorsolateral striatum in consolidating new instrumental actions. Nat Commun 2021; 12:5121. [PMID: 34433818 PMCID: PMC8387469 DOI: 10.1038/s41467-021-25460-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/11/2021] [Indexed: 12/05/2022] Open
Abstract
Comparatively little is known about how new instrumental actions are encoded in the brain. Using whole-brain c-Fos mapping, we show that neural activity is increased in the anterior dorsolateral striatum (aDLS) of mice that successfully learn a new lever-press response to earn food rewards. Post-learning chemogenetic inhibition of aDLS disrupts consolidation of the new instrumental response. Similarly, post-learning infusion of the protein synthesis inhibitor anisomycin into the aDLS disrupts consolidation of the new response. Activity of D1 receptor-expressing medium spiny neurons (D1-MSNs) increases and D2-MSNs activity decreases in the aDLS during consolidation. Chemogenetic inhibition of D1-MSNs in aDLS disrupts the consolidation process whereas D2-MSN inhibition strengthens consolidation but blocks the expression of previously learned habit-like responses. These findings suggest that D1-MSNs in the aDLS encode new instrumental actions whereas D2-MSNs oppose this new learning and instead promote expression of habitual actions.
Collapse
Affiliation(s)
- Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sietse Jonkman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra G Difeliceantonio
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences and Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, VA, USA
| | - Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soham Ghoshal
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hunter College, City University of New York, New York, NY, USA
| | - Michael F Romano
- Department of Computational Neuroscience, Boston University, Boston, MA, USA
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Neuromodulated Dopamine Plastic Networks for Heterogeneous Transfer Learning with Hebbian Principle. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The plastic modifications in synaptic connectivity is primarily from changes triggered by neuromodulated dopamine signals. These activities are controlled by neuromodulation, which is itself under the control of the brain. The subjective brain’s self-modifying abilities play an essential role in learning and adaptation. The artificial neural networks with neuromodulated plasticity are used to implement transfer learning in the image classification domain. In particular, this has application in image detection, image segmentation, and transfer of learning parameters with significant results. This paper proposes a novel approach to enhance transfer learning accuracy in a heterogeneous source and target, using the neuromodulation of the Hebbian learning principle, called NDHTL (Neuromodulated Dopamine Hebbian Transfer Learning). Neuromodulation of plasticity offers a powerful new technique with applications in training neural networks implementing asymmetric backpropagation using Hebbian principles in transfer learning motivated CNNs (Convolutional neural networks). Biologically motivated concomitant learning, where connected brain cells activate positively, enhances the synaptic connection strength between the network neurons. Using the NDHTL algorithm, the percentage of change of the plasticity between the neurons of the CNN layer is directly managed by the dopamine signal’s value. The discriminative nature of transfer learning fits well with the technique. The learned model’s connection weights must adapt to unseen target datasets with the least cost and effort in transfer learning. Using distinctive learning principles such as dopamine Hebbian learning in transfer learning for asymmetric gradient weights update is a novel approach. The paper emphasizes the NDHTL algorithmic technique as synaptic plasticity controlled by dopamine signals in transfer learning to classify images using source-target datasets. The standard transfer learning using gradient backpropagation is a symmetric framework. Experimental results using CIFAR-10 and CIFAR-100 datasets show that the proposed NDHTL algorithm can enhance transfer learning efficiency compared to existing methods.
Collapse
|
18
|
Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines 2021; 9:biomedicines9060647. [PMID: 34200134 PMCID: PMC8228225 DOI: 10.3390/biomedicines9060647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a behaviorally and clinically diverse neuromodulator that controls CNS function. DA plays major roles in many behaviors including locomotion, learning, habit formation, perception, and memory processing. Reflecting this, DA dysregulation produces a wide variety of cognitive symptoms seen in neuropsychiatric diseases such as Parkinson’s, Schizophrenia, addiction, and Alzheimer’s disease. Here, we review recent advances in the DA systems neuroscience field and explore the advancing hypothesis that DA’s behavioral function is linked to disease deficits in a neural circuit-dependent manner. We survey different brain areas including the basal ganglia’s dorsomedial/dorsolateral striatum, the ventral striatum, the auditory striatum, and the hippocampus in rodent models. Each of these regions have different reported functions and, correspondingly, DA’s reflecting role in each of these regions also has support for being different. We then focus on DA dysregulation states in Parkinson’s disease, addiction, and Alzheimer’s Disease, emphasizing how these afflictions are linked to different DA pathways. We draw upon ideas such as selective vulnerability and region-dependent physiology. These bodies of work suggest that different channels of DA may be dysregulated in different sets of disease. While these are great advances, the fine and definitive segregation of such pathways in behavior and disease remains to be seen. Future studies will be required to define DA’s necessity and contribution to the functional plasticity of different striatal regions.
Collapse
Affiliation(s)
- Allen PF Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
| | - Thomas A. Kim
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Correspondence:
| |
Collapse
|
19
|
Kang JWM, Mor D, Keay KA. Nerve injury alters restraint-induced activation of the basolateral amygdala in male rats. Brain Struct Funct 2021; 226:1209-1227. [PMID: 33582845 DOI: 10.1007/s00429-021-02235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-min acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for "acute", restraint triggered neuronal activation, and FosB/ΔFosB expression was used to reveal prolonged neuronal activation/sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.
Collapse
Affiliation(s)
- James W M Kang
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia.
| | - David Mor
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
20
|
Soleimanpour E, Bergado Acosta JR, Landgraf P, Mayer D, Dankert E, Dieterich DC, Fendt M. Regulation of CREB Phosphorylation in Nucleus Accumbens after Relief Conditioning. Cells 2021; 10:238. [PMID: 33530478 PMCID: PMC7912172 DOI: 10.3390/cells10020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Relief learning is the association of environmental cues with the cessation of aversive events. While there is increasing knowledge about the neural circuitry mediating relief learning, the respective molecular pathways are not known. Therefore, the aim of the present study was to examine different putative molecular pathways underlying relief learning. To this purpose, male rats were subjected either to relief conditioning or to a pseudo conditioning procedure. Forty-five minutes or 6 h after conditioning, samples of five different brain regions, namely the prefrontal cortex, nucleus accumbens (NAC), dorsal striatum, dorsal hippocampus, and amygdala, were collected. Using quantitative Western blots, the expression level of CREB, pCREB, ERK1/2, pERK1/2, CaMKIIα, MAP2K, PKA, pPKA, Akt, pAkt, DARPP-32, pDARPP-32, 14-3-3, and neuroligin2 were studied. Our analyses revealed that relief conditioned rats had higher CREB phosphorylation in NAC 6 h after conditioning than pseudo conditioned rats. The data further revealed that this CREB phosphorylation was mainly induced by dopamine D1 receptor-mediated activation of PKA, however, other kinases, downstream of the NMDA receptor, may also contribute. Taken together, the present study suggests that CREB phosphorylation, induced by a combination of different molecular pathways downstream of dopamine D1 and NMDA receptors, is essential for the acquisition and consolidation of relief learning.
Collapse
Affiliation(s)
- Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Jorge R. Bergado Acosta
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Evelyn Dankert
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Daniela C. Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
21
|
Shifting motivational states: The effects of nucleus accumbens dopamine and opioid receptor activation on a modified effort-based choice task. Behav Brain Res 2020; 399:112999. [PMID: 33161034 DOI: 10.1016/j.bbr.2020.112999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
The nucleus accumbens (NAc) is critical for regulating the appetitive and consummatory phases of motivated behavior. These experiments examined the effects of dopamine and opioid receptor manipulations within the NAc during an effort-based choice task that allowed for simultaneous assessment of both phases of motivation. Male Sprague-Dawley rats received bilateral guide cannulas targeting the NAc core and were tested in 1-hr sessions with free access to rat chow and the choice to work for sugar pellets on a progressive ratio 2 (PR2) reinforcement schedule. Individual groups of rats were tested following stimulation or blockade of NAc D1-like or D2-like receptors, stimulation of μ-, δ-, or κ-opioid receptors, or antagonism of opioid receptors. Behavior was examined under ad libitum conditions and following 23-h food restriction. NAc blockade of the D1-like receptors or stimulation of the D2 receptor reduced break point for earning sugar pellets; D2 receptor stimulation also modestly lowered chow intake. NAc μ-opioid receptor stimulation increased intake of the freely-available chow while simultaneously reducing break point for the sugar pellets. In non-restricted conditions, δ-opioid receptor stimulation increased both food intake and breakpoint. There were no effects of stimulating NAc D1 or κ receptors, nor did blocking D2 or opioid receptors affect task behavior. These data support prior literature linking dopamine to appetitive motivational processes, and suggest that μ- and δ-opioid receptors affect food-directed motivation differentially. Specifically, μ-opioid receptors shifted behavior towards consumption, and δ-opioid receptor enhanced both sugar-seeking and consumption of the pabulum chow when animals were not food restricted.
Collapse
|
22
|
Grigsby KB, Childs TE, Booth FW. The role of nucleus accumbens CREB attenuation in rescuing low voluntary running behavior in female rats. J Neurosci Res 2020; 98:2302-2316. [PMID: 32725625 DOI: 10.1002/jnr.24698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/30/2023]
Abstract
Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold. Therefore, the current study addresses the extent to which NAc CREB attenuation influences female LVR and wild-type (WT) wheel-running behavior. Inducible reductions in NAc neuronal activity using Gi-coupled hM4Di DREADDs increased running behavior in LVR, but not in WT, rats. Similarly, site-directed pharmacological inhibition of NAc CREB activity significantly increased LVR nightly running distance and time by ~twofold, with no effect in WT rats. Finally, environmentally enriched LVR rats exhibit higher levels of running compared to socially isolated rats in what appeared to be a CREB-related manner. Considering the positive outcomes of upstream CREB modulation and environmental enrichment on LVR behavior, we believe that blunting NAc CREB activity has the neuromolecular potential to partially reverse low physical activity motivation, as exemplified by the LVR model. The positive physical activity outcome of early life enrichment adds translatable value to human childhood enrichment and highlights its importance on motivational processes later in life.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
24
|
Iino Y, Sawada T, Yamaguchi K, Tajiri M, Ishii S, Kasai H, Yagishita S. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature 2020; 579:555-560. [PMID: 32214250 DOI: 10.1038/s41586-020-2115-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3-5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.
Collapse
Affiliation(s)
- Yusuke Iino
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Takeshi Sawada
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Kenji Yamaguchi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Mio Tajiri
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Shin Ishii
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Moretti J, Poh EZ, Rodger J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front Neurosci 2020; 14:137. [PMID: 32210744 PMCID: PMC7068681 DOI: 10.3389/fnins.2020.00137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.
Collapse
Affiliation(s)
- Jessica Moretti
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eugenia Z Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
26
|
Li YX, An H, Wen Z, Tao ZY, Cao DY. Can oxytocin inhibit stress-induced hyperalgesia? Neuropeptides 2020; 79:101996. [PMID: 31776011 DOI: 10.1016/j.npep.2019.101996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
Stress-induced hyperalgesia is a problematic condition that lacks an effective therapeutic measure, and hence impairs health-related quality of life. The regulation of stress by oxytocin (OT) has overlapping effects on pain. OT can alleviate pain directly mainly at the spinal level and the peripheral tissues. Additionally, OT plays an analgesic role by dealing with stress and fear learning. When OT relieves stress by targeting the prefrontal brain regions and the hypothalamic-pituitary-adrenal axis, the body's sensitivity to pain is attenuated. Meanwhile, OT facilitates fear learning and may, in turn, enhance the anticipatory actions to painful stimulation. The unique therapeutic value of OT in patients suffering from stress and stress-related hyperalgesia conditions is worth considering. We reviewed recent advances in animal and human studies involving the effects of OT on stress and pain, and discussed the possible targets of OT within the descending and ascending pathways in the central nervous system. This review provides an overview of the evidence on the role of OT in alleviating stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Yue-Xin Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China; Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Hong An
- Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| | - Zhuo Wen
- Department of Special Dental Care, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Zhuo-Ying Tao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
27
|
Corongiu S, Dessì C, Cadoni C. Adolescence versus adulthood: Differences in basal mesolimbic and nigrostriatal dopamine transmission and response to drugs of abuse. Addict Biol 2020; 25:e12721. [PMID: 30779271 DOI: 10.1111/adb.12721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have shown that people who begin experimenting drugs of abuse during adolescence are more likely to develop substance use disorders, and the earliest is the beginning of their use, the greatest is the likelihood to become dependent. Understanding the neurobiological changes increasing adolescent vulnerability to drug use is becoming imperative. Although all neurotransmitter systems undergo relevant developmental changes, dopamine system is of particular interest, given its role in a variety of functions related to reward, motivation, and decision making. Thus, in the present study, we investigated differences in mesolimbic and nigrostriatal dopamine transmission between adolescent (5, 6, 7 weeks of age) and adult rats (10-12 weeks of age), in basal conditions and following drug challenge, by using in vivo brain microdialysis. Although no significant difference between adolescents and adults was observed in dopamine basal levels in the nucleus accumbens (NAc)shell and core, reduced DA levels were found in the dorsolateral striatum (DLS) of early and mid-adolescent rats. Adolescent rats showed greater increase of dopamine in the NAc shell following nicotine (0.4 mg/kg), THC (1.0 mg/kg), and morphine (1.0 mg/kg), in the NAc core following nicotine and morphine, and in the DLS following THC, morphine, and cocaine (10 mg/kg). These results, while adding new insight in the development and functionality of the dopamine system during different stages of adolescence, might provide a neurochemical basis for the greater vulnerability of adolescents to drugs of abuse and for the postulated gateway effect of nicotine and THC toward abuse of other illicit substances.
Collapse
Affiliation(s)
- Silvia Corongiu
- Department of Biomedical Sciences, Neuropsychopharmacology SectionUniversity of Cagliari Italy
| | - Christian Dessì
- National Research Council of ItalyInstitute of Neuroscience Italy
| | - Cristina Cadoni
- National Research Council of ItalyInstitute of Neuroscience Italy
- Centre of Excellence “Neurobiology of Dependence”University of Cagliari Italy
| |
Collapse
|
28
|
Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019; 56:7950-7965. [PMID: 31134458 PMCID: PMC6834761 DOI: 10.1007/s12035-019-1641-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Pázmány Péter sétány 1C, Budapest, 1117, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Guillaume Lourmet
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Tűzoltó utca 58, Budapest, H-1094, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
29
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
30
|
Senatore R, Marcelli A. A paradigm for emulating the early learning stage of handwriting: Performance comparison between healthy controls and Parkinson’s disease patients in drawing loop shapes. Hum Mov Sci 2019; 65:S0167-9457(17)30834-5. [DOI: 10.1016/j.humov.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
31
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
32
|
Sharp BM. Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. Eur J Neurosci 2018; 50:2247-2254. [PMID: 29802666 DOI: 10.1111/ejn.13970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus, and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder, and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors, and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
33
|
Grigsby KB, Ruegsegger GN, Childs TE, Booth FW. Overexpression of Protein Kinase Inhibitor Alpha Reverses Rat Low Voluntary Running Behavior. Mol Neurobiol 2018; 56:1782-1797. [PMID: 29931508 DOI: 10.1007/s12035-018-1171-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.,Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
34
|
Grigsby KB, Kovarik CM, Rottinghaus GE, Booth FW. High and low nightly running behavior associates with nucleus accumbens N-Methyl-d-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences. Neurosci Lett 2018; 671:50-55. [PMID: 29425730 DOI: 10.1016/j.neulet.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 11/19/2022]
Abstract
The extent to which N-Methyl-d-aspartate (NMDA) receptors facilitate the motivation to voluntarily wheel-run in rodents has yet to be determined. In so, we utilized female Wistar rats selectively bred to voluntarily run high (HVR) and low (LVR) nightly distances in order to examine if endogenous differences in nucleus accumbens (NAc) NMDA receptor expression and function underlies the propensity for high or low motivation to voluntarily wheel-run. 12-14 week old HVR and LVR females were used to examine: 1.) NAc mRNA and protein expression of NMDA subunits NR1, NR2A and NR2B; 2.) NMDA current responses in isolated medium spiny neurons (MSNs) and 3.) NMDA-evoked dopamine release in an ex vivo preparation of NAc punches. Expectedly, there was a large divergence in nightly running distance and time between HVR and LVR rats. We saw a significantly higher mRNA and protein expression of NR1 in HVR compared to LVR rats, while seeing no difference in the expression of NR2A or NR2B. There was a greater current response to a 500 ms application of 300 μM of NMDA in medium-spiny neurons isolated from the NAc HVR compared to LVR animals. On average, NMDA-evoked punches (50 μM of NMDA for 10 min) taken from HVR rats retained ∼54% of the dopamine content compared to their bilateral non-evoked sides, while evoked punches from LVR animals showed no statistical decrease in dopamine content compared to their non-evoked sides. Collectively, these data suggest a potential link between NAc NR1 subunit expression as well as NMDA function and the predisposition for nightly voluntary running behavior in rats. In light of the epidemic rise in physical inactivity, these findings have the potential to explain a neuro-molecular mechanism that regulates the motivation to be physically active.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Cathleen M Kovarik
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - George E Rottinghaus
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
35
|
Liu CM, Kanoski SE. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol Behav 2018; 193:223-231. [PMID: 29421588 DOI: 10.1016/j.physbeh.2018.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023]
Abstract
Understanding the neurobiological controls of feeding behavior is critical in light of the growing obesity pandemic, a phenomenon largely based on excessive caloric consumption. Feeding behavior and its underlying biological substrates are frequently divided in the literature into two separate categories: [1] homeostatic processes involving energy intake based on caloric and other metabolic deficits, and [2] non-homeostatic processes that involve feeding driven by environmental and cognitive factors. The present review summarizes both historic and recent research examining the homeostatic regulation of feeding with specific emphasis on hypothalamic and hindbrain circuitry that monitor and regulate various metabolic signals. Regarding non-homeostatic controls, we highlight higher-order brain structures that integrate feeding-relevant external, interoceptive, and cognitive factors, including sensory cortical processing, learned associations in the hippocampus, and reward-based processing in the nucleus accumbens and interconnected mesolimbic circuitry. Finally, the current review focuses on recent evidence that challenges the traditional view that distinct neural systems regulate homeostatic vs. non-homeostatic controls of feeding behavior. Specifically, we highlight several feeding-related endocrine systems that act on both lower- and higher-order substrates, present evidence for the modulation of learned and cognitive feeding-relevant behaviors by lower-order brain regions, and highlight data showing that apparent homeostatic-based feeding behavior is modulated by higher-order brain regions. Our concluding perspective is that the classic dissociation between homeostatic and non-homeostatic constructs in relation to feeding behavior is limited with regards to understanding the complex integrated neurobiological systems that control energy balance.
Collapse
Affiliation(s)
- Clarissa M Liu
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, United States; University of Southern California, Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, CA, United States
| | - Scott E Kanoski
- University of Southern California, Neuroscience Graduate Program, Los Angeles, CA, United States; University of Southern California, Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, CA, United States.
| |
Collapse
|
36
|
Koshiyama D, Fukunaga M, Okada N, Yamashita F, Yamamori H, Yasuda Y, Fujimoto M, Ohi K, Fujino H, Watanabe Y, Kasai K, Hashimoto R. Subcortical association with memory performance in schizophrenia: a structural magnetic resonance imaging study. Transl Psychiatry 2018; 8:20. [PMID: 29317603 PMCID: PMC5802568 DOI: 10.1038/s41398-017-0069-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
Memory performance is severely impaired in individuals with schizophrenia. Although several studies have reported a relationship between memory performance and hippocampal volume, only a few structural magnetic resonance imaging (MRI) studies have investigated the relationship between memory performance and subcortical structures other than hippocampus in patients with schizophrenia. We investigated the relationship between memory performance and subcortical regional volumes in a large sample of patients with schizophrenia. Participants included 174 patients with schizophrenia and 638 healthy comparison subjects (HCS). The Wechsler Memory Scale-Revised (WMS-R) has three memory indices (verbal immediate recall, visual immediate recall, and delayed recall (verbal plus visual)) and one control neurocognitive index (attention/concentration). We obtained T1-weighted MRI data and measured the bilateral volumes of the hippocampus, amygdala, thalamus, nucleus accumbens (NA), caudate, putamen, and globus pallidus. Patients with schizophrenia had significantly lower scores for all of the indices of the WMS-R than the HCS. They had more severe impairments in verbal immediate recall and delayed recall than in visual immediate recall and attention/concentration. Verbal immediate recall/delayed recall scores in patients with schizophrenia were significantly correlated not only with hippocampal volume (left: r = 0.34; right: r = 0.28/left: r = 0.33; right: r = 0.31), but also with NA volume (left: r = 0.24; right: r = 0.25/left: r = 0.26; right: r = 0.27). The present investigation with a large sample size did not only replicate hippocampal volume and memory association, but also found that NA volume is associated with memory performances in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukunaga
- 0000 0001 2272 1771grid.467811.dDivision of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Naohiro Okada
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumio Yamashita
- 0000 0000 9613 6383grid.411790.aDivision of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidenaga Yamamori
- 0000 0004 0373 3971grid.136593.bDepartment of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Yasuda
- 0000 0004 0373 3971grid.136593.bDepartment of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan ,0000 0004 0403 4283grid.412398.5Oncology Center, Osaka University Hospital, Osaka, Japan
| | - Michiko Fujimoto
- 0000 0004 0373 3971grid.136593.bDepartment of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutaka Ohi
- 0000 0004 0373 3971grid.136593.bDepartment of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Fujino
- 0000 0004 0373 3971grid.136593.bGraduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Yoshiyuki Watanabe
- 0000 0004 0373 3971grid.136593.bDiagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Ryota Hashimoto
- 0000 0004 0373 3971grid.136593.bDepartment of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan ,0000 0004 0373 3971grid.136593.bMolecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Abstract
Severe impairment of social interaction is a core symptom of numerous psychiatric disorders. Oxytocin (OT) has been shown to be involved in various aspects of social behavior related to reproduction, but little is known about its effects on nonreproductive social interaction between adults or the neuroanatomical location where OT exerts its action. Here, we examined the nucleus accumbens, a region of the brain containing high levels of the oxytocin receptor (OTR) and comprising an important node in the neural circuitry possibly related to social interaction. Behavioral effects of a local microinfusion of OT (0.1, 1, and 10 ng/side) and an oxytocin receptor antagonist (OTR-A) (1, 10, and 100 ng/side) were evaluated in naturally high social and low social female and male monogamous mandarin voles (Microtus mandarinus) using the social preference paradigm and open-field tests. The results showed that administration of 1 ng/side OT increased social preference; however, this effect was not apparent at lower or higher doses. OT did not alter anxiety-like behavior or total locomotion. Microinfusions of a selective OTR-A at 10 and 100 ng doses reduced social approach behavior; a dose of 1 ng had no effect. In conclusion, our results suggest that accumbal OT and OTR-A regulate social preferences in voles in a dose-dependent manner.
Collapse
|
38
|
Choudhary AG, Somalwar AR, Sagarkar S, Rale A, Sakharkar A, Subhedar NK, Kokare DM. CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior. Brain Struct Funct 2017; 223:1313-1328. [PMID: 29116427 DOI: 10.1007/s00429-017-1544-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023]
Abstract
Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.
Collapse
Affiliation(s)
- Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amita R Somalwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Abhishek Rale
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| |
Collapse
|
39
|
Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord 2017; 33:877-888. [PMID: 28880414 PMCID: PMC6667906 DOI: 10.1002/mds.27172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the progressive loss of nigrostriatal dopaminergic neurons. Levodopa is the most effective treatment for the motor symptoms of PD. However, chronic oral levodopa treatment can lead to various motor and nonmotor complications because of nonphysiological pulsatile dopaminergic stimulation in the brain. Examinations of autopsy cases with PD have revealed a decreased number of dendritic spines of striatal neurons. Animal models of PD have revealed altered density and morphology of dendritic spines of neurons in various brain regions after dopaminergic denervation or dopaminergic denervation plus levodopa treatment, indicating altered synaptic transmission. Recent studies using rodent models have reported dendritic spine head enlargement in the caudate‐putamen, nucleus accumbens, primary motor cortex, and prefrontal cortex in cases where chronic levodopa treatment following dopaminergic denervation induced dyskinesia‐like abnormal involuntary movement. Hypertrophy of spines results from insertion of alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptors into the postsynaptic membrane. Such spine enlargement indicates hypersensitivity of the synapse to excitatory inputs and is compatible with a lack of depotentiation, which is an electrophysiological hallmark of levodopa‐induced dyskinesia found in the corticostriatal synapses of dyskinetic animals and the motor cortex of dyskinetic PD patients. This synaptic plasticity may be one of the mechanisms underlying the priming of levodopa‐induced complications such as levodopa‐induced dyskinesia and dopamine dysregulation syndrome. Drugs that could potentially prevent spine enlargement, such as calcium channel blockers, N‐methyl‐D‐aspartate receptor antagonists, alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptor antagonists, and metabotropic glutamate receptor antagonists, are candidates for treatment of levodopa‐induced complications in PD. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yukihisa Funamizu
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
40
|
Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 2017; 7:e1194. [PMID: 28786979 PMCID: PMC5611728 DOI: 10.1038/tp.2017.161] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
41
|
Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor Learning. Neuron 2017; 92:705-721. [PMID: 27883902 DOI: 10.1016/j.neuron.2016.10.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.
Collapse
Affiliation(s)
- Hiroshi Makino
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan G Hedrick
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav 2017; 176:17-25. [PMID: 28315693 PMCID: PMC5763906 DOI: 10.1016/j.physbeh.2017.03.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse.
Collapse
Affiliation(s)
- Samantha M Fortin
- Graduate Program in Neuroscience, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA.
| | - Mitchell F Roitman
- Graduate Program in Neuroscience, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA; Department of Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA.
| |
Collapse
|
43
|
Hanak AS, Chevillard L, Lebeau R, Risède P, Laplanche JL, Benturquia N, Mégarbane B. Neurobehavioral effects of lithium in the rat: Investigation of the effect/concentration relationships and the contribution of the poisoning pattern. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:124-133. [PMID: 28336491 DOI: 10.1016/j.pnpbp.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023]
Abstract
Severity of lithium poisoning depends on the ingested dose, previous treatment duration and renal function. No animal study has investigated neurobehavioral differences in relation to the lithium poisoning pattern observed in humans, while differences in lithium pharmacokinetics have been reported in lithium-pretreated rats mimicking chronic poisonings with enhanced brain accumulation in rats with renal failure. Our objectives were: 1)-to investigate lithium-related effects in overdose on locomotor activity, anxiety-like behavior, spatial recognition memory and anhedonia in the rat; 2)-to model the relationships between lithium-induced effects on locomotion and plasma, erythrocyte, cerebrospinal fluid and brain concentrations previously obtained according to the poisoning pattern. Open-field, elevated plus-maze, Y-maze and sucrose consumption tests were used. In acutely lithium-poisoned rats, we observed horizontal (p<0.001) and vertical hypolocomotion (p<0.0001), increased anxiety-like behavior (p<0.05) and impaired memory (p<0.01) but no altered hedonic status. Horizontal (p<0.01) and vertical (p<0.001) hypolocomotion peaked more markedly 24h after lithium injection and was more prolonged in acute-on-chronically vs. acutely lithium-poisoned rats. Hypolocomotion in chronically lithium-poisoned rats with impaired renal function did not differ from acutely poisoned rats 24h after the last injection. Interestingly, hypolocomotion/concentration relationships best fitted a sigmoidal Emax model in acute poisoning and a linear regression model linked to brain lithium in acute-on-chronic poisoning. In conclusion, lithium overdose alters rat behavior and consistently induces hypolocomotion which is more marked and prolonged in repeatedly lithium-treated rats. Our data suggest that differences between poisoning patterns regarding lithium-induced hypolocomotion are better explained by the duration of lithium exposure than by its brain accumulation.
Collapse
Affiliation(s)
- Anne-Sophie Hanak
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Lucie Chevillard
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Rodolphe Lebeau
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Patricia Risède
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Jean-Louis Laplanche
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Nadia Benturquia
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Bruno Mégarbane
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France.
| |
Collapse
|
44
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
45
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
46
|
Bergado Acosta JR, Kahl E, Kogias G, Uzuneser TC, Fendt M. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens. Neuropharmacology 2016; 114:58-66. [PMID: 27894877 DOI: 10.1016/j.neuropharm.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/28/2023]
Abstract
Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.
Collapse
Affiliation(s)
- Jorge R Bergado Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Georgios Kogias
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, Germany
| | - Taygun C Uzuneser
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
47
|
Nair AG, Bhalla US, Hellgren Kotaleski J. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration. PLoS Comput Biol 2016; 12:e1005080. [PMID: 27584878 PMCID: PMC5008828 DOI: 10.1371/journal.pcbi.1005080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. A response towards an environmental stimulus could be reinforced if it elicits a reward. On the subcellular level, the environmental stimulus and the reward signal lead to a transient increase in striatal calcium- and dopamine-signaling, respectively. The integration of calcium and dopamine signals, which is important for reward-learning, could elicit a downstream response only if they are close in time and arrive in correct order (first calcium and then dopamine). This study proposes that the requirement for the input signals to be temporally close and in correct order could emerge due to the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. The DARPP-32 signaling implements an input-interval dependent gating function and ARPP-21 implements an input-order dependent threshold-like function. Thus, a molecular mechanism has been presented here which could explain the emergence of important temporal aspects of subcellular signal integration in reward-learning.
Collapse
Affiliation(s)
- Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- * E-mail:
| |
Collapse
|
48
|
NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2016; 148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
49
|
Lloyd K, Dayan P. Safety out of control: dopamine and defence. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:15. [PMID: 27216176 PMCID: PMC4878001 DOI: 10.1186/s12993-016-0099-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values.
Collapse
Affiliation(s)
- Kevin Lloyd
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| |
Collapse
|
50
|
Manganese-Disrupted Interaction of Dopamine D1 and NMDAR in the Striatum to Injury Learning and Memory Ability of Mice. Mol Neurobiol 2015; 53:6745-6758. [PMID: 26660110 DOI: 10.1007/s12035-015-9602-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Manganese (Mn) is widely regarded as a neurotoxic heavy metal that causes learning and memory deficits. Recently, it has been proved that the striatum is related to memory and learning ability. However, no previous study focused on the effect of Mn-induced learning and memory deficits on the striatum. This study aims to investigate the probable interaction of dopamine D1 receptor (DR1) and N-methyl-D-aspartate receptor (NMDAR), two cognition-related receptors in the striatum during Mn exposure. Mice are randomly divided into four groups, including control group, 12.5 mg/kg MnCl2 group, 25 mg/kg MnCl2 group, and 50 mg/kg MnCl2 group. The mice receive intraperitoneal injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. Then, learning and memory ability, pathological changes, expression, and interaction of DR1 and NMDAR are determined. It has been found that Mn disrupted spatial learning and memory ability of mice by Morris water maze test and the passive avoidance test. Pathological and ultrastructure were injured. Mn decreased the immunohistochemical activities, protein levels, and messenger RNA (mRNA) expression of DR1, NR1, and NR2A. Mn exposure inhibited interaction between DR1 and NMDAR in striatum by double immunofluorescent staining and co-immunoprecipitation. In conclusion, our study illustrated that Mn caused learning and memory dysfunction via injury of striatum and inhibition of interaction between DR1 and NMDAR in striatum.
Collapse
|