1
|
Hong I, Kim J, Hainmueller T, Kim DW, Keijser J, Johnson RC, Park SH, Limjunyawong N, Yang Z, Cheon D, Hwang T, Agarwal A, Cholvin T, Krienen FM, McCarroll SA, Dong X, Leopold DA, Blackshaw S, Sprekeler H, Bergles DE, Bartos M, Brown SP, Huganir RL. Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 2024; 635:398-405. [PMID: 39358515 PMCID: PMC11560848 DOI: 10.1038/s41586-024-08027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
Collapse
Affiliation(s)
- Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Juhyun Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Richard C Johnson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zhuonan Yang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David Cheon
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Taeyoung Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Solange P Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Deister CA, Moore AI, Voigts J, Bechek S, Lichtin R, Brown TC, Moore CI. Neocortical inhibitory imbalance predicts successful sensory detection. Cell Rep 2024; 43:114233. [PMID: 38905102 DOI: 10.1016/j.celrep.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/17/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Perceptual success depends on fast-spiking, parvalbumin-positive interneurons (FS/PVs). However, competing theories of optimal rate and correlation in pyramidal (PYR) firing make opposing predictions regarding the underlying FS/PV dynamics. We addressed this with population calcium imaging of FS/PVs and putative PYR neurons during threshold detection. In primary somatosensory and visual neocortex, a distinct PYR subset shows increased rate and spike-count correlations on detected trials ("hits"), while most show no rate change and decreased correlations. A larger fraction of FS/PVs predicts hits with either rate increases or decreases. Using computational modeling, we found that inhibitory imbalance, created by excitatory "feedback" and interactions between FS/PV pools, can account for the data. Rate-decreasing FS/PVs increase rate and correlation in a PYR subset, while rate-increasing FS/PVs reduce correlations and offset enhanced excitation in PYR neurons. These findings indicate that selection of informative PYR ensembles, through transient inhibitory imbalance, is a common motif of optimal neocortical processing.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Alexander I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sophia Bechek
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Rebecca Lichtin
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Lagzi F, Fairhall AL. Emergence of co-tuning in inhibitory neurons as a network phenomenon mediated by randomness, correlations, and homeostatic plasticity. SCIENCE ADVANCES 2024; 10:eadi4350. [PMID: 38507489 DOI: 10.1126/sciadv.adi4350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Cortical excitatory neurons show clear tuning to stimulus features, but the tuning properties of inhibitory interneurons are ambiguous. While inhibitory neurons have been considered to be largely untuned, some studies show that some parvalbumin-expressing (PV) neurons do show feature selectivity and participate in co-tuned subnetworks with pyramidal neurons. In this study, we first use mean-field theory to demonstrate that a combination of homeostatic plasticity governing the synaptic dynamics of the connections from PV to excitatory neurons, heterogeneity in the excitatory postsynaptic potentials that impinge on PV neurons, and shared correlated input from layer 4 results in the functional and structural self-organization of PV subnetworks. Second, we show that structural and functional feature tuning of PV neurons emerges more clearly at the network level, i.e., that population-level measures identify functional and structural co-tuning of PV neurons that are not evident in pairwise individual-level measures. Finally, we show that such co-tuning can enhance network stability at the cost of reduced feature selectivity.
Collapse
Affiliation(s)
- Fereshteh Lagzi
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195-7290, USA
- Computational Neuroscience Center, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195-7290, USA
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195-7290, USA
- Computational Neuroscience Center, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195-7290, USA
| |
Collapse
|
4
|
Kawamura N, Osuka T, Kaneko R, Kishi E, Higuchi R, Yoshimura Y, Hirabayashi T, Yagi T, Tarusawa E. Reciprocal Connections between Parvalbumin-Expressing Cells and Adjacent Pyramidal Cells Are Regulated by Clustered Protocadherin γ. eNeuro 2023; 10:ENEURO.0250-23.2023. [PMID: 37890993 PMCID: PMC10614112 DOI: 10.1523/eneuro.0250-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.
Collapse
Affiliation(s)
- Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Osuka
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eri Kishi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuon Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Totsuka-ku, Yokohama 244-0806, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Shapiro JT, Gosselin EAR, Michaud NM, Crowder NA. Activating parvalbumin-expressing interneurons produces iceberg effects in mouse primary visual cortex neurons. Neurosci Lett 2022; 786:136804. [PMID: 35843471 DOI: 10.1016/j.neulet.2022.136804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
In the primary visual cortex (V1) inhibitory interneurons form a local circuit with excitatory pyramidal cells to produce distinct receptive field properties. Parvalbumin-expressing interneurons (Pvalb+) are the most common subclass of V1 interneurons, and studies of orientation tuning indicate they shape pyramidal stimulus selectivity by balancing excitation with inhibition relative to the spike threshold. The iceberg effect, where subthreshold responses have broader tuning than spiking responses, predicts that other receptive field properties besides orientation tuning should also be affected by this balance mediated by Pvalb+ cells. To test this, we measured receptive field size and visual latency of pyramidal cells while Pvalb+ activity was optogenetically increased. We found that amplifying Pvalb+ input to pyramidal cells significantly increased their latency and decreased their receptive field size, which corroborates the proposed role of Pvalb+ interneurons in sculpting pyramidal tuning by controlling cortical gain.
Collapse
Affiliation(s)
- Jared T Shapiro
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emily A R Gosselin
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nicole M Michaud
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
6
|
Li AA, Wang F, Wu S, Zhang X. Emergence of probabilistic representation in the neural network of primary visual cortex. iScience 2022; 25:103975. [PMID: 35310336 PMCID: PMC8924637 DOI: 10.1016/j.isci.2022.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
During the early development of the mammalian visual system, the distribution of neuronal preferred orientations in the primary visual cortex (V1) gradually shifts to match major orientation features of the environment, achieving its optimal representation. By combining computational modeling and electrophysiological recording, we provide a circuit plasticity mechanism that underlies the developmental emergence of such matched representation in the visual cortical network. Specifically, in a canonical circuit of densely-interconnected pyramidal cells and inhibitory parvalbumin-expressing (PV+) fast-spiking interneurons in V1 layer 2/3, our model successfully simulates the experimental observations and further reveals that the nonuniform inhibition plays a key role in shaping the network representation through spike timing-dependent plasticity. The experimental results suggest that PV + interneurons in V1 are capable of providing nonuniform inhibition shortly after vision onset. Our study elucidates a circuit mechanism for acquisition of prior knowledge of environment for optimal inference in sensory neural systems Computational and experimental methods are combined to representation in mice V1 Nonuniform inhibition plays a key role in shaping the network representation PV + interneurons provide nonuniform inhibition shortly after vision onset
Collapse
Affiliation(s)
- Ang A Li
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Fengchao Wang
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Si Wu
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,School of Psychology and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Barbera D, Priebe NJ, Glickfeld LL. Feedforward mechanisms of cross-orientation interactions in mouse V1. Neuron 2022; 110:297-311.e4. [PMID: 34735779 PMCID: PMC8920535 DOI: 10.1016/j.neuron.2021.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023]
Abstract
Sensory neurons are modulated by context. For example, in mouse primary visual cortex (V1), neuronal responses to the preferred orientation are modulated by the presence of superimposed orientations ("plaids"). The effects of this modulation are diverse; some neurons are suppressed, while others have larger responses to a plaid than its components. We investigated whether this diversity could be explained by a unified circuit mechanism. We report that this masking is maintained during suppression of cortical activity, arguing against cortical mechanisms. Instead, the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons are uniformly suppressed by plaids, whereas the effects in weakly selective neurons depend on the spatial configuration of the stimulus, transitioning systematically between suppression and facilitation. Thus, the diverse responses emerge as a consequence of the spatial structure of feedforward inputs, with no need to invoke cortical interactions.
Collapse
Affiliation(s)
- Dylan Barbera
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicholas J Priebe
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Mulholland HN, Hein B, Kaschube M, Smith GB. Tightly coupled inhibitory and excitatory functional networks in the developing primary visual cortex. eLife 2021; 10:e72456. [PMID: 34878404 PMCID: PMC8654369 DOI: 10.7554/elife.72456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Intracortical inhibition plays a critical role in shaping activity patterns in the mature cortex. However, little is known about the structure of inhibition in early development prior to the onset of sensory experience, a time when spontaneous activity exhibits long-range correlations predictive of mature functional networks. Here, using calcium imaging of GABAergic neurons in the ferret visual cortex, we show that spontaneous activity in inhibitory neurons is already highly organized into distributed modular networks before visual experience. Inhibitory neurons exhibit spatially modular activity with long-range correlations and precise local organization that is in quantitative agreement with excitatory networks. Furthermore, excitatory and inhibitory networks are strongly co-aligned at both millimeter and cellular scales. These results demonstrate a remarkable degree of organization in inhibitory networks early in the developing cortex, providing support for computational models of self-organizing networks and suggesting a mechanism for the emergence of distributed functional networks during development.
Collapse
Affiliation(s)
| | - Bettina Hein
- Center for Theoretical Neuroscience, Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies & Department of Informatics and Mathematics, Goethe UniversityFrankfurt am MainGermany
| | - Gordon B Smith
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Optical Imaging and Brain Sciences Medical Discovery Team, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
9
|
Sadeh S, Clopath C. Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks. SCIENCE ADVANCES 2021; 7:eabg8411. [PMID: 34731002 PMCID: PMC8565910 DOI: 10.1126/sciadv.abg8411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/14/2021] [Indexed: 05/20/2023]
Abstract
Repetitive activation of subpopulations of neurons leads to the formation of neuronal assemblies, which can guide learning and behavior. Recent technological advances have made the artificial induction of these assemblies feasible, yet how various parameters of induction can be optimized is not clear. Here, we studied this question in large-scale cortical network models with excitatory-inhibitory balance. We found that the background network in which assemblies are embedded can strongly modulate their dynamics and formation. Networks with dominant excitatory interactions enabled a fast formation of assemblies, but this was accompanied by recruitment of other non-perturbed neurons, leading to some degree of nonspecific induction. On the other hand, networks with strong excitatory-inhibitory interactions ensured that the formation of assemblies remained constrained to the perturbed neurons, but slowed down the induction. Our results suggest that these two regimes can be suitable for computational and cognitive tasks with different trade-offs between speed and specificity.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
10
|
Baccini G, Wulff P. Commentary on: Peng, Y et al., Structured recurrent inhibition in the presubiculum could improve information processing. Pflugers Arch 2021; 473:1691-1693. [PMID: 34648053 PMCID: PMC8528764 DOI: 10.1007/s00424-021-02626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Gilda Baccini
- Institute of Physiology, Christian-Albrechts-University Kiel, 24098, Kiel, Germany.
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, 24098, Kiel, Germany.
| |
Collapse
|
11
|
Cummings KA, Lacagnina AF, Clem RL. GABAergic microcircuitry of fear memory encoding. Neurobiol Learn Mem 2021; 184:107504. [PMID: 34425220 DOI: 10.1016/j.nlm.2021.107504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The paradigm of fear conditioning is largely responsible for our current understanding of how memories are encoded at the cellular level. Its most fundamental underlying mechanism is considered to be plasticity of synaptic connections between excitatory projection neurons (PNs). However, recent studies suggest that while PNs execute critical memory functions, their activity at key stages of learning and recall is extensively orchestrated by a diverse array of GABAergic interneurons (INs). Here we review the contributions of genetically-defined INs to processing of threat-related stimuli in fear conditioning, with a particular focus on how synaptic interactions within interconnected networks of INs modulates PN activity through both inhibition and disinhibition. Furthermore, we discuss accumulating evidence that GABAergic microcircuits are an important locus for synaptic plasticity during fear learning and therefore a viable substrate for long-term memory. These findings suggest that further investigation of INs could unlock unique conceptual insights into the organization and function of fear memory networks.
Collapse
Affiliation(s)
- Kirstie A Cummings
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neurobiology, University of Alabama Birmingham School of Medicine, Birmingham, AL 35294, United States
| | - Anthony F Lacagnina
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roger L Clem
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
12
|
Sadeh S, Clopath C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 2020; 22:21-37. [PMID: 33177630 DOI: 10.1038/s41583-020-00390-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
13
|
Abstract
Brains are composed of networks of neurons that are highly interconnected. A central question in neuroscience is how such neuronal networks operate in tandem to make a functioning brain. To understand this, we need to study how neurons interact with each other in action, such as when viewing a visual scene or performing a motor task. One way to approach this question is by perturbing the activity of functioning neurons and measuring the resulting influence on other neurons. By using computational models of neuronal networks, we studied how this influence in visual networks depends on connectivity. Our results help to interpret contradictory results from previous experimental studies and explain how different connectivity patterns can enhance information processing during natural vision. To unravel the functional properties of the brain, we need to untangle how neurons interact with each other and coordinate in large-scale recurrent networks. One way to address this question is to measure the functional influence of individual neurons on each other by perturbing them in vivo. Application of such single-neuron perturbations in mouse visual cortex has recently revealed feature-specific suppression between excitatory neurons, despite the presence of highly specific excitatory connectivity, which was deemed to underlie feature-specific amplification. Here, we studied which connectivity profiles are consistent with these seemingly contradictory observations, by modeling the effect of single-neuron perturbations in large-scale neuronal networks. Our numerical simulations and mathematical analysis revealed that, contrary to the prima facie assumption, neither inhibition dominance nor broad inhibition alone were sufficient to explain the experimental findings; instead, strong and functionally specific excitatory–inhibitory connectivity was necessary, consistent with recent findings in the primary visual cortex of rodents. Such networks had a higher capacity to encode and decode natural images, and this was accompanied by the emergence of response gain nonlinearities at the population level. Our study provides a general computational framework to investigate how single-neuron perturbations are linked to cortical connectivity and sensory coding and paves the road to map the perturbome of neuronal networks in future studies.
Collapse
|
14
|
Bertero A, Zurita H, Normandin M, Apicella AJ. Auditory Long-Range Parvalbumin Cortico-Striatal Neurons. Front Neural Circuits 2020; 14:45. [PMID: 32792912 PMCID: PMC7390902 DOI: 10.3389/fncir.2020.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that cortico-striatal pathways link auditory signals to action-selection and reward-learning behavior through excitatory projections. Only recently it has been demonstrated that long-range GABAergic cortico-striatal somatostatin-expressing neurons in the auditory cortex project to the dorsal striatum, and functionally inhibit the main projecting neuronal population, the spiny projecting neuron. Here we tested the hypothesis that parvalbumin-expressing neurons of the auditory cortex can also send long-range projections to the auditory striatum. To address this fundamental question, we took advantage of viral and non-viral anatomical tracing approaches to identify cortico-striatal parvalbumin neurons (CS-Parv inhibitory projections → auditory striatum). Here, we describe their anatomical distribution in the auditory cortex and determine the anatomical and electrophysiological properties of layer 5 CS-Parv neurons. We also analyzed their characteristic voltage-dependent membrane potential gamma oscillation, showing that intrinsic membrane mechanisms generate them. The inherent membrane mechanisms can also trigger intermittent and irregular bursts (stuttering) of the action potential in response to steps of depolarizing current pulses.
Collapse
Affiliation(s)
- Alice Bertero
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Marc Normandin
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
15
|
Tantillo E, Vannini E, Cerri C, Spalletti C, Colistra A, Mazzanti CM, Costa M, Caleo M. Differential roles of pyramidal and fast-spiking, GABAergic neurons in the control of glioma cell proliferation. Neurobiol Dis 2020; 141:104942. [DOI: 10.1016/j.nbd.2020.104942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
|
16
|
Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice. J Neurosci 2020; 40:5797-5806. [PMID: 32554511 DOI: 10.1523/jneurosci.0099-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Plasticity within hippocampal circuits is essential for memory functions. The hippocampal CA2/CA3 region is thought to be able to rapidly store incoming information by plastic modifications of synaptic weights within its recurrent network. High-frequency spike-bursts are believed to be essential for this process, by serving as triggers for synaptic plasticity. Given the diversity of CA2/CA3 pyramidal neurons, it is currently unknown whether and how burst activity, assessed in vivo during natural behavior, relates to principal cell heterogeneity. To explore this issue, we juxtacellularly recorded the activity of single CA2/CA3 neurons from freely-moving male mice, exploring a familiar environment. In line with previous work, we found that spatial and temporal activity patterns of pyramidal neurons correlated with their topographical position. Morphometric analysis revealed that neurons with a higher proportion of distal dendritic length displayed a higher tendency to fire spike-bursts. We propose that the dendritic architecture of pyramidal neurons might determine burst-firing by setting the relative amount of distal excitatory inputs from the entorhinal cortex.SIGNIFICANCE STATEMENT High-frequency spike-bursts are thought to serve fundamental computational roles within neural circuits. Within hippocampal circuits, spike-bursts are believed to serve as potent instructive signals, which increase the efficiency of information transfer and induce rapid modifications of synaptic efficacies. In the present study, by juxtacellularly recording and labeling single CA2/CA3 neurons in freely-moving mice, we explored whether and how burst propensity relates to pyramidal cell heterogeneity. We provide evidence that, within the CA2/CA3 region, neurons with higher proportion of distal dendritic length display a higher tendency to fire spike-bursts. Thus, the relative amount of entorhinal inputs, arriving onto the distal dendrites, might determine the burst propensity of individual CA2/CA3 neurons in vivo during natural behavior.
Collapse
|
17
|
Shigematsu N, Nishi A, Fukuda T. Gap Junctions Interconnect Different Subtypes of Parvalbumin-Positive Interneurons in Barrels and Septa with Connectivity Unique to Each Subtype. Cereb Cortex 2020; 29:1414-1429. [PMID: 29490016 DOI: 10.1093/cercor/bhy038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/14/2022] Open
Abstract
Parvalbumin (PV)-positive interneurons form dendritic gap junctions with one another, but the connectivity among gap junction-coupled dendrites remains uninvestigated in most neocortical areas. We visualized gap junctions in layer 4 of the mouse barrel cortex and examined their structural details. PV neurons were divided into 4 types based on the location of soma and dendrites within or outside barrels. Type 1 neurons that had soma and all dendrites inside a barrel, considered most specific to single vibrissa-derived signals, unexpectedly formed gap junctions only with other types but never with each other. Type 2 neurons inside a barrel elongated dendrites outward, forming gap junctions within a column that contained the home barrel. Type 3 neurons located outside barrels established connections with all types including Type 4 neurons that were confined inside the inter-barrel septa. The majority (33/38, 86.8%) of dendritic gap junctions were within 75 μm from at least 1 of 2 paired somata. All types received vesicular glutamate transporter 2-positive axon terminals preferentially on somata and proximal dendrites, indicating the involvement of all types in thalamocortical feedforward regulation in which proximal gap junctions may also participate. These structural organizations provide a new morphological basis for regulatory mechanisms in barrel cortex.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Sadeh S, Clopath C. Patterned perturbation of inhibition can reveal the dynamical structure of neural processing. eLife 2020; 9:e52757. [PMID: 32073400 PMCID: PMC7180056 DOI: 10.7554/elife.52757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Perturbation of neuronal activity is key to understanding the brain's functional properties, however, intervention studies typically perturb neurons in a nonspecific manner. Recent optogenetics techniques have enabled patterned perturbations, in which specific patterns of activity can be invoked in identified target neurons to reveal more specific cortical function. Here, we argue that patterned perturbation of neurons is in fact necessary to reveal the specific dynamics of inhibitory stabilization, emerging in cortical networks with strong excitatory and inhibitory functional subnetworks, as recently reported in mouse visual cortex. We propose a specific perturbative signature of these networks and investigate how this can be measured under different experimental conditions. Functionally, rapid spontaneous transitions between selective ensembles of neurons emerge in such networks, consistent with experimental results. Our study outlines the dynamical and functional properties of feature-specific inhibitory-stabilized networks, and suggests experimental protocols that can be used to detect them in the intact cortex.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College LondonLondonUnited Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
19
|
Inhibitory microcircuits for top-down plasticity of sensory representations. Nat Commun 2019; 10:5055. [PMID: 31699994 PMCID: PMC6838080 DOI: 10.1038/s41467-019-12972-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/11/2019] [Indexed: 01/06/2023] Open
Abstract
Rewards influence plasticity of early sensory representations, but the underlying changes in circuitry are unclear. Recent experimental findings suggest that inhibitory circuits regulate learning. In addition, inhibitory neurons are highly modulated by diverse long-range inputs, including reward signals. We, therefore, hypothesise that inhibitory plasticity plays a major role in adjusting stimulus representations. We investigate how top-down modulation by rewards interacts with local plasticity to induce long-lasting changes in circuitry. Using a computational model of layer 2/3 primary visual cortex, we demonstrate how interneuron circuits can store information about rewarded stimuli to instruct long-term changes in excitatory connectivity in the absence of further reward. In our model, stimulus-tuned somatostatin-positive interneurons develop strong connections to parvalbumin-positive interneurons during reward such that they selectively disinhibit the pyramidal layer henceforth. This triggers excitatory plasticity, leading to increased stimulus representation. We make specific testable predictions and show that this two-stage model allows for translation invariance of the learned representation. Rewards can improve stimulus processing in early sensory areas but the underlying neural circuit mechanisms are unknown. Here, the authors build a computational model of layer 2/3 primary visual cortex and suggest that plastic inhibitory circuits change first and then increase excitatory representations beyond the presence of rewards.
Collapse
|
20
|
Sensory- and Motor-Related Responses of Layer 1 Neurons in the Mouse Visual Cortex. J Neurosci 2019; 39:10060-10070. [PMID: 31685651 DOI: 10.1523/jneurosci.1722-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Cortical layer 1 (L1) contains a sparse and molecularly distinct population of inhibitory interneurons. Their location makes them ideally suited for affecting computations involving long-range corticocortical and subcortical inputs, yet their response properties remain largely unexplored. Here we attempt to characterize some of the functional properties of these neurons in the primary visual cortex of awake mice. We find that the strongest driver of L1 neuron activity is locomotion, with at least half of L1 neurons displaying locomotion-related activity. Visual responses are present in a similar fraction of neurons, but these responses are weaker and frequently suppressive. We also find that ∼43% of L1 neurons respond to noise stimuli and at least 14% respond to whisker touch, with these two populations being statistically independent. Finally, we find that 45% of L1 neurons have generally weak responses correlated with whisking activity. Overall, the spatial distributions of modality-specific responses were more or less random. Our work helps to establish the basic sensory- and motor-related responses of L1 interneurons, revealing several previously unreported characteristics.SIGNIFICANCE STATEMENT Cortical processing even in primary sensory areas is strongly influenced by nonlocal corticocortical and neuromodulatory inputs. Many of these inputs are known to converge onto layer 1 where they target not only distal dendrites of pyramidal neurons but also a sparse population of inhibitory neurons. Previous studies have suggested that layer 1 neurons may play a crucial role in mediating the effects of these long-range projections, but the different types of inputs have mostly been studied in isolation. Here, we take a closer look at the response properties of layer 1 neurons in mouse visual cortex, examining both their visual properties, likely caused by direct thalamocortical inputs, and other sensory and motor properties, likely reflecting corticocortical and neuromodulatory inputs.
Collapse
|
21
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
22
|
Goel A, Cantu DA, Guilfoyle J, Chaudhari GR, Newadkar A, Todisco B, de Alba D, Kourdougli N, Schmitt LM, Pedapati E, Erickson CA, Portera-Cailliau C. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat Neurosci 2018; 21:1404-1411. [PMID: 30250263 PMCID: PMC6161491 DOI: 10.1038/s41593-018-0231-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 08/06/2018] [Indexed: 12/26/2022]
Abstract
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome.
Collapse
Affiliation(s)
- Anubhuti Goel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel A Cantu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Janna Guilfoyle
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gunvant R Chaudhari
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aditi Newadkar
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Barbara Todisco
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Diego de Alba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lauren M Schmitt
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest Pedapati
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Camillo D, Ahmadlou M, Saiepour MH, Yasaminshirazi M, Levelt CN, Heimel JA. Visual Processing by Calretinin Expressing Inhibitory Neurons in Mouse Primary Visual Cortex. Sci Rep 2018; 8:12355. [PMID: 30120412 PMCID: PMC6098074 DOI: 10.1038/s41598-018-30958-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition in the cerebral cortex is delivered by a variety of GABAergic interneurons. These cells have been categorized by their morphology, physiology, gene expression and connectivity. Many of these classes appear to be conserved across species, suggesting that the classes play specific functional roles in cortical processing. What these functions are, is still largely unknown. The largest group of interneurons in the upper layers of mouse primary visual cortex (V1) is formed by cells expressing the calcium-binding protein calretinin (CR). This heterogeneous class contains subsets of vasoactive intestinal polypeptide (VIP) interneurons and somatostatin (SOM) interneurons. Here we show, using in vivo two-photon calcium imaging in mice, that CR neurons can be sensitive to stimulus orientation, but that they are less selective on average than the overall neuronal population. Responses of CR neurons are suppressed by a surrounding stimulus, but less so than the overall population. In rats and primates, CR interneurons have been suggested to provide disinhibition, but we found that in mice their in vivo activation by optogenetics causes a net inhibition of cortical activity. Our results show that the average functional properties of CR interneurons are distinct from the averages of the parvalbumin, SOM and VIP interneuron populations.
Collapse
Affiliation(s)
- Daniela Camillo
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Mehran Ahmadlou
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - M Hadi Saiepour
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Maryam Yasaminshirazi
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - J Alexander Heimel
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Khan AG, Poort J, Chadwick A, Blot A, Sahani M, Mrsic-Flogel TD, Hofer SB. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat Neurosci 2018; 21:851-859. [PMID: 29786081 DOI: 10.1038/s41593-018-0143-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland. .,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jasper Poort
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland.,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
25
|
Moore AK, Weible AP, Balmer TS, Trussell LO, Wehr M. Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry. Neuron 2018; 97:1341-1355.e6. [PMID: 29503186 PMCID: PMC5875716 DOI: 10.1016/j.neuron.2018.01.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
Excitation is balanced by inhibition to cortical neurons across a wide range of conditions. To understand how this relationship is maintained, we broadly suppressed the activity of parvalbumin-expressing (PV+) inhibitory neurons and asked how this affected the balance of excitation and inhibition throughout auditory cortex. Activating archaerhodopsin in PV+ neurons effectively suppressed them in layer 4. However, the resulting increase in excitation outweighed Arch suppression and produced a net increase in PV+ activity in downstream layers. Consequently, suppressing PV+ neurons did not reduce inhibition to principal neurons (PNs) but instead resulted in a tightly coordinated increase in both excitation and inhibition. The increase in inhibition constrained the magnitude of PN spiking responses to the increase in excitation and produced nonlinear changes in spike tuning. Excitatory-inhibitory rebalancing is mediated by strong PN-PV+ connectivity within and between layers and is likely engaged during normal cortical operation to ensure balance in downstream neurons.
Collapse
Affiliation(s)
- Alexandra K Moore
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Aldis P Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Timothy S Balmer
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Laurence O Trussell
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
26
|
Zurita H, Feyen PLC, Apicella AJ. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons. Front Cell Neurosci 2018; 12:53. [PMID: 29559891 PMCID: PMC5845545 DOI: 10.3389/fncel.2018.00053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K+ channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Paul L C Feyen
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| |
Collapse
|
27
|
Wilson DE, Smith GB, Jacob AL, Walker T, Dimidschstein J, Fishell G, Fitzpatrick D. GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron 2017; 93:1058-1065.e4. [PMID: 28279352 PMCID: PMC5477844 DOI: 10.1016/j.neuron.2017.02.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
Abstract
Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the "local non-specific pooling principle" of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species.
Collapse
Affiliation(s)
- Daniel E Wilson
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA; International Max Planck Research School for Brain and Behavior, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gordon B Smith
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Amanda L Jacob
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Theo Walker
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Jordane Dimidschstein
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE
| | - Gord Fishell
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE
| | - David Fitzpatrick
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
28
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
29
|
A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice. J Neurosci 2017; 36:12144-12156. [PMID: 27903724 DOI: 10.1523/jneurosci.1741-16.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
The cerebral cortex of the mouse has become one of the most important systems for studying information processing and the neural correlates of behavior. Multiple studies have examined the first stages of visual cortical processing: primary visual cortex (V1) and its thalamic inputs from the dorsal lateral geniculate nucleus (dLGN), but more rarely in the lateral posterior nucleus (LP) in mice. Multiple single-unit surveys of dLGN and V1, both with electrophysiology and two-photon calcium imaging, have described receptive fields in anesthetized animals. Increasingly, awake animals are being used in physiological studies, so it is important to compare neuronal responses between awake and anesthetized state. We have performed a comprehensive survey of spatial and temporal response properties in V1, dLGN, and lateral posterior nucleus of both anesthetized and awake animals, using a common set of stimuli: drifting sine-wave gratings spanning a broad range of spatial and temporal parameters, and sparse noise stimuli consisting of flashed light and dark squares. Most qualitative receptive field parameters were found to be unchanged between the two states, such as most aspects of spatial processing, but there were significant differences in several parameters, most notably in temporal processing. Compared with anesthetized animals, the temporal frequency that evoked the peak response was shifted toward higher values in the dLGN of awake mice and responses were more sustained. Further, the peak response to a flashed stimulus was earlier in all three areas. Overall, however, receptive field properties in the anesthetized animal remain a good model for those in the awake animal. SIGNIFICANCE STATEMENT The primary visual cortex (V1) of the mouse and its inputs from visual thalamus (dLGN), have become a dominant model for studying information processing in the brain. Early surveys of visual response properties (receptive fields) were performed in anesthetized animals. Although most recent studies of V1 have been performed in awake animals to examine links between vision and behavior, there have been few comprehensive studies of receptive field properties in the awake mouse, especially in dLGN and lateral posterior nucleus. We have performed a comparative survey of receptive fields in dLGN, lateral posterior nucleus, and V1 in anesthetized and awake mice. We found multiple differences in processing of time-varying stimuli, whereas the spatial aspects of receptive fields remain comparatively unchanged.
Collapse
|
30
|
Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons. J Neurosci 2017; 37:820-829. [PMID: 28123018 DOI: 10.1523/jneurosci.2386-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed.
Collapse
|
31
|
Synaptic integration in cortical inhibitory neuron dendrites. Neuroscience 2017; 368:115-131. [PMID: 28756117 DOI: 10.1016/j.neuroscience.2017.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/30/2022]
Abstract
Cortical inhibitory interneurons have a wide range of important functions, including balancing network excitation, enhancing spike-time precision of principal neurons, and synchronizing neural activity within and across brain regions. All these functions critically depend on the integration of synaptic inputs in their dendrites. But the sparse number of inhibitory cells, their small caliber dendrites, and the problem of cell-type identification, have prevented fast progress in analyzing their dendritic properties. Despite these challenges, recent advancements in electrophysiological, optical and molecular tools have opened the door for studying synaptic integration and dendritic computations in molecularly defined inhibitory interneurons. Accumulating evidence indicates that the biophysical properties of inhibitory neuron dendrites differ substantially from those of pyramidal neurons. In addition to the supralinear dendritic integration commonly observed in pyramidal neurons, interneuron dendrites can also integrate synaptic inputs in a linear or sublinear fashion. In this comprehensive review, we compare the dendritic biophysical properties of the three major classes of cortical inhibitory neurons and discuss how these cell type-specific properties may support their functions in the cortex.
Collapse
|
32
|
Fukuda T. Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex. Neuroscience 2017; 340:76-90. [DOI: 10.1016/j.neuroscience.2016.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
|
33
|
Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci U S A 2016; 113:E7287-E7296. [PMID: 27803317 DOI: 10.1073/pnas.1615330113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rett syndrome (RTT) arises from loss-of-function mutations in methyl-CpG binding protein 2 gene (Mecp2), but fundamental aspects of its physiological mechanisms are unresolved. Here, by whole-cell recording of synaptic responses in MeCP2 mutant mice in vivo, we show that visually driven excitatory and inhibitory conductances are both reduced in cortical pyramidal neurons. The excitation-to-inhibition (E/I) ratio is increased in amplitude and prolonged in time course. These changes predict circuit-wide reductions in response reliability and selectivity of pyramidal neurons to visual stimuli, as confirmed by two-photon imaging. Targeted recordings reveal that parvalbumin-expressing (PV+) interneurons in mutant mice have reduced responses. PV-specific MeCP2 deletion alone recapitulates effects of global MeCP2 deletion on cortical circuits, including reduced pyramidal neuron responses and reduced response reliability and selectivity. Furthermore, MeCP2 mutant mice show reduced expression of the cation-chloride cotransporter KCC2 (K+/Cl- exporter) and a reduced KCC2/NKCC1 (Na+/K+/Cl- importer) ratio. Perforated patch recordings demonstrate that the reversal potential for GABA is more depolarized in mutant mice, but is restored by application of the NKCC1 inhibitor bumetanide. Treatment with recombinant human insulin-like growth factor-1 restores responses of PV+ and pyramidal neurons and increases KCC2 expression to normalize the KCC2/NKCC1 ratio. Thus, loss of MeCP2 in the brain alters both excitation and inhibition in brain circuits via multiple mechanisms. Loss of MeCP2 from a specific interneuron subtype contributes crucially to the cell-specific and circuit-wide deficits of RTT. The joint restoration of inhibition and excitation in cortical circuits is pivotal for functionally correcting the disorder.
Collapse
|
34
|
Ringach DL, Mineault PJ, Tring E, Olivas ND, Garcia-Junco-Clemente P, Trachtenberg JT. Spatial clustering of tuning in mouse primary visual cortex. Nat Commun 2016; 7:12270. [PMID: 27481398 PMCID: PMC4974656 DOI: 10.1038/ncomms12270] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin. The preference of cells in mouse primary visual cortex are thought to be randomly distributed in a salt-and-pepper map, in contrast to the smooth cortical maps observed in higher mammals. Here the authors show that excitatory cells in mouse primary visual cortex are spatially clustered, resembling a degraded version of the organization seen in higher mammals.
Collapse
Affiliation(s)
- Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Psychology, University of California, Los Angeles, California 90095, USA
| | - Patrick J Mineault
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nicholas D Olivas
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Pablo Garcia-Junco-Clemente
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
35
|
Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun 2016; 7:11313. [PMID: 27095423 PMCID: PMC4843000 DOI: 10.1038/ncomms11313] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 01/22/2023] Open
Abstract
Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. Immature dentate gyrus neurons are highly excitable and are thought to be more responsive to afferent activity than mature neurons. Here, the authors find stimulation of the entorhinal cortex paradoxically generates spiking in mature rather than immature neurons due to low synaptic connectivity of immature cells.
Collapse
|
36
|
Litwin-Kumar A, Rosenbaum R, Doiron B. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. J Neurophysiol 2016; 115:1399-409. [PMID: 26740531 DOI: 10.1152/jn.00732.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/04/2016] [Indexed: 01/30/2023] Open
Abstract
Recent anatomical and functional characterization of cortical inhibitory interneurons has highlighted the diverse computations supported by different subtypes of interneurons. However, most theoretical models of cortex do not feature multiple classes of interneurons and rather assume a single homogeneous population. We study the dynamics of recurrent excitatory-inhibitory model cortical networks with parvalbumin (PV)-, somatostatin (SOM)-, and vasointestinal peptide-expressing (VIP) interneurons, with connectivity properties motivated by experimental recordings from mouse primary visual cortex. Our theory describes conditions under which the activity of such networks is stable and how perturbations of distinct neuronal subtypes recruit changes in activity through recurrent synaptic projections. We apply these conclusions to study the roles of each interneuron subtype in disinhibition, surround suppression, and subtractive or divisive modulation of orientation tuning curves. Our calculations and simulations determine the architectural and stimulus tuning conditions under which cortical activity consistent with experiment is possible. They also lead to novel predictions concerning connectivity and network dynamics that can be tested via optogenetic manipulations. Our work demonstrates that recurrent inhibitory dynamics must be taken into account to fully understand many properties of cortical dynamics observed in experiments.
Collapse
Affiliation(s)
- Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, New York, New York; Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana; Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana; Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex. J Neurosci 2015; 35:11081-93. [PMID: 26245969 DOI: 10.1523/jneurosci.5246-14.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets.
Collapse
|
38
|
Scholl B, Pattadkal JJ, Dilly GA, Priebe NJ, Zemelman BV. Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons. Neuron 2015; 87:424-36. [PMID: 26182423 PMCID: PMC4562012 DOI: 10.1016/j.neuron.2015.06.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/23/2015] [Accepted: 06/22/2015] [Indexed: 01/19/2023]
Abstract
Dissecting the functional roles of excitatory and inhibitory neurons in cortical circuits is a fundamental goal in neuroscience. Of particular interest are their roles in emergent cortical computations such as binocular integration in primary visual cortex (V1). We measured the binocular response selectivity of genetically defined subpopulations of excitatory and inhibitory neurons. Parvalbumin (PV+) interneurons received strong inputs from both eyes but lacked selectivity for binocular disparity. Because broad selectivity could result from heterogeneous synaptic input from neighboring neurons, we examined how individual PV+ interneuron selectivity compared to that of the local neuronal network, which is primarily composed of excitatory neurons. PV+ neurons showed functional similarity to neighboring neuronal populations over spatial distances resembling measurements of synaptic connectivity. On the other hand, excitatory neurons expressing CaMKIIα displayed no such functional similarity with the neighboring population. Our findings suggest that broad selectivity of PV+ interneurons results from nonspecific integration within local networks. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin Scholl
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department for Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458 USA
| | - Jagruti J Pattadkal
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Geoffrey A Dilly
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicholas J Priebe
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Boris V Zemelman
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Institute of Cell and Molecular Biology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| |
Collapse
|
39
|
Davis MF, Figueroa Velez DX, Guevarra RP, Yang MC, Habeeb M, Carathedathu MC, Gandhi SP. Inhibitory Neuron Transplantation into Adult Visual Cortex Creates a New Critical Period that Rescues Impaired Vision. Neuron 2015; 86:1055-1066. [PMID: 25937171 DOI: 10.1016/j.neuron.2015.03.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/06/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
The maturation of inhibitory circuits in juvenile visual cortex triggers a critical period in the development of the visual system. Although several manipulations of inhibition can alter the timing of the critical period, none have demonstrated the creation of a new critical period in adulthood. We developed a transplantation method to reactivate critical period plasticity in the adult visual cortex. Transplanted embryonic inhibitory neurons from the medial ganglionic eminence reinstate ocular dominance plasticity in adult recipients. Transplanted inhibitory cells develop cell-type-appropriate molecular characteristics and visually evoked responses. In adult mice impaired by deprivation during the juvenile critical period, transplantation also recovers both visual cortical responses and performance on a behavioral test of visual acuity. Plasticity and recovery are induced when the critical period would have occurred in the donor animal. These results reveal that the focal reactivation of visual cortical plasticity using inhibitory cell transplantation creates a new critical period that restores visual perception after childhood deprivation.
Collapse
Affiliation(s)
- Melissa F Davis
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Dario X Figueroa Velez
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Roblen P Guevarra
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Michael C Yang
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Mariyam Habeeb
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Mathew C Carathedathu
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
40
|
Target-specific properties of thalamocortical synapses onto layer 4 of mouse primary visual cortex. J Neurosci 2015; 34:15455-65. [PMID: 25392512 DOI: 10.1523/jneurosci.2595-14.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In primary sensory cortices, thalamocortical (TC) inputs can directly activate excitatory and inhibitory neurons. In vivo experiments in the main input layer (L4) of primary visual cortex (V1) have shown that excitatory and inhibitory neurons have different tuning properties. The different functional properties may arise from distinct intrinsic properties of L4 neurons, but could also depend on cell type-specific properties of the synaptic inputs from the lateral geniculate nucleus of the thalamus (LGN) onto L4 neurons. While anatomical studies identified LGN inputs onto both excitatory and inhibitory neurons in V1, their synaptic properties have not been investigated. Here we used an optogenetic approach to selectively activate LGN terminal fields in acute coronal slices containing V1, and recorded monosynaptic currents from excitatory and inhibitory neurons in L4. LGN afferents made monosynaptic connections with pyramidal (Pyr) and fast-spiking (FS) neurons. TC EPSCs on FS neurons were larger and showed steeper short-term depression in response to repetitive stimulation than those on Pyr neurons. LGN inputs onto Pyr and FS neurons also differed in postsynaptic receptor composition and organization of presynaptic release sites. Together, our results demonstrate that LGN input onto L4 neurons in mouse V1 have target-specific presynaptic and postsynaptic properties. Distinct mechanisms of activation of feedforward excitatory and inhibitory neurons in the main input layer of V1 are likely to endow neurons with different response properties to incoming visual stimuli.
Collapse
|
41
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
42
|
Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K. A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Methods 2014; 235:331-48. [PMID: 25107853 DOI: 10.1016/j.jneumeth.2014.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
The first three generations of neuroanatomical tract-tracing methods include, respectively, techniques exploiting degeneration, retrograde cellular transport and anterograde cellular transport. This paper reviews the most recent development in third-generation tracing, i.e., neurochemical fingerprinting based on BDA tracing, and continues with an emerging tracing technique called here 'selective fluorescent protein expression' that in our view belongs to an entirely new 'fourth-generation' class. Tracing techniques in this class lean on gene expression technology designed to 'label' projections exclusively originating from neurons expressing a very specific molecular phenotype. Genetically engineered mice that express cre-recombinase in a neurochemically specific neuronal population receive into a brain locus of interest an injection of an adeno-associated virus (AAV) carrying a double-floxed promoter-eYFP DNA sequence. After transfection this sequence is expressed only in neurons metabolizing recombinase protein. These particular neurons promptly start manufacturing the fluorescent protein which then accumulates and labels to full detail all the neuronal processes, including fibers and terminal arborizations. All other neurons remain optically 'dark'. The AAV is not replicated by the neurons, prohibiting intracerebral spread of 'infection'. The essence is that the fiber projections of discrete subpopulations of neurochemically specific neurons can be traced in full detail. One condition is that the transgenic mouse strain is recombinase-perfect. We illustrate selective fluorescent protein expression in parvalbumin-cre (PV-cre) mice and choline acetyltransferase-cre (ChAT-cre) mice. In addition we compare this novel tracing technique with observations in brains of native PV mice and ChAT-GFP mice. We include a note on tracing techniques using viruses.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Vrije University Medical Center, Amsterdam, The Netherlands.
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Karl Deisseroth
- Bioengineering Department, James E. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
43
|
Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, Bohn P, Mortrud M, Ouellette B, Kidney J, Smith KA, Dang C, Sunkin S, Bernard A, Oh SW, Madisen L, Zeng H. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 2014; 8:76. [PMID: 25071457 PMCID: PMC4091307 DOI: 10.3389/fncir.2014.00076] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/18/2014] [Indexed: 01/26/2023] Open
Abstract
Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.
Collapse
Affiliation(s)
| | | | | | - Hong Gu
- Allen Institute for Brain Science Seattle, WA, USA
| | - Maya Mills
- Allen Institute for Brain Science Seattle, WA, USA
| | - Lydia L Ng
- Allen Institute for Brain Science Seattle, WA, USA
| | - Phillip Bohn
- Allen Institute for Brain Science Seattle, WA, USA
| | | | | | | | | | - Chinh Dang
- Allen Institute for Brain Science Seattle, WA, USA
| | - Susan Sunkin
- Allen Institute for Brain Science Seattle, WA, USA
| | - Amy Bernard
- Allen Institute for Brain Science Seattle, WA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science Seattle, WA, USA
| |
Collapse
|
44
|
Behavioral consequences of GABAergic neuronal diversity. Curr Opin Neurobiol 2014; 26:27-33. [DOI: 10.1016/j.conb.2013.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022]
|
45
|
Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8:91. [PMID: 24723851 PMCID: PMC3972456 DOI: 10.3389/fncel.2014.00091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
Collapse
Affiliation(s)
- Trevor C Griffen
- SUNY Eye Research Consortium Buffalo, NY, USA ; Program in Neuroscience, SUNY - Stony Brook Stony Brook, NY, USA ; Medical Scientist Training Program, SUNY - Stony Brook Stony Brook, NY, USA
| | - Arianna Maffei
- SUNY Eye Research Consortium Buffalo, NY, USA ; Department of Neurobiology and Behavior, SUNY - Stony Brook Stony Brook, NY, USA
| |
Collapse
|
46
|
Abstract
The sensory cortex contains a wide array of neuronal types, which are connected together into complex but partially stereotyped circuits. Sensory stimuli trigger cascades of electrical activity through these circuits, causing specific features of sensory scenes to be encoded in the firing patterns of cortical populations. Recent research is beginning to reveal how the connectivity of individual neurons relates to the sensory features they encode, how differences in the connectivity patterns of different cortical cell classes enable them to encode information using different strategies, and how feedback connections from higher-order cortex allow sensory information to be integrated with behavioural context.
Collapse
|