1
|
AlSharari SD, Mahmood HM, Alasmari AF, AlDhalaan HM, Alasmari F, Khan MR, Ahmad SF, Aljasham AT, Damaj IM, Alshammari MA. Nicotine Attenuates Molecular Signalings in the BTBR T + Itpr3 tf/J Mouse Model of Autism. Mol Neurobiol 2025:10.1007/s12035-025-04894-6. [PMID: 40172818 DOI: 10.1007/s12035-025-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Accumulating evidence indicates that nicotinic receptor subtypes are altered in the brains of autistic individuals, and nicotinic acetylcholine receptors (nAChRs) play essential roles in autistic profiles in BTBR T+ Itpr3tf/J mice. This study aimed to elucidate the roles of nicotine on systemic inflammatory cytokine levels and expression patterns of nicotinic receptor subtypes in the prefrontal cortex in BTBR T+ Itpr3tf/J mice. This research project characterized the effect of chronic treatment with nicotine at a dose (100 mcg/ml; po) administrated orally in drinking water over a period of fourteen days in BTBR T+ Itpr3tf/J mice, while C57BL/6 J mice were served as the controls. Following the nicotine treatment, the levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ interleukin (IL)-1β, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were assessed in the serum; the levels of pro-inflammatory cytokines [interleukin (IL)-17 and interferon (IFN)-γ], on CD4+ and CD8+ T cells were evaluated in the blood. Moreover, the expression of α7, α4, and β2-nAChRs in the prefrontal cortex in BTBR T+ Itpr3tf/J mice was examined. Biochemical analysis showed that nicotine had significantly decreased the concentration of inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, and GM-CSF in the serum, and reduced the expression levels of intracellular pro-inflammatory cytokines (IL-17 & IFN-γ) on CD4+ and CD8+ T cells in the blood while mecamylamine reversed the effect of IL-17+ CD4+ T cells. Nicotine administration up-regulated the expressions of α7, α4, and β2 nAChRs in the prefrontal cortex in BTBR T+ Itpr3tf/J mice. The current results indicate that nAChRs play a significant role, at least in part, in ASD and might serve as a crucial target for therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M AlDhalaan
- Department of Neuroscience, Center for Autism Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanoud T Aljasham
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Imad M Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Tetteh-Quarshie S, Morrison KM, Olszewski NA, Young LE, Mensah EN, Sword MK, Henderson BJ. The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice. Physiol Behav 2025; 292:114823. [PMID: 39870287 PMCID: PMC11874065 DOI: 10.1016/j.physbeh.2025.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.
Collapse
Affiliation(s)
- Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Karli M Morrison
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Lauren E Young
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Esther N Mensah
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Mason K Sword
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA.
| |
Collapse
|
3
|
Walker NB, Tucker BR, Thomas LN, Tapp AE, Drenan DR, Drenan RM. Expression of sensitized β2 nAChR subunits in VTA neurons enhances intravenous nicotine self-administration in male rats. Neuropharmacology 2024; 261:110161. [PMID: 39299573 PMCID: PMC11486559 DOI: 10.1016/j.neuropharm.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Ventral tegmental area (VTA) nicotinic acetylcholine receptors (nAChRs) are important for nicotine reinforcement. To determine whether and to what extent these receptors are sufficient for nicotine reinforcement, we expressed β2Leu9'Ser (i.e. sensitized) nAChR subunits in the VTA of adult male rats and assessed the nicotine dose-response relationship in intravenous self-administration (SA). β2Leu9'Ser rats self-administered nicotine doses 50-100 fold lower than the lowest doses that control rats would respond for. Expression of WT β2 subunits confirmed that this enhanced sensitivity to nicotine was due to the Leu9'Ser mutation in β2. Higher unit doses were associated with strong escalation in β2Leu9'Ser rats over 17 fixed ratio sessions. Escalation was minimal or absent in control rats at the same unit doses. In progressive ratio SA, β2Leu9'Ser rats exhibited higher breakpoints than control rats when the nicotine unit dose was 1.5 μg/kg/inf or higher. In intermittent access SA, β2Leu9'Ser rats exhibited response patterns very similar to control rats. By adding nicotine dose-response data, progressive ratio assays, and intermittent access results that rule out stereotypy, these data significantly extend our previous finding that nicotine activation of the mesolimbic dopamine pathway is sufficient for nicotine reinforcement.
Collapse
Affiliation(s)
- Noah B Walker
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brenton R Tucker
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Leanne N Thomas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrew E Tapp
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dylan R Drenan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M Drenan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Henderson BJ, Young LE, Olszewski NA, Tetteh-Quarshie S, Maddox SK, Simpkins MA, Dudich MC, McGlauglin MS, Weinsweig ZC, Cooper SY. Age-dependent effects of vaping on the prefrontal cortex, ventral tegmental area, and nucleus accumbens. Commun Biol 2024; 7:1553. [PMID: 39572675 PMCID: PMC11582578 DOI: 10.1038/s42003-024-07272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Electronic nicotine delivery systems (ENDS) are unique from combustible cigarettes due to the availability of flavor options which make these devices popular among adolescents. However, there are no preclinical investigations into the impact of vaporized nicotine on late-developing brain regions such as the prefrontal cortex. Here, we investigated how neuronal function and drug self-administration differed between adult-exposed and adolescent-exposed mice. Male and female adolescent and adult C57BL/6J mice were used in a 20-session e-Vape® self-administration (EVSA) assay. Brains were then extracted and acute slices were used for either patch-clamp electrophysiology or fast-scan cyclic voltammetry. Adolescent-exposed males exhibited greater reinforcement-related behavior compared to their adult-exposed counterparts. However, adolescent-exposed and adult-exposed females exhibited similar levels of reinforcement-related behavior. Adolescent-exposed mice exhibited significant increases in intrinsic excitability of medial prefrontal cortex (mPFC) pyramidal neurons. Additionally, reinforcement-related behavior observed during EVSA assays correlated with adolescent-exposed mPFC neuronal excitability. This did not occur in adult-exposed mice. In the ventral tegmental area (VTA), we observed that upregulation of nicotinic acetylcholine receptors (nAChRs) only correlated with nicotine self-administration in adult and not adolescent-exposed mice. The relationship between self-administration and changes in neuronal excitability in adolescent mice indicates that the mPFC may be important for adolescent nicotine dependence.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA.
| | - Lauren E Young
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sarah K Maddox
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - M Alex Simpkins
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Mathew C Dudich
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - M Sage McGlauglin
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Zoie C Weinsweig
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Skylar Y Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
5
|
Adjei A, Wilkinson AV, Chen B, Mantey DS, Harrell MB. Does the time to nicotine dependence vary by internalizing symptoms for young people who use e-cigarettes? An analysis of the Population Assessment of Tobacco and Health (PATH) study, (Waves 1-5; 2013-2019). Addict Behav 2024; 156:108075. [PMID: 38810488 DOI: 10.1016/j.addbeh.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE To determine the relationship between past-year internalizing symptoms and the time to first report of signs of nicotine dependence among young people. METHODS Secondary analysis using data from the Population Assessment of Tobacco and Health (PATH) (Waves 1-5; 2013-2019). The study included 2,102 (N = 5,031,691) young people (age 12-23 years) who reported past-30-day (P30D) e-cigarette use in one or more waves. Kaplan Meier curves, stratified by past year internalizing symptoms were used to estimate the time to the first report of three nicotine dependence symptoms (i.e., use within 30 min of waking, cravings, and really needing to use) following the first P30D e-cigarette use. Cox proportional hazard models were used to estimate crude and adjusted hazard ratios (AHR), comparing any past year internalizing symptoms to no past year internalizing symptoms. RESULTS We found no significant differences between past year internalizing symptoms and the time to the first report of cravings (AHR = 1.30, 95 % CI = 92-1.85), really needing to use (AHR = 1.31; 95 % CI = 0.92-1.89) and use within 30 min of waking for follow-up times 0-156 weeks (AHR = 0.84; 95 % CI = 0.55-1.30) and > 156 weeks (AHR = 0.41; 95 % CI = 0.04-4.67) respectively. CONCLUSION Past year internalizing symptoms did not modify the time to the first report of nicotine dependence among youth with P30D e-cigarette use. Further research is needed to understand how changing internalizing symptoms and e-cigarette use frequency influence nicotine dependence over time and, how this relationship impacts cessation behavior.
Collapse
Affiliation(s)
- Abigail Adjei
- University of Texas Health Science Center at Houston (UTHealth Houston), School of Public Health, Austin, TX, United States.
| | - Anna V Wilkinson
- University of Texas Health Science Center at Houston (UTHealth Houston), School of Public Health, Austin, TX, United States.
| | - Baojiang Chen
- University of Texas Health Science Center at Houston (UTHealth Houston), School of Public Health, Austin, TX, United States.
| | - Dale S Mantey
- University of Texas Health Science Center at Houston (UTHealth Houston), School of Public Health, Austin, TX, United States.
| | - Melissa B Harrell
- University of Texas Health Science Center at Houston (UTHealth Houston), School of Public Health, Austin, TX, United States.
| |
Collapse
|
6
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
7
|
Han Y, Zhang JQ, Ji YW, Luan YW, Li SY, Geng HZ, Ji Y, Yin C, Liu S, Zhou CY, Xiao C. α4 nicotinic receptors on GABAergic neurons mediate a cholinergic analgesic circuit in the substantia nigra pars reticulata. Acta Pharmacol Sin 2024; 45:1160-1174. [PMID: 38438581 PMCID: PMC11130268 DOI: 10.1038/s41401-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4β2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-β-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.
Collapse
Affiliation(s)
- Yu Han
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu, 322099, China
| | - Jia-Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Wen Luan
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Wuxi People's Hospital, Wuxi, 214023, China
| | - Shu-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui-Zhen Geng
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Pechlivanidou M, Vakrakou AG, Karagiorgou K, Tüzün E, Karachaliou E, Chroni E, Afrantou T, Grigoriadis N, Argyropoulou C, Paschalidis N, Şanlı E, Tsantila A, Dandoulaki M, Ninou EI, Zisimopoulou P, Mantegazza R, Andreetta F, Dudeck L, Steiner J, Lindstrom JM, Tzanetakos D, Voumvourakis K, Giannopoulos S, Tsivgoulis G, Tzartos SJ, Tzartos J. Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders. Front Immunol 2024; 15:1388998. [PMID: 38863705 PMCID: PMC11165060 DOI: 10.3389/fimmu.2024.1388998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3β4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4β2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4β2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.
Collapse
Affiliation(s)
| | - Aigli G. Vakrakou
- First Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Karagiorgou
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | - Eleni Karachaliou
- Tzartos NeuroDiagnostics, Athens, Greece
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Theodora Afrantou
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | | | | | | | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leon Dudeck
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jon Martin Lindstrom
- Department of Neuroscience, Medical School, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios Tzanetakos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Socrates J. Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - John Tzartos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Henderson BJ, Tetteh-Quarshie S, Olszewski NA. Modulators of nicotine reward and reinforcement. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:355-386. [PMID: 38467487 DOI: 10.1016/bs.apha.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine has been well-characterized for its ability to alter neurophysiology to promote rewarding and reinforcing properties. However, several exogenous chemicals possess properties that modulate or enhance nicotine's ability to alter neurophysiology. This chapter focuses on nicotine's impact on behavior through changes in neurophysiology and several chemical entities that in-turn modulate nicotine's ability to act as a neuromodulator.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States.
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
10
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Neuronal Excitability in the Medial Habenula and Ventral Tegmental Area Is Differentially Modulated by Nicotine Dosage and Menthol in a Sex-Specific Manner. eNeuro 2024; 11:ENEURO.0380-23.2024. [PMID: 38233142 PMCID: PMC10863631 DOI: 10.1523/eneuro.0380-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
The medial habenula (MHb) has been identified as the limiting factor for nicotine intake and facilitating nicotine withdrawal. However, few studies have assessed MHb neuronal excitability in response to nicotine, and, currently, a gap in knowledge is present for finding behavioral correlates to neuronal excitability in the region. Moreover, no study to date has evaluated sex or nicotine dosage as factors of excitability in the MHb. Here, we utilized an e-vape self-administration (EVSA) model to determine differences between sexes with different nicotine dosages ± menthol. Following this paradigm, we employed patch-clamp electrophysiology to assess key metrics of MHb neuronal excitability in relation to behavioral endpoints. We observed female mice self-administered significantly more than males, regardless of dosage. We also observed a direct correlation between self-administration behavior and MHb excitability with low-dose nicotine + menthol in males. Conversely, a high dose of nicotine ± menthol yields an inverse correlation between excitability and self-administration behavior in males only. In addition, intrinsic excitability in the ventral tegmental area (VTA) does not track with the amount of nicotine self-administered. Rather, they correlate to the active/inactive discrimination of mice. Using fast-scan cyclic voltammetry, we also observed that dopamine release dynamics are linked to reinforcement-related behavior in males and motivation-related behaviors in females. These results point to a sex-specific difference in the activity of the MHb and VTA leading to distinct differences in self-administration behavior. His could lend evidence to clinical observations of smoking and nicotine-use behavior differing between males and females.
Collapse
Affiliation(s)
- Nathan A Olszewski
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Brandon J Henderson
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| |
Collapse
|
11
|
Gotti C, Clementi F, Zoli M. Auxiliary protein and chaperone regulation of neuronal nicotinic receptor subtype expression and function. Pharmacol Res 2024; 200:107067. [PMID: 38218358 DOI: 10.1016/j.phrs.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of pentameric, ligand-gated ion channels that are located on the surface of neurons and non-neuronal cells and have multiple physiological and pathophysiological functions. In order to reach the cell surface, many nAChR subtypes require the help of chaperone and/or auxiliary/accessory proteins for their assembly, trafficking, pharmacological modulation, and normal functioning in vivo. The use of powerful genome-wide cDNA screening has led to the identification and characterisation of the molecules and mechanisms that participate in the assembly and trafficking of receptor subtypes, including chaperone and auxiliary or accessory proteins. The aim of this review is to describe the latest findings concerning nAChR chaperones and auxiliary proteins and pharmacological chaperones, and how some of them control receptor biogenesis or regulate channel activation and pharmacology. Some auxiliary proteins are subtype selective, some regulate various subtypes, and some not only modulate nAChRs but also target other receptors and signalling pathways. We also discuss how changes in auxiliary proteins may be involved in nAChR dysfunctions.
Collapse
Affiliation(s)
- Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy.
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 PMCID: PMC11318566 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
13
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
15
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Chemical Flavorants in Vaping Products Alter Neurobiology in a Sex-Dependent Manner to Promote Vaping-Related Behaviors. J Neurosci 2023; 43:1360-1374. [PMID: 36690450 PMCID: PMC9987575 DOI: 10.1523/jneurosci.0755-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 01/24/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) are distinctly different from combustible cigarettes because of the availability of flavor options. Subjective measures have been used to demonstrate that adults and adolescents prefer flavors for various reasons; (1) they are pleasing and (2) they mask the harshness of nicotine. Despite this, there have been few investigations into the molecular interactions that connect chemical flavorants to smoking or vaping-related behaviors. Here, we investigated the effects of three chemical flavorants (hexyl acetate, ethyl acetate, and methylbutyl acetate) that are found in green apple (GA) ENDS e-liquids but are also found in other flavor categories. We used a translationally relevant vapor self-administration mouse model and observed that adult male and female mice self-administered GA flavorants in the absence of nicotine. Using α4-mCherryα6-GFP nicotinic acetylcholine receptor (nAChR) mice, we observed that mice exposed to GA flavorants exhibited a sex-specific increase (upregulation) of nAChRs that was also brain-region specific. Electrophysiology revealed that mice exposed to GA flavorants exhibited enhanced firing of ventral tegmental area dopamine neurons. Fast-scan cyclic voltammetry revealed that electrically stimulated dopamine release in the nucleus accumbens core is increased in mice that are exposed to GA flavorants. These effects were similarly observed in the medial habenula. Overall, these findings demonstrate that ENDS flavors alone change neurobiology and may promote vaping-dependent behaviors in the absence of nicotine. Furthermore, the flavorant-induced changes in neurobiology parallel those caused by nicotine, which highlights the fact that nonmenthol flavorants may contribute to or enhance nicotine reward and reinforcement.SIGNIFICANCE STATEMENT The impact of flavors on vaping is a hotly debated topic; however, few investigations have examined this in a model that is relevant to vaping. Although a full understanding of the exact mechanism remains undetermined, our observations reveal that chemical flavorants in the absence of nicotine alter brain circuits relevant to vaping-related behavior. The fact that the flavorants investigated here exist in multiple flavor categories of vaping products highlights the fact that a multitude of flavored vaping products may pose a risk toward vaping-dependent behaviors even without the impact of nicotine. Furthermore, as the neurobiological changes have an impact on neurons of the reward system, there exists the possibility that nonmenthol flavorants may enhance nicotine reward and reinforcement.
Collapse
|
17
|
Lai JIC, Porcu A, Romoli B, Keisler M, Manfredsson FP, Powell SB, Dulcis D. Nicotine-Mediated Recruitment of GABAergic Neurons to a Dopaminergic Phenotype Attenuates Motor Deficits in an Alpha-Synuclein Parkinson's Model. Int J Mol Sci 2023; 24:4204. [PMID: 36835612 PMCID: PMC9960650 DOI: 10.3390/ijms24044204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Previous work revealed an inverse correlation between tobacco smoking and Parkinson's disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity of midbrain DA neurons and induce non-DA neurons in the substantia nigra (SN) to acquire a DA phenotype. Here, we investigated the recruitment mechanism of nigrostriatal GABAergic neurons to express DA phenotypes, such as transcription factor Nurr1 and DA-synthesizing enzyme tyrosine hydroxylase (TH), and the concomitant effects on motor function. Wild-type and α-syn-overexpressing (PD) mice treated with chronic nicotine were assessed by behavioral pattern monitor (BPM) and immunohistochemistry/in situ hybridization to measure behavior and the translational/transcriptional regulation of neurotransmitter phenotype following selective Nurr1 overexpression or DREADD-mediated chemogenetic activation. We found that nicotine treatment led to a transcriptional TH and translational Nurr1 upregulation within a pool of SN GABAergic neurons in wild-type animals. In PD mice, nicotine increased Nurr1 expression, reduced the number of α-syn-expressing neurons, and simultaneously rescued motor deficits. Hyperactivation of GABA neurons alone was sufficient to elicit de novo translational upregulation of Nurr1. Retrograde labeling revealed that a fraction of these GABAergic neurons projects to the dorsal striatum. Finally, concomitant depolarization and Nurr1 overexpression within GABA neurons were sufficient to mimic nicotine-mediated dopamine plasticity. Revealing the mechanism of nicotine-induced DA plasticity protecting SN neurons against nigrostriatal damage could contribute to developing new strategies for neurotransmitter replacement in PD.
Collapse
Affiliation(s)
- Jessica IChi Lai
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Benedetto Romoli
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Susan B. Powell
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Neurobiology and Mechanisms of Nicotine Addiction. Respir Med 2023. [DOI: 10.1007/978-3-031-24914-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Izquierdo PG, Charvet CL, Neveu C, Green AC, Tattersall JEH, Holden-Dye L, O'Connor V. Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning. PLoS One 2023; 18:e0284786. [PMID: 37083685 PMCID: PMC10121051 DOI: 10.1371/journal.pone.0284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Claude L Charvet
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Cedric Neveu
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Henderson BJ, Richardson MR, Cooper SY. A high-fat diet has sex-specific effects on nicotine vapor self-administration in mice. Drug Alcohol Depend 2022; 241:109694. [PMID: 36402049 PMCID: PMC9793688 DOI: 10.1016/j.drugalcdep.2022.109694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous investigations have shown that fat-rich diets increase vulnerability to drug dependence, including nicotine. Despite this knowledge, few investigations into the neurochemical mechanisms have been completed. Our objective here was to examine if high-fat diet (HFD) impacted nicotine intake and in parallel examine potential changes in dopamine signaling. METHODS Adult male and female C57/BL6J mice were used in nicotine e-vape® self-administration (EVSA) assays after being maintained on a standard diet or HFD for 6 weeks. In a separate cohort of mice, dopamine release in the nucleus accumbens core was examined with fast-scan cyclic voltammetry. RESULTS Female mice assigned to HFD exhibited increased nicotine EVSA during low-effort responding (FR1) when compared to standard-diet mice. HFD-assigned mice (male and female) also exhibited reduced active nose pokes in a progressive ratio task. Finally, HFD-mice exhibited reduced phasic dopamine release compared to standard-diet mice. CONCLUSIONS These show that fat-rich diets alter nicotine intake (females increase at low effort, males and females decrease at high effort) and this may occur due to HFD-induced decreases in NAc dopamine release.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| | - Montana R Richardson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| | - Skylar Y Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| |
Collapse
|
21
|
Akinola LS, Bagdas D, Alkhlaif Y, Jackson A, Gurdap CO, Rahimpour E, Carroll FI, Papke RL, Damaj MI. Pharmacological characterization of 5-iodo-A-85380, a β2-selective nicotinic receptor agonist, in mice. J Psychopharmacol 2022; 36:1280-1293. [PMID: 36321267 PMCID: PMC9817006 DOI: 10.1177/02698811221132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated. RESULTS 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
| | - Elnaz Rahimpour
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, USA
| |
Collapse
|
22
|
Papke RL, Karaffa M, Horenstein NA, Stokes C. Coffee and cigarettes: Modulation of high and low sensitivity α4β2 nicotinic acetylcholine receptors by n-MP, a biomarker of coffee consumption. Neuropharmacology 2022; 216:109173. [PMID: 35772522 PMCID: PMC9524580 DOI: 10.1016/j.neuropharm.2022.109173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Smokers report particular appreciation for coffee with their first cigarettes of the day. We investigated with voltage-clamp experiments, effects of aqueous extracts (coffees) of unroasted and roasted coffee beans on the activity of human brain nicotinic acetylcholine receptor (nAChR) subtypes expressed in Xenopus oocytes, looking at complex brews, low molecular weight (LMW) fractions, and specific compounds present in coffee. When co-applied with PNU-120596, a positive allosteric modulator (PAM), the coffees stimulated currents from cells expressing α7 nAChR that were larger than ACh controls. The PAM-dependent responses to green bean coffee were three-fold greater than those to dark roasted coffee, consistent with α7 receptor activation by choline, a component of coffee that is partially degraded in the roasting process. Coffees were tested on both high sensitivity (HS) and low sensitivity (LS) forms of α4β2 nAChR, which are associated with nicotine addiction. To varying degrees, these receptors were both activated and inhibited by the coffees and LMW extracts. We also examined the activity of nine small molecules present in coffee. Only two compounds, 1-methylpyridinium and 1-1-dimethylpiperidium, produced during the process of roasting coffee beans, showed significant effects on nAChR. The compounds were competitive antagonists of the HS α4β2 receptors, but were PAMs for LS α4β2 receptors. HS receptors in smokers are likely to progressively desensitize through a day of smoking but may be hypersensitive in the mornings when brain nicotine levels are low. A smoker's first cup of coffee may therefore balance the effects of the day's first cigarette in the brain.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA.
| | - Madison Karaffa
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA
| | - Nicole A Horenstein
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, (NAH), USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA
| |
Collapse
|
23
|
An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022; 13:235-242. [PMID: 36590097 PMCID: PMC9795316 DOI: 10.1016/j.ibneur.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years scientific research has established that the nervous and immune systems have shared molecular signaling components. Proteins native to immune cells, which are also found in the brain, have neuronal functions in the nervous system where they affect synaptic plasticity, axonal regeneration, neurogenesis, and neurotransmission. Certain native immune molecules like major histocompatibility complex I (MHC-I), paired immunoglobulin receptor B (PirB), toll-like receptor (TLR), cluster of differentiation-3 zeta (CD3ζ), CD4 co-receptor, and T-cell receptor beta (TCR-β) expression in neurons have been extensively documented. In this review, we provide our opinion and discussed the possible roles of T-cell receptor beta subunits in modulating the function of neurons in the central nervous system. Based on the previous findings of Syken and Shatz., 2003; Nishiyori et al., 2004; Rodriguez et., 1993 and Komal et., 2014; we discuss whether restrictive expression of TCR-β subunits in selected brain regions could be involved in the pathology of neurological disorders and whether their aberrant enhancement in expression may be considered as a suitable biomarker for aging or neurodegenerative diseases like Huntington's disease (HD).
Collapse
|
24
|
King CP, Meyer PJ. The incentive amplifying effects of nicotine: Roles in alcohol seeking and consumption. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:171-218. [PMID: 35341566 DOI: 10.1016/bs.apha.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine has a unique profile among drugs of abuse. To the noninitiated user, nicotine has powerful aversive effects and its relatively weak euphorigenic effects undergo rapid tolerance. Despite this, nicotine is commonly abused despite negative heath consequences, and nicotine users have enormous difficulty quitting. Further, nicotine is one of the most commonly co-abused substances, in that it is often taken in combination with other drugs. One explanation of this polydrug use is that nicotine has multiple appetitive and consummatory conditioning effects. For example, nicotine is a reinforcement enhancer in that it can potently increase the incentive value of other stimuli, including those surrounding drugs of abuse such as alcohol. In addition, nicotine also has a unique profile of neurobiological effects that alter regulation of alcohol intake and interoception. This review discusses the psychological and biological mechanisms surrounding nicotine's appetitive conditioning and consummatory effects, particularly its interactions with alcohol.
Collapse
Affiliation(s)
- Christopher P King
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States; Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul J Meyer
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
25
|
Klenowski PM, Zhao-Shea R, Freels TG, Molas S, Tapper AR. Dynamic activity of interpeduncular nucleus GABAergic neurons controls expression of nicotine withdrawal in male mice. Neuropsychopharmacology 2022; 47:641-651. [PMID: 34326477 PMCID: PMC8782840 DOI: 10.1038/s41386-021-01107-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
A critical brain area implicated in nicotine dependence is the interpeduncular nucleus (IPN) located in the ventral midbrain and consisting primarily of GABAergic neurons. Previous studies indicate that IPN GABAergic neurons contribute to expression of somatic symptoms of nicotine withdrawal; however, whether IPN neurons are dynamically regulated during withdrawal in vivo and how this may contribute to both somatic and affective withdrawal behavior is unknown. To bridge this gap in knowledge, we expressed GCaMP in IPN GABAergic neurons and used in vivo fiber photometry to record changes in fluorescence, as a proxy for neuronal activity, in male mice during nicotine withdrawal. Mecamylamine-precipitated withdrawal significantly increased activity of IPN GABAergic neurons in nicotine-dependent, but not nicotine-naive mice. Analysis of GCaMP signals time-locked with somatic symptoms including grooming and scratching revealed reduced IPN GABAergic activity during these behaviors, specifically in mice undergoing withdrawal. In the elevated plus maze, used to measure anxiety-like behavior, an affective withdrawal symptom, IPN GABAergic neuron activity was increased during open-arm versus closed-arm exploration in nicotine-withdrawn, but not non-withdrawn mice. Optogenetic silencing IPN GABAergic neurons during withdrawal significantly reduced withdrawal-induced increases in somatic behavior and increased open-arm exploration. Together, our data indicate that IPN GABAergic neurons are dynamically regulated during nicotine withdrawal, leading to increased anxiety-like symptoms and somatic behavior, which inherently decrease IPN GABAergic neuron activity as a withdrawal-coping mechanism. These results provide a neuronal basis underlying the role of the IPN in the expression of somatic and affective behaviors of nicotine withdrawal.
Collapse
Affiliation(s)
- Paul M Klenowski
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Avelar AJ, Cooper SY, Wright TD, Wright SK, Richardson MR, Henderson BJ. Morphine Exposure Reduces Nicotine-Induced Upregulation of Nicotinic Receptors and Decreases Volitional Nicotine Intake in a Mouse Model. Nicotine Tob Res 2022; 24:1161-1168. [PMID: 34999827 PMCID: PMC9278828 DOI: 10.1093/ntr/ntac002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Nicotine addiction remains a primary health concern as tobacco smoking remains the number one cause of preventable death in America. At the same time, America is still facing the threat of the opioid epidemic. While the prevalence of smoking combustible cigarettes or electronic nicotine delivery systems in the United States varies between 12% and 35%, the smoking rates among the opioid use dependent (OUD) population is 74%-97%. We examined changes in brain reward mechanisms in which co-use of nicotine and opioids may result in enhanced reward and reinforcement. AIMS AND METHODS Adult male and female α4-mCherryα6-GFP mice (C57BL/6J) were used in conditioned place preference (CPP) and microscopy assays to examine reward-related behavior and nicotinic acetylcholine receptor (nAChR) upregulation following treatments with saline, nicotine, morphine, or nicotine plus morphine. Following this, separate mice were trained in e-Vape self-administration assays to examine morphine's impact on nicotine reinforcement. RESULTS We observed that nicotine and morphine coexposure in a CPP assay did not produce enhanced reward-related behavior when compared with nicotine or morphine alone. In parallel we observed coexposure reduced nicotine-induced upregulation of nAChRs on ventral tegmental area dopamine and GABA neurons. Additionally, we observed that concurrent morphine exposure reduced nicotine (plus menthol) vapor self-administration in male and female mice. CONCLUSIONS While nicotine use is high among OUD individuals, our CPP assays suggest coexposure not only fails to enhance reward-related behavior but also reduces nicotine-induced changes in ventral tegmental area neurobiology. Our self-administration assays suggest that morphine exposure during nicotine acquisition reduces nicotine reinforcement-related behavior. IMPLICATIONS While some may postulate that the co-use of opioids and nicotine may be driven by reward-related mechanisms, our data indicate that opioid exposure may hinder nicotine intake due to reduced upregulation of nAChRs critical for nicotine reward and reinforcement. Thus, the high co-use in OUD individuals may be a result of other mechanisms and this warrants further investigations into nicotine and opioid co-use.
Collapse
Affiliation(s)
- Alicia J Avelar
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Skylar Y Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Thomas Douglas Wright
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sheavonnie K Wright
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Montana R Richardson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Brandon J Henderson
- Corresponding Author: Brandon J. Henderson, PhD, Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, 410 BBSC, Huntington, WV 25703, USA. Telephone: 304-696-7316; Fax: 304-696-7391; E-mail:
| |
Collapse
|
27
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
28
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
29
|
Wu M, Liu CZ, Barrall EA, Rissman RA, Joiner WJ. Unbalanced Regulation of α7 nAChRs by Ly6h and NACHO Contributes to Neurotoxicity in Alzheimer's Disease. J Neurosci 2021; 41:8461-8474. [PMID: 34446574 PMCID: PMC8513707 DOI: 10.1523/jneurosci.0494-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer's disease (AD) because of amyloid β (Aβ)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aβ and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer's disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid β (Aβ) and phosphorylated tau in Alzheimer's pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aβ shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.
Collapse
Affiliation(s)
- Meilin Wu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Clifford Z Liu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Erika A Barrall
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
- Alzheimer's Disease Research Center, University of California San Diego, La Jolla, California 92093
| | - William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Center for Circadian Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Nanonaringenin and Vitamin E Ameliorate Some Behavioral, Biochemical, and Brain Tissue Alterations Induced by Nicotine in Rats. J Toxicol 2021; 2021:4411316. [PMID: 34608387 PMCID: PMC8487377 DOI: 10.1155/2021/4411316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotine is the major alkaloid present in cigarettes that induces various biochemical and behavioral changes. Nanonaringenin (NNG) and vitamin E are antioxidants that are reported to mitigate serious impairments caused by some toxins and oxidants. Thus, we aimed to investigate the efficacy of NNG, vitamin E, and their combinations to ameliorate behavioral, biochemical, and histological alterations induced by nicotine in rats. Adult male albino rats were randomly grouped into six equal groups (10 rats/group): control, N (nicotine 1 mg/kg b.w./day S/C from 15th to 45th day, 5 days a week), NNG (25 mg/kg b.w./day orally for 45 days), N + NNG, N + E (nicotine + vitamin E 200 mg/kg b.w./day orally), and N + NNG + E (nicotine + NNG + vitamin E at the aforementioned doses). Behavioral tests were conducted on day 15 and 30 postnicotine injection, while memory tests, brain neurotransmitters, antioxidants, and histopathological examination were examined at day 30 only. As a result, nicotine impaired rats' activity (hypoactivity and hyperactivity) and memory, induced anxiolytic and anxiogenic effects on rats, and altered neurotransmitters (acetylcholinesterase, serotonin, and dopamine), and redox markers (MDA, H2O2, GSH, and catalase) levels in brain homogenates. Thickening and congestion of the meninges and degeneration of the cerebral neurons and glia cells were observed. Cosupplementation with NNG, vitamin E, and their combination with nicotine was beneficial in the alleviation of activity impairments and improved short memory and cognition defects and exploratory behaviors. Our results indicate the antioxidant potential of NNG and vitamin E by modulating redox markers and neurotransmitters in the brain. Thus, data suggest that the prophylactic use of NNG, vitamin E, and/or their combination for (45 days) may have a successful amelioration of the disrupted behavior and cognition and biochemical and histopathological alterations induced by nicotine.
Collapse
|
31
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
32
|
Cooper SY, Akers AT, Journigan VB, Henderson BJ. Novel Putative Positive Modulators of α4β2 nAChRs Potentiate Nicotine Reward-Related Behavior. Molecules 2021; 26:4793. [PMID: 34443380 PMCID: PMC8398432 DOI: 10.3390/molecules26164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The popular tobacco and e-cigarette chemical flavorant (-)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs' important role in nicotine dependence, as well as various neurological disorders including Parkinson's disease, the identification of these ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.
Collapse
Affiliation(s)
- Skylar Y. Cooper
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Austin T. Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Velvet Blair Journigan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25701, USA
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| |
Collapse
|
33
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
34
|
Hamouda AK, Bautista MR, Akinola LS, Alkhlaif Y, Jackson A, Carper M, Toma WB, Garai S, Chen YC, Thakur GA, Fowler CD, Damaj MI. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 2021; 190:108568. [PMID: 33878302 PMCID: PMC8169606 DOI: 10.1016/j.neuropharm.2021.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4β2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4β2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4β2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Malia R Bautista
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam B Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
35
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
36
|
Cano M, Reynaga DD, Belluzzi JD, Loughlin SE, Leslie F. Chronic exposure to cigarette smoke extract upregulates nicotinic receptor binding in adult and adolescent rats. Neuropharmacology 2020; 181:108308. [PMID: 32950561 PMCID: PMC7655523 DOI: 10.1016/j.neuropharm.2020.108308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/23/2023]
Abstract
Heavy smokers display increased radioligand binding of nicotinic acetylcholine receptors (nAChRs). This "upregulation" is thought to be a contributing factor to tobacco dependence. Although cigarette smoke contains thousands of constituents that can contribute to nicotine dependence, it is not well understood whether non-nicotine constituents contribute to nAChR upregulation. In this study, we used an aqueous cigarette smoke extract (CSE), which contains nicotine and soluble constituents of cigarette smoke, to induce nAChR upregulation in adult and adolescent rats. To do this, male rats were exposed to nicotine or CSE (1.5 mg/kg/day nicotine equivalent, intravenously) daily for ten days. This experimental procedure produces equivalent levels of brain and plasma nicotine in nicotine- and CSE-treated animals. We then assessed nAChR upregulation using quantitative autoradiography to measure changes in three nAChR types. Adolescents were found to have consistently greater α4β2 nAChR binding than adults in many brain regions. Chronic nicotine exposure did not significantly increase nAChR binding in any brain region at either age. Chronic CSE exposure selectively increased α4β2 nAChR binding in adolescent medial amygdala and α7 binding in adolescent central amygdala and lateral hypothalamus. CSE also increased α3β4 nAChR binding in the medial habenula and interpeduncular nucleus, and α7 binding in the medial amygdala, independent of age. Overall, this work provides evidence that cigarette smoke constituents influence nAChR upregulation in an age-, nAChR type- and region-dependent manner.
Collapse
Affiliation(s)
- Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Sandra E Loughlin
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Frances Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Chye Y, Mackey S, Gutman BA, Ching CR, Batalla A, Blaine S, Brooks S, Caparelli EC, Cousijn J, Dagher A, Foxe JJ, Goudriaan AE, Hester R, Hutchison K, Jahanshad N, Kaag AM, Korucuoglu O, Li CR, London ED, Lorenzetti V, Luijten M, Martin‐Santos R, Meda SA, Momenan R, Morales A, Orr C, Paulus MP, Pearlson G, Reneman L, Schmaal L, Sinha R, Solowij N, Stein DJ, Stein EA, Tang D, Uhlmann A, Holst R, Veltman DJ, Verdejo‐Garcia A, Wiers RW, Yücel M, Thompson PM, Conrod P, Garavan H. Subcortical surface morphometry in substance dependence: An ENIGMA addiction working group study. Addict Biol 2020; 25:e12830. [PMID: 31746534 DOI: 10.1111/adb.12830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 11/27/2022]
Abstract
While imaging studies have demonstrated volumetric differences in subcortical structures associated with dependence on various abused substances, findings to date have not been wholly consistent. Moreover, most studies have not compared brain morphology across those dependent on different substances of abuse to identify substance-specific and substance-general dependence effects. By pooling large multinational datasets from 33 imaging sites, this study examined subcortical surface morphology in 1628 nondependent controls and 2277 individuals with dependence on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis. Subcortical structures were defined by FreeSurfer segmentation and converted to a mesh surface to extract two vertex-level metrics-the radial distance (RD) of the structure surface from a medial curve and the log of the Jacobian determinant (JD)-that, respectively, describe local thickness and surface area dilation/contraction. Mega-analyses were performed on measures of RD and JD to test for the main effect of substance dependence, controlling for age, sex, intracranial volume, and imaging site. Widespread differences between dependent users and nondependent controls were found across subcortical structures, driven primarily by users dependent on alcohol. Alcohol dependence was associated with localized lower RD and JD across most structures, with the strongest effects in the hippocampus, thalamus, putamen, and amygdala. Meanwhile, nicotine use was associated with greater RD and JD relative to nonsmokers in multiple regions, with the strongest effects in the bilateral hippocampus and right nucleus accumbens. By demonstrating subcortical morphological differences unique to alcohol and nicotine use, rather than dependence across all substances, results suggest substance-specific relationships with subcortical brain structures.
Collapse
Affiliation(s)
- Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
| | - Scott Mackey
- Departments of Psychiatry University of Vermont Burlington VT USA
| | - Boris A. Gutman
- Biomedical Engineering Illinois Institute of Technology Chicago IL USA
| | - Christopher R.K. Ching
- Department of Neurology, Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute University of Southern California Los Angeles CA USA
| | - Albert Batalla
- Department of Psychiatry University Medical Centre Utrecht Brain Center, Utrecht University Utrecht The Netherlands
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Sara Blaine
- Departments of Psychiatry and Neuroscience Yale University School of Medicine CT USA
| | - Samantha Brooks
- Faculty of Health, School of Psychology Liverpool John Moores University L3 3AF Liverpool UK
- Department of Neuroscience, Section of Functional Pharmacology Uppsala University 75240 Sweden
| | - Elisabeth C. Caparelli
- Neuroimaging Research Branch, Intramural Research Program National Institute of Drug Abuse Baltimore MD USA
| | - Janna Cousijn
- Department of Developmental Psychology University of Amsterdam The Netherlands
| | - Alain Dagher
- McConnell Brain Imaging Center, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - John J. Foxe
- Department of Neuroscience & The Ernest J. Del Monte Institute for Neuroscience University of Rochester School of Medicine and Dentistry Rochester NY USA
| | - Anna E. Goudriaan
- Amsterdam UMC, Department of Psychiatry, Amsterdam Institute for Addiction Research University of Amsterdam Amsterdam The Netherlands
- Department of Research and Quality of Care Arkin Mental Health Care Amsterdam The Netherlands
| | - Robert Hester
- Melbourne School of Psychological Sciences University of Melbourne Melbourne Victoria Australia
| | - Kent Hutchison
- Department of Psychology and Neuroscience University of Colorado Boulder Boulder CO USA
| | - Neda Jahanshad
- Department of Neurology, Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute University of Southern California Los Angeles CA USA
| | - Anne M. Kaag
- Department of Developmental Psychology University of Amsterdam The Netherlands
| | - Ozlem Korucuoglu
- Department of Psychiatry Washington University School of Medicine Saint Louis MO USA
| | - Chiang‐Shan R. Li
- Departments of Psychiatry and Neuroscience Yale University School of Medicine CT USA
| | - Edythe D. London
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine Universityof California at Los Angeles Los Angeles CA USA
| | - Valentina Lorenzetti
- Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
- School of Psychology, Faculty of Health Sciences Australian Catholic University Melbourne Victoria Australia
| | - Maartje Luijten
- Behavioural Science Institute Radboud University Nijmegen The Netherlands
| | - Rocio Martin‐Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center Hartford Hospital/IOL Hartford CT USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Division of Intramural Clinical and BiologicalResearch National Institute of Alcohol Abuse and Alcoholism Bethesda MD USA
| | - Angelica Morales
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine Universityof California at Los Angeles Los Angeles CA USA
| | - Catherine Orr
- Departments of Psychiatry University of Vermont Burlington VT USA
| | - Martin P. Paulus
- VA San Diego Healthcare System and Department of Psychiatry University of California San Diego CA USA
- Laureate Institute for Brain Research Tulsa OK USA
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience Yale University School of Medicine CT USA
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location AMC Amsterdam The Netherlands
| | - Lianne Schmaal
- Orygen The National Centre of Excellence in Youth Mental Health Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Parkville Australia
| | - Rajita Sinha
- Departments of Psychiatry and Neuroscience Yale University School of Medicine CT USA
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute University of Wollongong Wollongong New South Wales Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE) New Lambton Heights New South Wales Australia
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute University of Cape Town Cape Town South Africa
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program National Institute of Drug Abuse Baltimore MD USA
| | - Deborah Tang
- McConnell Brain Imaging Center, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health Faculty of Health Sciences University of Cape Town South Africa
| | - Ruth Holst
- Department of Psychiatry University of Amsterdam Amsterdam The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry VU University Medical Center Amsterdam The Netherlands
| | - Antonio Verdejo‐Garcia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT) Lab University of Amsterdam Amsterdam The Netherlands
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
| | - Paul M. Thompson
- Department of Neurology, Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute University of Southern California Los Angeles CA USA
| | - Patricia Conrod
- Department of Psychiatry Université de Montreal, CHU Ste Justine Hospital Canada
| | - Hugh Garavan
- Departments of Psychiatry University of Vermont Burlington VT USA
| |
Collapse
|
38
|
Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020; 177:108256. [PMID: 32738308 PMCID: PMC7554201 DOI: 10.1016/j.neuropharm.2020.108256] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
Nicotine is a highly addictive drug found in tobacco that drives its continued use despite the harmful consequences. The initiation of nicotine abuse involves the mesolimbic dopamine system, which contributes to the rewarding sensory stimuli and associative learning processes in the beginning stages of addiction. Nicotine binds to neuronal nicotinic acetylcholine receptors (nAChRs), which come in a diverse collection of subtypes. The nAChRs that contain the α4 and β2 subunits, often in combination with the α6 subunit, are particularly important for nicotine's ability to increase midbrain dopamine neuron firing rates and phasic burst firing. Chronic nicotine exposure results in numerous neuroadaptations, including the upregulation of particular nAChR subtypes associated with long-term desensitization of the receptors. When nicotine is no longer present, for example during attempts to quit smoking, a withdrawal syndrome develops. The expression of physical withdrawal symptoms depends mainly on the α2, α3, α5, and β4 nicotinic subunits in the epithalamic habenular complex and its target regions. Thus, nicotine affects diverse neural systems and an array of nAChR subtypes to mediate the overall addiction process. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Ruthie E Wittenberg
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shannon L Wolfman
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariella De Biasi
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Upregulation of nAChRs and Changes in Excitability on VTA Dopamine and GABA Neurons Correlates to Changes in Nicotine-Reward-Related Behavior. eNeuro 2020; 7:ENEURO.0189-20.2020. [PMID: 32988984 PMCID: PMC7568605 DOI: 10.1523/eneuro.0189-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/05/2022] Open
Abstract
Previous reports indicate that nicotine reward is mediated through α4β2*, α6β2*, and α4α6β2* nicotinic acetylcholine receptors (nAChRs; * indicates that additional nAChR subunits may be present). Little is known about α4α6β2* nAChR involvement in reward and reinforcement because of a lack of methods that allow the direct investigation of this particular nAChR subtype. Here, we use male and female mice that contain α4-mCherry and α6-GFP nAChR subunits to show that concentrations of nicotine sufficient to evoke reward-related behavior robustly upregulate α4* and α4α6* nAChRs on midbrain dopamine (DA) and GABA neurons. Furthermore, the extent of α4α6* nAChR upregulation on ventral tegmental area (VTA) DA neurons aligns with the magnitude of nicotine reward-related behavior. We also show that the upregulation of nAChRs is accompanied by a functional change in firing frequency of both DA and GABA neurons in the VTA that is directly linked to nicotine reward-related behavior.
Collapse
|
40
|
Cooper SY, Henderson BJ. The Impact of Electronic Nicotine Delivery System (ENDS) Flavors on Nicotinic Acetylcholine Receptors and Nicotine Addiction-Related Behaviors. Molecules 2020; 25:E4223. [PMID: 32942576 PMCID: PMC7571084 DOI: 10.3390/molecules25184223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, combustible cigarette smoking has slowly declined by nearly 11% in America; however, the use of electronic cigarettes has increased tremendously, including among adolescents. While nicotine is the main addictive component of tobacco products and a primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette users. Accordingly, there are few studies that examine the impact of flavors on health and behavior. Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus, there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and function, and altering midbrain neuron excitability. Although flavors other than menthol were banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes. This review seeks to summarize the current knowledge on nicotine addiction and the various brain regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and vaping-related behaviors.
Collapse
Affiliation(s)
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA;
| |
Collapse
|
41
|
Green Apple e-Cigarette Flavorant Farnesene Triggers Reward-Related Behavior by Promoting High-Sensitivity nAChRs in the Ventral Tegmental Area. eNeuro 2020; 7:ENEURO.0172-20.2020. [PMID: 32747456 PMCID: PMC7433896 DOI: 10.1523/eneuro.0172-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
While combustible cigarette smoking has declined, the use of electronic nicotine delivery systems (ENDS) has increased. ENDS are popular among adolescents, and chemical flavorants are an increasing concern because of the growing use of zero-nicotine flavored e-liquids. Despite this, little is known regarding the effects of ENDS flavorants on vaping-related behavior. Following previous studies demonstrating the green apple flavorant, farnesol, enhances nicotine reward and exhibits rewarding properties without nicotine, this work focuses on the green apple flavorant, farnesene, for its impact on vaping-related behaviors. Using adult C57BL/6J mice, genetically modified to contain fluorescent nicotinic acetylcholine receptors (nAChRs), and farnesene doses of 0.1, 1.0, and 10 mg/kg, we observed farnesene-alone produces reward-related behavior in both male and female mice. We then performed whole-cell patch-clamp electrophysiology and observed farnesene-induced inward currents in ventral tegmental area (VTA) putative dopamine (pDA) neurons that were blocked by the nAChR antagonist, DhβE. While the amplitudes of farnesene-induced currents are ∼30% of nicotine's efficacy, this indicates the potential for some ENDS flavorants to stimulate nAChR function. Additionally, farnesene enhances nicotine's potency for activating nAChRs on VTA dopamine neurons. This may be because of changes in nAChR stoichiometry as our data suggest a shift toward high-sensitivity α4β2 nAChRs. Consequently, these data show that the green apple flavorant, farnesene, causes reward-related behavior without nicotine through changes in nAChR stoichiometry that results in an enhanced effect of nicotine on VTA dopamine neurons. These results demonstrate the importance of future investigations into ENDS flavorants and their effects on vaping-related behaviors.
Collapse
|
42
|
Jin XT, Tucker BR, Drenan RM. Nicotine Self-Administration Induces Plastic Changes to Nicotinic Receptors in Medial Habenula. eNeuro 2020; 7:ENEURO.0197-20.2020. [PMID: 32675176 PMCID: PMC7405075 DOI: 10.1523/eneuro.0197-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic nicotine upregulates nicotinic acetylcholine receptors (nAChRs) throughout the brain, and reducing their activity may promote somatic and affective states that lead to nicotine seeking. nAChRs are functionally upregulated in animal models using passive nicotine administration, but whether/how it occurs in response to volitional nicotine intake is unknown. The distinction is critical, as drug self-administration (SA) can induce neurotransmission and cellular excitability changes that passive drug administration does not. In this study, we probed the question of whether medial habenula (MHb) nAChRs are functionally augmented by nicotine SA. Male rats were implanted with an indwelling jugular catheter and trained to nose poke for nicotine infusions. A saline SA group controlled for non-specific responding and nicotine-associated visual cues. Using patch-clamp whole-cell recordings and local application of acetylcholine, we observed robust functional enhancement of nAChRs in MHb neurons from rats with a history of nicotine SA. To determine whether upregulated receptors are generally enhanced or directed to specific cellular compartments, we imaged neurons during recordings using two-photon laser scanning microscopy (2PLSM). nAChR activity at the cell soma and on proximal and distal dendrites was examined by local nicotine uncaging using a photoactivatable nicotine (PA-Nic) probe and focal laser flash photolysis. Results from this experiment revealed strong nAChR enhancement at all examined cellular locations. Our study demonstrates nAChR functional enhancement by nicotine SA, confirming that volitional nicotine intake sensitizes cholinergic systems in the brain. This may be a critical plasticity change supporting nicotine addiction.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Brenton R Tucker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Ryan M Drenan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
43
|
Mahmood HM, Aldhalaan HM, Alshammari TK, Alqasem MA, Alshammari MA, Albekairi NA, AlSharari SD. The Role of Nicotinic Receptors in the Attenuation of Autism-Related Behaviors in a Murine BTBR T + tf/J Autistic Model. Autism Res 2020; 13:1311-1334. [PMID: 32691528 DOI: 10.1002/aur.2342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic receptors are distributed throughout the central and peripheral nervous system. Postmortem studies have reported that some nicotinic receptor subtypes are altered in the brains of autistic people. Recent studies have demonstrated the importance of nicotinic acetylcholine receptors (nAChRs) in the autistic behavior of BTBR T + tf/J mouse model of autism. This study was undertaken to examine the behavioral effects of targeted nAChRs using pharmacological ligands, including nicotine and mecamylamine in BTBR T + tf/J and C57BL/6J mice in a panel of behavioral tests relating to autism. These behavioral tests included the three-chamber social interaction, self-grooming, marble burying, locomotor activity, and rotarod test. We examined the effect of various oral doses of nicotine (50, 100, and 400 mcg/mL; po) over a period of 2 weeks in BTBR T + tf/J mouse model. The results indicated that the chronic administration of nicotine modulated sociability and repetitive behavior in BTBR T + tf/J mice while no effects observed in C57BL/6J mice. Furthermore, the nonselective nAChR antagonist, mecamylamine, reversed nicotine effects on sociability and increased repetitive behaviors in BTBR T + tf/J mice. Overall, the findings indicate that the pharmacological modulation of nicotinic receptors is involved in modulating core behavioral phenotypes in the BTBR T + tf/J mouse model. LAY SUMMARY: The involvement of brain nicotinic neurotransmission system plays a crucial role in regulating autism-related behavioral features. In addition, the brain of the autistic-like mouse model has a low acetylcholine level. Here, we report that nicotine, at certain doses, improved sociability and reduced repetitive behaviors in a mouse model of autism, implicating the potential therapeutic values of a pharmacological intervention targeting nicotinic receptors for autism therapy. Autism Res 2020, 13: 1311-1334. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, Center for Autism Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael A Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
44
|
de Moura FB, Wilkerson JL, McMahon LR. Unexpected loss of sensitivity to the nicotinic acetylcholine receptor antagonist activity of mecamylamine and dihydro-β-erythroidine in nicotine-tolerant mice. Brain Behav 2020; 10:e01581. [PMID: 32092237 PMCID: PMC7177571 DOI: 10.1002/brb3.1581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There is a long-standing interest in developing nicotinic acetylcholine receptor (nAChR) antagonists for concomitant use with nAChR agonists (e.g., nicotine replacement) as complementary smoking cessation aids. Previous studies demonstrate that daily nicotine treatment confers tolerance to some effects of nicotine, as well as cross-tolerance to other nAChR agonists. The current study assessed the extent to which antagonism of nicotine varies as a function of daily nicotine treatment. METHODS Schedule-controlled responding and hypothermia were selected for study because they have been previously used to examine the pharmacology of nicotine, and both are sensitive to the development nicotine tolerance. The rate-decreasing and hypothermic effects of nicotine, as well as antagonism of those effects, were examined in C57BL/6J mice before, during treatment with, and after discontinuation of three daily injections of 1.78 mg/kg nicotine. The nonselective nAChR antagonist mecamylamine and the β2 nAChR antagonist dihydro-β-erythroidine (DHβE) were studied in combination with nicotine. RESULTS The ED50 values of nicotine to produce rate-decreasing and hypothermic effects were, respectively, 0.44 and 0.82 mg/kg prior, 1.6 and 3.2 mg/kg during, and 0.74 and 1.1 mg/kg after discontinuation of daily nicotine treatment. Prior to daily nicotine treatment, mecamylamine decreased response rate and rectal temperature. However, during daily nicotine, mecamylamine (up to 5.6 mg/kg) only decreased rectal temperature. DHβE (up to 5.6 mg/kg) when studied prior to daily nicotine decreased rectal temperature, but that decrease was abolished during chronic nicotine treatment. Mecamylamine and DHβE antagonized the rate-decreasing and hypothermic effects of nicotine before and after daily nicotine; however, during daily nicotine, mecamylamine and DHβE antagonized only the hypothermic effects of nicotine. CONCLUSIONS The differential antagonism of rate-decreasing and hypothermic effects implicates differential involvement of nAChR subtypes. The decreased capacity of mecamylamine and DHβE to antagonize nicotine during chronic nicotine treatment may indicate that their effectiveness as smoking cessations might vary as a function of nicotine tolerance and dependence.
Collapse
Affiliation(s)
- Fernando B de Moura
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Behavioral Biology Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Shahoei R, Tajkhorshid E. Menthol Binding to the Human α4β2 Nicotinic Acetylcholine Receptor Facilitated by Its Strong Partitioning in the Membrane. J Phys Chem B 2020; 124:1866-1880. [PMID: 32048843 PMCID: PMC7094167 DOI: 10.1021/acs.jpcb.9b10092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We utilize various computational methodologies to study menthol's interaction with multiple organic phases, a lipid bilayer, and the human α4β2 nicotinic acetylcholine receptor (nAChR), the most abundant nAChR in the brain. First, force field parameters developed for menthol are validated in alchemical free energy perturbation simulations to calculate solvation free energies of menthol in water, dodecane, and octanol and compare the results against experimental data. Next, umbrella sampling is used to construct the free energy profile of menthol permeation across a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The results from a flooding simulation designed to study the water-membrane partitioning of menthol in a POPC lipid bilayer are used to determine the penetration depth and the preferred orientation of menthol in the bilayer. Finally, employing both docking and flooding simulations, menthol is shown to bind to different sites on the human α4β2 nAChR. The most likely binding mode of menthol to a desensitized membrane-embedded α4β2 nAChR is identified to be via a membrane-mediated pathway in which menthol binds to the sites at the lipid-protein interface after partitioning in the membrane. A rare but distinct binding mode in which menthol binds to the extracellular opening of receptor's ion permeation pore is also reported.
Collapse
Affiliation(s)
- Rezvan Shahoei
- Department of Physics, NIH Center for Macromolecular Modeling and Bioinformatics, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin 2020; 41:1-9. [PMID: 31554960 PMCID: PMC7468330 DOI: 10.1038/s41401-019-0299-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
Abstract
Midbrain dopaminergic (DA) neurons are governed by an endogenous cholinergic system, originated in the mesopontine nuclei. Nicotine hijacks nicotinic acetylcholine receptors (nAChRs) and interferes with physiological function of the cholinergic system. In this review, we describe the anatomical organization of the cholinergic system and the key nAChR subtypes mediating cholinergic regulation of DA transmission and nicotine reward and dependence, in an effort to identify potential targets for smoking intervention. Cholinergic modulation of midbrain DA systems relies on topographic organization of mesopontine cholinergic projections, and activation of nAChRs in midbrain DA neurons. Previous studies have revealed that α4, α6, and β2 subunit-containing nAChRs expressed in midbrain DA neurons and their terminals in the striatum regulate firings of midbrain DA neurons and activity-dependent dopamine release in the striatum. These nAChRs undergo modification upon chronic nicotine exposure. Clinical investigation has demonstrated that partial agonists of these receptors elevate the success rate of smoking cessation relative to placebo. However, further investigations are required to refine the drug targets to mitigate unpleasant side-effects.
Collapse
|
47
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Avelar AJ, Akers AT, Baumgard ZJ, Cooper SY, Casinelli GP, Henderson BJ. Why flavored vape products may be attractive: Green apple tobacco flavor elicits reward-related behavior, upregulates nAChRs on VTA dopamine neurons, and alters midbrain dopamine and GABA neuron function. Neuropharmacology 2019; 158:107729. [PMID: 31369741 DOI: 10.1016/j.neuropharm.2019.107729] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/15/2023]
Abstract
While nicotine is the primary addictive component in tobacco products, additional flavors have become a concern with the growing popularity of electronic nicotine delivery systems (ENDS). For this reason, we have begun to investigate popular tobacco and ENDS flavors. Here, we examined farnesol, a chemical flavorant used in green apple and fruit flavors in ENDS e-liquids, for its ability to produce reward-related behavior. Using male and female 3-6 month old C57BL/6 J mice and farnesol doses of 0.1, 1, and 10 mg/kg we identified a sex-dependent effect in a conditioned place preference assay: farnesol-alone produces reward-related behavior in only male mice. Despite this sex-dependent effect, 1.0 mg/kg farnesol enhances locomotor activity in both male and female mice. To understand farnesol's effect on reward-related behavior, we used whole-cell patch-clamp electrophysiology and confocal microscopy to investigate changes in putative dopamine and GABA neurons. For these approaches, we utilized genetically modified mice that contain fluorescent nicotinic acetylcholine receptors (nAChRs). Our electrophysiological assays with male mice revealed that farnesol treatment increases ventral tegmental area (VTA) dopamine neuron firing frequency and this may be due to a decrease in inhibitory tone from GABA neurons. Our microscopy assays revealed that farnesol treatment produces a significant upregulation of α6* nAChRs in male mice but not female mice. This was supported by an observed increase in α6* nAChR function in additional electrophysiology assays. These data provide evidence that popular tobacco flavorants may alter smoking-related behavior and promote the need to examine additional ENDS flavors.
Collapse
Affiliation(s)
- Alicia J Avelar
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Austin T Akers
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Zachary J Baumgard
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Skylar Y Cooper
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Gabriella P Casinelli
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Marshall University, Joan C Edwards School of Medicine, Huntington, WV, USA.
| |
Collapse
|
49
|
Arvin MC, Jin XT, Yan Y, Wang Y, Ramsey MD, Kim VJ, Beckley NA, Henry BA, Drenan RM. Chronic Nicotine Exposure Alters the Neurophysiology of Habenulo-Interpeduncular Circuitry. J Neurosci 2019; 39:4268-4281. [PMID: 30867261 PMCID: PMC6538858 DOI: 10.1523/jneurosci.2816-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Matthew D Ramsey
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Nicole A Beckley
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Brittany A Henry
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
50
|
Torres LH, Balestrin NT, Spelta LEW, Duro SDO, Pistis M, Marcourakis T. Exposure to tobacco smoke during the early postnatal period modifies receptors and enzymes of the endocannabinoid system in the brainstem and striatum in mice. Toxicol Lett 2019; 302:35-41. [DOI: 10.1016/j.toxlet.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 01/31/2023]
|