1
|
Dzyubenko E, Hermann DM. Neuroglia and extracellular matrix molecules. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:197-211. [PMID: 40122625 DOI: 10.1016/b978-0-443-19104-6.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
3
|
Du X, Zhang S, Khabbaz A, Cohen KL, Zhang Y, Chakraborty S, Smith GM, Wang H, Yadav AP, Liu N, Deng L. Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF. Cells 2024; 13:1160. [PMID: 38995011 PMCID: PMC11240522 DOI: 10.3390/cells13131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210005, China
| | - Shengqi Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Aytak Khabbaz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kristen Lynn Cohen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samhita Chakraborty
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Amol P. Yadav
- Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Naikui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Kolb J, Tsata V, John N, Kim K, Möckel C, Rosso G, Kurbel V, Parmar A, Sharma G, Karandasheva K, Abuhattum S, Lyraki O, Beck T, Müller P, Schlüßler R, Frischknecht R, Wehner A, Krombholz N, Steigenberger B, Beis D, Takeoka A, Blümcke I, Möllmert S, Singh K, Guck J, Kobow K, Wehner D. Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat Commun 2023; 14:6814. [PMID: 37884489 PMCID: PMC10603094 DOI: 10.1038/s41467-023-42339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
Collapse
Affiliation(s)
- Julia Kolb
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Vasiliki Tsata
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Nora John
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Veronika Kurbel
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Asha Parmar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gargi Sharma
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kristina Karandasheva
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Olga Lyraki
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Timon Beck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Anja Wehner
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Nicole Krombholz
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Dimitris Beis
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Aya Takeoka
- VIB-Neuroelectronics Research Flanders, 3001, Leuven, Belgium
- Department of Neuroscience and Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kanwarpal Singh
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany.
| |
Collapse
|
7
|
Perez JE, Jan A, Villard C, Wilhelm C. Surface Tension and Neuronal Sorting in Magnetically Engineered Brain-Like Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302411. [PMID: 37544889 PMCID: PMC10520685 DOI: 10.1002/advs.202302411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Indexed: 08/08/2023]
Abstract
Engineered 3D brain-like models have advanced the understanding of neurological mechanisms and disease, yet their mechanical signature, while fundamental for brain function, remains understudied. The surface tension for instance controls brain development and is a marker of cell-cell interactions. Here, 3D magnetic brain-like tissue spheroids composed of intermixed primary glial and neuronal cells at different ratios are engineered. Remarkably, the two cell types self-assemble into a functional tissue, with the sorting of the neuronal cells toward the periphery of the spheroids, whereas the glial cells constitute the core. The magnetic fingerprint of the spheroids then allows their deformation when placed under a magnetic field gradient, at a force equivalent to a 70 g increased gravity at the spheroid level. The tissue surface tension and elasticity can be directly inferred from the resulting deformation, revealing a transitional dependence on the glia/neuron ratio, with the surface tension of neuronal tissue being much lower. The results suggest an underlying mechanical contribution to the exclusion of the neurons toward the outer spheroid region, and depict the glia/neuron organization as a sophisticated mechanism that should in turn influence tissue development and homeostasis relevant in the neuroengineering field.
Collapse
Affiliation(s)
- Jose E. Perez
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| | - Audric Jan
- Institut Pierre‐Gilles de GennesIPGG Technology PlatformUMS 3750 CNRSParis75005France
| | - Catherine Villard
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
- Laboratoire Interdisciplinaire des Énergies de DemainUniversité Paris CitéUMR 8236 CNRSParis75013France
| | - Claire Wilhelm
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| |
Collapse
|
8
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Achenbach P, Hillerbrand L, Gerardo-Nava JL, Dievernich A, Hodde D, Sechi AS, Dalton PD, Pich A, Weis J, Altinova H, Brook GA. Function Follows Form: Oriented Substrate Nanotopography Overrides Neurite-Repulsive Schwann Cell-Astrocyte Barrier Formation in an In Vitro Model of Glial Scarring. NANO LETTERS 2023; 23:6337-6346. [PMID: 37459449 DOI: 10.1021/acs.nanolett.3c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored. Using a recently modified cell confrontation assay to model SC-AC barrier formation in vitro, highly oriented poly(ε-caprolactone) nanofibers were observed to reduce AC reactivity, induce extensive oriented intermingling between SCs and ACs, and ultimately enable substantial neurite outgrowth from the SC compartment into the AC territory. It is anticipated that these findings will have important implications for the future design of biomaterial-based scaffolds for nervous tissue repair.
Collapse
Affiliation(s)
- Pascal Achenbach
- Department of Neurology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Laura Hillerbrand
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, 97070 Würzburg, Germany
| | - José L Gerardo-Nava
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Axel Dievernich
- FEG Textiltechnik Forschungs- und Entwicklungsgesellschaft mbH, 52070 Aachen, Germany
| | - Dorothee Hodde
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Antonio S Sechi
- Department of Cell and Tumor Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Haktan Altinova
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Department of Neurosurgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gary A Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
10
|
Shibahara T, Nakamura K, Wakisaka Y, Shijo M, Yamanaka K, Takashima M, Takaki H, Hidaka M, Kitazono T, Ago T. PDGFR β-positive cell-mediated post-stroke remodeling of fibronectin and laminin α2 for tissue repair and functional recovery. J Cereb Blood Flow Metab 2023; 43:518-530. [PMID: 36514952 PMCID: PMC10063838 DOI: 10.1177/0271678x221145092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-stroke intra-infarct repair promotes peri-infarct neural reorganization leading to functional recovery. Herein, we examined the remodeling of extracellular matrix proteins (ECM) that constitute the intact basal membrane after permanent middle cerebral artery occlusion (pMCAO) in mice. Among ECM, collagen type IV remained localized on small vessel walls surrounding CD31-positive endothelial cells within infarct areas. Fibronectin was gradually deposited from peri-infarct areas to the ischemic core, in parallel with the accumulation of PDGFRβ-positive cells. Cultured PDGFRβ-positive pericytes produced fibronectin, which was enhanced by the treatment with PDGF-BB. Intra-infarct deposition of fibronectin was significantly attenuated in pericyte-deficient Pdgfrb+/-mice. Phagocytic activity of macrophages against myelin debris was significantly enhanced on fibronectin-coated dishes. In contrast, laminin α2, produced by GFAP- and aquaporin 4-positive astrocytes, accumulated strongly in the boundary of peri-infarct areas. Pericyte-conditioned medium increased the expression of laminin α2 in cultured astrocytes, partly through TGFβ1. Laminin α2 increased the differentiation of oligodendrocyte precursor cells into oligodendrocytes and the expression of myelin-associated proteins. Peri-infarct deposition of laminin α2 was significantly reduced in Pdgfrb+/-mice, with attenuated oligodendrogenesis in peri-infarct areas. Collectively, intra-infarct PDGFRβ-positive cells may orchestrate post-stroke remodeling of key ECM that create optimal environments promoting clearance of myelin debris and peri-infarct oligodendrogenesis.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Orekhova K, Selmanovic E, De Gasperi R, Gama Sosa MA, Wicinski B, Maloney B, Seifert A, Alipour A, Balchandani P, Gerussi T, Graïc JM, Centelleghe C, Di Guardo G, Mazzariol S, Hof PR. Multimodal Assessment of Bottlenose Dolphin Auditory Nuclei Using 7-Tesla MRI, Immunohistochemistry and Stereology. Vet Sci 2022; 9:vetsci9120692. [PMID: 36548853 PMCID: PMC9781543 DOI: 10.3390/vetsci9120692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types according to their morphology and expression of molecular markers, yielding reliable cell counts with most coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data contribute to a growing body of knowledge on the morphological and neurochemical properties of the dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and translational assessment of pathological processes in the dolphin brain in the future.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence:
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigid Maloney
- Laboratory of Neurogenetics of Vocal Learning, Rockefeller University, New York, NY 10065, USA
| | - Alan Seifert
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akbar Alipour
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Priti Balchandani
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Hemati-Gourabi M, Cao T, Romprey MK, Chen M. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 2022; 16:955598. [PMID: 36203815 PMCID: PMC9530187 DOI: 10.3389/fnins.2022.955598] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the regulation of axon growth after injury to the adult central nervous system (CNS) is crucial to improve neural repair. Following acute focal CNS injury, astrocytes are one cellular component of the scar tissue at the primary lesion that is traditionally associated with inhibition of axon regeneration. Advances in genetic models and experimental approaches have broadened knowledge of the capacity of astrocytes to facilitate injury-induced axon growth. This review summarizes findings that support a positive role of astrocytes in axon regeneration and axon sprouting in the mature mammalian CNS, along with potential underlying mechanisms. It is important to recognize that astrocytic functions, including modulation of axon growth, are context-dependent. Evidence suggests that the local injury environment, neuron-intrinsic regenerative potential, and astrocytes’ reactive states determine the astrocytic capacity to support axon growth. An integrated understanding of these factors will optimize therapeutic potential of astrocyte-targeted strategies for neural repair.
Collapse
Affiliation(s)
| | - Tuoxin Cao
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
| | - Megan K. Romprey
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Meifan Chen
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meifan Chen,
| |
Collapse
|
13
|
Ribeiro M, Ayupe AC, Beckedorff FC, Levay K, Rodriguez S, Tsoulfas P, Lee JK, Nascimento-Dos-Santos G, Park KK. Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration. Exp Neurol 2022; 355:114147. [PMID: 35738417 PMCID: PMC10648309 DOI: 10.1016/j.expneurol.2022.114147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Felipe C Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Room 715, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Sara Rodriguez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Jae K Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Badia-Soteras A, de Vries J, Dykstra W, Broersen LM, Verkuyl JM, Smit AB, Verheijen MHG. High-Throughput Analysis of Astrocyte Cultures Shows Prevention of Reactive Astrogliosis by the Multi-Nutrient Combination Fortasyn Connect. Cells 2022; 11:cells11091428. [PMID: 35563732 PMCID: PMC9099974 DOI: 10.3390/cells11091428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Astrocytes are specialized glial cells that tile the central nervous system (CNS) and perform numerous essential functions. Astrocytes react to various forms of CNS insults by altering their morphology and molecular profile, through a process known as reactive astrogliosis. Accordingly, astrocyte reactivity is apparent in many neurodegenerative diseases, among which one is Alzheimer’s disease (AD). Recent clinical trials on early-stage AD have demonstrated that Fortasyn Connect (FC), a multi-nutrient combination providing specific precursors and cofactors for phospholipid synthesis, helps to maintain neuronal functional connectivity and cognitive performance of patients. Several studies have shown that FC may act through its effects on neuronal survival and synaptogenesis, leading to reduced astrocyte reactivity, but whether FC can directly counteract astrocyte reactivity remains to be elucidated. Hence, we developed an in vitro model of reactive astrogliosis using the pro-inflammatory cytokines TNF-α and IFN-γ together with an automated high-throughput assay (AstroScan) to quantify molecular and morphological changes that accompany reactive astrogliosis. Next, we showed that FC is potent in preventing cytokine-induced reactive astrogliosis, a finding that might be of high relevance to understand the beneficial effects of FC-based interventions in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (A.B.-S.); (J.d.V.); (W.D.); (A.B.S.)
| | - Janneke de Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (A.B.-S.); (J.d.V.); (W.D.); (A.B.S.)
| | - Werner Dykstra
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (A.B.-S.); (J.d.V.); (W.D.); (A.B.S.)
| | - Laus M. Broersen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.M.B.); (J.M.V.)
| | - Jan Martin Verkuyl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.M.B.); (J.M.V.)
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (A.B.-S.); (J.d.V.); (W.D.); (A.B.S.)
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (A.B.-S.); (J.d.V.); (W.D.); (A.B.S.)
- Correspondence:
| |
Collapse
|
15
|
Yao L, Brice R, Shippy T. A Protein Composite Neural Scaffold Modulates Astrocyte Migration and Transcriptome Profile. Macromol Biosci 2022; 22:e2100406. [PMID: 35014754 PMCID: PMC9012687 DOI: 10.1002/mabi.202100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Indexed: 11/09/2022]
Abstract
Bioscaffold implantation is a promising approach to facilitate the repair and regeneration of wounded neural tissue after injury to the spinal cord or peripheral nerves. However, such bioscaffold grafts currently result in only limited functional recovery. The generation of a neural scaffold using a combination of collagen and glutenin is reported. The conduit material and mechanical properties, as well as its effect on astrocyte behavior is tested. After neural injuries, astrocytes move into the lesion and participate in the process of remodeling the micro-architecture of the wounded neural tissue. In this study, human astrocytes grown on glutenin-collagen scaffolds show higher motility and a lower proliferation rate compared with those grown on collagen scaffolds. RNA sequencing reveals that astrocytes grown on the two types of scaffolds show differentially expressed genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as actin cytoskeleton and focal adhesion that regulate astrocyte migration on scaffolds. The gene expression of aggrecan and versican, chondroitin sulfate proteoglycans that inhibit axonal growth, is down-regulated in astrocytes grown on glutenin-collagen scaffolds. These outcomes indicate that the implantation of glutenin-collagen scaffolds may promote astrocyte function in the neural regeneration process by enhanced cell migration and reduced glial scar formation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Teresa Shippy
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
16
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
17
|
Ko E, Poon MLS, Park E, Cho Y, Shin JH. Engineering 3D Cortical Spheroids for an In Vitro Ischemic Stroke Model. ACS Biomater Sci Eng 2021; 7:3845-3860. [PMID: 34275269 DOI: 10.1021/acsbiomaterials.1c00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) spheroids composed of brain cells have shown great potential to mimic the pathophysiology of the brain. However, a 3D spheroidal brain-disease model for cerebral ischemia has not been reported. This study investigated an ultralow attachment (ULA) surface-mediated formation of 3D cortical spheroids using primary rat cortical cells to recapitulate the cerebral ischemic responses in stroke by oxygen-glucose deprivation-reoxygenation (OGD-R) treatment. Comparison between two-dimensional (2D) and 3D cell culture models confirmed the better performance of the 3D cortical spheroids as normal brain models. The cortical cells cultured in 3D maintained their healthy physiological morphology of a less activated state and suppressed mRNA expressions of pathological stroke markers, S100B, IL-1β, and MBP, selected based on in vivo stroke model. Interestingly, the spheroids formed on the ULA surface exhibited striking aggregation dynamics involving active cell-substrate interactions, whereas those formed on the agarose surface aggregated passively by the convective flow of the media. Accordingly, ULA spheroids manifested a layered arrangement of neurons and astrocytes with higher expressions of integrin β1, integrin α5, N-cadherin, and fibronectin than the agarose spheroids. OGD-R-induced stroke model of the ULA spheroids successfully mimicked the ischemic response as evidenced by the upregulated mRNA expressions of the key markers for stroke, S100B, IL-1β, and MBP. Our study suggested that structurally and functionally distinct cortical spheroids could be generated by simply tuning the cell-substrate binding activities during dynamic spheroidal formation, which should be an essential factor to consider in establishing a brain-disease model.
Collapse
Affiliation(s)
- Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res 2021; 387:319-336. [PMID: 34076775 PMCID: PMC8975767 DOI: 10.1007/s00441-021-03477-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Severe spinal cord injury causes permanent loss of function and sensation throughout the body. The trauma causes a multifaceted torrent of pathophysiological processes which ultimately act to form a complex structure, permanently remodeling the cellular architecture and extracellular matrix. This structure is traditionally termed the glial/fibrotic scar. Similar cellular formations occur following stroke, infection, and neurodegenerative diseases of the central nervous system (CNS) signifying their fundamental importance to preservation of function. It is increasingly recognized that the scar performs multiple roles affecting recovery following traumatic injury. Innovative research into the properties of this structure is imperative to the development of treatment strategies to recover motor function and sensation following CNS trauma. In this review, we summarize how the regeneration potential of the CNS alters across phyla and age through formation of scar-like structures. We describe how new insights from next-generation sequencing technologies have yielded a more complex portrait of the molecular mechanisms governing the astrocyte, microglial, and neuronal responses to injury and development, especially of the glial component of the scar. Finally, we discuss possible combinatorial therapeutic approaches centering on scar modulation to restore function after severe CNS injury.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philippa Mary Warren
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
20
|
Nosi D, Lana D, Giovannini MG, Delfino G, Zecchi-Orlandini S. Neuroinflammation: Integrated Nervous Tissue Response through Intercellular Interactions at the "Whole System" Scale. Cells 2021; 10:1195. [PMID: 34068375 PMCID: PMC8153304 DOI: 10.3390/cells10051195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Different cell populations in the nervous tissue establish numerous, heterotypic interactions and perform specific, frequently intersecting activities devoted to the maintenance of homeostasis. Microglia and astrocytes, respectively the immune and the "housekeeper" cells of nervous tissue, play a key role in neurodegenerative diseases. Alterations of tissue homeostasis trigger neuroinflammation, a collective dynamic response of glial cells. Reactive astrocytes and microglia express various functional phenotypes, ranging from anti-inflammatory to pro-inflammatory. Chronic neuroinflammation is characterized by a gradual shift of astroglial and microglial phenotypes from anti-inflammatory to pro-inflammatory, switching their activities from cytoprotective to cytotoxic. In this scenario, the different cell populations reciprocally modulate their phenotypes through intense, reverberating signaling. Current evidence suggests that heterotypic interactions are links in an intricate network of mutual influences and interdependencies connecting all cell types in the nervous system. In this view, activation, modulation, as well as outcomes of neuroinflammation, should be ascribed to the nervous tissue as a whole. While the need remains of identifying further links in this network, a step back to rethink our view of neuroinflammation in the light of the "whole system" scale, could help us to understand some of its most controversial and puzzling features.
Collapse
Affiliation(s)
- Daniele Nosi
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| | - Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Giovanni Delfino
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| |
Collapse
|
21
|
Zhang X, Hashimoto JG, Han X, Zhang F, Linhardt RJ, Guizzetti M. Characterization of Glycosaminoglycan Disaccharide Composition in Astrocyte Primary Cultures and the Cortex of Neonatal Rats. Neurochem Res 2021; 46:595-610. [PMID: 33398638 PMCID: PMC9116028 DOI: 10.1007/s11064-020-03195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
- VA Portland Health Care System, R&D39, 3710 SW Veterans Hospital Road, Portland, OR, 97239, USA.
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, R&D39, 3710 SW Veterans Hospital Road, Portland, OR, 97239, USA
| | - Xiaorui Han
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
- VA Portland Health Care System, R&D39, 3710 SW Veterans Hospital Road, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Tsata V, Möllmert S, Schweitzer C, Kolb J, Möckel C, Böhm B, Rosso G, Lange C, Lesche M, Hammer J, Kesavan G, Beis D, Guck J, Brand M, Wehner D. A switch in pdgfrb + cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 2021; 56:509-524.e9. [PMID: 33412105 DOI: 10.1016/j.devcel.2020.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Julia Kolb
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Benjamin Böhm
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Christian Lange
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gokul Kesavan
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dimitris Beis
- Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Wehner
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
23
|
Wu D, Jin Y, Shapiro TM, Hinduja A, Baas PW, Tom VJ. Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nat Commun 2020; 11:6131. [PMID: 33257677 PMCID: PMC7705672 DOI: 10.1038/s41467-020-19914-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
After a dorsal root crush injury, centrally-projecting sensory axons fail to regenerate across the dorsal root entry zone (DREZ) to extend into the spinal cord. We find that chemogenetic activation of adult dorsal root ganglion (DRG) neurons improves axon growth on an in vitro model of the inhibitory environment after injury. Moreover, repeated bouts of daily chemogenetic activation of adult DRG neurons for 12 weeks post-crush in vivo enhances axon regeneration across a chondroitinase-digested DREZ into spinal gray matter, where the regenerating axons form functional synapses and mediate behavioral recovery in a sensorimotor task. Neuronal activation-mediated axon extension is dependent upon changes in the status of tubulin post-translational modifications indicative of highly dynamic microtubules (as opposed to stable microtubules) within the distal axon, illuminating a novel mechanism underlying stimulation-mediated axon growth. We have identified an effective combinatory strategy to promote functionally-relevant axon regeneration of adult neurons into the CNS after injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tatiana M Shapiro
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Abhishek Hinduja
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
25
|
Neural Cadherin Plays Distinct Roles for Neuronal Survival and Axon Growth under Different Regenerative Conditions. eNeuro 2020; 7:ENEURO.0325-20.2020. [PMID: 32967889 PMCID: PMC7688304 DOI: 10.1523/eneuro.0325-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Growing axons in the CNS often migrate along specific pathways to reach their targets. During embryonic development, this migration is guided by different types of cell adhesion molecules (CAMs) present on the surface of glial cells or other neurons, including the neural cadherin (NCAD). Axons in the adult CNS can be stimulated to regenerate, and travel long distances. Crucially, however, while a few axons are guided effectively through the injured nerve under certain conditions, most axons never migrate properly. The molecular underpinnings of the variable growth, and the glial CAMs that are responsible for CNS axon regeneration remain unclear. Here we used optic nerve crush to demonstrate that NCAD plays multifaceted functions in facilitating CNS axon regeneration. Astrocyte-specific deletion of NCAD dramatically decreases regeneration induced by phosphatase and tensin homolog (PTEN) ablation in retinal ganglion cells (RGCs). Consistent with NCAD’s tendency to act as homodimers, deletion of NCAD in RGCs also reduces regeneration. Deletion of NCAD in astrocytes neither alters RGCs’ mammalian target of rapamycin complex 1 (mTORC1) activity nor lesion size, two factors known to affect regeneration. Unexpectedly, however, we find that NCAD deletion in RGCs reduces PTEN-deletion-induced RGC survival. We further show that NCAD deletion, in either astrocytes or RGCs, has negligible effects on the regeneration induced by ciliary neurotrophic factor (CNTF), suggesting that other CAMs are critical under this regenerative condition. Consistent with this notion, CNTF induces expression various integrins known to mediate cell adhesion. Together, our study reveals multilayered functions of NCAD and a molecular basis of variability in guided axon growth.
Collapse
|
26
|
Shibahara T, Ago T, Tachibana M, Nakamura K, Yamanaka K, Kuroda J, Wakisaka Y, Kitazono T. Reciprocal Interaction Between Pericytes and Macrophage in Poststroke Tissue Repair and Functional Recovery. Stroke 2020; 51:3095-3106. [PMID: 32933419 DOI: 10.1161/strokeaha.120.029827] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Poststroke tissue repair, comprised of macrophage-mediated clearance of myelin debris and pericyte-mediated fibrotic response within the infarct area, is an important process for functional recovery. Herein, we investigated the reciprocal interaction between pericytes and macrophages during poststroke repair and functional recovery. METHODS We performed a permanent middle cerebral artery occlusion in both wild-type and pericyte-deficient PDGFRβ (platelet-derived growth factor receptor β) heterozygous knockout (Pdgfrb+/-) mice and compared histological changes and neurological functions between the 2 groups. We also examined the effects of conditioned medium harvested from cultured pericytes, or bone marrow-derived macrophages, on the functions of other cell types. RESULTS Localization of PDGFRβ-positive pericytes and F4/80-positive macrophages was temporally and spatially very similar following permanent middle cerebral artery occlusion. Intrainfarct accumulation of macrophages was significantly attenuated in Pdgfrb+/- mice. Intrainfarct pericytes expressed CCL2 (C-C motif ligand 2) and CSF1 (colony stimulating factor 1), both of which were significantly lower in Pdgfrb+/- mice. Cultured pericytes expressed Ccl2 and Csf1, both of which were significantly increased by PDGF-BB and suppressed by a PDGFRβ inhibitor. Pericyte conditioned medium significantly enhanced migration and proliferation of bone marrow-derived macrophages. Poststroke clearance of myelin debris was significantly attenuated in Pdgfrb+/- mice. Pericyte conditioned medium promoted phagocytic activity in bone marrow-derived macrophages, also enhancing both STAT3 (signal transducer and activator of transcription 3) phosphorylation and expression of scavenger receptors, Msr1 and Lrp1. Macrophages processing myelin debris produced trophic factors, enhancing PDGFRβ signaling in pericytes leading to the production of ECM (extracellular matrix) proteins and oligodendrogenesis. Functional recovery was significantly attenuated in Pdgfrb+/- mice, parallel with the extent of tissue repair. CONCLUSIONS A reciprocal interaction between pericytes and macrophages is important for poststroke tissue repair and functional recovery.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
27
|
Demonstrating a reduced capacity for removal of fluid from cerebral white matter and hypoxia in areas of white matter hyperintensity associated with age and dementia. Acta Neuropathol Commun 2020; 8:131. [PMID: 32771063 PMCID: PMC7414710 DOI: 10.1186/s40478-020-01009-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
White matter hyperintensities (WMH) occur in association with dementia but the aetiology is unclear. Here we test the hypothesis that there is a combination of impaired elimination of interstitial fluid from the white matter together with a degree of hypoxia in WMH. One of the mechanisms for the elimination of amyloid-β (Aβ) from the brain is along the basement membranes in the walls of capillaries and arteries (Intramural Peri-Arterial Drainage – IPAD). We compared the dynamics of IPAD in the grey matter of the hippocampus and in the white matter of the corpus callosum in 10 week old C57/B16 mice by injecting soluble Aβ as a tracer. The dynamics of IPAD in the white matter were significantly slower compared with the grey matter and this was associated with a lower density of capillaries in the white matter. Exposing cultures of smooth muscle cells to hypercapnia as a model of cerebral hypoperfusion resulted in a reduction in fibronectin and an increase in laminin in the extracellular matrix. Similar changes were detected in the white matter in human WMH suggesting that hypercapnia/hypoxia may play a role in WMH. Employing therapies to enhance both IPAD and blood flow in the white matter may reduce WMH in patients with dementia.
Collapse
|
28
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
29
|
Warren PM, Andrews MR, Smith M, Bartus K, Bradbury EJ, Verhaagen J, Fawcett JW, Kwok JCF. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci Rep 2020; 10:11262. [PMID: 32647242 PMCID: PMC7347606 DOI: 10.1038/s41598-020-67526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK. .,Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 0PY, UK.
| | - Melissa R Andrews
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc Smith
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Katalin Bartus
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - James W Fawcett
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
30
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
31
|
Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2-A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. Int J Mol Sci 2020; 21:ijms21061952. [PMID: 32178467 PMCID: PMC7139664 DOI: 10.3390/ijms21061952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Antisense Oligonucleotides (ASOs) are an emerging drug class in gene modification. In our study we developed a safe, stable, and effective ASO drug candidate in locked nucleic acid (LNA)-gapmer design, targeting TGFβ receptor II (TGFBR2) mRNA. Discovery was performed as a process using state-of-the-art library development and screening. We intended to identify a drug candidate optimized for clinical development, therefore human specificity and gymnotic delivery were favored by design. A staggered process was implemented spanning in-silico-design, in-vitro transfection, and in-vitro gymnotic delivery of small batch syntheses. Primary in-vitro and in-vivo toxicity studies and modification of pre-lead candidates were also part of this selection process. The resulting lead compound NVP-13 unites human specificity and highest efficacy with lowest toxicity. We particularly focused at attenuation of TGFβ signaling, addressing both safety and efficacy. Hence, developing a treatment to potentially recondition numerous pathological processes mediated by elevated TGFβ signaling, we have chosen to create our data in human lung cell lines and human neuronal stem cell lines, each representative for prospective drug developments in pulmonary fibrosis and neurodegeneration. We show that TGFBR2 mRNA as a single gene target for NVP-13 responds well, and that it bears great potential to be safe and efficient in TGFβ signaling related disorders.
Collapse
|
32
|
He J, Pham TL, Kakazu AH, Bazan HEP. Remodeling of Substance P Sensory Nerves and Transient Receptor Potential Melastatin 8 (TRPM8) Cold Receptors After Corneal Experimental Surgery. Invest Ophthalmol Vis Sci 2019; 60:2449-2460. [PMID: 31157834 PMCID: PMC6545819 DOI: 10.1167/iovs.18-26384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate changes in corneal nerves positive to substance P (SP) and transient receptor potential melastatin 8 (TRPM8) and gene expression in the trigeminal ganglia (TG) following corneal surgery to unveil peripheral nerve mechanism of induced dry eye-like pain (DELP). Methods Surgery was performed on mice by removing the central epithelial and anterior stromal nerves. Mice were euthanized at different times up to 15 weeks. Immunostaining was performed with TRPM8, SP, or protein gene product 9.5 (PGP9.5) antibodies, and epithelial nerve densities were calculated. The origin of TRPM8- and SP-TG neurons were analyzed by retrograde tracing. Gene expression in TG was studied by real-time PCR analysis. Results SP-positive epithelial corneal nerves were more abundant than TRPM8 and were expressed in different TG neurons. After injury, epithelial nerve regeneration occurs in two distinct stages. An early regeneration of the remaining epithelial bundles reached the highest density on day 3 and then rapidly degraded. From day 5, the epithelial nerves originated from the underlying stromal nerves were still lower than normal levels by week 15. The SP- and TRPM8-positive nerve fibers followed the same pattern as the total nerves. TRPM8-positive terminals increased slowly and reached only half of normal values by 3 months. Corneal sensitivity gradually increased and reached normal values on day 12. Corneal injury also induced significant changes in TG gene expression, decreasing trpm8 and tac1 genes. Conclusions Abnormal SP expression, low amounts of TRPM8 terminals, and hypersensitive nerve response occur long after the injury and changes in gene expression in the TG suggest a contribution to the pathogenesis of corneal surgery-induced DELP.
Collapse
Affiliation(s)
- Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States.,Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States
| | - Thang Luong Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States
| | - Azucena H Kakazu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States
| | - Haydee E P Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States.,Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana, United States
| |
Collapse
|
33
|
Lana D, Ugolini F, Wenk GL, Giovannini MG, Zecchi-Orlandini S, Nosi D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction. FASEB J 2018; 33:4007-4020. [PMID: 30496700 DOI: 10.1096/fj.201801539r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging and neurodegenerative diseases share a condition of neuroinflammation entailing the production of endogenous cell debris in the CNS that must be removed by microglia ( i.e., resident macrophages), to restore tissue homeostasis. In this context, extension of microglial cell branches toward cell debris underlies the mechanisms of microglial migration and phagocytosis. Amoeboid morphology and the consequent loss of microglial branch functionality characterizes dysregulated microglia. Microglial migration is assisted by another glial population, the astroglia, which forms a dense meshwork of cytoplasmic projections. Amoeboid microglia and disrupted astrocyte meshwork are consistent traits in aged CNS. In this study, we assessed a possible correlation between microglia and astroglia morphology in rat models of chronic neuroinflammation and aging, by 3-dimensional confocal analysis implemented with particle analysis. Our findings suggest that a microglia-astroglia interaction occurs in rat hippocampus via cell-cell contacts, mediating microglial cell branching in the presence of inflammation. In aged rats, the impairment of such an interaction correlates with altered distribution, morphology, and inefficient clearance by microglia. These data support the idea that generally accepted functional boundaries between microglia and astrocytes should be re-evaluated to better understand how their functions overlap and interact.-Lana, D., Ugolini, F., Wenk, G. L., Giovannini, M. G., Zecchi-Orlandini, S., Nosi, D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. J Neurotrauma 2018. [DOI: 10.1089/neu.2018.5928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
35
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
36
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Zhang X, Goeke CM, Bloom SH, Guizzetti M. Plasminogen activator system homeostasis and its dysregulation by ethanol in astrocyte cultures and the developing brain. Neuropharmacology 2018; 138:193-209. [PMID: 29885422 PMCID: PMC6310223 DOI: 10.1016/j.neuropharm.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 10/30/2022]
Abstract
In utero alcohol exposure can cause fetal alcohol spectrum disorders (FASD), characterized by structural brain abnormalities and long-lasting behavioral and cognitive dysfunction. Neuronal plasticity is affected by in utero alcohol exposure and can be modulated by extracellular proteolysis. Plasmin is a major extracellular serine-protease whose activation is tightly regulated by the plasminogen activator (PA) system. In the present study we explored the effect of ethanol on the expression of the main components of the brain PA system in sex-specific cortical astrocyte primary cultures in vitro and in the cortex and hippocampus of post-natal day (PD) 9 male and female rats. We find that ethanol alters the PA system in astrocytes and in the developing brain. In particular, the expression of tissue-type PA (tPA), encoded by the gene Plat, is consistently upregulated by ethanol in astrocytes in vitro and in the cortex and hippocampus in vivo. Astrocytes exhibit endogenous plasmin activity that is increased by ethanol and recombinant tPA and inhibited by tPA silencing. We also find that tPA is expressed by astrocytes of the developing cortex and hippocampus in vivo. All components of the PA system investigated, with the exception of Neuroserpin/Serpini1, are expressed at higher levels in astrocyte cultures than in the developing brain, suggesting that astrocytes are major producers of these proteins in the brain. In conclusion, astrocyte PA system may play a major role in the modulation of neuronal plasticity; ethanol-induced upregulation of tPA levels and plasmin activity may be responsible for altered neuronal plasticity in FASD.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | - Calla M Goeke
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
37
|
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. In addition to the well-established functions of astrocytes and microglia in stroke pathogenesis, pericytes also play an important role in stroke progression and recovery. As perivascular multi-potent cells and an important component of the blood–brain barrier (BBB), pericytes have been shown to exert a large variety of functions, including serving as stem/progenitor cells and maintaining BBB integrity. Here in this review, we summarize the roles of pericytes in stroke pathogenesis, with a focus on their effects in cerebral blood flow, BBB integrity, angiogenesis, immune responses, scar formation and fibrosis.
Collapse
Affiliation(s)
- Jyoti Gautam
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yao Yao
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, Microglia, and Parkinson's Disease. Exp Neurobiol 2018; 27:77-87. [PMID: 29731673 PMCID: PMC5934545 DOI: 10.5607/en.2018.27.2.77] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and microglia support well-being and well-function of the brain through diverse functions in both intact and injured brain. For example, astrocytes maintain homeostasis of microenvironment of the brain through up-taking ions and neurotransmitters, and provide growth factors and metabolites for neurons, etc. Microglia keep surveying surroundings, and remove abnormal synapses or respond to injury by isolating injury sites and expressing inflammatory cytokines. Therefore, their loss and/or functional alteration may be directly linked to brain diseases. Since Parkinson's disease (PD)-related genes are expressed in astrocytes and microglia, mutations of these genes may alter the functions of these cells, thereby contributing to disease onset and progression. Here, we review the roles of astrocytes and microglia in intact and injured brain, and discuss how PD genes regulate their functions.
Collapse
Affiliation(s)
- Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Dong-Joo Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jiawei An
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jin-Hwa Eun
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Sangmyun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| |
Collapse
|
39
|
Abstract
The extracellular matrix (ECM) is a meshwork of proteins and carbohydrates that supports many biological structures and processes, from tissue development and elasticity to preserve the structures of entire organs. In each organ, the composition of the ECM is distinct. It is a remarkably active three-dimensional structure that is continuously undergoing remodeling to regulate tissue homeostasis. This review aims to explain the role of ECM proteins in the remodeling process in different types of disease. The hardening of the ECM (desmoplasia), as well as its manipulation, induction, and impairment in regulation of its composition can play a role in several diseases, examples of which are chronic obstructive pulmonary disease, pancreatic ductal adenocarcinoma, spinal cord injury, progression and metastasis of breast cancer, and neurodegenerative condition in the brain such as Alzheimer's disease. Remodeling is also associated with diet-induced insulin resistance in many metabolic tissues. A greater comprehension of the way in which the ECM regulates organ structure and function and of how ECM remodeling affects the development of diseases may lead to the improvement and discovery of new treatments.
Collapse
Affiliation(s)
- Hala Salim Sonbol
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21332, Saudi Arabia
| |
Collapse
|
40
|
Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome Analysis Reveals Neuroprotective aspects of Human Reactive Astrocytes induced by Interleukin 1β. Sci Rep 2017; 7:13988. [PMID: 29070875 PMCID: PMC5656635 DOI: 10.1038/s41598-017-13174-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a critical process in neuropathological conditions and neurotrauma. Although it has been suggested that it confers neuroprotective effects, the exact genomic mechanism has not been explored. The prevailing dogma of the role of astrogliosis in inhibition of axonal regeneration has been challenged by recent findings in rodent model’s spinal cord injury, demonstrating its neuroprotection and axonal regeneration properties. We examined whether their neuroprotective and axonal regeneration potentials can be identify in human spinal cord reactive astrocytes in vitro. Here, reactive astrogliosis was induced with IL1β. Within 24 hours of IL1β induction, astrocytes acquired reactive characteristics. Transcriptome analysis of over 40000 transcripts of genes and analysis with PFSnet subnetwork revealed upregulation of chemokines and axonal permissive factors including FGF2, BDNF, and NGF. In addition, most genes regulating axonal inhibitory molecules, including ROBO1 and ROBO2 were downregulated. There was no increase in the gene expression of “Chondroitin Sulfate Proteoglycans” (CSPGs’) clusters. This suggests that reactive astrocytes may not be the main CSPG contributory factor in glial scar. PFSnet analysis also indicated an upregulation of “Axonal Guidance Signaling” pathway. Our result suggests that human spinal cord reactive astrocytes is potentially neuroprotective at an early onset of reactive astrogliosis.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wenxuan Jiang
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mohd Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abha Belorkar
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Angelo H All
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore. .,Department of Biomedical Engineering and Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Thompson RE, Lake A, Kenny P, Saunders MN, Sakers K, Iyer NR, Dougherty JD, Sakiyama-Elbert SE. Different Mixed Astrocyte Populations Derived from Embryonic Stem Cells Have Variable Neuronal Growth Support Capacities. Stem Cells Dev 2017; 26:1597-1611. [PMID: 28851266 DOI: 10.1089/scd.2017.0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Central nervous system injury often leads to functional impairment due, in part, to the formation of an inhibitory glial scar following injury that contributes to poor regeneration. Astrocytes are the major cellular components of the glial scar, which has led to the belief that they are primarily inhibitory following injury. Recent work has challenged this by demonstrating that some astrocytes are required for spinal cord regeneration and astrocytic roles in recovery depend on their phenotype. In this work, two mixed populations containing primarily either fibrous or protoplasmic astrocytes were derived from mouse embryonic stem cells (mESCs). Motoneuron and V2a interneuron growth on live cultures, freeze-lysed cultures, or decellularized extracellular matrix (ECM) from astrocytes were assessed. Both neuronal populations were found to extend significantly longer neurites on protoplasmic-derived substrates than fibrous-derived substrates. Interestingly, neurons extended longer neurites on protoplasmic-derived ECM than fibrous-derived ECM. ECM proteins were compared with in vivo astrocyte expression profiles, and it was found that the ESC-derived ECMs were enriched for astrocyte-specific proteins. Further characterization revealed that protoplasmic ECM had significantly higher levels of axon growth promoting proteins, while fibrous ECM had significantly higher levels of proteins that inhibit axon growth. Supporting this observation, knockdown of spondin-1 improved neurite growth on fibrous ECM, while laminin α5 and γ1 knockdown decreased neurite growth on protoplasmic ECM. These methods allow for scalable production of specific astrocyte subtype-containing populations with different neuronal growth support capacities, and can be used for further studies of the functional importance of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Russell E Thompson
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Allison Lake
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Peter Kenny
- 2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Michael N Saunders
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Kristina Sakers
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Nisha R Iyer
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Joseph D Dougherty
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Shelly E Sakiyama-Elbert
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| |
Collapse
|
43
|
Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 2017; 354:630-634. [PMID: 27811277 DOI: 10.1126/science.aaf2679] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration. We performed a genome-wide profiling screen for secreted factors that are up-regulated during zebrafish spinal cord regeneration. We found that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupted spinal cord repair, and transgenic ctgfa overexpression or local delivery of human CTGF recombinant protein accelerated bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chinmoy Patra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Toyokazu Endo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Haggerty AE, Marlow MM, Oudega M. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci Lett 2016; 652:50-55. [PMID: 27702629 DOI: 10.1016/j.neulet.2016.09.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/09/2023]
Abstract
There is no treatment for people with spinal cord injury that leads to significant functional improvements. The extracellular matrix is an intricate, 3-dimensional, structural framework that defines the environment for cells in the central nervous system. The components of extracellular matrix have signaling and regulatory roles in the fate and function of neuronal and non-neuronal cells in the central nervous system. This review discusses the therapeutic potential of extracellular matrix components for spinal cord repair.
Collapse
Affiliation(s)
- Agnes E Haggerty
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Megan M Marlow
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martin Oudega
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
45
|
Filous AR, Silver J. "Targeting astrocytes in CNS injury and disease: A translational research approach". Prog Neurobiol 2016; 144:173-87. [PMID: 27026202 PMCID: PMC5035184 DOI: 10.1016/j.pneurobio.2016.03.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/03/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Astrocytes are a major constituent of the central nervous system. These glia play a major role in regulating blood-brain barrier function, the formation and maintenance of synapses, glutamate uptake, and trophic support for surrounding neurons and glia. Therefore, maintaining the proper functioning of these cells is crucial to survival. Astrocyte defects are associated with a wide variety of neuropathological insults, ranging from neurodegenerative diseases to gliomas. Additionally, injury to the CNS causes drastic changes to astrocytes, often leading to a phenomenon known as reactive astrogliosis. This process is important for protecting the surrounding healthy tissue from the spread of injury, while it also inhibits axonal regeneration and plasticity. Here, we discuss the important roles of astrocytes after injury and in disease, as well as potential therapeutic approaches to restore proper astrocyte functioning.
Collapse
Affiliation(s)
- Angela R Filous
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| |
Collapse
|
46
|
Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering. Adv Healthc Mater 2016; 5:1931-8. [PMID: 27331769 DOI: 10.1002/adhm.201600197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
47
|
Silver J. The glial scar is more than just astrocytes. Exp Neurol 2016; 286:147-149. [PMID: 27328838 DOI: 10.1016/j.expneurol.2016.06.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Talaei F. Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide. Basic Clin Neurosci 2016; 7:121-36. [PMID: 27303607 PMCID: PMC4892317 DOI: 10.15412/j.bcn.03070206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to produce myelin, prevent the formation of fibronectin aggregates by astrocytes to inhibit scar formation, and enhance function of healthy endothelial cells (ECs). Methods: To determine if an increase in sulfur contents through H2S, a potent antioxidant known to induce protective autophagy in cells, could provide the above desired outcomes, peripheral blood mononuclear cells (PBMNCs), OCPs, astrocytes, and ECs were treated with NaHS (50 μM) in vitro. Results: Transmigration assay using EC monolayer showed that serotonin increased migration of PBMNC while pretreatment of EC with NaHS inhibited the migration induced by serotonin treatment. NaHS upregulated proteins involved in immune system response and downregulated PBMNCs- and EC-related adhesion molecules (LFA-1 and VCAM-1). Furthermore, it had a cell expansion inducing effect, altering EC morphology. The effects of NaHS on OPCs and astrocytes were studied compared to mTOR inhibitor rapamycin. In NaHS treated astrocytes the induced fibronectin production was partially inhibited while rapamycin almost fully inhibited fibronectin production. NaHS slowed but did not inhibit the differentiation of OCPs or the production of myelin compared to rapamycin. Conclusion: The in vitro results point to the potential therapeutic application of hydrogen sulfide releasing molecules or health-promoting sulfur compounds in MS.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Novel Drug Delivery Systems Lab, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532:195-200. [PMID: 27027288 DOI: 10.1038/nature17623] [Citation(s) in RCA: 1313] [Impact Index Per Article: 145.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.
Collapse
|
50
|
Choi I, Choi DJ, Yang H, Woo JH, Chang MY, Kim JY, Sun W, Park SM, Jou I, Lee SH, Lee SH, Joe EH. PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol Brain 2016; 9:5. [PMID: 26746235 PMCID: PMC4706723 DOI: 10.1186/s13041-016-0186-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/04/2016] [Indexed: 01/19/2023] Open
Abstract
Background Mutation of PTEN-induced putative kinase 1 (PINK1) causes autosomal recessive early-onset Parkinson’s disease (PD). Despite of its ubiquitous expression in brain, its roles in non-neuronal cells such as neural stem cells (NSCs) and astrocytes were poorly unknown. Results We show that PINK1 expression increases from embryonic day 12 to postnatal day 1 in mice, which represents the main period of brain development. PINK1 expression also increases during neural stem cell (NSC) differentiation. Interestingly, expression of GFAP (a marker of astrocytes) was lower in PINK1 knockout (KO) mouse brain lysates compared to wild-type (WT) lysates at postnatal days 1-8, whereas there was little difference in the expression of markers for other brain cell types (e.g., neurons and oligodendrocytes). Further experiments showed that PINK1-KO NSCs were defective in their differentiation to astrocytes, producing fewer GFAP-positive cells compared to WT NSCs. However, the KO and WT NSCs did not differ in their self-renewal capabilities or ability to differentiate to neurons and oligodendrocytes. Interestingly, during differentiation of KO NSCs there were no defects in mitochondrial function, and there were not changes in signaling molecules such as SMAD1/5/8, STAT3, and HES1 involved in differentiation of NSCs into astrocytes. In brain sections, GFAP-positive astrocytes were more sparsely distributed in the corpus callosum and substantia nigra of KO animals compared with WT. Conclusion Our study suggests that PINK1 deficiency causes defects in GFAP-positive astrogliogenesis during brain development and NSC differentiation, which may be a factor to increase risk for PD. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0186-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Insup Choi
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.
| | - Dong-Joo Choi
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| | - Haijie Yang
- Department of Pharmacology, Ajou University School of Medicine san-5, Woncheon-dong, Youngtong-gu, Suwon, Kyunggi-do, 442-721, Korea.
| | - Joo Hong Woo
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea.
| | - Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Sang-Myun Park
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Department of Pharmacology, Ajou University School of Medicine san-5, Woncheon-dong, Youngtong-gu, Suwon, Kyunggi-do, 442-721, Korea.
| | - Ilo Jou
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Department of Pharmacology, Ajou University School of Medicine san-5, Woncheon-dong, Youngtong-gu, Suwon, Kyunggi-do, 442-721, Korea.
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea.
| | - Sang Hoon Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea.
| | - Eun-Hye Joe
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Department of Pharmacology, Ajou University School of Medicine san-5, Woncheon-dong, Youngtong-gu, Suwon, Kyunggi-do, 442-721, Korea. .,Department of Brain Science, Ajou University School of Medicine, Suwon, Korea. .,Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|