1
|
Shkryl VM. Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons. Biomolecules 2024; 14:1617. [PMID: 39766324 PMCID: PMC11727531 DOI: 10.3390/biom14121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells. It is a versatile signaling molecule that influences neurotransmitter release, muscle contraction, gene expression, and cell survival. This review focuses on the intricate dynamics of calcium signaling in hippocampal neurons, with particular emphasis on the activation of voltage-gated and ionotropic glutamate receptors in the plasma membrane and ryanodine and inositol 1,4,5-trisphosphate receptors in the ER. These channels and receptors are involved in the generation and transmission of electrical signals and the modulation of calcium concentrations within the neuronal network. By analyzing calcium fluctuations in neurons and the associated calcium handling mechanisms at the ER, mitochondria, endo-lysosome and cytosol, we can gain a deeper understanding of the mechanistic pathways underlying neuronal interactions and information transfer.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine
| |
Collapse
|
2
|
Jain A, Nakahata Y, Pancani T, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature 2024; 635:151-159. [PMID: 39385027 PMCID: PMC11540904 DOI: 10.1038/s41586-024-08021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Behavioural time scale plasticity (BTSP) is non-Hebbian plasticity induced by integrating presynaptic and postsynaptic components separated by a behaviourally relevant time scale (seconds)1. BTSP in hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms that enable synapse-specific plasticity on a behavioural time scale are unknown. Here we show that BTSP can be induced in a single dendritic spine using two-photon glutamate uncaging paired with postsynaptic current injection temporally separated by a behavioural time scale. Using an improved Ca2+/calmodulin-dependent kinase II (CaMKII) sensor, we did not detect CaMKII activation during this BTSP induction. Instead, we observed dendritic, delayed and stochastic CaMKII activation (DDSC) associated with Ca2+ influx and plateau potentials 10-100 s after BTSP induction. DDSC required both presynaptic and postsynaptic activity, which suggests that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 15-30 s after the BTSP protocol inhibited synaptic potentiation, which indicated that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca2+ release facilitated both DDSC and BTSP. Thus, our study suggests that non-synapse-specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
Affiliation(s)
- Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Centre for High Impact Neuroscience and Translational Applications (CHINTA), TCG CREST, Kolkata, India
| | - Yoshihisa Nakahata
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tristano Pancani
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tetsuya Watabe
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Polina Rusina
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kelly South
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kengo Adachi
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Long Yan
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
3
|
Kaar A, Weir MP, Rae MG. Altered neuronal group 1 metabotropic glutamate receptor- and endoplasmic reticulum-mediated Ca 2+ signaling in two rodent models of Alzheimer's disease. Neurosci Lett 2024; 823:137664. [PMID: 38309326 DOI: 10.1016/j.neulet.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.
Collapse
Affiliation(s)
- Aidan Kaar
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Megan P Weir
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
4
|
Hidalgo C, Paula-Lima A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol Med 2024; 30:25-36. [PMID: 37957056 DOI: 10.1016/j.molmed.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Hippocampal synaptic plasticity is widely considered the cellular basis of learning and spatial memory processes. This article highlights the central role of Ca2+ release from the endoplasmic reticulum (ER) in hippocampal synaptic plasticity and hippocampus-dependent memory in health and disease. The key participation of ryanodine receptor (RyR) channels, which are the principal Ca2+ release channels expressed in the hippocampus, in these processes is emphasized. It is proposed that the increased neuronal oxidative tone displayed by hippocampal neurons during aging or Alzheimer's disease (AD) leads to excessive activation of RyR-mediated Ca2+ release, a process that is highly redox-sensitive, and that this abnormal response contributes to and aggravates these deleterious conditions.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism, and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile.
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile.
| |
Collapse
|
5
|
Jain A, Nakahata Y, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, and stochastic CaMKII activation underlies behavioral time scale plasticity in CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.549180. [PMID: 37577549 PMCID: PMC10418109 DOI: 10.1101/2023.08.01.549180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Behavioral time scale plasticity (BTSP), is a form of non-Hebbian plasticity induced by integrating pre- and postsynaptic components separated by behavioral time scale (seconds). BTSP in the hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms underlying this behavioral time scale (eligibility trace) and synapse specificity are unknown. CaMKII can be activated in a synapse-specific manner and remain active for a few seconds, making it a compelling candidate for the eligibility trace during BTSP. Here, we show that BTSP can be induced in a single dendritic spine using 2-photon glutamate uncaging paired with postsynaptic current injection temporally separated by behavioral time scale. Using an improved CaMKII sensor, we saw no detectable CaMKII activation during this BTSP induction. Instead, we observed a dendritic, delayed, and stochastic CaMKII activation (DDSC) associated with Ca 2+ influx and plateau 20-40 s after BTSP induction. DDSC requires both pre-and postsynaptic activity, suggesting that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 30 s after the BTSP protocol inhibited synaptic potentiation, indicating that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca 2+ release facilitates both DDSC and BTSP. Thus, our study suggests that the non-synapse specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
|
6
|
Sumi T, Harada K. Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway. iScience 2023; 26:106133. [PMID: 36866246 PMCID: PMC9972575 DOI: 10.1016/j.isci.2023.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). Long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission in the hippocampus are also induced by mAChR. An AMPA receptor (AMPAR) trafficking model for hippocampal neurons has been proposed to simulate N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the early phase. In this study, we demonstrated the validity of the hypothesis that the mAChR-dependent LTP/LTD shares a common AMPAR trafficking pathway associated with NMDAR-dependent LTP/LTD. However, unlike NMDAR, Ca2+ influx into the spine cytosol occurs owing to the Ca2+ stored inside the ER and is induced via the activation of inositol 1,4,5-trisphosphate (IP3) receptors during M1 mAChR activation. Moreover, the AMPAR trafficking model implies that alterations in LTP and LTD observed in Alzheimer's disease could be attributed to age-dependent reductions in AMPAR expression levels.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Corresponding author
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan
| |
Collapse
|
7
|
Barrón-González M, Montes-Aparicio AV, Cuevas-Galindo ME, Orozco-Suárez S, Barrientos R, Alatorre A, Querejeta E, Trujillo-Ferrara JG, Farfán-García ED, Soriano-Ursúa MA. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J Inorg Biochem 2023; 238:112027. [PMID: 36345068 DOI: 10.1016/j.jinorgbio.2022.112027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico; Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Alexia V Montes-Aparicio
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - M Emilio Cuevas-Galindo
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - Rafael Barrientos
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Alberto Alatorre
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Enrique Querejeta
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Eunice D Farfán-García
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico.
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico.
| |
Collapse
|
8
|
Shkryl VM. The spatio-temporal properties of calcium transients in hippocampal pyramidal neurons in vitro. Front Cell Neurosci 2022; 16:1054950. [PMID: 36589284 PMCID: PMC9795003 DOI: 10.3389/fncel.2022.1054950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The spatio-temporal properties of calcium signals were studied in cultured pyramidal neurons of the hippocampus using two-dimensional fluorescence microscopy and ratiometric dye Fura-2. Depolarization-induced Ca2+ transients revealed an asynchronous delayed increase in free Ca2+ concentration. We found that the level of free resting calcium in the cell nucleus is significantly lower compared to the soma, sub-membrane, and dendritic tree regions. Calcium release from the endoplasmic reticulum under the action of several stimuli (field stimulation, high K+ levels, and caffeine) occurs in all areas studied. Under depolarization, calcium signals developed faster in the dendrites than in other areas, while their amplitude was significantly lower since larger and slower responses inside the soma. The peak value of the calcium response to the application of 10 mM caffeine, ryanodine receptors (RyRs) agonist, does not differ in the sub-membrane zone, central region, and nucleus but significantly decreases in the dendrites. In the presence of caffeine, the delay of Ca2+ signals between various areas under depolarization significantly declined. Thirty percentage of the peak amplitude of Ca2+ transients at prolonged electric field stimulation corresponded to calcium release from the ER store by RyRs, while short-term stimulation did not depend on them. 20 μM dantrolene, RyRs inhibitor, significantly reduces Ca2+ transient under high K+ levels depolarization of the neuron. RyRs-mediated enhancement of the Ca2+ signal is more pronounced in the central part and nucleus compared to the sub-membrane or dendrites regions of the neuron. In summary, using the ratiometric imaging allowed us to obtain additional information about the involvement of RyRs in the intracellular dynamics of Ca2+ signals induced by depolarization or electrical stimulation train, with an underlying change in Ca2+ concentration in various regions of interest in hippocampal pyramidal neurons.
Collapse
|
9
|
Sokolov RA, Mukhina IV. Spontaneous Ca 2+ events are linked to the development of neuronal firing during maturation in mice primary hippocampal culture cells. Arch Biochem Biophys 2022; 727:109330. [PMID: 35750097 DOI: 10.1016/j.abb.2022.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca2+-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca2+ events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%. The SCEs were fully dependent on extracellular Ca2+ and neuronal network activity and vanished in the Ca2+-free solution, 10 mM Mg2+-block, or in the presence of voltage-gated Na+-channel blocker, tetrodotoxin. Combined patch-clamp and Ca2+-imaging techniques revealed that microSCE match single action potential (AP), interSCE - burst of 3-12 APs, and macroSCE - 'superburst' of 10+ APs. MicroSCEs were blocked by a common α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) receptor antagonist, CNQX. The γ-aminobutyric acid (GABA) A-type receptor (GABAAR) picrotoxin blockade and L-type voltage-dependent Ca2+-channel inhibitor diltiazem significantly reduced microSCE frequency. InterSCEs were inhibited by CNQX, but picrotoxin treatment significantly increased its amplitude. The N-methyl-d-aspartate (NMDA) receptor antagonist, D-APV, voltage-gated K+-channel blocker, tetraethylammonium, noticeably suppressed interSCE amplitude. We also demonstrate that macroSCEs were AMPA/KA receptor-independent.
Collapse
Affiliation(s)
- Rostislav A Sokolov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; In Vivo Research Center, Sirius University of Science and Technology, Olympic Avenue, 1, Sochi, Russia.
| | - Irina V Mukhina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| |
Collapse
|
10
|
O’Hare JK, Gonzalez KC, Herrlinger SA, Hirabayashi Y, Hewitt VL, Blockus H, Szoboszlay M, Rolotti SV, Geiller TC, Negrean A, Chelur V, Polleux F, Losonczy A. Compartment-specific tuning of dendritic feature selectivity by intracellular Ca 2+ release. Science 2022; 375:eabm1670. [PMID: 35298275 PMCID: PMC9667905 DOI: 10.1126/science.abm1670] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic calcium signaling is central to neural plasticity mechanisms that allow animals to adapt to the environment. Intracellular calcium release (ICR) from the endoplasmic reticulum has long been thought to shape these mechanisms. However, ICR has not been investigated in mammalian neurons in vivo. We combined electroporation of single CA1 pyramidal neurons, simultaneous imaging of dendritic and somatic activity during spatial navigation, optogenetic place field induction, and acute genetic augmentation of ICR cytosolic impact to reveal that ICR supports the establishment of dendritic feature selectivity and shapes integrative properties determining output-level receptive fields. This role for ICR was more prominent in apical than in basal dendrites. Thus, ICR cooperates with circuit-level architecture in vivo to promote the emergence of behaviorally relevant plasticity in a compartment-specific manner.
Collapse
Affiliation(s)
- Justin K. O’Hare
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Stephanie A. Herrlinger
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Tokyo, Japan
| | - Victoria L. Hewitt
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Heike Blockus
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Sebi V. Rolotti
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Tristan C. Geiller
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Adrian Negrean
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
| | - Vikas Chelur
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
| | - Franck Polleux
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
- Kavli Institute for Brain Science, Columbia University; New York, NY, 10027, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University; New York, NY, 10027, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, United States
- Kavli Institute for Brain Science, Columbia University; New York, NY, 10027, United States
| |
Collapse
|
11
|
Adjunctive Raloxifene and Isradipine Improve Cognitive Functioning in Patients With Schizophrenia: A Pilot Study. J Clin Psychopharmacol 2021; 40:457-463. [PMID: 32796392 DOI: 10.1097/jcp.0000000000001274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cognitive impairment is the most important feature of schizophrenia leading to severe functional disability. To identify pathways that improve pathophysiological neurocognition in schizophrenia is a current challenge for the development of goal-directed clinical interventions. In the present study, we investigated the effects of raloxifene (a selective estrogen modulator) and isradipine (a voltage-gated L-type calcium channel blocker) on cognitive deficits in patients with schizophrenia. METHOD We designed a double-blind, randomized, parallel, placebo-controlled trial. We randomized 60 patients with schizophrenia into 3 groups including isradipine 5 mg, raloxifine 60 mg, and placebo for 6 consequent weeks, all in the same shape capsules, 2 times a day, along with treatment as usual. The initial and final results of blood tests, electrocardiograms, and cognitive tests in specific domains, such as attention, processing speed, executive function, and verbal memory were evaluated. RESULTS Our findings revealed a remarkable association between adjunctive raloxifene treatment and the alleviation of verbal memory deficits. Isradipine treatment significantly improved the verbal memory and attention dysfunction in some variables of the Stroop test, compared with the placebo. However, no effect was observed in processing speed and executive function deficits. CONCLUSIONS To the best of our knowledge, this study provides the first evidence that isradipine is a novel therapy option improving verbal memory and attention, both related to its activity in the hippocampus and the cerebellum. Further investigations are necessary to elucidate the mechanisms of action for both drugs in schizophrenia.
Collapse
|
12
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|
13
|
Influence of spatially segregated IP 3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proc Natl Acad Sci U S A 2020; 117:11097-11108. [PMID: 32358199 DOI: 10.1073/pnas.2000148117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been known for a long time that inositol-trisphosphate (IP3) receptors are present in the axon of certain types of mammalian neurons, but their functional role has remained unexplored. Here we show that localized photolysis of IP3 induces spatially constrained calcium rises in Purkinje cell axons. Confocal immunohistology reveals that the axon initial segment (AIS), as well as terminals onto deep cerebellar cells, express specific subtypes of Gα/q and phospholipase C (PLC) molecules, together with the upstream purinergic receptor P2Y1. By contrast, intermediate parts of the axon express another set of Gα/q and PLC molecules, indicating two spatially segregated signaling cascades linked to IP3 generation. This prompted a search for distinct actions of IP3 in different parts of Purkinje cell axons. In the AIS, we found that local applications of the specific P2Y1R agonist MRS2365 led to calcium elevation, and that IP3 photolysis led to inhibition of action potential firing. In synaptic terminals on deep cerebellar nuclei neurons, we found that photolysis of both IP3 and ATP led to GABA release. We propose that axonal IP3 receptors can inhibit action potential firing and increase neurotransmitter release, and that these effects are likely controlled by purinergic receptors. Altogether our results suggest a rich and diverse functional role of IP3 receptors in axons of mammalian neurons.
Collapse
|
14
|
Milanick WJ, Polo-Parada L, Dantzler HA, Kline DD. Activation of alpha-1 adrenergic receptors increases cytosolic calcium in neurones of the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2019; 31:e12791. [PMID: 31494990 PMCID: PMC7003713 DOI: 10.1111/jne.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro-sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+ ]i ); however, the role of NE with respect to modulating [Ca2+ ]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+ ]i of acutely isolated PVN neurones using Fura-2 imaging. NE induced a slow increase in [Ca2+ ]i compared to artificial cerebrospinal fluid vehicle. NE-induced Ca2+ elevations were mimicked by the α1 -AR agonist phenylephrine (PE) but not by α2 -AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+ ]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+ ]i and reduced responders. Blockade of voltage-dependent Ca2+ channels abolished the α1 -AR induced increase in [Ca2+ ]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+ -induced membrane depolarisation produced repetitive [Ca2+ ]i elevations. NE and PE increased baseline Ca2+ , whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+ ]i . Taken together, these data suggest receptor-specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1 -ARs is co-dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor-mediated signalling cascade.
Collapse
Affiliation(s)
- William J. Milanick
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| |
Collapse
|
15
|
Chen-Engerer HJ, Hartmann J, Karl RM, Yang J, Feske S, Konnerth A. Two types of functionally distinct Ca 2+ stores in hippocampal neurons. Nat Commun 2019; 10:3223. [PMID: 31324793 PMCID: PMC6642203 DOI: 10.1038/s41467-019-11207-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
It is widely assumed that inositol trisphosphate (IP3) and ryanodine (Ry) receptors share the same Ca2+ pool in central mammalian neurons. We now demonstrate that in hippocampal CA1 pyramidal neurons IP3- and Ry-receptors are associated with two functionally distinct intracellular Ca2+ stores, respectively. While the IP3-sensitive Ca2+ store refilling requires Orai2 channels, Ry-sensitive Ca2+ store refilling involves voltage-gated Ca2+ channels (VGCCs). Our findings have direct implications for the understanding of function and plasticity in these central mammalian neurons.
Collapse
Affiliation(s)
- Hsing-Jung Chen-Engerer
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Str. 29, 80802, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Biedersteiner Str. 29, 80802, Munich, Germany
| | - Jana Hartmann
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Str. 29, 80802, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Biedersteiner Str. 29, 80802, Munich, Germany
| | - Rosa Maria Karl
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Str. 29, 80802, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Biedersteiner Str. 29, 80802, Munich, Germany
| | - Jun Yang
- Department of Pathology, School of Medicine, New York University, New York, NY, 10003, USA
| | - Stefan Feske
- Department of Pathology, School of Medicine, New York University, New York, NY, 10003, USA
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Str. 29, 80802, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
16
|
Padamsey Z, Foster WJ, Emptage NJ. Intracellular Ca 2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019; 25:208-226. [PMID: 30014771 DOI: 10.1177/1073858418785334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.
Collapse
Affiliation(s)
- Zahid Padamsey
- 1 Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, 15 George Square, Edinburgh, UK
| | - William J Foster
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| | - Nigel J Emptage
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| |
Collapse
|
17
|
Ashhad S, Narayanan R. Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology. Mol Neurobiol 2019; 56:2278-2299. [PMID: 30014322 PMCID: PMC6394607 DOI: 10.1007/s12035-018-1223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles, with no active contribution to information processing in the central nervous system. Research spanning the past few decades has clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
18
|
Yu W, Kwon J, Sohn J, Lee SH, Kim S, Ho W. mGluR5-dependent modulation of dendritic excitability in CA1 pyramidal neurons mediated by enhancement of persistent Na + currents. J Physiol 2018; 596:4141-4156. [PMID: 29870060 PMCID: PMC6117564 DOI: 10.1113/jp275999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-frequency stimulation (HFS) of the Schaffer collateral pathway activates metabotropic glutamate receptor 5 (mGluR5) signalling in the proximal apical dendrites of CA1 pyramidal neurons. The synaptic activation of mGluR5-mediated calcium signalling causes a significant increase in persistent sodium current (INa,P ) in the dendrites. Increased INa,P by HFS underlies potentiation of synaptic inputs at both the proximal and distal dendrite, leading to an enhanced probability of action potential firing associated with decreased action potential thresholds. Therefore, HFS-induced activation of intracellular mGluR5 serves an important role as an instructive signal for potentiation of upcoming inputs by increasing dendritic excitability. ABSTRACT Dendritic Na+ channels in pyramidal neurons are known to amplify synaptic signals, thereby facilitating action potential (AP) generation. However, the mechanisms that modulate dendritic Na+ channels have remained largely uncharacterized. Here, we report a new form of short-term plasticity in which proximal excitatory synaptic inputs to hippocampal CA1 pyramidal neurons transiently elevate dendritic excitability. High-frequency stimulations (HFS) to the Schaffer collateral (SC) pathway activate mGluR5-dependent Ca2+ signalling in the apical dendrites, which, with calmodulin, upregulates specifically Nav1.6 channel-mediated persistent Na+ currents (INa,P ) in the dendrites. This HFS-induced increase in dendritic INa,P results in transient increases in the amplitude of excitatory postsynaptic potentials induced by both proximal SC and distal perforant path stimulation, leading to the enhanced probability of AP firing associated with decreased AP thresholds. Taken together, our study identifies dendritic INa,P as a novel target for mediating activity-dependent modulation of dendritic integration and neuronal output.
Collapse
Affiliation(s)
- Weonjin Yu
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Jaehan Kwon
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Jong‐Woo Sohn
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon305‐701Republic of Korea
| | - Suk Ho Lee
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Sooyun Kim
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Won‐Kyung Ho
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| |
Collapse
|
19
|
Hackelberg S, Oliver D. Metabotropic Acetylcholine and Glutamate Receptors Mediate PI(4,5)P 2 Depletion and Oscillations in Hippocampal CA1 Pyramidal Neurons in situ. Sci Rep 2018; 8:12987. [PMID: 30154490 PMCID: PMC6113233 DOI: 10.1038/s41598-018-31322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/17/2018] [Indexed: 01/24/2023] Open
Abstract
The sensitivity of many ion channels to phosphatidylinositol-4,5-bisphosphate (PIP2) levels in the cell membrane suggests that PIP2 fluctuations are important and general signals modulating neuronal excitability. Yet the PIP2 dynamics of central neurons in their native environment remained largely unexplored. Here, we examined the behavior of PIP2 concentrations in response to activation of Gq-coupled neurotransmitter receptors in rat CA1 hippocampal neurons in situ in acute brain slices. Confocal microscopy of the PIP2-selective molecular sensors tubbyCT-GFP and PLCδ1-PH-GFP showed that pharmacological activation of muscarinic acetylcholine (mAChR) or group I metabotropic glutamate (mGluRI) receptors induces transient depletion of PIP2 in the soma as well as in the dendritic tree. The observed PIP2 dynamics were receptor-specific, with mAChR activation inducing stronger PIP2 depletion than mGluRI, whereas agonists of other Gαq-coupled receptors expressed in CA1 neurons did not induce measureable PIP2 depletion. Furthermore, the data show for the first time neuronal receptor-induced oscillations of membrane PIP2 concentrations. Oscillatory behavior indicated that neurons can rapidly restore PIP2 levels during persistent activation of Gq and PLC. Electrophysiological responses to receptor activation resembled PIP2 dynamics in terms of time course and receptor specificity. Our findings support a physiological function of PIP2 in regulating electrical activity.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Marburg and Giessen, Germany.
| |
Collapse
|
20
|
Mechanism of noradrenaline-induced α1-adrenoceptor mediated regulation of Na-K ATPase subunit expression in Neuro-2a cells. Brain Res Bull 2018; 139:157-166. [DOI: 10.1016/j.brainresbull.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 01/15/2023]
|
21
|
Kramer PF, Williams JT. Calcium Release from Stores Inhibits GIRK. Cell Rep 2017; 17:3246-3255. [PMID: 28009293 DOI: 10.1016/j.celrep.2016.11.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Synaptic transmission is mediated by ionotropic and metabotropic receptors that together regulate the rate and pattern of action potential firing. Metabotropic receptors can activate ion channels and modulate other receptors and channels. The present paper examines the interaction between group 1 mGluR-mediated calcium release from stores and GABAB/D2-mediated GIRK currents in rat dopamine neurons of the Substantia Nigra. Transient activation of mGluRs decreased the GIRK current evoked by GABAB and D2 receptors, although less efficaciously for D2. The mGluR-induced inhibition of GIRK current peaked in 1 s and recovered to baseline after 5 s. The inhibition was dependent on release of calcium from stores, was larger for transient than for tonic currents, and was unaffected by inhibitors of PLC, PKC, PLA2, or calmodulin. This inhibition of GABAB IPSCs through release of calcium from stores is a postsynaptic mechanism that may broadly reduce GIRK-dependent inhibition of many central neurons.
Collapse
Affiliation(s)
- Paul F Kramer
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
22
|
Petrou T, Olsen HL, Thrasivoulou C, Masters JR, Ashmore JF, Ahmed A. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism. J Pharmacol Exp Ther 2017; 360:378-387. [PMID: 27980039 PMCID: PMC5267512 DOI: 10.1124/jpet.116.236695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds.
Collapse
Affiliation(s)
- Terry Petrou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Hervør L Olsen
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - John R Masters
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
23
|
Kouvaros S, Papatheodoropoulos C. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Hippocampus 2016; 26:1542-1559. [DOI: 10.1002/hipo.22655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| | - Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| |
Collapse
|
24
|
Swapna I, Bondy B, Morikawa H. Differential Dopamine Regulation of Ca(2+) Signaling and Its Timing Dependence in the Nucleus Accumbens. Cell Rep 2016; 15:563-573. [PMID: 27068462 DOI: 10.1016/j.celrep.2016.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/10/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Dopamine action in the nucleus accumbens (NAc) is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs) of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR)-induced Ca(2+) signaling dependent on the Ca(2+)- releasing messenger inositol 1,4,5-triphosphate (IP3) plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca(2+) signals within a time window of ∼2-10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca(2+) signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca(2+) signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca(2+) signaling on the order of seconds in two distinct MSN subpopulations.
Collapse
Affiliation(s)
- Immani Swapna
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Brian Bondy
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Metabotropic glutamate receptor-mediated cyclic ADP ribose signalling. Biochem Soc Trans 2016; 43:405-9. [PMID: 26009183 DOI: 10.1042/bst20140288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Group I metabotropic glutamate receptors (I-mGluRs) modulate numerous cellular functions such as specific membrane currents and neurotransmitter release linked to their ability to mobilize calcium from intracellular calcium stores. As such, most I-mGluR research to date has focused on the coupling of these receptors to phospholipase C (PLC)-dependent and inositol (1,4,5) trisphosphate (IP3)-mediated calcium release via activation of IP3 receptors located upon the sarco/endoplasmic reticulum. However, there are now numerous examples of PLC- and IP3-independent I-mGluR-evoked signals, which may instead be mediated by activation of ryanodine receptors (RyRs). A prime candidate for mediating this coupling between I-mGluR activation and RyR opening is cyclic ADP ribose (cADPR) and, indeed, several of these PLC-/IP3-independent I-mGluR-evoked calcium signals have now been shown to be mediated wholly or partly by cADPR-evoked activation of RyRs. The contribution of cADPR signalling to I-mGluR-mediated responses is relatively complex, dependent as it is on factors such as cell type, excitation state of the cell and location of I-mGluRs on the cell. However, these factors notwithstanding, I-mGluR-mediated cADPR signalling remains poorly characterized, with several key aspects yet to be fully elucidated such as (1) the range of stimuli which evoke cADPR production, (2) the specific molecular mechanism(s) coupling cADPR to RyR activation and (3) the contribution of cADPR-mediated responses to downstream outputs such as synaptic plasticity. Furthermore, it is possible that the cADPR pathway may play a role in diseases underpinned by dysregulated calcium homoeostasis such as Alzheimer's disease (AD).
Collapse
|
26
|
Calcium Imaging to Study NMDA Receptor-mediated Cellular Responses. IONOTROPIC GLUTAMATE RECEPTOR TECHNOLOGIES 2016. [DOI: 10.1007/978-1-4939-2812-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Quantitative Proteomics and Lipidomics Analysis of Endoplasmic Reticulum of Macrophage Infected with Mycobacterium tuberculosis. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:270438. [PMID: 25785198 PMCID: PMC4345262 DOI: 10.1155/2015/270438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/17/2022]
Abstract
Even though endoplasmic reticulum (ER) stress associated with mycobacterial infection has been well studied, the molecular basis of ER as a crucial organelle to determine the fate of Mtb is yet to be established. Here, we have studied the ability of Mtb to manipulate the ultrastructural architecture of macrophage ER and found that the ER-phenotypes associated with virulent (H37Rv) and avirulent (H37Ra) strains were different: a rough ER (RER) with the former against a smooth ER (SER) with the later. Further, the functional attributes of these changes were probed by MS-based quantitative proteomics (133 ER proteins) and lipidomics (8 phospholipids). Our omics approaches not only revealed the host pathogen cross-talk but also emphasized how precisely Mtb uses proteins and lipids in combination to give rise to characteristic ER-phenotypes. H37Ra-infected macrophages increased the cytosolic Ca2+ levels by attenuating the ATP2A2 protein and simultaneous induction of PC/PE expression to facilitate apoptosis. However, H37Rv inhibited apoptosis and further controlled the expression of EST-1 and AMRP proteins to disturb cholesterol homeostasis resulting in sustained infection. This approach offers the potential to decipher the specific roles of ER in understanding the cell biology of mycobacterial infection with special reference to the impact of host response.
Collapse
|
28
|
Feng X, Krogh KA, Wu CY, Lin YW, Tsai HC, Thayer SA, Wei LN. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 2014; 5:4487. [PMID: 25066731 PMCID: PMC4200015 DOI: 10.1038/ncomms5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cytoplasm. In the cytoplasm, RIP140 localizes to the ER by binding to the IP3R. The carboxyl-terminal RD4 domain of RIP140 interacts with the carboxyl-terminal gate-keeping domain of the IP3R. This molecular interaction disrupts the IP3R's 'head-tail' interaction, thereby suppressing channel opening and attenuating IP3R-mediated Ca(2+) release. This contributes to a rapid suppression of the ER stress response and provides protection from apoptosis in both hippocampal neurons in vitro and in an animal model of ER stress. Thus, RIP140 translocation to the cytoplasm is an early response to ER stress and provides protection against neuronal death.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly A. Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, R.O.C
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Oda Y, Kodama S, Tsuchiya S, Inoue M, Miyakawa H. Intracellular calcium elevation during plateau potentials mediated by extrasynaptic NMDA receptor activation in rat hippocampal CA1 pyramidal neurons is primarily due to calcium entry through voltage-gated calcium channels. Eur J Neurosci 2014; 39:1613-23. [DOI: 10.1111/ejn.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/04/2014] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yoshiaki Oda
- Laboratory of Cellular Neurobiology; School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Satoshi Kodama
- Laboratory of Cellular Neurobiology; School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Sadahiro Tsuchiya
- Laboratory of Cellular Neurobiology; School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Masashi Inoue
- Laboratory of Cellular Neurobiology; School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Hiroyoshi Miyakawa
- Laboratory of Cellular Neurobiology; School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
30
|
Plotkin JL, Shen W, Rafalovich I, Sebel LE, Day M, Chan CS, Surmeier DJ. Regulation of dendritic calcium release in striatal spiny projection neurons. J Neurophysiol 2013; 110:2325-36. [PMID: 23966676 DOI: 10.1152/jn.00422.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
31
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
32
|
Song H, Thompson SM, Blaustein MP. Nanomolar ouabain augments Ca2+ signalling in rat hippocampal neurones and glia. J Physiol 2013; 591:1671-89. [PMID: 23297310 DOI: 10.1113/jphysiol.2012.248336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Linkage of certain neurological diseases to Na(+) pump mutations and some mood disorders to altered Na(+) pump function has renewed interest in brain Na(+) pumps. We tested nanomolar ouabain on Ca(2+) signalling (fura-2) in rat hippocampal neurone-astrocyte co-cultures. The neurones and astrocytes express Na(+) pumps with a high-ouabain-affinity catalytic subunit (α3 and α2, respectively); both also express pumps with a ouabain-resistant α1 subunit. Neurones and astrocytes were identified by immunocytochemistry and by stimulation; 3-4 μM L-glutamate (Glu) and 3 μM carbachol (CCh) evoked rapid Ca(2+) transients only in neurones, and small, delayed transients in some astrocytes, whereas 0.5-1 μM ATP evoked Ca(2+) transients only in astrocytes. Both cell types responded to 5-10 μM Glu or ATP. The signals evoked by 3-4 μM Glu in neurones were markedly inhibited by 3-10 μm MPEP (blocks metabotropic glutamate receptor mGluR5) and 10 μm LY341495 (non-selective mGluR blocker), but not by 80 μm AP5 (NMDA receptor blocker) or by selective block of mGluR1 or mGluR2. Pre-incubation (0.5-10 min) with 1-10 nm ouabain (EC50 < 1 nm) augmented Glu- and CCh-evoked signals in neurones. This augmentation was abolished by a blocker of the Na(+)-Ca(2+) exchanger, SEA0400 (300 nm). Ouabain (3 nm) pre-incubation also augmented 10 μM cyclopiazonic acid plus 10 mm caffeine-evoked release of Ca(2+) from the neuronal endoplasmic reticulum (ER). The implication is that nanomolar ouabain inhibits α3 Na(+) pumps, increases (local) intracellular Na(+), and promotes Na(+)-Ca(2+) exchanger-mediated Ca(2+) gain and increased storage in the adjacent ER. Ouabain (3 nm) also increased ER Ca(2+) release and enhanced 0.5 μM ATP-evoked transients in astrocytes; these effects were mediated by α2 Na(+) pumps. Thus, nanomolar ouabain may strongly influence synaptic transmission in the brain as a result of its actions on the high-ouabain-affinity Na(+) pumps in both neurones and astrocytes. The significance of these effects is heightened by the evidence that ouabain is endogenous in mammals.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
33
|
Ashhad S, Narayanan R. Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 2013; 591:1645-69. [PMID: 23283761 DOI: 10.1113/jphysiol.2012.245688] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density of A-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role of A-type potassium channels in regulating spike latency, we found that an increase in the density of A-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate that the presence of mGluRs induced a leftward shift in a Bienenstock-Cooper-Munro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
34
|
Matamales M. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? F1000Res 2012; 1:69. [PMID: 24327840 PMCID: PMC3752646 DOI: 10.12688/f1000research.1-69.v1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 01/01/2023] Open
Abstract
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.
Collapse
Affiliation(s)
- Miriam Matamales
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
35
|
Miyazaki K, Manita S, Ross WN. Developmental profile of localized spontaneous Ca(2+) release events in the dendrites of rat hippocampal pyramidal neurons. Cell Calcium 2012; 52:422-32. [PMID: 22951184 DOI: 10.1016/j.ceca.2012.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/03/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Recent experiments demonstrate that localized spontaneous Ca(2+) release events can be detected in the dendrites of pyramidal cells in the hippocampus and other neurons (J. Neurosci. 29 (2009) 7833-7845). These events have some properties that resemble ryanodine receptor mediated "sparks" in myocytes, and some that resemble IP(3) receptor mediated "puffs" in oocytes. They can be detected in the dendrites of rats of all tested ages between P3 and P80 (with sparser sampling in older rats), suggesting that they serve a general signaling function and are not just important in development. However, in younger rats the amplitudes of the events are larger than the amplitudes in older animals and almost as large as the amplitudes of Ca(2+) signals from backpropagating action potentials (bAPs). The rise time of the event signal is fast at all ages and is comparable to the rise time of the bAP fluorescence signal at the same dendritic location. The decay time is slower in younger animals, primarily because of weaker Ca(2+) extrusion mechanisms at that age. Diffusion away from a brief localized source is the major determinant of decay at all ages. A simple computational model closely simulates these events with extrusion rate the only age dependent variable.
Collapse
Affiliation(s)
- Kenichi Miyazaki
- Department of Physiology, New York Medical College, Valhalla, NY 10595, United States
| | | | | |
Collapse
|
36
|
Li Y, Krogh KA, Thayer SA. Epileptic stimulus increases Homer 1a expression to modulate endocannabinoid signaling in cultured hippocampal neurons. Neuropharmacology 2012; 63:1140-9. [PMID: 22814532 DOI: 10.1016/j.neuropharm.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 06/12/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) signaling serves as an on-demand neuroprotective system. eCBs are produced postsynaptically in response to depolarization or activation of metabotropic glutamate receptors (mGluRs) and act on presynaptic cannabinoid receptor-1 to suppress synaptic transmission. Here, we examined the effects of epileptiform activity on these two forms of eCB signaling in hippocampal cultures. Treatment with bicuculline and 4-aminopyridine (Bic + 4-AP), which induced burst firing, inhibited metabotropic-induced suppression of excitation (MSE) and prolonged the duration of depolarization-induced suppression of excitation (DSE). The Homer family of proteins provides a scaffold for signaling molecules including mGluRs. It is known that seizures induce the expression of the short Homer isoform 1a (H1a) that acts in a dominant negative manner to uncouple Homer scaffolds. Bic + 4-AP treatment increased H1a mRNA. A group I mGluR antagonist blocked the Bic + 4-AP-evoked increase in burst firing, the increase in H1a expression, and the inhibition of MSE. Bic + 4-AP treatment reduced mGluR-mediated Ca(2+) mobilization from inositol trisphosphate-sensitive stores relative to untreated cells. Expression of H1a, but not a mutant form that cannot bind Homer ligands, mimicked Bic + 4-AP inhibition of MSE and mGluR-mediated Ca(2+) mobilization. In cells expressing shRNA targeted to Homer 1 mRNA, Bic + 4-AP did not affect mGluR-mediated Ca(2+) release. Furthermore, knockdown of H1a prevented the inhibition of MSE induced by Bic + 4-AP. Thus, an epileptic stimulus increased H1a expression, which subsequently uncoupled mGluR-mediated eCB production. These results indicate that seizure activity modulates eCB-mediated synaptic plasticity, suggesting a changing role for the eCB system following exposure to aberrant patterns of excitatory synaptic activity.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
37
|
Kato HK, Kassai H, Watabe AM, Aiba A, Manabe T. Functional coupling of the metabotropic glutamate receptor, InsP3 receptor and L-type Ca2+ channel in mouse CA1 pyramidal cells. J Physiol 2012; 590:3019-34. [PMID: 22586220 DOI: 10.1113/jphysiol.2012.232942] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activity-dependent regulation of calcium dynamics in neuronal cells can play significant roles in the modulation of many cellular processes such as intracellular signalling, neuronal activity and synaptic plasticity. Among many calcium influx pathways into neurons, the voltage-dependent calcium channel (VDCC) is the major source of calcium influx, but its modulation by synaptic activity has still been under debate. While the metabotropic glutamate receptor (mGluR) is supposed to modulate L-type VDCCs (L-VDCCs), its reported actions include both facilitation and suppression, probably reflecting the uncertainty of both the molecular targets of the mGluR agonists and the source of the recorded calcium signal in previous reports. In this study, using subtype-specific knockout mice, we have shown that mGluR5 induces facilitation of the depolarization-evoked calcium current. This facilitation was not accompanied by the change in single-channel properties of the VDCC itself; instead, it required the activation of calcium-induced calcium release (CICR) that was triggered by VDCC opening, suggesting that the opening of CICR-coupled cation channels was essential for the facilitation. This facilitation was blocked or reduced by the inhibitors of both L-VDCCs and InsP3 receptors (InsP3Rs). Furthermore, L-VDCCs and mGluR5 were shown to form a complex by coimmunoprecipitation, suggesting that the specific functional coupling between mGluR5, InsP3Rs and L-VDCCs played a pivotal role in the calcium-current facilitation. Finally, we showed that mGluR5 enhanced VDCC-dependent long-term potentiation (LTP) of synaptic transmission. Our study has identified a novel mechanism of the interaction between the mGluR and calcium signalling, and suggested a contribution of mGluR5 to synaptic plasticity.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
38
|
Park SW, Jang HJ, Cho KH, Kim MJ, Yoon SH, Rhie DJ. Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:65-70. [PMID: 22416222 PMCID: PMC3298828 DOI: 10.4196/kjpp.2012.16.1.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 11/15/2022]
Abstract
Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-week-old rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-HT2 receptors, but not by the activation of either 5-HT1A or 5-HT3 receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|
40
|
|
41
|
Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ. Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex. J Neurophysiol 2011; 107:407-16. [PMID: 22013240 DOI: 10.1152/jn.00535.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of long-term synaptic plasticity in layer 2/3 of the visual cortex at the end of its critical period in rats. However, the cellular and molecular mechanisms remain unclear. Since inhibitory influence is crucial in the induction of synaptic plasticity, the effect of 5-HT on inhibitory transmission was investigated in layer 2/3 pyramidal neurons of the primary visual cortex. The amplitude of inhibitory postsynaptic current (IPSC), but not excitatory postsynaptic current, evoked by stimulation of the underlying layer 4, was increased by ∼20% with a bath application of 5-HT. The amplitude of miniature IPSC was also increased by the application of 5-HT, while the paired-pulse ratio was not changed. The facilitating effect of 5-HT on IPSC was mediated by the activation of 5-HT(2) receptors. An increase in intracellular Ca(2+) via release from inositol 1,4,5-trisphosphate (IP(3))-sensitive stores, which was confirmed by confocal Ca(2+) imaging, and activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) were involved in the facilitation of IPSC by 5-HT. However, 5-HT failed to facilitate IPSC evoked by the stimulation of layer 1. These results suggest that activation of 5-HT(2) receptors releases intracellular Ca(2+) via IP(3)-sensitive stores, which facilitates GABA(A)ergic transmission via the activation of CaMKII in layer 2/3 pyramidal neurons of the visual cortex in a layer-specific manner. Thus facilitation of inhibitory transmission by 5-HT might be involved in regulating the information flow and the induction of long-term synaptic plasticity, in a pathway-specific manner.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Dept. of Physiology, College of Medicine, Catholic Univ. of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Manita S, Miyazaki K, Ross WN. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites. J Physiol 2011; 589:4903-20. [PMID: 21844002 DOI: 10.1113/jphysiol.2011.216564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Postsynaptic [Ca(2+)](i) changes contribute to several kinds of plasticity in pyramidal neurons. We examined the effects of synaptically activated Ca(2+) waves and NMDA spikes on subsequent Ca(2+) signalling in CA1 pyramidal cell dendrites in hippocampal slices. Tetanic synaptic stimulation evoked a localized Ca(2+) wave in the primary apical dendrites. The [Ca(2+)](i) increase from a backpropagating action potential (bAP) or subthreshold depolarization was reduced if it was generated immediately after the wave. The suppression had a recovery time of 30-60 s. The suppression only occurred where the wave was generated and was not due to a change in bAP amplitude or shape. The suppression also could be generated by Ca(2+) waves evoked by uncaging IP(3), showing that other signalling pathways activated by the synaptic tetanus were not required. The suppression was proportional to the amplitude of the [Ca(2+)](i) change of the Ca(2+) wave and was not blocked by a spectrum of kinase or phosphatase inhibitors, consistent with suppression due to Ca(2+)-dependent inactivation of Ca(2+) channels. The waves also reduced the frequency and amplitude of spontaneous, localized Ca(2+) release events in the dendrites by a different mechanism, probably by depleting the stores at the site of wave generation. The same synaptic tetanus often evoked NMDA spike-mediated [Ca(2+)](i) increases in the oblique dendrites where Ca(2+) waves do not propagate. These NMDA spikes suppressed the [Ca(2+)](i) increase caused by bAPs in those regions. [Ca(2+)](i) increases by Ca(2+) entry through voltage-gated Ca(2+) channels also suppressed the [Ca(2+)](i) increases from subsequent bAPs in regions where the voltage-gated [Ca(2+)](i) increases were largest, showing that all ways of raising [Ca(2+)](i) could cause suppression.
Collapse
Affiliation(s)
- Satoshi Manita
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
43
|
Romero-Curiel A, López-Carpinteyro D, Gamboa C, De la cruz F, Zamudio S, Flores G. Apamin induces plastic changes in hippocampal neurons in senile Sprague-Dawley rats. Synapse 2011; 65:1062-72. [DOI: 10.1002/syn.20938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/24/2011] [Indexed: 12/13/2022]
|
44
|
Xu Y, Tanaka M, Chen L, Sokabe M. DHEAS induces short-term potentiation via the activation of a metabotropic glutamate receptor in the rat hippocampus. Hippocampus 2011; 22:707-22. [DOI: 10.1002/hipo.20932] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
|
45
|
Bengtson CP, Freitag HE, Weislogel JM, Bading H. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons. Biophys J 2011; 99:4066-77. [PMID: 21156150 DOI: 10.1016/j.bpj.2010.10.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022] Open
Abstract
Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo.
Collapse
Affiliation(s)
- C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
46
|
Park JY, Remy S, Varela J, Cooper DC, Chung S, Kang HW, Lee JH, Spruston N. A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons. PLoS Biol 2010; 8:e1000534. [PMID: 21103408 PMCID: PMC2982802 DOI: 10.1371/journal.pbio.1000534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022] Open
Abstract
The excitability of hippocampal pyramidal neurons is regulated by activation of metabotropic glutamate receptors, an effect that is mediated by modulation of R-type calcium channels. Activation of group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) regulates neural activity in a variety of ways. In CA1 pyramidal neurons, activation of group I mGluRs eliminates the post-burst afterhyperpolarization (AHP) and produces an afterdepolarization (ADP) in its place. Here we show that upregulation of Cav2.3 R-type calcium channels is responsible for a component of the ADP lasting several hundred milliseconds. This medium-duration ADP is rapidly and reversibly induced by activation of mGluR5 and requires activation of phospholipase C (PLC) and release of calcium from internal stores. Effects of mGluR activation on subthreshold membrane potential changes are negligible but are large following action potential firing. Furthermore, the medium ADP exhibits a biphasic activity dependence consisting of short-term facilitation and longer-term inhibition. These findings suggest that mGluRs may dramatically alter the firing of CA1 pyramidal neurons via a complex, activity-dependent modulation of Cav2.3 R-type channels that are activated during spiking at physiologically relevant rates and patterns. The hippocampus is an essential structure in the brain for the formation of new declarative memories. Understanding the cellular basis of memory formation, storage, and recall in the hippocampus requires a knowledge of the properties of the relevant neurons and how they are modulated by activity in the neural circuit. For many years, we have known that various chemical neurotransmitters can modulate the electrical excitability of neurons in the hippocampus. Here, we report new experiments to reveal how the chemical neurotransmitter glutamate increases neuronal excitability. The effect we study is the conversion of the afterhyperpolarization (a cellular consequence of firing an action potential) to an afterdepolarization. We identified the metabotropic glutamate receptors involved in this conversion (receptors called mGluR1 and mGluR5) as well as the final target of modulation (R-type calcium channels composed of Cav2.3 subunits), which cause the neurons to exhibit altered excitability in the presence of glutamate. We also determined some of the intermediate steps between activation of the glutamate receptors and modulation of the calcium channels responsible for the change in excitability, offering further mechanistic insight into how synaptic transmission can regulate cellular and network activity.
Collapse
Affiliation(s)
- Jin-Yong Park
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Remy
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Juan Varela
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Donald C. Cooper
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Sungkwon Chung
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ho-Won Kang
- Department of Life Science and Basic Science Institute for Cell Damage Control, Sogang University, Seoul, Korea
| | - Jung-Ha Lee
- Department of Life Science and Basic Science Institute for Cell Damage Control, Sogang University, Seoul, Korea
| | - Nelson Spruston
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
47
|
Safonov LA, Isomura Y, Kang S, Struzik ZR, Fukai T, Câteau H. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis. PLoS One 2010; 5. [PMID: 20927400 PMCID: PMC2946927 DOI: 10.1371/journal.pone.0012869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/16/2010] [Indexed: 11/25/2022] Open
Abstract
A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI) fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.
Collapse
Affiliation(s)
| | - Yoshikazu Isomura
- Laboratory for Neural Circuit Theory, RIKEN BSI, Wako, Japan
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Siu Kang
- Laboratory for Neural Circuit Theory, RIKEN BSI, Wako, Japan
- Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa-shi, Japan
| | - Zbigniew R. Struzik
- Educational Physiology Laboratory, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Tomoki Fukai
- Laboratory for Neural Circuit Theory, RIKEN BSI, Wako, Japan
- CREST, JST, Kawaguchi, Japan
- Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako, Japan
| | - Hideyuki Câteau
- Laboratory for Neural Circuit Theory, RIKEN BSI, Wako, Japan
- Graduate School of Life Science and Science Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
48
|
Cho KH, Jang JH, Jang HJ, Kim MJ, Yoon SH, Fukuda T, Tennigkeit F, Singer W, Rhie DJ. Subtype-specific dendritic Ca(2+) dynamics of inhibitory interneurons in the rat visual cortex. J Neurophysiol 2010; 104:840-53. [PMID: 20554844 DOI: 10.1152/jn.00146.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+) increase in dendrites that is evoked by the backpropagation of somatic action potentials (APs) is involved in the activity-dependent modulation of dendritic and synaptic functions that are location dependent. In the present study, we investigated dendritic Ca(2+) dynamics evoked by backpropagating APs (bAPs) in four subtypes of inhibitory interneurons classified by their spiking patterns: fast spiking (FS), late spiking (LS), burst spiking (BS), and regular-spiking nonpyramidal (RSNP) cells. Cluster analysis, single-cell RT-PCR, and immunohistochemistry confirmed the least-overlapping nature of the grouped cell populations. Somatic APs evoked dendritic Ca(2+) transients in all subtypes of inhibitory interneurons with different spatial profiles along the tree: constantly linear in FS and LS cells, increasing to a plateau in BS cells and bell-shaped in RSNP cells. The increases in bAP-evoked dendritic Ca(2+) transients brought about by the blocking of A-type K(+) channels were similar in whole dendritic trees of each subtype of inhibitory interneurons. However, in RSNP cells, the increases in the distal dendrites were larger than those in the proximal dendrites. On cholinergic activation, nicotinic inhibition of bAP-evoked dendritic Ca(2+) transients was observed only in BS cells expressing cholecystokinin and vasoactive intestinal peptide mRNAs, with no muscarinic modulation in all subtypes of inhibitory interneurons. Cell subtype-specific differential spatial profiles and their modulation in bAP-evoked dendritic Ca(2+) transients might be important for the domain-specific modulation of segregated inputs in inhibitory interneurons and differential control between the excitatory and inhibitory networks in the visual cortex.
Collapse
Affiliation(s)
- Kwang-Hyun Cho
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, S. Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Manita S, Ross WN. IP(3) mobilization and diffusion determine the timing window of Ca(2+) release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus 2010; 20:524-39. [PMID: 19475649 DOI: 10.1002/hipo.20644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptically activated calcium release from internal stores in CA1 pyramidal neurons is generated via metabotropic glutamate receptors by mobilizing IP(3). Ca(2+) release spreads as a large amplitude wave in a restricted region of the apical dendrites of these cells. These Ca(2+) waves have been shown to induce certain forms of synaptic potentiation and have been hypothesized to affect other forms of plasticity. Pairing a single backpropagating action potential (bAP) with repetitive synaptic stimulation evokes Ca(2+) release when synaptic stimulation alone is subthreshold for generating release. We examined the timing window for this synergistic effect under conditions favoring Ca(2+) release. The window, measured from the end of the train, lasted 250-500 ms depending on the duration of stimulation tetanus. The window appears to correspond to the time when both IP(3) concentration and [Ca(2+)](i) are elevated at the site of the IP(3) receptor. Detailed analysis of the mechanisms determining the duration of the window, including experiments using different forms of caged IP(3) instead of synaptic stimulation, suggest that the most significant processes are the time for IP(3) to diffuse away from the site of generation and the time course of IP(3) production initiated by activation of mGluRs. IP(3) breakdown, desensitization of the IP(3) receptor, and the kinetics of IP(3) unbinding from the receptor may affect the duration of the window but are less significant. The timing window is short but does not appear to be short enough to suggest that this form of coincidence detection contributes to conventional spike timing-dependent synaptic plasticity in these cells.
Collapse
Affiliation(s)
- Satoshi Manita
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
50
|
Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:105-11. [PMID: 20473382 DOI: 10.4196/kjpp.2010.14.2.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 01/10/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) modulate Ca(2+) release from intracellular Ca(2+) store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block InsP(3)Rs, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) entry through store-operated Ca(2+) (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the Ca(2+) entry, but significantly inhibited carbamylcholine (CCh)-induced Ca(2+) release. In contrast, 2-APB did not block CCh-induced Ca(2+) release, but remarkably blocked SOC-mediated Ca(2+) entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP(3)-induced Ca(2+) release, but 2-APB at lower concentration, which effectively blocked Ca(2+) entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of InsP(3)-induced Ca(2+) release and direct stimulation of Ca(2+) release. Based on the results, we concluded that caffeine is useful as an inhibitor of InsP(3)R, and 2-APB at lower concentration is considered a blocker of Ca(2+) entry through SOC channels in the pancreatic acinar cell.
Collapse
Affiliation(s)
- Kyung Jin Choi
- Department of Physiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | |
Collapse
|