1
|
Shamabadi A, Arabzadeh Bahri R, Karimi H, Heidari E, Akhondzadeh S. Emerging pharmacotherapy for the treatment of cannabis use disorder. Expert Opin Pharmacother 2024; 25:695-703. [PMID: 38717605 DOI: 10.1080/14656566.2024.2353638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION About one-fifth of cannabis users, the most commonly used illicit substance, have cannabis use disorder (CUD). Psychiatric disorders and suicide are more common in these patients, and the disability-adjusted life years were reported to be 0.69 million. Pharmacotherapy for CUD is an unmet public health need, as current evidence-based therapies have limited efficacy. AREAS COVERED After explaining the pathophysiology of CUD, the effects of emerging pharmacological interventions in its treatment obtained from randomized controlled trials were reviewed in light of mechanisms of action. Superiority over control of cannabidiol, gabapentin, galantamine, nabilone plus zolpidem, nabiximols, naltrexone, PF-04457845, quetiapine, varenicline, and topiramate were observed through the cannabinoid, glutamatergic, γ-aminobutyric acidergic, serotonergic, noradrenergic, dopaminergic, opioidergic, and cholinergic systems. All medications were reported to be safe and tolerable. EXPERT OPINION Adding pharmacotherapy to psychotherapy is the optimal treatment for CUD on a case-by-case basis. Drug development to add to psychotherapy is the main path, but time and cost suggest repurposing and repositioning existing drugs. Considering sample size, follow-up, and effect size, further studies using objective tools are necessary. The future of CUD treatment is promising.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razman Arabzadeh Bahri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidari
- Department of Pharmacy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
3
|
AlKhelb D, Kirunda A, Ho TC, Makriyannis A, Desai RI. Effects of the cannabinoid CB 1-receptor neutral antagonist AM4113 and antagonist/inverse agonist rimonabant on fentanyl discrimination in male rats. Drug Alcohol Depend 2022; 240:109646. [PMID: 36191533 DOI: 10.1016/j.drugalcdep.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Andre Kirunda
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Rajeev I Desai
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
5
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Martín-Sánchez A, García-Baos A, Castro-Zavala A, Alegre-Zurano L, Valverde O. Early-life stress exacerbates the effects of WIN55,212-2 and modulates the cannabinoid receptor type 1 expression. Neuropharmacology 2021; 184:108416. [PMID: 33271186 DOI: 10.1016/j.neuropharm.2020.108416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Mohammadkhani A, Borgland SL. Cellular and behavioral basis of cannabinioid and opioid interactions: Implications for opioid dependence and withdrawal. J Neurosci Res 2020; 100:278-296. [PMID: 33352618 DOI: 10.1002/jnr.24770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The brain's endogenous opioid and endocannabinoid systems are neuromodulatory of synaptic transmission, and play key roles in pain, memory, reward, and addiction. Recent clinical and pre-clinical evidence suggests that opioid use may be reduced with cannabinoid intake. This suggests the presence of a functional interaction between these two systems. Emerging research indicates that cannabinoids and opioids can functionally interact at different levels. At the cellular level, opioid and cannabinoids can have direct receptor associations, alterations in endogenous opioid peptide or cannabinoid release, or post-receptor activation interactions via shared signal transduction pathways. At the systems level, the nature of cannabinoid and opioid interaction might differ in brain circuits underlying different behavioral phenomenon, including reward-seeking or antinociception. Given the rising use of opioid and cannabinoid drugs, a better understanding of how these endogenous signaling systems interact in the brain is of significant interest. This review focuses on the potential relationship of these neural systems in addiction-related processes.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Godoi MM, Junior HZ, da Cunha JM, Zanoveli JM. Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception. Pharmacol Biochem Behav 2020; 194:172938. [PMID: 32376258 DOI: 10.1016/j.pbb.2020.172938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Evidence indicates that periaqueductal gray matter (PAG) plays an important role in defensive responses and pain control. The activation of cannabinoid type-1 (CB1) or mu-opioid (MOR) receptors in the dorsal region of this structure (dPAG) inhibits fear and facilitates antinociception induced by different aversive stimuli. However, it is still unknown whether these two receptors work cooperatively in order to achieve these inhibitory actions. This study investigated the involvement and a likely interplay between CB1 and MOR receptors localized into the dPAG on the regulation of fear-like defensive responses and antinociception (evaluated in tail-flick test) evoked by dPAG chemical stimulation with N-methyl-d-aspartate (NMDA). Before the administration of NMDA, animals were first intra-dPAG injected with the CB1 agonist ACEA (0.5 pmol), or with the MOR agonist DAMGO (0.5 pmol) in combination with the respective antagonists AM251 (CB1 antagonist, 100 pmol) or CTOP (MOR antagonist, 1 nmol). To investigate the interplay between these receptors, microinjection of CTOP was combined with ACEA, or microinjection of AM251 was combined with DAMGO. Our results showed that both the intra-PAG treatments with ACEA or DAMGO inhibited NMDA-induced freezing expression, whereas only the treatment with DAMGO increased antinociception induced with NMDA, which are completely blocked by its respective antagonists. Interestingly, the inhibitory effects of ACEA or DAMGO on freezing was blocked by CTOP and AM251, respectively, indicating a functional interaction between these two receptors in the mediation of defensive behaviors. However, this cooperative interaction was not observed during the NMDA-induced antinociception. Our findings indicate that there is a cooperative action between the MOR and CB1 receptors within the dPAG and it is involved in the mediation of NMDA-induced defensive responses. Additionally, the MORs into the dPAG are involved in the modulation of the antinociceptive effects that follow a fear-like defense-reaction induced by dPAG chemical stimulation with NMDA.
Collapse
Affiliation(s)
- Manuella Machado Godoi
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil
| | - Hélio Zangrossi Junior
- Department of Pharmacology, School of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Janaina Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Rua Coronel H. dos Santos S/N, P.O. Box 19031, Curitiba, Paraná 81540-990, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
9
|
Lesniak A, Chmielewska D, Poznanski P, Bujalska-Zadrozny M, Strzemecka J, Sacharczuk M. Divergent Response to Cannabinoid Receptor Stimulation in High and Low Stress-Induced Analgesia Mouse Lines Is Associated with Differential G-Protein Activation. Neuroscience 2019; 404:246-258. [DOI: 10.1016/j.neuroscience.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
|
10
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Marcus DJ, Henderson-Redmond AN, Gonek M, Zee ML, Farnsworth JC, Amin RA, Andrews MJ, Davis BJ, Mackie K, Morgan DJ. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption. PLoS One 2017; 12:e0174826. [PMID: 28426670 PMCID: PMC5398885 DOI: 10.1371/journal.pone.0174826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.
Collapse
Affiliation(s)
- David J. Marcus
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Angela N. Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Maciej Gonek
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Michael L. Zee
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Jill C. Farnsworth
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Randa A. Amin
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Mary-Jeanette Andrews
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Brian J. Davis
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Daniel J. Morgan
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| |
Collapse
|
12
|
Todd SM, Zhou C, Clarke DJ, Chohan TW, Bahceci D, Arnold JC. Interactions between cannabidiol and Δ 9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway. Eur Neuropsychopharmacol 2017; 27:132-145. [PMID: 28043732 DOI: 10.1016/j.euroneuro.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive.
Collapse
Affiliation(s)
- Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Cilla Zhou
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Dilara Bahceci
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
14
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
15
|
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015; 6:6. [PMID: 25698968 PMCID: PMC4318341 DOI: 10.3389/fphar.2015.00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.
Collapse
Affiliation(s)
- Katia Befort
- CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives - UMR7364, Faculté de Psychologie, Neuropôle de Strasbourg - Université de Strasbourg, Strasbourg France
| |
Collapse
|
16
|
The Neuroprotective Effect of Lithium in cannabinoid Dependence is Mediated through Modulation of Cyclic AMP, ERK1/2 and GSK-3β Phosphorylation in Cerebellar Granular Neurons of Rat. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:1123-35. [PMID: 26664379 PMCID: PMC4673940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate the cannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this are unclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2) and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. This is mediated through cannabinoid receptor 1 (CB1) enriched in cerebellar granular neurons (CGNs). Accordingly, the present study aimed to investigate the mechanism of modulatory/neuroprotective effects of Li on a cannabinoid agonist (WIN 55,212-2 (WIN))-induced dependence, through quantitative analysis of some involved proteins such as ERK1/2, GSK-3β and related signaling pathways including their phosphorylated forms; and cAMP level as the other molecular mechanisms leading to dependence, in CGNs model. The CGNs were prepared from 7-day-old Wistar rat pup in a 12-well plate, pretreated with Li (1mM) and an ERK1/2 inhibitor SL327 (SL, 10 µM). The WIN (1 µM) was added 30 minutes prior to treatment and AM251 (AM, 1 µM), as a cannabinoid antagonist was co-treated with WIN. The cAMP level, as an indicator of cannabinoid-induced dependence, was measured by ELISA following forskolin (FSK) stimulation. Western blot analyses determined the phosphorylated forms of ERK1/2 (p-ERK1/2), GSK-3β (p-GSK-3β) as well as their total expressions in various treatment times and doses in CGNs. WIN alone could down regulate the cAMP/p-ERK1/2 cascade compared to AM treatment. However, P-GSK-3β was up-regulated with Li and WIN or with SL and Li pretreatment to AM-induced cellular response, which was the highest 60 minutes after CGNs exposure. Results further suggested the potential role of Li pretreatment to diminish the development of cannabinoid-induced dependence/neuronal injury through possible mechanisms of modulating the cAMP/p-ERK1/2 cascade independent of p-GSK-3β signaling pathway in-vitro.
Collapse
|
17
|
Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. Neuropsychopharmacology 2013; 38:2498-507. [PMID: 23793355 PMCID: PMC3799070 DOI: 10.1038/npp.2013.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/03/2023]
Abstract
The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB(1)) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during withdrawal from chronic palatable diet cycling. The levels of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and the CB(1) receptor mRNA and the protein in the central nucleus of the amygdala (CeA) were also investigated. Finally, the effects of microinfusion of rimonabant in the CeA on anxiety-like behavior, and food intake were assessed. Systemic administration of rimonabant precipitated anxiety-like behavior and anorexia of the regular chow diet in rats withdrawn from palatable diet cycling, independently from the degree of adrenocortical activation. These behavioral observations were accompanied by increased 2-AG, CB(1) receptor mRNA, and protein levels selectively in the CeA. Finally, rimonabant, microinfused directly into the CeA, precipitated anxiety-like behavior and anorexia. Our data show that (i) the 2-AG-CB(1) receptor system within the CeA is recruited during abstinence from palatable diet cycling as a compensatory mechanism to dampen anxiety, and (ii) rimonabant precipitates a negative emotional state by blocking the beneficial heightened 2-AG-CB(1) receptor signaling in this brain area. These findings help elucidate the link between compulsive eating and anxiety, and it will be valuable to develop better pharmacological treatments for eating disorders and obesity.
Collapse
|
18
|
Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 2013; 76 Pt B:204-17. [PMID: 24035914 DOI: 10.1016/j.neuropharm.2013.08.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
Abstract
The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Pauline Charbogne
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; CNRS, UMR7104, Illkirch F-67404, France; UdS Université de Strasbourg, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; Inserm U964, Illkirch F-67404, France
| | | | | |
Collapse
|
19
|
Involvement of the opioid and cannabinoid systems in pain control: new insights from knockout studies. Eur J Pharmacol 2013; 716:142-57. [PMID: 23523475 DOI: 10.1016/j.ejphar.2013.01.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Abstract
The endogenous opioid and cannabinoid systems are involved in the physiological inhibitory control of pain and are of particular interest for the development of therapeutic approaches for pain management. The involvement of these endogenous systems in pain control has been studied from decades by the use of compounds with different affinities for each cannabinoid and opioid receptor or for the different enzymes involved in endocannabinoid and endogenous opioid metabolism. However, the selectivity of these pharmacological tools in vivo has represented an important limitation for these studies. The generation of genetically modified mice with selective mutations in specific components of the endocannabinoid and endogenous opioid system has provided important advances in the identification of the specific contribution of each component of these endogenous systems in the perception of noxious stimuli and the development of pathological pain states. Different lines of constitutive and conditional knockout mice deficient in specific cannabinoid and opioid receptors, specific precursors of the endogenous opioid peptides and the main enzymes involved in endocannabinoid and endogenous opioid degradation are now available. These knockout mice have also been used to evaluate the contribution of each component of the endocannabinoid and opioid system in the antinociceptive effects of cannabinoid and opioid agonists, including those currently used to treat pain in humans. This review summarizes the main advances provided in the last 15 years by the use of these genetic tools in the knowledge of the physiological control of pain and the pharmacology of cannabinoid and opioid compounds for pain management.
Collapse
|
20
|
Maldonado R, Berrendero F, Ozaita A, Robledo P. Neurochemical basis of cannabis addiction. Neuroscience 2011; 181:1-17. [DOI: 10.1016/j.neuroscience.2011.02.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 01/13/2023]
|
21
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Maldonado R. [The endogenous opioid system and drug addiction]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:3-11. [PMID: 20176158 PMCID: PMC3444724 DOI: 10.1016/j.pharma.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/15/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse.
Collapse
Affiliation(s)
- R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Espagne.
| |
Collapse
|
23
|
Abstract
Cannabis use disorders have been recently identified as a relevant clinical issue: a subset of cannabis smokers seeks treatment for their cannabis use, yet few succeed in maintaining long-term abstinence. The rewarding and positive reinforcing effects of the primary psychoactive component of smoked cannabis, delta-9-tetrahydrocannabinol (THC) are mediated by the cannabinoid CB1 receptor. The CB1 receptor has also been shown to mediate cannabinoid dependence and expression of withdrawal upon cessation of drug administration, a phenomenon verified across species. This paper will review findings implicating the CB1 receptor in the behavioural effects of exogenous cannabinoids with a focus on cannabinoid dependence and reinforcement, factors that contribute to the maintenance of chronic cannabis smoking despite negative consequences. Opioidergic modulation of these effects is also discussed.
Collapse
Affiliation(s)
- Ziva D Cooper
- Division on Substance Abuse, New York Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Abstract
Many drugs of abuse, including cannabinoids, opioids, alcohol and nicotine, can alter the levels of endocannabinoids in the brain. Recent studies show that release of endocannabinoids in the ventral tegmental area can modulate the reward-related effects of dopamine and might therefore be an important neurobiological mechanism underlying drug addiction. There is strong evidence that the endocannabinoid system is involved in drug-seeking behavior (especially behavior that is reinforced by drug-related cues), as well as in the mechanisms that underlie relapse to drug use. The cannabinoid CB(1) antagonist/inverse agonist rimonabant has been shown to reduce the behavioral effects of stimuli associated with drugs of abuse, including nicotine, alcohol, cocaine, and marijuana. Thus, the endocannabinoid system represents a promising target for development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Zuzana Justinova
- Department of Health and Human Services, Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
25
|
Modulation of opioids via protection of anandamide degradation by fatty acid amide hydrolase. Eur J Pharmacol 2008; 600:50-8. [DOI: 10.1016/j.ejphar.2008.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/29/2008] [Accepted: 08/08/2008] [Indexed: 11/18/2022]
|
26
|
Moranta D, Esteban S, García-Sevilla JA. Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:61-72. [PMID: 18709357 DOI: 10.1007/s00210-008-0337-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Brain monoamines are involved in many neurochemical and behavioral effects of cannabinoids, but little is known on the regulation of noradrenaline, dopamine, and serotonin (5-HT) synthesis in cannabinoid addiction. This study investigated in rat brain the chronic effects of the potent cannabinoid agonist WIN 55,212-2 and of rimonabant-precipitated withdrawal, as well as the sensitivity of synthesis-modulating inhibitory receptors, on the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) and 5-HTP after decarboxylase inhibition. Acute WIN (8 mg/kg; 1 h) increased DOPA synthesis in cortex (52%), hippocampus (51%), and cerebellum (56%) and decreased DOPA accumulation in striatum (31%). Acute WIN also decreased the synthesis of 5-HTP in all brain regions (40-53%). Chronic WIN (2-8 mg/kg; 5 days) and/or antagonist-precipitated withdrawal induced tolerance to the acute effects of WIN on the accumulation of DOPA (cortex and striatum) and 5-HTP (all brain regions). The inhibitory effect of clonidine (alpha2-agonist; 1 mg/kg) on the accumulation of DOPA (15-41%) and 5-HTP (22-41%) was markedly decreased or abolished after chronic WIN and precipitated withdrawal, mainly in noradrenergic and serotonergic brain regions, which indicated desensitization of alpha2-autoreceptors and alpha2-heteroreceptors regulating the synthesis of noradrenaline and 5-HT. In WIN-dependent rats (chronic and withdrawal states), the effect of a low dose of (+/-)-8-hydroxy-2-(di-n-propylamino)-tetralin (5-HT1A agonist; 0.1 mg/kg) on the accumulation of precursor amino acids was markedly potentiated in cerebellum and striatum, indicating the induction of supersensitivity of 5-HT1A-autoreceptors and 5-HT1A-heteroreceptors that regulate the synthesis of 5-HT, noradrenaline, and dopamine in these brain regions. These chronic adaptations in presynaptic receptor function could play a relevant role in cannabinoid addiction.
Collapse
Affiliation(s)
- David Moranta
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | | | | |
Collapse
|
27
|
Gerald TM, Howlett AC, Ward GR, Ho C, Franklin SO. Gene expression of opioid and dopamine systems in mouse striatum: effects of CB1 receptors, age and sex. Psychopharmacology (Berl) 2008; 198:497-508. [PMID: 18438728 PMCID: PMC3708653 DOI: 10.1007/s00213-008-1141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 03/06/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Endocannabinoid, opioid, and dopamine systems interact to exhibit cannabinoid receptor neuromodulation of opioid peptides and D(4) dopamine receptor gene expression in CB(1)-cannabinoid-deficient mouse striatum. OBJECTIVE Using CB(1)-transgenic mice, we examine primary age-sex influences and interactions on opioid and dopamine system members' gene expression in striatum. MATERIALS AND METHODS Real-time quantitative polymerase chain reaction was used to analyze gene expression of opioid peptides [preproenkephalin (PPENK); preprodynorphin (PPDYN)], opioid receptors [delta-opioid receptor (delta-OR); mu-opioid receptor (micro-OR)] and dopamine receptor subtypes (D(1) through D(5)) in male/female CB(1)(+/+)/CB(1)(-/-) mice striata at two adult ages [young (60-90 days); old (140-300 days)]. RESULTS (1) Increased PPENK and PPDYN, owing to genotype [CB(1)(+/+) vs. CB(1)(-/-)], depended on sex. When genotype-independent, they depended on sex (PPENK) or age (PPDYN). (2) delta-OR was age-dependent (higher in old). (3) micro-OR, owing to genotype, was age-dependent [higher in old CB(1)(-/-) males]. When genotype-independent, it depended on sex (higher in females). (4) Female D(1) was genotype-independent and age-dependent, while male D(1) was higher in old over young CB(1)(+/+) mice. (5) D(5), owing to genotype, was sex-dependent [higher in young female CB(1)(-/-) mice]. (6) D(2), genotype-independent, was higher in old over young male mice. (7) Young female D(3) was higher in CB(1)(-/-) over CB(1)(+/+) mice. Male D(3) was age-dependent (higher in old mice). (8) D(4), owing to genotype, was sex-dependent [higher in CB(1)(-/-) over CB(1)(+/+) females]. Genotype-independent D(4) was sex-dependent in young mice (higher in females) and age-dependent in males (higher in old). CONCLUSIONS Greater striatal expression is genotype-dependent in females (opioid-peptides, D(3), D(4), D(5)) and genotype-independent in both females (PPENK, mu-OR, D(4)) and old males (PPDYN, delta-OR, D(2), D(3), D(4)).
Collapse
Affiliation(s)
- Tonya M. Gerald
- Chemistry Department, North Carolina Central University, Durham, NC 27707, USA. Neuroscience/Drug Abuse Research Program JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Allyn C. Howlett
- Neuroscience/Drug Abuse Research Program JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA. Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Gregg R. Ward
- Neuroscience/Drug Abuse Research Program JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA. Department of Life Sciences, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Cheryl Ho
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Steven O. Franklin
- Chemistry Department, North Carolina Central University, Durham, NC 27707, USA. Neuroscience/Drug Abuse Research Program JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA. Department of Physiology and Pharmacology, Wake Forest University Health Sciences, One Medical Center Blvd., Winston-Salem, NC 27156, USA
| |
Collapse
|
28
|
Abstract
A remarkable amount of literature has been generated demonstrating the functional similarities between the endogenous opioid and cannabinoid systems. Anatomical, biochemical and molecular data support the existence of reciprocal interactions between these two systems related to several pharmacological responses including reward, cognitive effects, and the development of tolerance and dependence. However, the assessment of the bidirectionality of these effects has been difficult due to their variety and complexity. Reciprocal interactions have been well established for the development of physical dependence. Cross-tolerance and cross-sensitization, although not always bidirectional, are also supported by a number of evidence, while less data have been gathered regarding the relationship of these systems in cognition and emotion. Nevertheless, the most recent advances in cannabinoid-opioid cross-modulation have been made in the area of drug craving and relapse processes. The present review is focused on the latest developments in the cannabinoid-opioid cross-modulation of their behavioural effects and the possible neurobiological substrates involved.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/physiopathology
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Cognition/drug effects
- Cognition/physiology
- Drug Tolerance
- Emotions/drug effects
- Emotions/physiology
- Endorphins/physiology
- Humans
- Marijuana Abuse/physiopathology
- Motivation
- Narcotics/pharmacology
- Neurotransmitter Agents/metabolism
- Opioid-Related Disorders/physiopathology
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- Patricia Robledo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Spain
| | | | | | | |
Collapse
|
29
|
Le Foll B, Justinova Z, Tanda G, Goldberg SR. [Future medications for tobacco and cannabis dependence]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2008; 192:45-56; discussion 56-7. [PMID: 18663981 PMCID: PMC2744405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Worldwide more than 3 million deaths a year are attributable to smoking, and tobacco use is on the rise in developing countries. Consequently, smoking is one of the few causes of mortality that is increasing, with deaths projected to reach 10 million annually in 30-40 years. Cannabinoids, which are usually used in the form of marijuana, have become the most frequently used illicit drugs, but there is no pharmacological treatment for marijuana dependence. Although the dopaminergic system plays a critical role in reinforcing the effects of drugs of abuse, other neurotransmitter systems are also involved. Here we review recent results obtained with antagonists targeting cannabinoid CB1 receptors, dopamine D3 receptors and opioid receptors, that directly or indirectly modulate dopaminergic transmission. These promising approaches warrant clinical trials in the treatment of tobacco and marijuana dependence.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
30
|
Touriño C, Maldonado R, Valverde O. MDMA attenuates THC withdrawal syndrome in mice. Psychopharmacology (Berl) 2007; 193:75-84. [PMID: 17387458 DOI: 10.1007/s00213-007-0772-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 03/10/2007] [Indexed: 11/25/2022]
Abstract
INTRODUCTION 3, 4-Methylenedioxymethamphetamine (MDMA) and cannabis are widely abused illicit drugs that are frequently consumed in combination. Interactions between these two drugs have been reported in several pharmacological responses observed in animals, such as body temperature, anxiety, cognition, and reward. However, the interaction between MDMA and cannabis in addictive processes such as physical dependence has not been elucidated yet. DISCUSSION In this study, the effects of acute and chronic MDMA were evaluated on the behavioral manifestations of Delta(9)-tetrahydrocannabinol (THC) abstinence in mice. THC withdrawal syndrome was precipitated by injecting the cannabinoid antagonist rimonabant (10 mg/kg, i.p.) in mice chronically treated with THC and receiving MDMA (2.5, 5 and 10 mg/kg i.p.) or saline just before the withdrawal induction or chronically after the THC administration. RESULTS Both chronic and acute MDMA decreased in a dose-dependent manner the severity of THC withdrawal. In vivo microdialysis experiments showed that acute MDMA (5 mg/kg, i.p.) administration increased extracellular serotonin levels in the prefrontal cortex, but not dopamine levels in the nucleus accumbens. Our results also indicate that the attenuation of THC abstinence symptoms was not due to a direct interaction between rimonabant and MDMA nor to the result of the locomotor stimulating effects of MDMA. CONCLUSION The modulation of the cannabinoid withdrawal syndrome by acute or chronic MDMA suggests a possible mechanism to explain the associated consumption of these two drugs in humans.
Collapse
Affiliation(s)
- Clara Touriño
- Grup de Recerca de Neurobiologia del Comportament, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/ Dr. Aiguader 80, 08003, Barcelona, Spain
| | | | | |
Collapse
|
31
|
Haney M. Opioid antagonism of cannabinoid effects: differences between marijuana smokers and nonmarijuana smokers. Neuropsychopharmacology 2007; 32:1391-403. [PMID: 17091128 DOI: 10.1038/sj.npp.1301243] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In non-human animals, opioid antagonists block the reinforcing and discriminative-stimulus effects of Delta(9)-tetrahydrocannabinol (THC), while in human marijuana smokers, naltrexone (50 mg) enhances the reinforcing and subjective effects of THC. The objective of this study was to test a lower, more opioid-selective dose of naltrexone (12 mg) in combination with THC. The influence of marijuana-use history and sex was also investigated. Naltrexone (0, 12 mg) was administered 30 min before oral THC (0-40 mg) or methadone (0-10 mg) capsules, and subjective effects, task performance, pupillary diameter, and cardiovascular parameters were assessed in marijuana smoking (Study 1; n=22) and in nonmarijuana smoking (Study 2; n=21) men and women. The results show that in marijuana smokers, low-dose naltrexone blunted the intoxicating effects of a low THC dose (20 mg), while increasing ratings of anxiety at a higher THC dose (40 mg). In nonmarijuana smokers, low-dose naltrexone shifted THC's effects in the opposite direction, enhancing the intoxicating effects of a low THC dose (2.5 mg) and decreasing anxiety ratings following a high dose of THC (10 mg). There were no sex differences in these interactions, although among nonmarijuana smokers, men were more sensitive to the effects of THC alone than women. To conclude, a low, opioid-selective dose of naltrexone blunted THC intoxication in marijuana smokers, while in nonmarijuana smokers, naltrexone enhanced THC intoxication. These data demonstrate that the interaction between opioid antagonists and cannabinoid agonists varies as a function of marijuana use history.
Collapse
Affiliation(s)
- Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Moranta D, Esteban S, García-Sevilla JA. Acute, chronic and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex: short-term regulation by intrinsic and extrinsic pathways. J Neurosci Res 2007; 85:656-67. [PMID: 17139682 DOI: 10.1002/jnr.21140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cannabinoids (CB) modulate the extracellular signal-regulated kinase (ERK), leading to various forms of plasticity in the brain. Little is known, however, on the in vivo short- and long-term activation and regulation of the components of mitogen-activated protein kinase (MAPK)/ERK signaling by CB. The CB agonist WIN55212-2 (8 mg/kg) increased the immunodensities of phosphorylated c-Raf-1 (42%), MEK1/2 (63%), ERK1 (24%), and ERK2 (28%) in the rat cerebral frontal cortex. These effects were antagonized by SR141716A (rimonabant, 10 mg/kg), a selective CB(1) receptor antagonist. Repeated WIN55212-2 treatment (2-8 mg/kg for 5 days) resulted in tachyphylaxis to the acute activation of Raf-MEK-ERK signaling. Acute WIN55212-2 also induced a hypothermic effect in rats, which was reduced after repeated administration (tolerance). Treatment with SR141716A after chronic WIN55212-2 resulted in the expected cannabinoid withdrawal syndrome, without concomitant alterations in the phosphorylation state of c-Raf-1, MEK1/2, or ERK1/2. Pretreatment with SL327 (20 mg/kg, a MEK1/2 inhibitor) increased the basal phosphorylation of c-Raf-1 (40%) and MEK1/2 (74%; feedback regulation) and fully prevented the up-regulation of ERK1/2 (23-31%) induced by WIN55212-2. Pretreatment with MK801 (1 mg/kg, a NMDA receptor antagonist) effectively blocked the up-regulation c-Raf-1 (41%), MEK1/2 (57%) and ERK1/2 (25-30%) induced by the CB agonist. The main findings demonstrate that the acute stimulation of CB(1) receptors in the frontal cortex results in the sequential phosphorylation of Raf-MEK-ERK cascade, in which c-Raf-1 activation (rate-limiting process) plays a crucial role. Moreover, the in vivo stimulating effect of WIN55212-2 on Raf-MEK-ERK signaling is under the extrinsic regulation of an excitatory glutamatergic mechanism.
Collapse
Affiliation(s)
- David Moranta
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
33
|
Ozaita A, Puighermanal E, Maldonado R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 2007; 102:1105-14. [PMID: 17484726 DOI: 10.1111/j.1471-4159.2007.04642.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.
Collapse
Affiliation(s)
- Andrés Ozaita
- Laboratori de Neurofarmacologia. Facultat de Ciencies de la Salut i de la Vida. Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Budney AJ, Vandrey RG, Hughes JR, Moore BA, Bahrenburg B. Oral delta-9-tetrahydrocannabinol suppresses cannabis withdrawal symptoms. Drug Alcohol Depend 2007; 86:22-9. [PMID: 16769180 DOI: 10.1016/j.drugalcdep.2006.04.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study assessed whether oral administration of delta-9-tetrahydrocannbinol (THC) effectively suppressed cannabis withdrawal in an outpatient environment. The primary aims were to establish the pharmacological specificity of the withdrawal syndrome and to obtain information relevant to determining the potential use of THC to assist in the treatment of cannabis dependence. METHOD Eight adult, daily cannabis users who were not seeking treatment participated in a 40-day, within-subject ABACAD study. Participants administered daily doses of placebo, 30 mg (10 mg/tid), or 90 mg (30 mg/tid) oral THC during three, 5-day periods of abstinence from cannabis use separated by 7-9 periods of smoking cannabis as usual. RESULTS Comparison of withdrawal symptoms across conditions indicated that (1) the lower dose of THC reduced withdrawal discomfort, and (2) the higher dose produced additional suppression in withdrawal symptoms such that symptom ratings did not differ from the smoking-as-usual conditions. Minimal adverse effects were associated with either active dose of THC. CONCLUSIONS This demonstration of dose-responsivity replicates and extends prior findings of the pharmacological specificity of the cannabis withdrawal syndrome. The efficacy of these doses for suppressing cannabis withdrawal suggests oral THC might be used as an intervention to aid cannabis cessation attempts.
Collapse
Affiliation(s)
- Alan J Budney
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
35
|
Brea J, Castro M, Loza MI, Masaguer CF, Raviña E, Dezi C, Pastor M, Sanz F, Cabrero-Castel A, Galán-Rodríguez B, Fernández-Espejo E, Maldonado R, Robledo P. QF2004B, a potential antipsychotic butyrophenone derivative with similar pharmacological properties to clozapine. Neuropharmacology 2006; 51:251-62. [PMID: 16697427 DOI: 10.1016/j.neuropharm.2006.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/26/2022]
Abstract
The aim of the present work was to characterize a lead compound displaying relevant multi-target interactions, and with an in vivo behavioral profile predictive of atypical antipsychotic activity. Synthesis, molecular modeling and in vitro and in vivo pharmacological studies were carried out for 2-[4-(6-fluorobenzisoxazol-3-yl)piperidinyl]methyl-1,2,3,4-tetrahydro-carbazol-4-one (QF2004B), a conformationally constrained butyrophenone analogue. This compound showed a multi-receptor profile with affinities similar to those of clozapine for serotonin (5-HT2A, 5-HT1A, and 5-HT2C), dopamine (D1, D2, D3 and D4), alpha-adrenergic (alpha1, alpha2), muscarinic (M1, M2) and histamine H1 receptors. In addition, QF2004B mirrored the antipsychotic activity and atypical profile of clozapine in a broad battery of in vivo tests including locomotor activity (ED50 = 1.19 mg/kg), apomorphine-induced stereotypies (ED50 = 0.75 mg/kg), catalepsy (ED50 = 2.13 mg/kg), apomorphine- and DOI (2,5-dimethoxy-4-iodoamphetamine)-induced prepulse inhibition (PPI) tests. These results point to QF2004B as a new lead compound with a relevant multi-receptor interaction profile for the discovery and development of new antipsychotics.
Collapse
Affiliation(s)
- José Brea
- Departamento de Farmacología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The demand for treatment for cannabis dependence has grown dramatically. The majority of the people who enter the treatment have difficulty in achieving and maintaining abstinence from cannabis. Understanding the impact of cannabis withdrawal syndrome on quit attempts is of obvious importance. Cannabis, however, has long been considered a 'soft' drug, and many continue to question whether one can truly become dependent on cannabis. Skepticism is typically focused on whether cannabis use can result in 'physiological' dependence or withdrawal, and whether withdrawal is of clinical importance. RECENT FINDINGS The neurobiological basis for cannabis withdrawal has been established via discovery of an endogenous cannabinoid system, identification of cannabinoid receptors, and demonstrations of precipitated withdrawal with cannabinoid receptor antagonists. Laboratory studies have established the reliability, validity, and time course of a cannabis withdrawal syndrome and have begun to explore the effect of various medications on such withdrawal. Reports from clinical samples indicate that the syndrome is common among treatment seekers. SUMMARY A clinically important withdrawal syndrome associated with cannabis dependence has been established. Additional research must determine how cannabis withdrawal affects cessation attempts and the best way to treat its symptoms.
Collapse
Affiliation(s)
- Alan J Budney
- Center for Addiction Research, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
37
|
Abstract
The use of marijuana for recreational and medicinal purposes has resulted in a large prevalence of chronic marijuana users. Consequences of chronic cannabinoid administration include profound behavioral tolerance and withdrawal symptoms upon drug cessation. A marijuana withdrawal syndrome is only recently gaining acceptance as being clinically significant. Similarly, laboratory animals exhibit both tolerance and dependence following chronic administration of cannabinoids. These animal models are being used to evaluate the high degree of plasticity that occurs at the molecular level in various brain regions following chronic cannabinoid exposure. In this review, we describe recent advances that have increased our understanding of the impact of chronic cannabinoid administration on cannabinoid receptors and their signal transduction pathways. Additionally, we discuss several potential pharmacotherapies that have been examined to treat marijuana dependence.
Collapse
Affiliation(s)
- A H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA 23298-0613, USA.
| | | |
Collapse
|
38
|
Valverde O, Karsak M, Zimmer A. Analysis of the endocannabinoid system by using CB1 cannabinoid receptor knockout mice. Handb Exp Pharmacol 2005:117-45. [PMID: 16596773 DOI: 10.1007/3-540-26573-2_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The endocannabinoid system has been involved in the control of several neurophysiological and behavioural responses. To date, three lines of CB1 knockout mice have been established independently in different laboratories. This chapter reviews the main results obtained with these lines of CB1 knockout mice in several physiological responses that have been previously related to the activity of the endocannabinoid system. Studies using CB1 knockout mice have demonstrated that this receptor participates in the control of several behavioural responses including locomotion, anxiety- and depressive-like states, cognitive functions such as memory and learning processes, cardiovascular responses and feeding. Furthermore, the CB1 cannabinoid receptor is involved in the control of pain by acting at peripheral, spinal and supraspinal levels. The involvement of the CB1 cannabinoid receptor in the behavioural and biochemical processes underlying drug addiction has also been investigated. These CB1 knockouts have provided new findings to clarify the interactions between cannabinoids and the other drugs of abuse such as opioids, psychostimulants, nicotine and ethanol. Recent studies have demonstrated that endocannabinoids can function as retrograde messengers, modulating the release of different neurotransmitters, including opioids, gamma-aminobutyric acid (GABA), and cholecystokinin (CCK), which could explain some of the responses observed after the stimulation of the CB1 cannabinoid receptor. This review provides an update of the apparently controversial data reported in the literature using the three different lines of CB1 knockout mice, which seem to be mainly due to the use of different experimental procedures rather than any constitutive alteration in these lines of knockouts.
Collapse
Affiliation(s)
- O Valverde
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Carrer Dr. Aiguader, 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
39
|
Cota D, Tschöp MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? ACTA ACUST UNITED AC 2005; 51:85-107. [PMID: 16364446 DOI: 10.1016/j.brainresrev.2005.10.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 01/07/2023]
Abstract
Obesity represents nowadays one of the most devastating health threats. Published reports even project a decline in life expectancy of US citizens due to the rapidly increasing prevalence of obesity. This alarming increase is intimately linked with recent changes of environment and lifestyle in western countries. In this context, the rewarding or even addictive properties of popular food may represent one of the most serious obstacles to overcome for an effective anti-obesity therapy. Therefore, in addition to molecular networks controlling energy homeostasis, now researchers are starting to define central nervous mechanisms governing hedonic and addictive components of food intake. A recently emerging body of data suggests that the endogenous cannabinoid and opioid systems both represent key circuits responding to the rewarding value of food. This review focuses on the role of these two systems for the homeostatic and hedonic aspects of eating behavior and includes their anatomical and functional interactions. Independent from the degree to which eating can be considered an addiction, cannabinoid and opioid receptor antagonists are promising anti-obesity drugs, since they are targeting both hedonic and homeostatic components of energy balance control.
Collapse
Affiliation(s)
- Daniela Cota
- Obesity Research Center, Department of Psychiatry, University of Cincinnati-Genome Research Institute, 2170 E Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | | | |
Collapse
|
40
|
Anggadiredja K, Yamaguchi T, Tanaka H, Shoyama Y, Watanabe S, Yamamoto T. Decrease in prostaglandin level is a prerequisite for the expression of cannabinoid withdrawal: A quasi abstinence approach. Brain Res 2005; 1066:201-5. [PMID: 16336946 DOI: 10.1016/j.brainres.2005.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 10/17/2005] [Accepted: 10/20/2005] [Indexed: 11/22/2022]
Abstract
Cannabinoid withdrawal has been indicated in both human and animal subjects. One of pathways proposed to facilitate cannabinoid action is the arachidonic acid cascade. Previously, we have shown that prostaglandin attenuated the expression of withdrawal signs in tetrahydrocannabinol-dependent mice. It follows that the cascade might participate in the expression of cannabinoid withdrawal. We utilized a quasi abstinence approach (the induction of a state of cannabinoid withdrawal without giving any cannabinoid substances in a naïve animal) to describe the relationship between the change in prostaglandin level, an end product of the arachidonic acid cascade, and the expression of cannabinoid withdrawal. Administration of 10 mg/kg diclofenac, a prostaglandin synthesis inhibitor, i.p. 30 min before SR 141716A induced cannabinoid withdrawal signs in naïve mice, which were comparable to the true abstinence in cannabinoid-tolerant mice. In turn, 10 mg/kg Delta(8)-THC i.p., given 15 min prior to SR 141716A, blocked the expression of these signs. These results suggested that the decrease in prostaglandin level is a prerequisite for the expression of cannabinoid withdrawal.
Collapse
Affiliation(s)
- Kusnandar Anggadiredja
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Jardinaud F, Crété D, Canestrelli C, Ledent C, Roques BP, Noble F. CB1 receptor knockout mice show similar behavioral modifications to wild-type mice when enkephalin catabolism is inhibited. Brain Res 2005; 1063:77-83. [PMID: 16256959 DOI: 10.1016/j.brainres.2005.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/13/2005] [Accepted: 09/25/2005] [Indexed: 12/21/2022]
Abstract
Behavioral and biochemical studies have suggested a functional link between the endogenous cannabinoid and opioid systems. Different hypotheses have been proposed to explain the interactions between opioid and cannabinoid systems such as a common pathway stimulating the dopaminergic system, a facilitation of signal-transduction- and/or a cannabinoid-induced enhancement of opioid peptide release. However, at this time, all the studies have been performed with exogenous agonists (delta-9-tetrahydrocannabinol or morphine), leading to a generally excessive stimulation of receptors normally stimulated by endogenous effectors (anandamide or opioid peptides) in various brain structures. To overcome this problem, we have measured various behavioral responses induced by the stimulation of the endogenous opioid system using the dual inhibitor of enkephalin-degrading enzymes, RB101, in CB1 receptor knockout mice. Thus, analgesia, locomotor activity, anxiety and antidepressant-like effects were measured after RB101 administration (80 and 120 mg/kg i.p. or 10 mg/kg, i.v.) in CB1 receptor knockout mice and their wild-type littermates. In all the experiments, inhibition of enkephalin catabolism produced similar modifications in behavior observed in CB1 knockout and wild-type mice. These results suggest limited physiological interaction between cannabinoid and opioid systems.
Collapse
Affiliation(s)
- Fanny Jardinaud
- Université Paris Descartes, Neuropsychopharmacologie des Addictions, 4 avenue de l'Observatoire-75270 PARIS Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9:1007-29. [PMID: 15314610 DOI: 10.1038/sj.mp.4001547] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Identifying genes for bipolar mood disorders through classic genetics has proven difficult. Here, we present a comprehensive convergent approach that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a stimulant--methamphetamine, and a mood stabilizer--valproate), with human data (linkage loci from human genetic studies, changes in postmortem brains from patients), as a bayesian strategy of crossvalidating findings. Topping the list of candidate genes, we have DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) located at 17q12, PENK (preproenkephalin) located at 8q12.1, and TAC1 (tachykinin 1, substance P) located at 7q21.3. These data suggest that more primitive molecular mechanisms involved in pleasure and pain may have been recruited by evolution to play a role in higher mental functions such as mood. The analysis also revealed other high-probability candidates genes (neurogenesis, neurotrophic, neurotransmitter, signal transduction, circadian, synaptic, and myelin related), pathways and mechanisms of likely importance in pathophysiology.
Collapse
Affiliation(s)
- C A Ogden
- Laboratory of Neurophenomics, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Soria G, Castañé A, Berrendero F, Ledent C, Parmentier M, Maldonado R, Valverde O. Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur J Neurosci 2004; 20:2203-13. [PMID: 15450100 DOI: 10.1111/j.1460-9568.2004.03682.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A2A adenosine and CB1 cannabinoid receptors are highly expressed in the central nervous system, where they modulate numerous physiological processes including adaptive responses to drugs of abuse. Both purinergic and cannabinoid systems interact with dopamine neurotransmission (through A2A and CB1 receptors, respectively). Changes in dopamine neurotransmission play an important role in addictive-related behaviours. In this study, we investigated the contribution of A2A adenosine receptors in several behavioural responses of Delta9-tetrahydrocannabinol (THC) related to its addictive properties, including tolerance, physical dependence and motivational effects. For this purpose, we first investigated acute THC responses in mice lacking A2A adenosine receptors. Antinociception, hypolocomotion and hypothermia induced by acute THC administration remained unaffected in mutant mice. Chronic THC treatment developed similar tolerance to these acute effects in wild-type and A2A-knockout mice. However, differences in the body weight pattern were found between genotypes during such chronic treatment. Interestingly, the somatic manifestations of SR141716A-precipitated THC withdrawal were significantly attenuated in mutant mice. The motivational responses of THC were also evaluated by using the place-conditioning paradigm. A significant reduction of THC-induced rewarding and aversive effects was found in mice lacking A2A adenosine receptors in comparison with wild-type littermates. Binding studies revealed that these behavioural changes were not associated with any modification in the distribution and/or functional activity of CB1 receptors in knockout mice. Therefore, this study shows, for the first time, a specific involvement of A2A receptors in the addictive-related properties of cannabinoids.
Collapse
Affiliation(s)
- Guadalupe Soria
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Anggadiredja K, Sakimura K, Hiranita T, Yamamoto T. Naltrexone attenuates cue- but not drug-induced methamphetamine seeking: a possible mechanism for the dissociation of primary and secondary reward. Brain Res 2004; 1021:272-6. [PMID: 15342276 DOI: 10.1016/j.brainres.2004.06.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
The present study was aimed to clarify the role of the opioid system in the reinstatement of methamphetamine (METH)-seeking behavior in METH self-administering rats. Following 12 days of self-administration of METH, the replacement of METH with saline resulted in a gradual decrease in lever press responses (extinction). Under extinction conditions, METH-priming or re-exposure to cues previously paired with METH infusion markedly increased the responses (reinstatement of drug-seeking). Naltrexone administered 30 min before re-exposure to METH-associated cues attenuated reinstatement of drug-seeking behavior. On the other hand, administration of this antagonist had no effect on the reinstatement induced by METH-priming. We discussed these findings in relation with the dissociation of primary and secondary reward, suggesting that an opioid mechanism is responsible for this dissociation. Further, these results indicate the possibility of using naltrexone as an anti-relapse agent.
Collapse
Affiliation(s)
- Kusnandar Anggadiredja
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
45
|
Castañé A, Maldonado R, Valverde O. Role of different brain structures in the behavioural expression of WIN 55,212-2 withdrawal in mice. Br J Pharmacol 2004; 142:1309-17. [PMID: 15265804 PMCID: PMC1575190 DOI: 10.1038/sj.bjp.0705882] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have evaluated several responses induced by the cannabinoid agonist WIN 55,212-2 related to its addictive properties, including rewarding effects and the development of physical dependence in mice. Moreover, we have studied the specific involvement of several brain regions with high density of CB1 cannabinoid receptors, such as striatum, hippocampus, amygdala and cerebellum, in the behavioural expression of SR 141716A-precipitated WIN 55,212-2 withdrawal. The systemic administration of the CB1 receptor antagonist SR 141716A (10 mg kg(-1), s.c.) precipitated behavioural signs of withdrawal in mice chronically treated with WIN 55,212-2 (1 and 2 mg kg(-1), intraperitoneal (i.p.)), revealing the development of physical dependence. The microinjection of SR 141716A (1.5 and 3 micrograms) into the cerebellum induced severe manifestations of abstinence in mice dependent on WIN 55,212-2 (1 mg kg(-1), i.p.). Out of 10 signs evaluated, seven were statistically significant: wet dog shakes, body tremor, paw tremor, piloerection, mastication, genital licks and sniffing. When the cannabinoid antagonist was administered into the hippocampus and the amygdala, a moderate but significant withdrawal syndrome was also observed. However, no signs of abstinence were induced when SR 141716A was microinjected into the striatum. WIN 55,212-2 produced rewarding effects in the place-conditioning paradigm in mice pre-exposed to a priming injection of the drug. These results show a reliable behavioural model to reveal rewarding effects and physical dependence induced by the repeated administration of WIN 55,212-2 in mice. The cerebellum and to a lesser extent the hippocampus and the amygdala participate in the behavioural expression of cannabinoid withdrawal.
Collapse
Affiliation(s)
- Anna Castañé
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, C/ Dr. Aiguader, 80, 08003 Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, C/ Dr. Aiguader, 80, 08003 Barcelona, Spain
| | - Olga Valverde
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, C/ Dr. Aiguader, 80, 08003 Barcelona, Spain
- Author for correspondence:
| |
Collapse
|
46
|
Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry 2004; 56:86-94. [PMID: 15231440 DOI: 10.1016/j.biopsych.2004.05.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/27/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies have raised concerns about subtle long-lasting neurobiological changes that might be triggered by exposure to Cannabis derivatives, especially in a critical phase of brain maturation, such as puberty. The mesolimbic dopamine (DA) system, involved in the processing of drug-induced reward, is a locus of action of cannabinoids and endocannabinoids. Thus, we compared the effects of repeated cannabinoid administration in adolescent and adult rats on DA neuronal functions and responses to drugs of abuse. METHODS Single-unit extracellular recordings from antidromically identified mesoaccumbens DA neurons and from their target cells in the nucleus accumbens were carried out in urethane-anesthetized rats. Animals were pretreated during adolescence or adulthood, for 3 days, with the cannabinoid agonist WIN55212.2 (WIN) or vehicle and allowed a 2-week interval. RESULTS In cannabinoid-administered rats, DA neurons were significantly less responsive to the stimulating action of WIN, regardless of the age of pretreatment; however, in the adolescent group, but not in the adult, long-lasting cross-tolerance developed to morphine, cocaine, and amphetamine. CONCLUSIONS Our study suggests that an enduring form of neuronal adaptation occurs in DA neurons after subchronic cannabinoid intake at a young age, affecting subsequent responses to drugs of abuse.
Collapse
Affiliation(s)
- Marco Pistis
- Bernard Beryl Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Pfitzer T, Niederhoffer N, Szabo B. Central effects of the cannabinoid receptor agonist WIN55212-2 on respiratory and cardiovascular regulation in anaesthetised rats. Br J Pharmacol 2004; 142:943-52. [PMID: 15226190 PMCID: PMC1575120 DOI: 10.1038/sj.bjp.0705874] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 The primary aim was to study the central respiratory effects of cannabinoids (CB). To this end, the cannabinoid receptor agonist WIN55212-2 was injected into the cisterna magna of urethane-anaesthetised rats and changes in respiratory parameters were observed. The secondary aim was to observe the centrally elicited cardiovascular actions of WIN55212-2. Involvement of opioid mechanisms in the central effects of WIN55212-2 was also studied. 2 Intracisternal (i.c.) application of WIN55212-2 (1, 3, 10 and 30 microg kg(-1)) dose-dependently decreased the respiratory rate and minute volume. Tidal volume was slightly increased, whereas peak inspiratory flow remained unchanged. In addition, WIN55212-2 increased mean arterial pressure and the plasma noradrenaline concentration and decreased heart rate. 3 I.c. injection of WIN55212-3 (1, 3, 10 and 30 microg kg(-1)), an enantiomer of WIN55212-2 lacking affinity for cannabinoid receptors, elicited no effects. All effects of WIN55212-2 were prevented by the CB1 receptor antagonist SR141716 (2 mg kg(-1) i.v.). I.c. administration of the opioid receptor agonist DAMGO (0.1, 0.3, 1 and 3 microg kg(-1)) markedly lowered the respiratory rate, tidal volume, minute volume and peak inspiratory flow. These effects were attenuated by the opioid receptor antagonist naloxone (0.2 mg kg(-1) i.v.). In contrast, naloxone did not affect the respiratory and cardiovascular effects of i.c. administered WIN55212-2. 4 Our results show that activation of CB1 cannabinoid receptors in the brain stem depresses respiration and enhances sympathetic tone and cardiac vagal tone. Opioid mechanisms are not involved in these central cannabinoid effects.
Collapse
Affiliation(s)
- Torsten Pfitzer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg i. Br., Germany
| | - Nathalie Niederhoffer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg i. Br., Germany
| | - Bela Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg i. Br., Germany
- Author for correspondence:
| |
Collapse
|
48
|
Cheng HYM, Laviolette SR, van der Kooy D, Penninger JM. DREAM ablation selectively alters THC place aversion and analgesia but leaves intact the motivational and analgesic effects of morphine. Eur J Neurosci 2004; 19:3033-41. [PMID: 15182311 DOI: 10.1111/j.0953-816x.2004.03435.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DREAM (downstream regulatory element antagonistic modulator) is a novel transcriptional repressor for the prodynorphin gene, and genetic deletion of DREAM in mice results in a phenotype of ongoing analgesia by virtue of its effect on opioid gene expression. In the present study, we evaluated the motivational effects of opioids (morphine), cannabinoids [Delta(9)-tetrahydrocannabinol (THC)] and cocaine in mice lacking the dream gene (dream(-/-)). The aversive effects of THC were potentiated in dream(-/-) mice in a kappa-opioid receptor-dependent fashion, whereas morphine reward and the aversive effects of morphine withdrawal remained intact. The rewarding and aversive effects of cocaine were likewise unperturbed in dream(-/-) mice. Moreover, the aversive properties of lithium chloride and naloxone were unaffected by the absence of DREAM, indicating that the effect of DREAM on THC-induced dysphoria is not due to a general involvement in the behavioral response to aversive stimuli. Additionally, physical dependence to morphine and the locomotor-sensitizing effects of cocaine were unaltered in these animals. Finally, whereas the absence of DREAM reduced the analgesic efficacy of THC, morphine analgesia was unaffected in dream(-/-) mice.
Collapse
Affiliation(s)
- Hai-Ying M Cheng
- Departments of Medical Biophysics and Immunology, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9.
| | | | | | | |
Collapse
|
49
|
Berrendero F, Mendizábal V, Murtra P, Kieffer BL, Maldonado R. Cannabinoid receptor and WIN 55 212-2-stimulated [35S]-GTPgammaS binding in the brain of mu-, delta- and kappa-opioid receptor knockout mice. Eur J Neurosci 2003; 18:2197-202. [PMID: 14622180 DOI: 10.1046/j.1460-9568.2003.02951.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have shown the existence of functional links between the endogenous cannabinoid and opioid systems. However, extensive research is still needed to elucidate the biochemical mechanisms involved in this cannabinoid-opioid interaction. Mice lacking mu- (MOR), delta- (DOR) and kappa- (KOR) opioid receptors have been generated and some specific pharmacological effects induced by cannabinoids have been reported to be modified in these animals. In order to clarify further the possible mechanisms involved in this modification of cannabinoid responses we have now evaluated the expression and functional activity of cannabinoid receptors in different brain structures in these mutant animals. For this purpose, we have performed quantitative receptor autoradiography of CB1 cannabinoid receptors and activation of GTP-binding proteins by CB1 agonists in the brain of wild-type and homozygous MOR, DOR and KOR knockout mice. There were no significant differences in the levels of CB1 receptors in the brain of MOR mutant mice. In contrast, the efficacy of CB1 receptor activation by the cannabinoid agonist WIN 55 212-2 was dramatically reduced in the caudate-putamen of MOR knockout animals. The density of CB1 receptors as well as the stimulation of GTP-binding proteins by WIN 55 212-2 were significantly increased in the substantia nigra of mice deficient in DOR. Finally, there were no major changes in the levels and functional activity of CB1 cannabinoid receptors in any brain region in KOR knockout mice. Taken together, these results indicate that deletion of MOR and DOR causes alterations in cannabinoid receptor levels and functional activity in specific brain structures, which could explain some of the functional interactions observed between these two neuronal systems.
Collapse
Affiliation(s)
- Fernando Berrendero
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Saluti i de la Vida, Univeristat Pompeu Fabra, C/Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Abstract
Drug addiction includes complex neurobiological and behavioural processes. Acute reinforcing effects of drugs of abuse are responsible for the initiation of drug addiction, whereas the negative consequences of drug abstinence have a crucial motivational significance for relapse and maintenance of the addictive process. The mesocorticolimbic system represents a common neuronal substrate for the reinforcing properties of drugs of abuse. Both dopamine and opioid transmission play a crucial role in this reward pathway. Common neuronal changes have also been reported during the abstinence to different drugs of abuse that could underlie the negative motivational effects of withdrawal. These changes include decreased dopaminergic activity in the mesolimbic system and a recruitment of the brain stress pathways. All drugs of abuse interact with these brain circuits by acting on different molecular and neurochemical mechanisms. The existence of bidirectional interactions between different drugs of abuse, such as opioids and cannabinoids, provides further findings to support this common neurobiological substrate for drug addictive processes.
Collapse
Affiliation(s)
- R Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|